UNIVERSITI TEKNOLOGI PETRONAS

Bio-Inspired Mechanism For Securing Distributed Networked Component Based

Software

By

Oumar Abderaman Mahamad Abbo

A THESIS

SUBMITTED TO THE POSTGRADUATE STUDIES PROGRAMME

AS A REQUIREMENT FOR THE

DEGREE OF MASTER OF SCIENCE (MSc)

IN INFORMATION TECHNOLOGY

BANDAR SERI ISKANDAR,

PERAK,

November, 2009

Title

Bio-Inspired Mechanism For Securing Distributed Networked thesis:

Component Based Software

I <u>OUMAR ABDERAMAN MAHAMAD ABBO</u> hereby allow my thesis to be placed at the Information Resource Center (IRC) of Universiti Teknologi PETRONAS (UTP) with the following conditions:

- 1. The thesis becomes the property of UTP
- 2. The IRC of UTP may make copies of the thesis for academic purposes only.
- 3. This thesis is classified as

Non-confidential

Confidential

The contents of the thesis will remain confidential for _____ years. Remarks on disclosure:

Endorsed by	
Oumar Abderaman Mahamad Abbo	Azween Abdullah
Department of Computer and Information	Department of Computer and Information
Science Universiti Teknologi PETRONAS	Science Universiti Teknologi PETRONAS
Bandar Seri Iskandar 31750 Tronoh	Bandar Seri Iskandar 31750 Tronoh
Perak Darul Ridzuan	Perak Darul Ridzuan
Date:	Date:

UNIVERSITI TEKNOLOGI PETRONAS

Approval by Supervisor (s)

The undersigned certify that they have read, and recommend to The Postgraduate Studies Programme for acceptance, a thesis entitle "<u>Bio-Inspired Mechanism For</u> <u>Securing Distributed Networked Component Based Software</u>" submitted by <u>Oumar Abderaman Mahamad Abbo</u> for the fulfillment of the requirements for the degree of Master of Science (MSc) in Information Technology by Research.

Signature	·
Main Supervisor	
Wall Supervisor	·
Date	:
Co-Supervisor	

UNIVERSITI TEKNOLOGI PETRONAS

Bio-Inspired Mechanism For Securing Distributed Networked Component Based

Software

By

Oumar Abderaman Mahamad Abbo

A THESIS

SUBMITTED TO THE POSTGRADUATE STUDIES PROGRAMME

AS A REQUIREMENT FOR THE

DEGREE OF MASTER OF SCIENCE (MSc)

IN INFORMATION TECHNOLOGY

BANDAR SERI ISKANDAR,

PERAK,

November, 2009

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that is has not been previously or concurrently submitted for any other degree at UTP or other institutions.

Signature	•
-	
Name	:
Date	:

ABSTRACT

Distributed Networked systems and applications are created by composing a complex set of component-based software. These components are subject to continuous upgrade, replacement, and scaling, and also anomaly attacks. These conditions must be monitored and controlled in order to have these behaviors seem normal and routine.

Self-regenerative systems are new and software paradigm in survivable system design. Self-regeneration ensures the property that a system must have and cannot be vulnerable to external factors and fail. In order to establish the utility of self-regenerative capability in design of survivable systems, it is important to ensure that a system satisfying the self-regenerative requirement is survivable.

Studies have been carried out to build self-regenerative systems using multi agent paradigm in order to ensure network software survivability, and a secure system. In this thesis, the architecture based on distributed concept and cell regeneration system is presented. To ensure that the system satisfy the selfregenerative requirements, the model support and execute its mission in the presence of attacks, by implementing the multi agent system. The concept of an agent provides a convenient and powerful way to describe a complex software entity that is capable of acting with a certain degree of autonomy in order to accomplish tasks on behalf of its user, multiple agent are implemented for robustness.

Our model consists of four agents. The first agent will perform the monitoring and detection of any malicious activities by observing behavior of the attack. The second agent will be activated from the action of replications of the component,

and the third agent will carry out the prevention of attack. The fourth provide routing management services. Result has been generated by implementing and developing the four agents as a standalone by JADE (java agent development framework).

ACKNOWLEDGMENTs

First of all, I would like to express my utmost gratitude and appreciation to my advisor Dr. Azween B Abdullah, for his experience, kindness, and most of all, for his patience. His support, encouragement, valuable assistance, and unwavering patience guides me throughout my research. Without his excellence guidance it would have been impossible to finish this work. His very positive influence on my professional development will be carried forward into my future career.

I would like to thank my parents, my sister, and my brothers for their endless support. They gave me courage and strength to never give up. They provided me sturdy motivation and strong emotional and moral support which I have needed throughout my life.

Special thanks are extended to my colleagues at computer and information sciences department and my country mates. They have been very friendly and gracious which provided me excellent study environment.

At the end, I would like to thank my friends for their consistent support, help, and encouragement.

IX

TABLE OF CONTENTS

STATUS OF THESIS	II
APPROVAL PAGE	III
TITLE PAGE	IV
DECLARATION	v
ABSTRACT	VII
ACKNOWLEDGEMENTS	VII
TABLE OF CONTENTS	VIII
LIST OF TABLES	XI
LIST OF FIGURES	XII
CHAPTER 1. INTRODUCTION	1
1.1 Introduction	1
1.2 Problem identification	3
1.3 Research questions	3
1.4 Objectives	3
1.5 Contribution	3
1.6 Research Approach	4
1.7 Methodology	4
1.8 Scope	4
1.9 Subject	5
1.10 Thesis Structure	5
CHAPTER 2. LITERATURE REVIEW	7
2.1 Autonomic Computing	
2.2 Computer thread	
2.3 Distributed Component Technique	
2.4 Related work	
2.5 Fundamental of detection and identification of malware	
2.6 Malware propagation	

2.7 Current Detection Me	ethod	
2.7.1 Scan	ner	21
2.7.2 Mon	itors	25
2.7.3 Defin	nition of gene self-replication for PBA	26
2.7.4 Beha	vior monitoring	26
CHAPTER 3. SELF-REGE	ENERATIVE SOFTWARE SYSTEMARCH	ITECTURE28
3.1 Self-regenerative syst	em	
3.2 Bio-inspired		28
3.3 Cell regeneration and	Internal Operation	
3.4 Bio-inspired Self-Reg	generative Model	
3.5 Agent based system		
3.6 Runtime-management	t	
3.7 The proposed archited	cture of self-regenerative system	
3.8 Functions Description	ns	
3.8.1 The detection ag	gent	
3.8.2 Attacks situation	ns	41
3.8.3 RC and RTM ag	gent	42
3.8.4 Prevention agen	t	43
3.8.5 Runtime-manag	ement	44
3.9 Finite state automata	theory implementation	45
3.10 Agent interaction de	escription	
3.11 Agent specification		
3.12 Case consideration	and scenario	
CHAPTER 4: IMPLEMEN	NTATION USING JADE	69
4.1 Agent Development		69
4.2 Java Agent Developm	ent Environment	59
4.2.1 Java Messaging		70
CHAPTER 5. CASE STUI	DY	
5.1. Distributed System	m	80
5.2. Distributed System	m Architecture	81
5.3. Component Based	l Software	77

5.4. Case Study	82
5.5 Peer to Peer	
5.6 Cluster Network	
CHAPTER 6: CONCLUSION	90
REFERENCES	93

LIST OF TABLE

Table 3-1: The abbreviation meaning	40
Table 3-2: The abbreviation meaning	.41
Table 3-3: Agent alphabet	45
Table 3-4: Describe table meaning	.47
Table 3-5: The Transitional Table of the Process	49
Table 3-6: The state description	50

LIST OF FIGURE AND ILLUSTRATIONS

Figure 2-1: Attack Propagation	20
Figure 2-2: A typical scanning technique	24
Figure 2-3: Functionality of the System Calls Monitor	27
Figure 3-1: Mapping of the Cell regeneration to our Model	29
Figure 3-2: Mapping of the Cell internal operation and regeneration into c	omponent
based Self-regenerative system	31
Figure 3-3: System Overview	32
Figure3-4: System Call Monitor	34
Figure3-5: The Proposed Self-regenerative Model	36
Figure3-6: Self-regenerative Component	
Figure 3-7: The Detection Flow	40
Figure 3-8: Malicious Software behavior Part	42
Figure 3-9: The Replication and Configuration Part	43
Figure 3-10: The Prevention Process	43
Figure 3-11: The Process of Component	44
Figure3-12: The detection Agent Flow	36
Figure3-13: Detection Process	48
Figure 3-14: The Replication and Configuration Part	50
Figure 3-15: Flow of Agent and Messaging	52
Figure 3-16: Detection Agent possible Actions possible	54
Figure 3-17: The Agent involved in the process	56
Figure 3-18: Detection Agent Interact with the RC Agent	59
Figure 3-19: Detection Agent and the Prevention Agent	60
Figure 3-20: Attack and its Propagation	60
Figure 3-21: Attack and propagation Sequence Diagram	61
Figure 3-22: The Detection Agent	62
Figure 3-23: The RC Agent	62
Figure 3-24: only one Attack Sequence Diagram	63

Figure 3-25: The Behavior of the Nodes Agent in Concurrent Attack
Figure 3-26: Concurrent Attack Sequence Diagram65
Figure 3-27: The Sequential attack
Figure 3-28: Sequential Attack Sequence Diagram67
Figure 4-1: Messages flow73
Figure 4-2: Replication and configuration and Run Time Messages Flow76
Figure 4-3: The selection of nodes and messaging77
Figure 4-4: The prevention Agent messaging78
Figure 5-1: Distributed System81
Figure 5-2: Distributed Architecture
Figure 5-3: Mapping our approach to peer to peer
Figure 5-4: Model flow
Figure 5-5 The ACL messages versus numbers of nodes
Figure 5-6 The ACL messages versus numbers of nodes in the four scenarios
Figure 5-7: The Cluster System deployment
Figure 5-8: The ACL Messages versus Numbers of Nodes in the four Scenarios

•