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CHAPTER 1 

INTRODUCTION 

 

Artificial neural networks or neural networks for short are defined as a system 

consisting of a set of processing elements (neurons) that are connected by connections 

known as synapses or weights to form fully connected networks. Neural networks are 

nonlinear in nature as the neurons usually consist of nonlinear functions. Hence, they 

are capable of learning and identifying nonlinear relationships. These attributes make 

neural networks an ideal nonlinear modeling tool in many areas of science, including 

control engineering. 

1.1 Background  

A Radial Basis Function Neural Network (RBF network) is one of feed forward 

neural networks architecture besides commonly used Multilayer Layer Preceptor 

(MLP), which has good generalization performance especially in the nonlinear system 

identification (Sundarajan, N et al., 1999, Fung, C.F et al., 1996, Huang, G.B et al., 

2004). RBF networks have simpler networks interpretation compared to MLP 

(Sundarajan, N et al., 1999; Fung, C.F et al., 1996; Huang, G.B et al., 2004). Thus, the 

learning process can be revealed explicitly.  

RBF networks have become popular among scientists and engineers since it has 

the capability of addressing and representing many statistical techniques (Paggio and 

Girosi, 1990). It is really helpful in many purposes especially when mathematics or 

statistics understanding are needed in representing complex nonlinear system. RBF 

networks also have been used successfully in a number of applications such as time 

series prediction, speech recognition, and adaptive control (Sundarajan, N et al., 

1999). Thus, many literatures in application of RBF networks and also some 
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fundamental research regarding RBF networks have been reported recently (e.g., Jun, 

Y., and Meng J. Er., 2008). The term, learning method, is one of the most important 

components in any form of neural network architecture, including RBF networks. The 

learning or training of neural network (also known as neural computing in many 

research and development communities) is mostly left unnoticed by many researchers 

who always prefer to stick to the slow gradient decent based back-propagation which 

is prone to stuck in local minima. The learning theory researchers try to find the most 

effective learning method to train a particular network (which includes RBF 

networks). Learning method is actually a process which tunes the parameters inside 

the networks so that it could represent a black-box system which the process is 

commonly known as  the system identification process in control research 

communities hence it has become one of the most important issue to be discussed in 

this thesis. 

1.2 Problem Statement 

An effective learning method is also needed to train RBF networks as the RBF 

networks are characterized by Radial Basis Function type, a real valued function 

whose value depends on the distance from the origin, as the activation function.  

Thus, the initialization center and width as the nonlinear parameters become crucial in 

constructing learning algorithm for RBF networks (Roy, A et al., 1997).  

Moreover, the updating process (updating the RBF network weights) is also an 

important issue when comes to learning processes thus, need to be taken into 

consideration to develop an effective learning algorithm for RBF networks in system 

identification. 

System identification process is not always with constantly sample data. 

Therefore, learning methods on system with lost packets needs a derivative free 

algorithm. 
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1.3 Research Objective 

This research will look into more on fundamental research on learning behaviour 

of nonlinear network such as RBF network. This thesis aims to introduce a new form 

of learning or training approach for RBF Networks using derivative free methods. 

Some mathematical reasons also will be presented to support fundamental theory 

which is related to the simulation results. The whole research objectives in this thesis 

can be summarized into as: 

1. To present the importance of initialization on RBF network learning process. 

2. To apply Finite Difference on Nonlinear parameter update. 

3. To apply the decomposed Network to reduce the complexity of learning 

method. 

4. To present extensive simulation results on fixed size RBF learning techniques 

using finite difference for both regular sample data and irregular sample data 

with the influence of lost packets  

5. To present some mathematics fundamental theory to support the simulation.  

1.4 Scope of Research 

The research narrows its scope in proposing learning methods which can be 

summarized as:  

1. Proposing learning algorithm on fix RBF networks 

2. Proposing learning algorithm in recursive manner. 

3. Focusing on SISO identification application either with regular sample data or 

with irregular sample data. 

4. Gaussian is the only considered activation function.  
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1.5 Research Methodology 

The research work flow representations of the phases that have evolved during 

this investigation are as follows: 

First Phase:  

• Reviewing literature regarding RBF network, learning method for RBF, the 

effectiveness of Extreme Learning Machine (ELM) methods – a recent 

proposed technique which only update the output neuron connected weights 

with linear optimization techniques. The ELM technique will be used as the 

comparison to all proposed techniques discussed in this research work.   

• Investigating the effect of Gaussian centre placement for RBF networks on 

general to system identification. The ELM approach uses random Gaussian 

kernel placement thus other techniques such as K-means and Fuzzy C-means 

clustering are investigated on ELM to evaluate the influence of parameter 

initialization process to the overall performance.   

Second Phase: 

• Reviewing recent work on derivative free gradient estimate based learning 

using central finite difference approach. Adopting the finite difference for 

estimating the gradient using second order Recursive Prediction Error (RPE) 

on nonlinear neuron associated parameters (centers and width) update.  

• Applying finite difference RPE by decomposing the RBF network to neuron 

level (decomposed RBF), thus reduces the memory requirement for online 

weight update. Test the viability of decomposed RBF network using derivative 

free gradient estimate. 

Third Phase: 

• Introduce the concept of lost packets in which the single recursive (online) 

input data to the nonlinear network (RBF Network) assumed to be irregularly 

sampled rather than with constant sample time. The derivative gradient 

estimate is viewed as the only near optimal solution for updating weights for 
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system with lost packets (or irregularly sampled). The term lost packets meant 

a packets consist of the current input (say at time t) and current output with 

time stamp will be bundled to packets and transmit to the identifier of the 

system with probability of dropping. 

1.6 Simulation Set up 

There are five nonlinear test benchmarks problems used to evaluate some of the 

proposed techniques discussed in this thesis.  The RBF network training approaches 

are evaluated using fixed size prior set Gaussian basis function with recursive (online) 

strategies being employed. The term recursive strategies means the data feed to the 

network one by one rather than a batch form.  

System Identification involves in this research work identifying the dynamic 

nonlinear system online. The work involves real-time simulation using Matlab® , 

SimulinkTM using recursive S-function for identifying nonlinear functions.  

1.7 Research Contribution 

The objective of this research work is to propose new learning algorithm 

strategies using derivative free technique by adopting finite difference approach on 

RBF networks for system identification. The contribution of thesis with relevant 

research articles can be summarized as follows. 

1. Presenting the important of weights initialization on fixed size RBF network 

prior to learning process. 

• Nur Afny C. Andryani, Vijanth Sagayan Asirvadam, “Modified Extreme 

Learning Machine for Fixed RBF Network on Time Series Problem,” 

Proceedings of 2
nd

 International Conference on Science and Technology, 

Pulau Pinang, Malaysia, 12th-13th December 2008. 

• Nur Afny C. Andryani, Vijanth S. Asirvadam, N.H Hamid, “Some 

Modifications on Online Extreme Learning Machine for Fixed Radial 
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Basis Function Network,” Proceedings of National Postgraduate 

Conference, Universiti Teknologi PETRONAS, 25th-26th March 2009 

2. Applying derivative free techniques using finite difference for nonlinear 

parameter update on RBF network. Simulation results shows  the derivative 

free gradient estimate can perform comparably to physically derived gradient 

estimate which not only time consuming but applicable to only one-step ahead 

prediction 

• Nur Afny C. Andryani, Vijanth S. Asirvadam, N.H Hamid, “Finite 

Difference Approach for Nonlinear Parameter Update on Fixed Radial Basis 

Function Network’s Learning Method,” Proceedings of International 

Graduate Conference on Engineering and Sciences, Johor, Malaysia, 23th-

24th December 2008. 

3. Presenting extensive simulation results on fixed size RBF learning techniques 

using derivative free technique for irregular sample data (with the influence of 

loss packets).   

• Nur Afny C. Andryani, Vijanth S. Asirvadam, N.H Hamid, “Finite 

Difference Approach on RBF Networks for On-line System Identification 

with Lost packets,” Proceeding of 2009 International Conference on 

Electrical Engineering and Informatics, Selangor, Malaysia, 5th-7th August 

2009. 

4. Applying Decomposed Network to reduce the memory and computation cost 

for training RBF network with larger hidden neurons for system identification 

with irregular sample time. 

• Nur Afny C. Andryani, Vijanth S. Asirvadam, N.H Hamid, “Finite 

Difference Recursive Update on Decomposed RBF Networks for System 

Identification with Lost packets,” Proceeding of International Conference on 

Soft Computing and Pattern Recognition 2009, Melaka, 4th-7th December 

2009. 
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5. Presenting that Finite Difference on Decomposed RBF Networks can be the 

solution for the whole case in terms of accuracy, stability and convergence 

rate 

1.8 Thesis Organization 

The thesis is organized into six chapters where the Chapter 1 describes the 

introductory text about this research work. This chapter also describes the research 

objective and the methodology taken for the completion of this report. 

Chapter 2 gives a brief description about Neural Network which focuses on the 

Radial Basis Function (RBF) with supporting mathematical theory on its universal 

approximation capability. In depth understanding of RBF network is being described 

as the thesis focus only on the training of RBF recursively. 

Chapter 3 of this thesis will look into the influence of initialization Gaussian 

kernel parameters (centers and width) to the RBF network training and final 

convergence. An approach known as Extreme Learning Machine (ELM) which 

randomly assigned Gaussian kernels is used as benchmark comparison to the other 

methods which assigned Gaussian centers using intelligence clustering techniques.  

Chapter 4 will elaborate on the adaptation of gradient free estimate using finite 

difference approaches in deducing the recursive learning algorithms for RBF 

networks. This chapter also will study a new variant of recursive learning which 

decomposed to neuron level. The finite difference based gradient estimate involves 

weights which are nonlinear-in-parameter which is the centre and the width of 

Gaussian kernel associated to each neuron. The influence of weight initialization also 

looks into recursive learning using simulation studies.   

Chapter 5 will be looking at the feasibility of gradient free estimate using finite 

difference in estimating the response of benchmark problems based on constantly 

time sampled or irregular time sampled system. A thorough evaluation studies being 

made in order to look into the effectiveness of finite difference on system with lost 

packets problems. 
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Chapter 6 concludes this report by revisiting some of the chapters and its distinct 

contributions. Some future direction also being shown for possible further research 

work on the neural network based recursive learning for system with irregular sample 

input or termed as ‘lost packets’ in this report. Appendix in the end included to 

describe the test benchmark problems used in this thesis. 
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CHAPTER 2 

RBF NETWORKS: AN OVERVIEW 

 

In this chapter literature review regarding the RBF Network and its learning 

capabilities and some mathematics background of learning and optimization process 

are elaborated. 

2.1 Artificial Neural Network 

Humans tried to develop artificial intelligence by imitating biological neuron 

network then it is called as Artificial Neural Network (ANN). It represents an 

interconnection among neuron which consists of several adjustable parameters which 

are tuned using a set of learning examples to obtain the desired function representing 

the actual system (Du, K.L et al., 2006; Billings, S.A et al., 1992). Similar to the 

biological neuron, it provides adaptability to change its environment by learning 

which can be supervised, reinforcement and unsupervised.  

 Basically the core points of ANN are its architecture and its learning 

algorithm. Based on its architecture, ANN can be divided as feed forward neural 

network, recurrent neural network, and its combination. The supervised learning, 

reinforcement learning, and unsupervised learning are types of its learning algorithm. 

There are two kinds of ANN which are most popular in feed forward neural network. 

They are MLP (Multi Layer Preceptor) and RBF (Radial Basis Function) Networks. 

2.2 Radial Basis Function Networks 

Radial Basis Function is one of special function as its response decreases or 

increases monotonically with distance from the origin (center).  An RBF variants or 
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types can be any continuous function which forms the basis function in RBF networks 

structure. There are several basis functions or kernels of Radial Basis 

Function which may guarantee the nonlinear mapping that is needed in the RBF 

networks learning process (Gupta, M et al., 2003) as: 

• Gaussian Radial Basis Function 
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• Multi quadratic Radial Basis Function 
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• Thin plate splines Radial Basis Function  

)log()()( 2
cxcxx −−=ϕ      (2.4) 

• Cubic splines Radial Basis Function  

3)()( cxx −=ϕ       (2.5) 

• linear splines Radial Basis Function  

cxx −=)(ϕ       (2.6) 

A useful property of Radial Basis Functions which characterize the activation of 

RBF networks and it’s capability to guarantee the non-singularity is stated in the 

following Lemma (Powell, 1992). 
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being any positive integer. 

RBF networks are one of the feed forward neural networks architecture widely 

used besides multi-layer preceptor as its good capability in approximation especially 

in nonlinear system identification (Sundarajan, N et al., 1999; Fung, C.F et al., 1996; 

Huang, G.B et al, 2004; Roy, A et al., 1997; Ahmad, R et al.,2002; Asirvadam, 

V.J.,2002; and Finan, R.A et al.,1996). 

RBF networks have simpler architecture compared to MLP networks. It consists 

of three layers. First layer is the input layer, which is made up of source nodes that 

connect the networks to its environment. The second layer is the hidden layer which 

applies a nonlinear transformation from the input layer to the last layer in RBF 

networks – termed as output layer. The output layer is linear in parameter, supplying 

the response of the network to the activation pattern feed through the input layer. 

Hidden layer for RBF networks are characterized of nonlinear parameters which form 

the centre and width of the basis functions. It can be one of the Radial Basis Functions 

as stated in 2.2.1 previously.   

Its simpler topology makes RBF networks can reveal its learning process 

explicitly compared to MLP networks (Sundarajan, N et al., 1999; Fung, C.F et al., 

1996; Huang, G.B, et al, 2004). The other benefit of its simpler architecture is in 

terms of computing speed compared to MLP (Brown Kenneth, M et al., 1972; Bishop, 

C.M, 1995). Besides those benefits mentioned, its topology which consist only one 

hidden layer has rigorously proved that it can uniformly approximate any smooth 

continuous function (Du, K.L et al., 2006).   

Mathematically, RBF networks with Gaussian as the activation function and 

single output can be described as: 
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Given N arbitrary distinct samples ),( ii yx where nT
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 hidden nodes can be mathematically modeled as (Brown 

Kenneth, M et al., 1972). 
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2.3 Function Approximation Capability of RBF Networks with Gaussian 

The Gaussian kernel function is normally chosen as the activation function for the 

RBF network due to its ease in interpretation (Surandrajan, N et al., 1999). It is found 

to be  suitable not only in generalizing a global mapping but also filtering local 

features without much altering the already learned input features (Du, K.L. et.al, 

2006; Surandrajan, N et al., 1999).  The Gaussian function tends to be local in 

response compared to other types of Radial Basis Functions, such as multiquadratic 

function, thin-plate-spline function. Both position and shape of Gaussian function are 

more flexible to be adjusted (the nonlinear weight are easy to update) (Surandrajan, N 

et al., 1999). RBF networks with Gaussian as their activation function has many well 

defined mathematical features which can be used in learning some complex input 

output mapping and dynamics nonlinear system identification (Gupta, M et al., 2003; 

Young Sin, Mi, 1998).  

The function approximation capability of RBF networks with Gaussian kernel can 

be proven to satisfy Stone-Weierstrass theorem (refers to Appendix B). The 

approximation capabilities of RBF networks are also highly related to its localization 

properties. Thus, RBF network with Gaussian kernel can be shown to have good 

approximation capability in overall with transparent interoperability. For those 
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reasons, Gaussian function is the best candidate of the activation function in the 

hidden neuron for RBF network. 

Figure 2.1 shows the description of RBF Network as one of feed forward neural with 

single output. 

 

Figure 2.1. RBF Network with Gaussian Kernel and One Output Neuron 

It consists of three layers. They are Input layer, hidden layer and output layer 

sequentially.  

2.4 Learning in RBF networks 

RBF network with Gaussian has capability to approximate arbitrary continuous 

functions uniformly defined on a compact set to satisfy a given approximation error 

(Yuan, X.B et al., 2005) as proven previously. This approximation process is usually 

carried out by learning phase where numbers of hidden nodes and the network 

parameters are appropriately adjusted so that the approximation error is minimized. 

Learning of a neural network can be viewed as a nonlinear optimization problem 

in which the goal is to find a set of network parameters minimizing the cost function 

(error function) for given examples (Chen, S et al., 1990). In another way learning is 

an optimization process that produces an output that is as close as possible to the 

desired output by adjusting network parameters such as center, width and weight. 

Radial Basis Function learning with Gaussian consists of two kinds of learning 

process. The first is learning of center and the second is learning of weight. 

Mathematically, learning RBF network can be described as: 
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Let a vector valued nonlinear function as the activation as stated at equation (2.8) and 

the weight vector is  

],...,,[ ~21 N
ββββ =

 
(2.9) 

The overall input-output relationship of n input and 1 output can be described by this 

following nonlinear relationship 
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~

1
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where )(ˆ xy  is the network’s output or prediction output, c is the center of Gaussian 

kernels and σ is the width, β is the linear in parameter weights connection hidden and 

output nodes and x is the input to the network.  

Training or Learning module of RBF Network involves supplying the network 

with the input, determining and updating the parameter such as centre, width and 

weight so that the networks output ),,,,(ˆ xcty βσ  approximate the desired 

output ),( xty  or the difference between the network’s output and the desired output 

are kept minimum which leads to optimization problem (Sundarajan, N et al., 1999; 

Hawlett Robert, J et al., 2001 and Roy, A et al., 1997). 

)ˆ( yye −=  (2.11) 

2.4.1 Online and Offline Learning  

There are two forms of learning algorithm in Neural Network in terms of 

terminology which categories by the way the data fed to the network during the 

training procedure. First is offline learning as when all data are assumed to be 

available on the initially or at priori then it is called as off-line learning. Besides off-

line learning, there has been a considerable interest in on-line algorithm recently as 

the other alternative learning algorithm for ANN where the data are processed 
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sequentially as they measured (Pintelon, R et al., 2000; Asirvadam, V.S and Musab, 

J.O. Elamin., 2009; Bomberger, J.D et al., 1995; Junge, T.F and Unbehaeun, H., 1997; 

Marino, M and Scarpetta, S., 2000).  

In another literature it is mentioned that the term ‘on-line’ refers to methods 

where the learning parameters are updated based only on information from one single 

pattern, while ‘off-line’ refers to learning method where the learning parameters are 

updated based on information from the whole training data (Isakson, Alf J., 1993). 

Some researchers also use the terms stochastic and batch as an alternative names for 

on-line and off-line. The focus of this thesis will be on on-line learning algorithm 

which is also termed recursive which trains the RBF networks adaptively. 

2.4.2. Supervised and Unsupervised Learning 

There are many learning modes that are conventionally used for Neural Networks 

training. They are supervised, unsupervised, reinforcement, and evolutionary learning. 

Supervised and unsupervised learning become the most commonly used in system 

identification, pattern recognition, control modeling, signal processing and 

approximation (Du, K.L et al, 2006). 

Unsupervised learning does not need the target response. It is only based on the 

correlation among the input data and is used to find major features in input data 

without the need of output data (or the teacher). 

Unsupervised learning is usually characterized by numerous clustering algorithms 

e.g. K-means clustering, which has been widely used due to its simplicity and ability 

to produce good results.  

Supervised learning can be said as learning with a teacher which needs the actual 

output to compare with network response. The learning process involves nonlinear 

optimization process which minimizes the error between network approximation and 

real output of the plant or system. The learning parameters are adjusted by a 

combination of the learning pattern set and the corresponding error between the 

desired output and the network output.  
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2.4.3 Some Learning Principles for Neural Network 

There are some learning principles of neural network that are commonly used as 

indicator for building learning methods. The learning principles, or prior settings 

before a neural network training took place, is produced based on the following 

criteria commonly (Roy, A et al., 1997) 

1. Perform Network design task 

� Proper network architecture is set which will be optimal for a given set 

of problems. 

2. Robustness in Learning 

� The learning method must be robust so as not to have the local minima 

problem. This can be done by simulating average of multiple 

initializations.  

3. Quickness in Learning 

� The learning method must be quick in its learning and rapidly from 

only a few of examples as it means fast in learning the underlying 

functions.  

4. Efficiency in Learning 

� The learning method must be computationally efficient in the learning 

when provided with a finite number of training examples. 

5. Generalization in Learning 

� The learning method must be able to generalize reasonably well so that 

only small amount of network recourses is used. It must be tried to 

design smallest possible net, although it might not be able to do so 

every time.  
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2.5 System Identification 

Generally, system Identification problem is to infer a mathematical relationship 

between past input-output data and future outputs (Sjöberg, J et al., 1994; Lennart 

Ljung., 1987). 

Let 

[ ]Τ
−−−−= )()...1()()...1()( ba ntutuntytytϕ  (2.12) 

As a finite number of input )(ku  and outputs )(ky  into vector )(tϕ  for ba nnd += , 

then d
t ℜ∈)(ϕ .  

Mathematically the system identification problem is the process to understand the 

relationship between the output of the system/plant, )(ty  and the input of the system, 

)(tϕ . To obtain the understanding, a set of observation data is needed which is termed 

as the training set. 

Let  

[ ]{ }NtttyZ N ,...1)(),( == ϕ  (2.13) 

Thus, from these data we infer the relationship  

( ))(ˆ)(ˆ tgty N ϕ=  (2.14) 

ŷ  is the prediction for the real system by the model, in this case is  the RBF Network, 

in the system identification process based on information that we get from )(tϕ . 

2.5.1 Nonlinear Black Box Modeling Using RBF 

Describing the nonlinear and dynamic condition of the system will generally lead 

to become one of the challenging segments in nonlinear black box modeling. 

However, the basic idea is almost the same as black box modeling as the difference 

here is the identification process involves nonlinear network that is the RBF network. 
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From the previous fundamental researches (Sjöberg, J et al., 1994), there are several 

assumptions made for nonlinear black box modeling which are listed as follows: 

( ))()(ˆ 0 tgty ϕ=  (2.15) 

For given any function ( ) ℜ→ℜ d
g :0 ϕ . 

The requirements are: 

• ( ){ }ϕkg  is a basis for such function , i.e. which can be written as 

( ) )()(
1

0 ϕβϕ ∑
∞

=

=
k

kgkg  
(2.16) 

• For any reasonable function 0g  using suitable coefficients ( )kβ  

• It produces ‘good’ approximations for finite sums. 

• In optimization term minimizes the error function below: 
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=
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n

k

kgkge
1

0 )(  
(2.17) 

2.5.2. System Identification using RBF network 

There are many ways to implement system identification; one of them is by using 

(ANN) technique. ANN techniques are widely used in identification especially for 

nonlinear system identification. The universal approximation property of ANN makes 

them suitable for identifying of black box nonlinear process plant with complex 

dynamics. 

There are some reasons why ANN has attained so much interest in system 

identification circle. Its function expansion has good properties regarding the 

nonlinear function approximation and its localized features for RBF networks. 

Moreover, its capability can replace many multi dimensional regression and statistical 

techniques.  
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ANN can be seen as the predictor or modeler in system identification term. The 

output of the network is the prediction for the output of the underlying system. The 

prediction’s output is computed based on past input and also previous prediction 

(output) of the system which is known as the autoregressive exogenous (ARX) input. 

The thesis will only focus on nonlinear ARX (NARX) using RBF network as the 

function to predictor or modeler. 

There are several steps of system identification process using ANN. Similar to 

mathematical modeling; the identification process starts by building some 

assumptions underlying the systems. Secondly, one of the most important elements is 

to determine the model order which could be different for different problem of 

investigation. The third is determining the neural network architecture which 

determines the number of input and the number of hidden neurons. The last part is 

estimating the free or user defined parameter such as learning rates and the stopping 

criteria. The estimation process will be minimizing the error between the actual output 

and the prediction’s output iteratively during the training. 

System Identification by RBF network means, RBF network is chosen as the 

network architecture in the identification process thus, the network specifies the 

model parameterization. By estimating its learning parameters, RBF networks are the 

predictor in order to identify the system. As in (2.7), the free parameters of the RBF 

network are the weights (linear parameter) and the centers and also its widths of the 

basis functions (nonlinear learning parameters). There are some learning methods 

proposed by many researchers to determine priori the user defined (free parameters) 

(Li, B et al., 2007; Fung, C.F et al., 1996; Huang, G.B et al., 2004; Jun, Li et al., 

2007; Chen J-Y, et al., 2006; Li, B et al., 2006; Zhu, Q.Y et al., 2005; Asirvadam, V.S 

et al., 2004; Bishop, C.M., 1998; Neruda, R and Kudova, P., 2004; Ngia Lester, S.H 

and Sjoberg, J., 2000; Lightbody, G and Irwing, G.W., 1992) before a training process 

takes place.  

There is another concept known as system identification with lost packets for 

where the modeler will identify a nonlinear system online when the input data is 

presented with irregular sample instant. This is introduced and discussed thoroughly 

in Chapter 5.  
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2.6 Conclusion 

This chapter has reviewed some basic concepts regarding RBF networks. It is 

started by some brief explanation about artificial neural networks and some overviews 

regarding RBF networks are also presented.  

Since the objective of this thesis is to propose learning methods of RBF networks 

for nonlinear system identification, thus, the chapter also presents brief explanation 

about learning method on RBF networks and some basic theory of system 

identification. Some mathematics analytical theorems are also presented in the 

Appendix B to support the research methodology. 

This chapter gives some basic terminology which will be used in the later 

chapters. It describes the research objectives in trying to find out the alternative 

effective learning methods of RBF networks with Gaussian kernel especially for 

system with lost packets. 

The next chapter deals with the affect nonlinear parameter initialization to the 

overall RBF learning. It is started by some brief explanation on recently proposed 

Extreme Learning Machine (ELM) which is used as the benchmark comparison to the 

others techniques which uses smart clustering approach for initialization of Gaussian 

kernel parameters. 
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CHAPTER 3 

INITIALIZATION OF RBF NETWORK 

 

This chapter is talking about the importance of initialization on learning RBF 

networks. Since the benchmark algorithm, ELM, only use simple random 

initialization, some unsupervised learning method is used to improve the accuracy 

performance. 

3.1 Parameter Initialization  

Parameter’s initialization is an important part in learning process of RBF 

networks. Theoretically an appropriate parameter’s initialization method will give 

significant affect on the performance of the learning (Roy, A et al., 1997). Since the 

output of the RBF networks is the weighted sum of the local basis functions, the   

networks response or output is local in nature. This means that the output predict 

tends to zero as the data moves farther away from the center of the Gaussian kernel. 

Thus, determining center of Gaussian kernels in an important part of RBF 

initialization process based on density of the data.   

There are several ways to initialize the RBF networks nonlinear parameters. It can 

be done using unsupervised learning technique such as K-means clustering and Fuzzy 

C-means clustering or just simply by random initialization. The main contribution of 

this chapter is to look into the influence of initialization methods for RBF networks to 

its overall performance on nonlinear system identification.  
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3.2 Extreme Learning Machine (ELM) 

Extreme Learning Machine (ELM), which has been developed by Huang,  

(Huang, G.B et al., 2004; Liang, N.Y et al., 2006; Li, M.B and Er, M.J., 2006; Minh-

Tuan, T et al., 2007; Singh, R and Balasundaran, S., 2007) has been proved to 

perform better compared to other learning methods such as stochastic back-

propagation, resource allocation networks (RAN) (Platt, J., 1990) and minimal RAN 

(MRAN) (Yingwei et al., 1997,2000)  in some classification, regression, and system 

identification purposes. ELM uses simply random initialization to set the nonlinear 

learning’s parameters (centre and the width) and pseudo-inverse technique and linear 

optimization to adjust and update the linear learning’s parameter. It does not perform 

any update procedure on the nonlinear learning parameters. ELM has been developed 

as batch learning method initially then it was extended for online learning method 

with RLS algorithm to update the linear weights (Liang, N.Y et al., 2006). The idea of 

ELM is not new as similar method can be found in literature which is termed as 

hybrid or separable learning techniques (Mcloone(a) et al., 1998; McLoone(b) et al., 

1998).  

The ELM has two learning phases, prior initialization and online output neuron 

connected weights update phase which is described next.  

Phase I. Initialization 

Initialize the parameters using small batch of initial learning data ( ){ }
1

, 0
0

=
=

i

N
yxN ii

 

from the given learning set  

( ){ },...2,1,,/, 1 =∈ℜ∈= iRyxyxN i

n

iii
 (3.1) 

NN
~

0 ≥                 

a). assign random the center and impact width of the hidden neuron ( )Nic ii

~
,...,1,, =σ  

b). Calculate the initial hidden layer output 0H  
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 c). Estimate the initial output weight  

000
)0( YHP

T
=β  (3.3) 

where  

1
000 )( −= HHP

T
 (3.4) 

d).set t=0 

 

Phase II. Update learning phase 

Given the )1( +t -th chunk of new observation 
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Where  1+tN  denote the number of observation in the )1( +t th sample instant. 

a). Calculate the partial hidden layer output matrix 1+tH  for the )1( +t th chunk of 

data 1+tN  

b). set                                       
T

NN
k t

j j
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j j
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(3.6) 

c). Calculate the output weight ( )1+kβ  
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T
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T

tttt PHHPHIHPPP 1
1

1111 )( +
−

++++ +−=  (3.7) 
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d). set 1+= tt . Go to step 2). 

If the data is not arrive chunk by chunk but one by one ( 1+tN =1), then by using 

Sherman-Morrison Formula we get 

11
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(3.10) 

where  

( ) ( )( )[ ]1~~)1(111 ,,...,, +++ = tNNtt xcGxcGh σσ  (3.11) 

ELM approach discussed in the thesis looks into only the online variant as all the 

proposed techniques throughout the thesis which deal with recursive RBF learning 

techniques use the ELM as the comparison due to its simplicity and ease of 

interpretation. This chapter looks into the influence of nonlinear parameter 

initialization using ELM as a framework, as ELM use only random initialization to 

RBF overall performance.  

3.3 Smart Clustering Method for Learning’s Initialization 

As stated previously, center placement plays crucial part in RBF networks 

learning process. Efficient center placement prior to learning process gives very 

significant effect on the accuracy of the RBF networks model. Thus, modifying the 

initialization methods especially for the nonlinear parameters become core issues.  
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3.3.1 K-means clustering 

K-means Clustering is one of the most popular unsupervised learning methods 

used for grouping data points. The K-means has been widely accepted because of its 

simplicity and ability to produce good results (Kim, K.J., and Ahn, H., 2008). The 

basic idea of this algorithm is clustering or grouping the learning data (input data) into 

some cluster based on the measurement between the input data and the attracting 

centers which is usually Euclidian. For RBF case the each cluster will be associated as 

one hidden node. 

K-means will group learning data into one cluster with certain degree of 

similarity. K-means clustering is categorized as hard clustering which assign each 

data into exactly one cluster with degree of membership is set to one. Thus, the 

boundaries among clusters are well defined. The center of each Gaussian function will 

be updated until there are not any movements or assigning data on the next iteration. 

Mathematically, K-means clustering problem has been formulated as a 

combinational optimization problem to divide a data set (Bishop, C.M., 1998).  

Let a data set 

{ }nixX
d

i ≤≤ℜ⊂ΩΩ∈= 1,:  (3.12) 

into k different cluster.  

{ }kvyv ≤≤Ω∈=Υ 1:  (3.13) 

and a mapping { }km
d ,...,1: →ℜ which as signs a cluster label { }k,...,1∈α to each 

data vector ix . K-means clustering applies the nearest neighbor rule such that 

αyxi → if  

{ }kvyxyx vii ,...,1, ∈∀−≤− α  (3.14) 

The next section looks into K-means clustering technique implemented on ELM 

RBF structure. A slight modification being made on Gaussian width setting on top of 
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the K-means clustering technique in order to see improvement to basic random 

initialization on RBF  learning. 

Initialization Phase Using K-means Clustering 

(a) Given the input data. 

(b) Determine k-number of cluster. 

(c) Choose the initial center for Gaussian kernels. It can be random from the 

input data or out of the input data. 

(d) Calculate the distance between the data (object) and the center. 

(e) Group them based on minimal distance set with user defined threshold.  

(f) Update the centre based on the displacement of the average cluster value 

and the new data. 

(g) Determine new center for hidden neuron and go to (c). 

The width of the clustering can also be set after the K-means clustering for the 

centers. The width of the Gaussian kernel controls the amount of overlap of the RBF 

which influence the networks generalizations. Although they can be determined in a 

variety of ways, the most common one is to make them equal to the average of sum of 

the Euclidian distance between the center and its neighboring. 

22 1
∑
∈

−=
izx

i

i

i cx
M

σ

 

(3.15) 

iz = the i-th cluster of the learning data and iM = the number of data in the iz . 

In this research, another form mathematical formulation is proposed as an 

alternative to determine the width as one over the root square of sum of the Euclidian 

distance between each center and all input data, which leads to normalization of 

Gaussian function. 
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It can be shown in that K-means clustering prior initialization of RBF centers can 

perform better compared to random initialization especially in terms of accuracy 

(computed as an average mean squared error of learning curves). Almost by the all 

benchmarks shows that K-means technique can improve the performance of the RBF 

networks learning compared to basic ELM technique as presented in Table 3.1. 

 
 

Table 3.1 Performance comparison of ELM and ELM K-means 
  

  ELM 
ELM              

{K-means} 

SELS, Nh=5     

Training 3.40E-02 1.86E-03 

Testing 3.68E-02 1.93E-03 

Mackey Glass, Nh=10     

Training 4.62E-03 7.46E-05 

Testing 5.89E-03 9.76E-05 

Narendra Time Serise, Nh=30     

Training 2.25E-03 1.36E-04 

Testing 1.20E-02 1.99E-03 

Henon Map, Nh=10     

Training 5.94E-02 4.99E-03 

Testing 6.94E-02 6.50E-03 

Chen Series, Nh=10     

Training 5.21E-02 1.80E-02 

Testing 6.03E-02 2.23E-02 

One example of the performance improvement can be seen on Mackey Glass Time 

Series in Table 3.1. K-means clustering outperforms random initialization. Taking the 

same number of hidden nodes, it can decrease the MSE of the training and testing. It 

means that it has better accuracy. 
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3.3.2 Fuzzy C-means Clustering  

The second initialization method uses the Fuzzy C-means clustering technique. 

Fuzzy C-means clustering is actually an improvement of the K-means clustering 

(Kim, K.J et al., 2008). The difference between them will be more on the membership 

degree as set by the fuzzy logic rules. The membership degree for K-means clustering 

is crisp based which is 0 or 1, but the membership degree for Fuzzy C-means 

clustering can be value within interval from 0 until 1. Thus, Fuzzy C-means clustering 

is also well known as soft K-means clustering approach as opposed to the original 

hard K-means clustering. 

Initialization Phase Fuzzy C-Mean Clustering 

(a) Initialize Unitary matrix 0][ UuU ij ==  

(b) At t-step calculate the centers vectors 

(c) ][)(
j

t
cC =  with )(tU  

∑

∑
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(3.17) 

(d) Update  )1()( , +tt
UU  
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(e) if eUU
tt <−+ )()1(  then stop, otherwise return to step 2. 

ix = n dimensional measured data and 
jc = center of the cluster while m =any real 

number that greater than 1 and 
iju  = degree of membership of ix  in the cluster j.  

The impact width will be determined as one over the root square of sum of the 

Euclidian distance between each center and all input data. 
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Table 3.2 presents Fuzzy C-means clustering based initialization. The Fuzzy 

C-means clustering can perform better compared to random initialization especially in 

terms of average mean square error for the whole benchmark problems.  

 
 

Table 3.2 Performance comparison of ELM and ELM Fuzzy C- means 
 

  ELM 
ELM                           

{Fuzzy C-means} 

SELS, Nh=5     

Training 3.40E-02 1.78E-03 

Testing 3.68E-02 1.88E-03 

Mackey Glass, Nh=10     

Training 4.62E-03 9.00E-05 

Testing 5.89E-03 1.57E-04 

Narendra Time Serise, Nh=30   

Training 2.25E-03 1.17E-04 

Testing 1.20E-02 1.59E-03 

Henon Map, Nh=10   

Training 5.94E-02 4.80E-03 

Testing 6.94E-02 6.11E-03 

Chen Series, Nh=10   

Training 5.21E-02 3.40E-03 

Testing 6.03E-02 2.12E-02 

One example of the performance improvement can be seen on Mackey Glass Time 

Series in Table 3.2. Fuzzy C-means clustering outperforms random initialization. 

Taking the same number of hidden nodes, it can decrease the MSE of the training and 

testing, means that it has better accuracy. 

3.4 Comparison of Convergence rate 

Table 3.3 – 3.6 show the convergence rate for the benchmark problem which 

depict the unsupervised learning of K-mean and Fuzzy C-means outperform the 
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traditional random initialization method. The simulations for each benchmark are 

measured based on various numbers of training data to see effectiveness of its final 

value. One main observation is the prior clustering of Gaussian center of RBF 

Networks did improve initial part of learning capability (using less number of training 

patterns) for all benchmarks. In overall the K-means and the Fuzzy C-means, show 

the best performance in RBF networks learning.  

 
 

Table 3.3  Convergence rate of SELS 
 

Number of train data Method 

 ELM 
ELM  

{K-means} 
ELM  

{Fuzzy C-means} 

300 4.17E+00 9.97E+01 9.93E+00 

500 1.44E-01 1.33E+00 1.07E-01 

1000 3.93E-02 1.62E-01 2.79E-02 

2000 3.48E-02 9.17E-03 2.05E-03 

3000 3.40E-02 1.86E-03 1.78E-03 
 

Table 3.3 performs the capability of each learning method to reach convergence for SELS. It can 

be seen for SELS, ELM with smart clustering has almost the same performance in terms of 

convergence rate as ELM. On average, It converges after 500 training data.  

 

 
 

            Table 3.4  Convergence rate of Mackey Glass 

Number of train data Method 

 ELM 
ELM  

{K-means} 
ELM  

{Fuzzy C-means} 

300 1.74E+04 1.86E+06 8.67E+03 

500 1.37E-01 5.74E+01 9.33E-02 

1000 2.27E-02 1.18E-01 1.33E+00 

2000 5.84E-03 9.48E-05 9.99E-05 

3000 4.62E-03 7.46E-05 9.00E-05 
 

Table 3.4 performs the capability of each learning method to reach convergence for Mackey 

Glass. It can be seen for Mackey Glass, ELM with smart clustering has almost the same 

performance in terms of convergence rate as ELM. It converges after 500 training data.  
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Table 3.5  Convergence rate of Narendra 

Number of train data Method 

 ELM 
ELM  

{K-means} 
ELM  

{Fuzzy C-means} 

300 2.10E+06 3.44E+01 2.24E+06 

500 1.36E+01 7.95E+03 5.07E+00 

1000 4.16E+00 1.13E+01 1.54E-02 

2000 2.25E-03 7.37E-03 2.14E-04 

3000 2.25E-03 1.36E-04 1.17E-04 
 
Table 3.5 performs the capability of each learning method to reach convergence for Narendra 

Time Series. It can be seen for Narendra Time Series, ELM with smart clustering has almost the 

same performance in terms of convergence as ELM. On average, it converges after 1000 training 

data.  

 
 

Table 3.6  Convergence rate of Henon Map 

Number of train data Method 

 ELM 
ELM  

{K-means} 
ELM  

{Fuzzy C-means} 

300 3.10E+04 5.99E+05 8.06E+03 

500 2.54E+00 5.07E-01 7.20E-02 

1000 6.25E-02 1.68E+04 6.22E-03 

2000 6.22E-02 5.47E-03 3.89E-02 

3000 5.94E-02 4.99E-03 4.80E-03 

 
Table 3.6 performs the capability of each learning method to reach convergence for Henon Map. 

It can be seen for Henon Map, ELM with smart clustering has almost the same performance in 

terms of convergence rate compared to ELM. On average, they converge after 1000 training data.  

However ELM with Fuzzy C-means clustering initialization has faster convergence rate for this 

benchmark. It converges after 300 training data.  

 
Convergence rate of Chen Series 

Table 3.7 Convergence rate of Chen Series 
 
 
 
 
 
 
 
 

 
 

Table 3.7 above performs the capability of each learning method to reach convergence for Chen 

Series problem. It can be seen for Chen Series problem, ELM with smart clustering has almost the 

Number of train data Method 

 ELM 
ELM  

{K-means} 
ELM  

{Fuzzy C-means} 

300 1.09E+02 1.10E+03 2.78E-01 

500 5.72E-02 1.85E-02 9.43E-03 

1000 4.75E-02 1.81E-02 3.76E-03 

2000 5.23E-02 1.95E-02 2.47E-03 

3000 5.21E-02 1.80E-02 3.40E-03 



 32 

same performance in terms of convergence rate as ELM. On average, it converges after 300 

training data.   

 

From Tables 3.3- Table 3.7 it can be concluded that all the initialization method does not give 

any significance into the learning performance in terms of convergence rate. They are comparable 

 

Figure 3.1(a)-(c) shows the center placement comparison among random initialization and the 

unsupervised learning method for Chen Series benchmark problem.  
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(a) Center placement using random methods 
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(b) Center placement using K-means 
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(c) Center placement using fuzzy c-means 

Figure 3.1 Initialization comparisons of Chen Series 

 

The degree of overlap is due to vast random nature of initialization before clustering 

technique take place. 

3.5 Conclusion 

This chapter has discussed the smart clustering for RBF initialization compared to 

random initialization technique. The main contribution stated is on examining how 

important the initialization of RBF networks parameter to the learning accuracy. The 

ELM technique being introduced which is used as benchmark for other proposed 

techniques. The smart clustering technique such as K-means clustering, and Fuzzy C-

means are applied on ELM algorithm for observing the difference in performance 

compared to basic random initialization. Simulation results show the prior clustering 

approach do affect in the final value of error convergence.  Thus, prior initialization of 

nonlinear learning parameter as one of the presetting has been done before the RBF 

networks is subjected to training recursively or online. 

 The next chapter deals with finite difference or derivative free gradient estimate 

on RBF recursive nonlinear parameter update. The influence of recursive update 

method for nonlinear learning parameter with various initialization strategies 

discussed in this chapter will also be evaluated.  
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CHAPTER 4                                                                             

 RECURSIVE LEARNING WITH FINITE DIFFERENCE 

 

Recursive learning algorithm can be viewed as optimization problem of RBF 

Networks parameters (Barwis, J et al., 1992; Sudkam, Thomas A., 2006). It needs the 

availability of gradients estimate online for adaptive update of weight. Finite 

difference is applied on Recursive Prediction Error (RPE) algorithm for online RBF 

learning. It is used on nonlinear parameter update. 

4.1 Finite Difference  

Finite Difference is one of indirect gradient estimation methods which will 

estimate the approximation of the real gradient of any nonlinear networks underlying 

dynamics system (Michael C. Fu., 2005; Simandl, M and Dunika, J., 2009). Figure 

4.1 shows the derivative estimate using finite difference. 

Figure 4.1 Derivative free Gradient using Finite Difference.
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Referring to Figure 4.1, if the function curve is described by the function )(xf , then 
the slope or the gradient is simply defined as 

( ) ( )
x

xfxf
cf ii

∆

−
= −+

2
)(' 11  

(4.1) 

That is, it is the distance between the values of the function evaluated at the two 

points divided by the distance between the two points as depicted in Figure 4.1. 

This basic definition of derivative lays over the two points which makes equation 

(4.1) undefined since it may be divided by zero. This problem can be solved by taking 

the limit as the convergence ratio can be seen during the limit process.  
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(4.2) 

This form of definition is difficult in the programming point of view. Thus, a finite 

difference form of representation needed to as an alternative.   

Finite difference approximates gradient of certain known function by using the 

function value at only a set of discrete point. It can be generated for any other 

derivative’s order with any number of points (Chung, T.J., 2002).   

The derivation of gradient’s approximation through finite difference will be 

presented as follows: 

Lets function )(xf  and its derivative at point x as (4.2) thus if )( xxf ∆+   can be 

expanded using Taylor Series about )(xf ,  
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Substituting (4.3) into (4.2) yields 
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Or it can be seen from (4.3) that 
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The derivative 
( )
x

xf

∂

∂
 in (4.5) is of first order in ( )x∆ , indicating that the truncation 

error ( )xO ∆  goes to zero like the first power in ( )x∆ , with first order accuracy. 

Referring to Figure 4.1, some finite difference will be derived as shown below. Based 

on the Figure 4.1, f  may be written in Taylor Series at xx ∆+  and xx ∆−  
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Rearrange (4.6), it can be derived the forward finite difference 

( ) ( ) ( )xO
x

xfxxf

x

xf
∆+

∆

−∆+
=

∂

∂ )(
 

(4.8) 

Rearrange (4.7), the backward finite difference is derived into 
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Thus, a central finite difference is obtained by subtracting (4.8) from (4.9) 
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Assumption made that the function f  is known at the points ,hx +  and hx − . Hence, 

in this work, the computation of any derivative free gradient is based on its 

approximation of )(' xf . The approximation of )(' xf  
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The equation is central difference approximation and this approximation is known to 

be more accurate compared with forward or backward finite difference 

approximation. Thus, the central difference approximation is preferred to be used for 

gradient estimate approximation for this research work. 

4.2 Recursive Prediction Error (RPE) algorithm 

Recursive Predictive Error algorithm uses Gauss Newton algorithm in 

determining the search direction in RBF parameter space (Chen, S., 1990; Chen, S 

and Billings, S.A., 1989). This technique improves the efficiency of the minimization 

process online by increasing the convergence rate using second order approximation. 

The derivation of search direction of RPE which leads to nonlinear weight update for 

RBF networks derived below: 

The nonlinear parameters which are the centers, ci, and the width, tσ  are grouped as 

];[ ttt c σ=Θ   (4.12) 

Hessian matrix is subject to 
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With the gradient is derived as  
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In case ( )ΘH  is near singular, (4.13) can be modified into  
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for the small value of ρ and I is the identity matrix with appropriate dimension. 
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The search direction for RPE algorithm is 
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4.3 Finite Difference based Recursive update on RBF Networks 

Finite difference based gradient estimate is used to find the search direction for 

updating online the RBF nonlinear parameters. This approach is adopted as a part of 

proposed nonlinear learning parameter’s updating procedure in this thesis. The linear 

learning parameter update of RBF uses the linear optimization technique such RLS 

which has been discussed in Chapter 3. Thus, the RBF learning involved uses the 

hybrid training with derivate free estimate which lead to main contribution of the 

thesis. 

Let c∇ and σ∇ is the partial derivation of the nonlinear parameters as in 

(2.10) subject to c andσ . Central finite difference will be used to determine it. 
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In this research work, the step size h is set to dynamic value not a small values 

constant as in many literature. This make the derivates free estimates for nonlinear 

terms, the center and the width more robust dynamic changes to underlying function. 

The term h is set to   dynamic value as 

σ⋅= 0001.0h  (4.19) 
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which takes 0.01% of the width of the Gaussian kernel. 

Denote )(ˆ tc , )(ˆ tσ as the estimate of c and σ at t and let a time-varying networks 

model as followed 
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The recursive algorithm that adopted from the conventional Recursive Prediction 

Error algorithm, can be summarized as follow  

eppp tgtmt ∇+∇=∇ − γγ 1  (4.22) 

{ }]'[
1

111 −−− −= tttt KDPxDPPP
λ

 (4.23) 

PPttt ∇+Θ=Θ −1  (4.24) 

Where 

];[ σ∇∇= cD  (4.25) 

1
1 ]'[ −

−+= DPDIK tλ  (4.26) 

];[ ttt c σ=Θ  (4.27) 

P∇ is recursive form of the gradient search also known as  smoothed stochastic 

gradient (Chen, S., 1990). The forgetting factor, λ , momentum and adaptive gain mγ  

and 
gγ , are the user defined parameters set prior to learning.  tP  determines the 

asymptotically accuracy of the estimation and therefore is referred to as covariance 

matrix.  
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Basic form of covariance stated in (4.23) may lead to covariance wind up which 

would further lead to 
tP  become explosive. Constant trace adjustment is one of the 

recommended techniques to overcome it. 

111 ' −−− −= tttt PDKDPPP
 

(4.28) 
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(4.29) 

This new definition of tP  sets an upper bound for the eigen values of tP  matrix. 

Finite Difference RPE learning’s algorithm is divided into two phases, 

initialization and update phase. Besides random initialization, some unsupervised 

learning methods discussed in the previous chapters will be evaluated to observe the 

influence of weight initialization to the final value convergence.  

4.3.1 Finite Difference RPE with Random Initialization (FD-RPE Rand) 

The finite difference RPE for RBF Networks learning with random weight 

initialization procedure can be summarized as follows: 

Phase I. Initialization 

Initialize the learning using a pair of learning data ( ){ }ii yxN ,0 =  from the given 

learning set                 

(a). Assign randomly the center and impact width of the hidden neuron 

( )Nic ii

~
,...,1,, =σ  

(b). Calculate the initial hidden layer output 0H  
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(c). Estimate the initial output weight  

0000
)0( )( YHHH

TT
=β  (4.31) 

where  

)2(1000 NhxNirandPNL ⋅×=  (4.32) 

 

)1(1000 +×= NhrandPL
 (4.33) 

(d) set t=0 

 

Phase II. Learning/Training phase 

Given the )1( +t -th chunk of new observation 

( ){ }iit yxN ,1 =+  (4.34) 

Where  1+tN  denote the observation in  the  )1( +t th iteration 

 

Nonlinear Parameter update 

a) Calculate error as  

)()()( txHttye β−=  (4.35) 

b) Calculate gradient of cost function (2.11) by Finite difference 
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(4.36) 

c) Calculate gradient of ŷ subject to Θ as 

errJy /ˆ −∇=∇  (4.37) 

d) Calculate Search Direction of RPE algorithm 
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e) Update the nonlinear learning parameter as 
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erryPP ×∇××∇×=∇ ˆλγ  (4.41) 

PPttt ∇+Θ=Θ −1  (4.42) 

Linear Parameter update 

a). Calculate the partial hidden layer output matrix 1+th  

( ) ( )( )[ ]
tNNtt xcGxcGh ,,...,, ~~)(11 σσ=  (4.43) 

b). Calculate the output weight ( )1+kβ  
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Table 4.1 presents simulation results obtained for derivate free (finite difference 

based) weight update. As a comparison, the real gradient estimate result is presented 

too. For a wired system or system identification with constant sample time, the 

derivative free and real gradient estimate is expected to perform similarly and Table 

4.1 shows exactly the same as the expectation. In addition, based on simulation on the 

benchmark problems, both nonlinear weight update methods outperform the ELM 

technique. It can be observed that the finite difference based gradient estimate with 

dynamic step size (h) output outperforms the real gradient estimate for case studies 

where underlying function is highly nonlinear in nature by comparing its MSE (e.g. 

Mackey-Glass and Narendra). 

 

Table 4.1 Performance comparison (by MSE) of ELM and RPE for Random 
Initialization 

  ELM 
FD-RPE  
{Rand} 

Grad-RPE  
{Rand} 

SELS, Nh=5    
Training 3.40E-02 3.39E-02 4.30E-02 
Testing 3.68E-02 3.64E-02 2.43E-02 

Mackey Glass, Nh=10    
Training 4.62E-03 3.70E-03 7.57E-02 
Testing 5.89E-03 5.04E-03 1.15E-02 

Narendra Time Series, Nh=30    
Training 2.25E-03 2.14E-03 7.24E-03 
Testing 1.20E-02 8.87E-03 3.10E-02 

Henon Map, Nh=10    
Training 5.94E-02 7.66E-03 8.11E-02 
Testing 6.94E-02 1.03E-02 8.01E-02 

Chen Series, Nh=10    
Training 5.21E-02 8.10E-03 7.60E-02 
Testing 6.03E-02 1.32E-02 7.64E-02 

One example of the performance improvement can be seen on Narendra Time Series 

Problem in Table 4.1. Applying Finite Difference on nonlinear learning parameter 

update increases the accuracy. Its MSE is lower compared to ELM. Moreover, Finite 

Difference also outperforms the real gradient. It means that Finite Difference can 

estimate the gradient well. However, in some other benchmarks (e.g. SELS, Henon 

Map, Chen Series), both of them are performing almost the same. 
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4.3.2 Finite Difference RPE with Smart Clustering 

The finite difference RPE for RBF networks is adopted with prior smart clustering 

initialization method such as K-means and Fuzzy C-means clustering technique. Two 

finite difference RPE methods introduced in this section which will be describe next. 

Phase I. Initialization 

All initialization steps are the same as FD-RPE Rand except the initialization 

methods uses the smart clustering technique such as K-means (FD-RPE K-means) 

and Fuzzy C-means (FD-RPE Fuzzy C-Means) clustering algorithm as stated in 

previous chapter. 

Phase II. Learning/ Training phase 

Update learning phase for FD-RPE K-means and FD-RPE Fuzzy C-means is 

similar to FD-RPE Rand as discussed in the previous section will be conducted as 

update learning phase on FD-RPE Random, refer to equations (4.34)-(4.45). 

Some parts of simulation results are presented in Table 4.2. It presents the 

performance comparison among ELM, FD RPE, and Grad RPE with K-means 

clustering initialization in terms of accuracy (MSE comparison). In addition, Table 

4.3 presents the performance comparison among ELM, FD RPE, and Grad RPE with 

Fuzzy C-means clustering initialization in terms of accuracy (MSE comparison).  
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Table 4.2 Performance comparison (by MSE) of ELM and RPE using K-means 
clustering 

  ELM 
ELM                    

{K-means} 
FD-RPE               

{K-means} 
Grad-RPE          
{K-means} 

SELS, Nh=5      

Training 3.40E-02 1.86E-03 1.66E-03 2.17E-02 

Testing 3.68E-02 1.93E-03 1.72E-03 3.03E-02 

Mackey Glass, Nh=10      
Training 4.62E-03 7.46E-05 7.48E-05 2.64E-03 

Testing 5.89E-03 9.76E-05 9.73E-05 4.17E-03 
Narendra Time Series, 

Nh=30      

Training 2.25E-03 1.36E-04 1.32E-04 7.70E-02 

Testing 1.20E-02 1.99E-03 1.94E-03 6.85E-02 

Henon Map, Nh=10      

Training 5.94E-02 4.99E-03 5.30E-03 6.54E-03 

Testing 6.94E-02 6.50E-03 6.76E-03 3.81E-03 

Chen Series, Nh=10      

Training 5.21E-02 1.80E-02 3.85E-03 7.02E-02 

Testing 6.03E-02 2.23E-02 1.78E-02 6.27E-02 
 

 

 

Table 4.3 Performance comparison (by MSE) of ELM and RPE  
using Fuzzy C-means Clustering 

  ELM 
ELM              

{Fuzzy C-means} 
FD-RPE              

{Fuzzy C-means} 
Grad-RPE           

{Fuzzy C-means} 
SELS, Nh=5         

Training 3.40E-02 1.78E-03 1.80E-03 2.50E-02 
Testing 3.68E-02 1.88E-03 1.90E-03 3.10E-02 

Mackey Glass, Nh=10      
Training 4.62E-03 9.00E-05 1.40E-04 6.49E-03 
Testing 5.89E-03 1.57E-04 1.53E-04 7.48E-03 

Narendra Time Series, 

Nh=30     
Training 2.25E-03 1.17E-04 1.01E-04 2.62E-03 
Testing 1.20E-02 1.59E-03 1.42E-03 1.79E-02 

Henon Map, Nh=10     
Training 5.94E-02 4.80E-03 4.78E-03 4.63E-03 
Testing 6.94E-02 6.11E-03 6.10E-03 4.80E-03 

Chen Series, Nh=10     
Training 5.21E-02 3.40E-03 6.12E-03 7.44E-02 
Testing 6.03E-02 2.12E-02 2.85E-02 8.23E-02 

 

Table 4.2 and Table 4.3 show the performance comparison of finite difference based 

on smart clustering technique. The simulation results also include the real gradient 

estimate as a control benchmark. Compared to Table 4.1, there is slight improvement 

when clustering technique being performed to weight initialization of RBF.  
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Another observation is that finite difference gradient estimate outperforms the real 

gradient of RBF for complex nonlinear case studies even for constant time sample 

data. This leads to look into the feasibility of using derivative free estimate to 

tediously defined mathematical derived option of real gradient. In addition, the real 

gradient approaches only valid for one-step-ahead prediction which is not the case for 

finite difference RPE for RBF.  

Finally both smart clustering techniques performed fairly comparable to each 

other but outperform the random initialization technique and the ELM.  The next 

section will look at decomposed recursive prediction error (RPE) by taking advantage 

of parallel structure of neural networks (McLoone et al., 1997 and Asirvadam, V.S et 

al., 2002). 

4.4. Finite Difference Recursive Update on Decomposed RBF Networks 

One of the drawbacks of finite difference gradient approach learning is the high 

dimension of the nonlinear parameter vector that consist of all nonlinear parameters of 

RBF networks which needs higher computational and storage requirements 

consequently. Decomposing the nonlinear parameter vector seems to be an efficient 

approach for them. By discarding the inter-neuron nonlinear parameter interaction, the 

vector is decomposed neuron by neuron (Asirvadam Vijanth S., 2004, 2005, 2006).  

tP  in (4.28) can be decomposed on a neuron by neuron as stated below 

(Asirvadam Vijanth S., 2004).  
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Where )(itP represent correlation parameters for the th
i  neuron and nw  represents the 

number of the nonlinear parameters. 
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The gradient vector also can be decomposed as followed 

[ ] 1)()()2()1( ),(),...,,(),( nwx
T

mtmttttt cDcDcD σσσ =  (4.47) 

The decomposed recursive Finite Difference on RPE is obtained as follows; 

errorppp itgitmit )()(1)( ∇+∇=∇ − γγ  (4.48) 

{ }]'[
1

)(1)(1)(1)( itititit KDPDPPP −−− ×−=
λ

 (4.49) 

)()()(1)( itititit PP ∇+Θ=Θ −  (4.50) 

The decomposed weight update technique differs to full update only on the nonlinear 

update part by decomposing the weights to each neuron. Thus, reduce the memory 

requirement. 

4.4.1 Finite Difference RPE on Decomposed RBF Networks (FD-dRPE Rand) 

Similar to previously proposed learning method on this chapter, FD-dRPE Rand 

consist of two phase which is initialization phase and learning or training phase. The 

difference on the learning phase of nonlinear weights update where the decomposed 

strategies are used here. 

Table 4.4 presents MSE comparison to show the accuracy comparison between ELM 

and Finite Difference RPE on Decomposed RBF Networks (FD-dRPE) using random 

initialization. 
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Table 4.4 Performance Comparison (by MSE) of ELM and RPE on Decomposed RBF 
using Random Initialization.  

  ELM 
FD-dRPE-         

{Rand} 
SELS, Nh=5   

Training 3.40E-02 2.10E-02 
Testing 3.68E-02 2.16E-02 

Mackey Glass, Nh=10   
Training 4.62E-03 6.77E-03 
Testing 5.89E-03 8.18E-03 

Narendra Time Series, Nh=30   
Training 2.25E-03 1.27E-04 
Testing 1.20E-02 1.45E-03 

Henon Map, Nh=10   
Training 5.94E-02 7.06E-03 
Testing 6.94E-02 9.65E-03 

Chen Series, Nh=10   
Training 5.21E-02 1.33E-02 
Testing 6.03E-02 2.59E-02 

Table 4.4 shows the performance of decomposed RPE to ELM which depict the 

superiority of the proposed techniques. One of the examples that can be seen from 

five benchmarks is on Henon Map. FD-dRPE{Rand} succeeds to reduce the value of 

MSE which means has better accuracy compared to ELM. 

Tables 4.5-4.8 show the conclusive results simulation of four benchmark 

problems with various training data feed online. For most cases, the decomposed 

version converges fast with less number of training data and best performance in 

accuracy. Overall, the finite difference (both full and decomposed) techniques 

performed better compared to ELM.  

 

Table 4.5 Convergence rate among ELM RPE and Decomposed RPE using Random 
Initialization for SELS Case Study 

Number of train data Method 

 ELM 
FD-RPE 
{Rand} 

FD- dRPE 
{Rand} 

300 4.17E+00 4.13E+00 2.34E-02 

500 1.44E-01 1.67E-01 2.18E-02 

1000 3.93E-02 3.88E-02 2.10E-02 

2000 3.48E-02 3.43E-02 2.08E-02 

3000 3.40E-02 3.39E-02 2.10E-02 

 

Table 4.5 performs the capability of each learning method to reach convergence for 

SELS. It can be seen for SELS, FD-dRPE{Rand} outperforms the other method 
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including ELM in terms of convergence rate. FD-dRPE{Rand} converges very fast. It 

starts to converge in the first 300 training data while the others do not. Its capability to 

converge very fast is worth to decrease the number of training data. 

 
 

Table 4.6 Convergence rate among ELM RPE and Decomposed RPE using Random 
Initialization for Mackey-Glass Test Case 

Number of train data Method 

 ELM 
FD-RPE 
{RAND} 

FD- DRPE 
{RAND} 

300 1.74E+04 1.83E+05 1.82E-01 

500 1.37E-01 1.47E-01 1.48E-02 

1000 2.27E-02 1.82E-02 8.36E-03 

2000 5.84E-03 4.45E-03 7.00E-03 

3000 4.62E-03 3.70E-03 6.77E-03 

 

Table 4.6 performs the capability of each learning method to reach convergence for 

Mackey Glass. It can be seen for Mackey Glass, FD-dRPE{Rand} outperforms the 

other method including ELM in terms of convergence rate. FD-dRPE{Rand} 

converges very fast. It starts to converge in the first 300 training data while the others 

do not. Its capability to converge very fast is worth to decrease the number of training 

data. 

 

 

Table 4.7 Convergence rate among ELM RPE and Decomposed RPE using Random 
Initialization for Narendra’s Dynamic System 

Number of train data Method 

 ELM 
FD-RPE 
{Rand} 

FD- dRPE 
{Rand} 

300 2.10E+06 4.28E+03 3.87E-04 

500 1.36E+01 8.17E+00 2.33E-04 

1000 4.16E+00 2.15E-03 1.44E-04 

2000 2.25E-03 1.36E-03 1.27E-04 

3000 2.25E-03 2.14E-03 1.27E-04 

 

Table 4.7 performs the capability of each learning method to reach convergence for 

Narendra’s Dynamic System. It can be seen for Narendra’s Dynamic System, FD-

dRPE{Rand} outperforms the other method including ELM in terms of convergence 

rate. FD-dRPE{Rand} convergences very fast. It starts to converge in the first 300 



 50 

training data while the others do not. Its capability to converge very fast is worth to 

decrease the number of training data. 

 

 

Table 4.8 Convergence rate among ELM RPE and Decomposed RPE using 
Random Initialization for Henon’s Chaotic Map 

Number of train data Method 

 ELM 
FD-RPE 
{Rand} 

FD- dRPE 
{Rand} 

300 3.10E+04 4.18E+04 1.91E-02 

500 2.54E+00 6.48E-01 9.31E-03 

1000 6.25E-02 4.02E-01 7.57E-03 

2000 6.22E-02 8.43E-03 7.64E-03 

3000 5.94E-02 7.66E-03 7.06E-03 

 

Table 4.8 performs the capability of each learning method to reach convergence for 

Henon’s Chaotic Map. It can be seen for Henon’s Chaotic Map, FD-dRPE{Rand} 

outperforms the other method including ELM in terms of convergence rate. FD-

dRPE{Rand} converges very fast. It starts to converge in the first 300 training data 

while the others do not. Its capability to converge very fast is worth to decrease the 

number of training data. 

 
 

Table 4.9 Convergence rate among ELM RPE and Decomposed RPE using 
Random Initialization for Chen Nonlinear Time Series 

Number of train data Method 

 ELM 
FD-RPE 
{Rand} 

FD- dRPE 
{Rand} 

300 1.09E+02 1.26E-01 1.50E-02 

500 5.72E-02 1.68E-02 1.44E-02 

1000 4.75E-02 9.54E-03 1.29E-02 

2000 5.23E-02 7.55E-03 1.44E-02 

3000 5.21E-02 8.10E-03 1.33E-02 

 

Table 4.9 performs the capability of each learning method to reach convergence for 

Chen Nonlinear Time Series. It can be seen for Chen Nonlinear Time Series, FD-

dRPE{Rand} outperforms the other method including ELM in terms of convergence 

rate. FD-dRPE{Rand} converges very fast. It starts to converge in the first 300 
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training data while the others do not. Its capability to converge very fast is worth to 

decrease the number of training data. 

Finite difference recursive on decomposed RBF update procedure has contributed 

in making fast convergence which means decreasing the number of training data. In 

addition, it also decreases the storage requirement since we just concern on the 

diagonal part of the covariance matrix. 

4.4.2 Finite Difference Recursive Update on Decomposed RBF Networks with 

Smart Clustering Initialization 

Similar to the proposed learning method on previous sections, FD-dRPE Rand as 

the decomposed variant of RPE for RBF is tested with smart clustering techniques for 

nonlinear initialization. They are the finite difference RPE with K- Means (FD-RPE 

K-means) and the finite difference RPE with Fuzzy C-means (FD-RPE Fuzzy C-

Means). The difference is on the initialization stage. The nonlinear weights will be 

updated using decomposed strategies. 

Table 4.10 and Table 4.16 show the performance of decomposed techniques using 

K-means and Fuzzy C-means respectively for all cases. The decomposed finite 

difference approach performed better than the ELM techniques. Compared to the 

results in Table 4.4, the adopting K-means and Fuzzy C-means with decomposed 

finite difference do improve slight on the end results.  

 

 

 

 

 

 

 



 52 

Table 4.10 Performance (by MSE) comparison of ELM, and RPE on Decomposed 
RBF using K-means 

  ELM 
ELM          

{K-means} 
FD-dRPE        

{K-means} 

SELS, Nh=5    
Training 3.40E-02 1.86E-03 1.66E-03 
Testing 3.68E-02 1.93E-03 1.74E-03 

Mackey Glass, Nh=10     
Training 4.62E-03 7.46E-05 7.42E-05 
Testing 5.89E-03 9.76E-05 1.77E-04 

Narendra Time Series, Nh=30     
Training 2.25E-03 1.36E-04 1.74E-04 
Testing 1.20E-02 1.99E-03 2.07E-03 

Henon Map, Nh=10     
Training 5.94E-02 4.99E-03 5.30E-03 
Testing 6.94E-02 6.50E-03 6.88E-03 

Chen Series, Nh=10     
Training 5.21E-02 1.80E-02 7.62E-03 
Testing 6.03E-02 2.23E-02 1.21E-02 

 

All MSE comparisons in Table 4.10 show that FD-dRPE{K-means} has the same 

performance as ELM{K-means} in terms of accuracy. Both methods outperform 

ELM by having lower MSE. 

Tables 4.11-4.15 conclude the performance of decomposed finite difference 

technique when applied K-means clustering technique on its weight initialization 

process. The tables present the comparison of the convergence rate among the 

decomposed technique using K-means clustering initialization, Finite Difference RPE 

using K-means clustering and ELM. 

 
 

Table 4.11 Performance comparison (by MSE)  of ELM, and RPE on Decomposed RBF  
using K-means for SELS system 

 
 
 
 
 
 
 
 

 

Table 4.11 performs the capability of each learning method to reach convergence for SELS. 

It can be seen for SELS, FD-dRPE{K-means} outperforms the other method including ELM 

in terms of convergence rate. FD-dRPE{ K-means } converges very fast. It starts to converge 

Number of train data     Methods    

  ELM 
ELM  
{K-means} 

FD-RPE  
{K-means} 

FD-dRPE 
{ K-means} 

300 4.17E+00 9.97E+01 2.50E+02 4.90E-03 
500 1.44E-01 1.33E+00 2.02E+00 1.72E-03 

1000 3.93E-02 1.62E-01 1.42E-01 1.59E-03 
2000 3.48E-02 9.17E-03 2.35E-03 1.64E-03 
3000 3.40E-02 1.86E-03 1.66E-03 1.66E-03 
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in the first 300 training data while the others do not. Its capability to converge very fast is 

worth to decrease the number of training data. In addition, this method succeeds to increase 

the accuracy compared to ELM by having lower MSE. 

 

 
Table 4.12 Performance comparison (by MSE)  of ELM, and RPE on Decomposed RBF  

using K-means for Mackey Glass 
 
 
 
 
 
 
 
 
 

 

Table 4.12 performs the capability of each learning method to reach convergence for 

Mackey Glass. It can be seen for Mackey Glass, FD-dRPE{K-means} outperforms the other 

method including ELM in terms of convergence rate. FD-dRPE{ K-means } converges very 

fast. It starts to converge in the first 300 training data while the others do not. Its capability 

to converge very fast is worth to decrease the number of training data. In addition, this 

method succeeds to increase the accuracy compared to ELM by having lower MSE. 

 

Number of train data     Methods    

  ELM 
ELM  
{K-means} 

FD-RPE  
{K-means} 

FD-dRPE 
{ K-means} 

300 1.74E+04 1.86E+06 1.58E+02 5.78E-02 
500 1.37E-01 5.74E+01 1.07E+00 7.18E-04 

1000 2.27E-02 1.18E-01 6.38E-01 2.38E-04 
2000 5.84E-03 9.48E-05 9.44E-05 9.46E-05 
3000 4.62E-03 7.46E-05 7.48E-05 7.42E-05 

 
Table 4.13 Performance comparison (by MSE) of ELM, and RPE on Decomposed RBF 

using K-means for Narendra Dynamic System 

 
 
 
 
 
 
 
 

 

Table 4.13 performs the capability of each learning method to reach convergence for 

Narendra Dynamic System. It can be seen for Narendra Dynamic System, FD-dRPE{K-

means} outperforms the other method including ELM in terms of convergence rate. FD-

dRPE{ K-means } converges very fast. It starts to converge in the first 300 training data 

while the others do not. Its capability to converge very fast is worth to decrease the number 

of training data. In addition, this method succeeds to increase the accuracy compared to 

ELM by having lower MSE. 

 

Number of train data     Methods    

  ELM 
ELM  
{K-means} 

FD-RPE  
{K-means} 

FD-dRPE 
{ K-means} 

300 2.10E+06 3.44E+01 3.40E+01 3.89E-04 
500 1.36E+01 7.95E+03 3.73E+00 2.33E-04 

1000 4.16E+00 1.13E+01 5.08E-02 2.15E-04 
2000 2.25E-03 7.37E-03 4.42E-03 1.74E-04 
3000 2.25E-03 1.36E-04 1.32E-04 1.74E-04 
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Table 4.14 Performance comparison (by MSE) of ELM, and RPE on Decomposed RBF for 
system using K-means for Henon Map Series.  

Number of train data     Methods    

  ELM 
ELM  
{K-means} 

FD-RPE  
{K-means} 

FD-dRPE 
{ K-means} 

300 3.10E+04 5.99E+05 6.56E+05 1.01E-02 
500 2.54E+00 5.07E-01 5.84E-01 7.37E-03 

1000 6.25E-02 1.68E+04 7.56E-03 6.20E-03 
2000 6.22E-02 5.47E-03 6.33E-03 5.79E-03 
3000 5.94E-02 4.99E-03 5.30E-03 5.30E-03 

 
 

Table 4.14 performs the capability of each learning method to reach convergence for Henon 

Map Series. It can be seen for Henon Map Series, FD-dRPE{K-means} outperforms the 

other method including ELM in terms of convergence rate. FD-dRPE{ K-means } converges 

very fast. It starts to converge in the first 300 training data while the others do not. Its 

capability to converge very fast is worth to decrease the number of training data. In addition, 

this method succeeds to increase the accuracy compared to ELM by having lower MSE. 

 
 

Table 4.15 Performance comparison of ELM, and RPE on Decomposed RBF  
using K-means for Chen Nonlinear Time Series. 

num of 
learning data     methods   

  ELM ELM K-means 
FD RPE K-
means 

Dec FD RPE 
K-means 

300 1.09E+02 1.10E+03 2.47E-01 9.69E-03 

500 5.72E-02 1.85E-02 1.33E-02 8.21E-03 

1000 4.75E-02 1.81E-02 4.05E-03 8.31E-03 

2000 5.23E-02 1.95E-02 5.65E-03 8.01E-03 

3000 5.21E-02 1.80E-02 3.85E-03 7.62E-03 

 

Table 4.15 performs the capability of each learning method to reach convergence for 

Chen Nonlinear Time Series. It can be seen for Chen Nonlinear Time Series, FD-

dRPE{K-means} outperforms the other method including ELM in terms of 

convergence rate. FD-dRPE{ K-means }converges very fast. It starts to converge in 

the first 300 training data while the others do not. Its capability to go convergence 

very fast is worth to decrease the number of training data. In addition, this method 

succeeds to increase the accuracy compared to ELM by having lower MSE. 
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Table 4.16 Performance comparison of ELM, and RPE on Decomposed RBF for 
system using Fuzzy C-means 

  ELM ELM Fuzzy C-means 
Dec FD RPE Fuzzy 

C-means 

SELS, Nh=5     
Training 3.40E-02 1.78E-03 1.85E-03 
Testing 3.68E-02 1.88E-03 1.95E-03 

Mackey Glass, Nh=10     
Training 4.62E-03 9.00E-05 8.39E-05 
Testing 5.89E-03 1.57E-04 1.90E-04 

Narendra Time Serise, 

Nh=30    
Training 2.25E-03 1.17E-04 1.27E-04 
Testing 1.20E-02 1.59E-03 1.45E-03 

Henon Map, Nh=10    
Training 5.94E-02 4.80E-03 4.75E-03 
Testing 6.94E-02 6.11E-03 6.04E-03 

Chen Series, Nh=10    
Training 5.21E-02 3.40E-03 7.50E-03 
Testing 6.03E-02 2.12E-02 1.22E-02 

 

All MSE comparisons in Table 4.16 show that FD-dRPE{ Fuzzy C-means} has the 

same performance as ELM{ Fuzzy C-means} in terms of accuracy. Both methods 

outperform ELM by having lower MSE. 

Table 4.17-4.20 conclude the performance of decomposed finite difference 

technique when applied K-means clustering technique on its weight initialization 

process. The tables present the comparison of the convergence rate among the 

decomposed technique using Fuzzy C-means clustering initialization, Finite 

Difference RPE using Fuzzy C-means clustering and ELM. 

 

Table 4.17 Performance comparison of ELM, and RPE on Decomposed RBF for system using 
Fuzzy C-means for SELS system 

 

Table 4.17 performs the capability of each learning method to reach convergence for SELS. It 

can be seen for SELS, FD-dRPE{Fuzzy C-means} outperforms the other method including 

Number of train data     Methods    

  ELM 
ELM 

{ Fuzzy C-Means} 
FD-RPE 

{Fuzzy C-Means} 
FD-dRPE 

{ Fuzzy C-means} 
300 1.74E+04 8.67E+03 1.21E+03 5.45E-02 
500 1.37E-01 9.33E-02 2.34E-02 5.57E-04 

1000 2.27E-02 1.33E+00 1.42E-01 2.29E-04 
2000 5.84E-03 9.99E-05 1.05E-04 9.28E-05 
3000 4.62E-03 9.00E-05 1.40E-04 8.39E-05 
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ELM in terms of convergence rate. FD-dRPE{ Fuzzy C-means} converges very fast. It starts 

to converge in the first 300 training data while the others do not. Its capability to go converge 

very fast is worth to decrease the number of training data. In addition, this method succeeds to 

increase the accuracy compared to ELM by having lower MSE. 

 
 

Table 4.18 Performance comparison of ELM, and RPE on Decomposed RBF for system using 
Fuzzy C-means for Mackey Glass 

 
Table 4.18 performs the capability of each learning method to reach convergence for Mackey 

Glass. It can be seen for Mackey Glass, FD-dRPE{Fuzzy C-means} outperforms the other 

method including ELM in terms of convergence rate. FD-dRPE{ Fuzzy C-means} converges 

very fast. It starts to converge in the first 300 training data while the others do not. Its 

capability to go convergence very fast is worth to decrease the number of training data. In 

addition, this method succeeds to increase the accuracy compared to ELM by having lower 

MSE. 

 

Number of train data     Methods    

  ELM 
ELM 

{ Fuzzy C-Means} 
FD-RPE 

{Fuzzy C-Means} 
FD-dRPE 

{ Fuzzy C-means} 
300 4.17E+00 9.93E+00 7.31E+00 5.07E-03 
500 1.44E-01 1.07E-01 5.92E-02 1.92E-03 

1000 3.93E-02 2.79E-02 2.18E-02 1.79E-03 
2000 3.48E-02 2.05E-03 1.97E-03 1.84E-03 
3000 3.40E-02 1.78E-03 1.80E-03 1.85E-03 

 
Table 4.19 Performance comparison of ELM, and RPE on Decomposed RBF for system using 

Fuzzy C-means for Narendra’s dynamic system 

 
Table 4.19 performs the capability of each learning method to reach convergence for 

Narendra’s dynamic system. It can be seen for Narendra’s dynamic system, FD-dRPE{Fuzzy 

C-means} outperforms the other method including ELM in terms of convergence rate. FD-

dRPE{ Fuzzy C-means} converges very fast. It starts to converge in the first 300 training data 

while the others do not. Its capability to converge very fast is worth to decrease the number of 

training data. In addition, this method succeeds to increase the accuracy compared to ELM by 

having lower MSE. 

Number of train data   Methods  

 ELM 
ELM 

{ Fuzzy C-Means} 
FD-RPE 

{Fuzzy C-Means} 
FD-dRPE 

{ Fuzzy C-means} 
300 2.10E+06 2.24E+06 5.06E+04 3.87E-04 
500 1.36E+01 5.07E+00 4.51E+03 2.33E-04 
1000 4.16E+00 1.54E-02 1.31E-02 1.44E-04 
2000 2.25E-03 2.14E-04 2.50E-04 1.27E-04 
3000 2.25E-03 1.17E-04 1.01E-04 1.27E-04 
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Table 4.20 Performance comparison of ELM, and RPE on Decomposed RBF for system using 
Fuzzy C-means for Henon Map Series 

 

 
Table 4.20 performs the capability of each learning method to reach convergence for 

Narendra’s dynamic system. It can be seen for Narendra’s dynamic system, FD-dRPE{Fuzzy 

C-means} outperforms the other method including ELM in terms of convergence rate. FD-

dRPE 

{Fuzzy C-means} converges very fast. It starts to converge in the first 300 training data while 

the others do not. Its capability to converge very fast is worth to decrease the number of 

training data. In addition, this method succeeds to increase the accuracy compared to ELM by 

having lower MSE. 

Number of train data     Methods    

  ELM 
ELM 

{ Fuzzy C-Means} 
FD-RPE 

{Fuzzy C-Means} 
FD-dRPE 

{ Fuzzy C-means} 
300 3.10E+04 8.06E+03 8.93E+03 8.57E-03 
500 2.54E+00 7.20E-02 8.13E-02 6.16E-03 

1000 6.25E-02 6.22E-03 6.23E-03 5.88E-03 
2000 6.22E-02 3.89E-02 8.83E-03 5.20E-03 
3000 5.94E-02 4.80E-03 4.78E-03 4.75E-03 

The tables summarize that the decomposed technique convergence fast. With only 

300 training data, its MSE is near to the optimal values. The smart clustering, both K-

means and Fuzzy C-means techniques, did contribute to good convergence of mean 

squared error compared to random initialization. The decomposed techniques also 

lead to reduce memory requirement for nonlinear parameter update with good 

performance accuracy in overall. 

Figures 4.2-4.5 depict clearly the performance of all the techniques discussed to 

four benchmark problems. For all cases it can be seen the decomposed techniques 

convergence fast with less number of iterations. But as the iteration increase the other 

method started to converge to a saturation value. 
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Figure 4.2 Convergence rates of SELS  

 

Convergence performance of SELS can be seen on Figure 4.2. Through this figure, 

the powerful of Finite Difference RPE on decomposed RBF can be observed. The last 

three dash line (black, green and red) representing Finite Difference RPE on 

decomposed RBF start to converge and stable since the early training data (500 

training data). On the other hand, other methods do not. ELM which is represented by 

green solid line start to converge after 1000 training data but getting stable after 2000 

training data. In addition, the figure shows that ELM cannot reach the smallest 

average of MSE as small as Finite Difference RPE on decomposed RBF. 
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Figure 4.3 Convergence rate of Mackey Glass 

 

Convergence performance of Mackey Glass can be seen on Figure 4.3. Through this 

figure, the powerful of Finite Difference RPE on decomposed RBF can be observed. 

The last three dash line (black, green and red) representing Finite Difference RPE on 

decomposed RBF start to converge and stable since the early training data (500 

training data). Especially for Finite Difference RPE on decomposed RBF which is 

getting stable after 1000 training data. On the other hand, other methods do not. ELM 

which is represented by green solid line start converge after 1000 training data but 

getting stable after 2000 training data.  
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Figure 4.4 Convergence rate of Narendra Dynamic System 

 

Convergence performance of Narendra Dynamic System can be seen on Figure 4.4. 

Through this figure, the powerful of Finite Difference RPE on decomposed RBF can 

be observed. The last three dash line (black, green and red) representing Finite 

Difference RPE on decomposed RBF start to converge and stable since the early 

training data (500 training data). On the other hand, other methods do not. ELM 

which is represented by green solid line start to converge and getting stable after 2000 

training data. Through this comparison, it can be observed that by using Finite 

Difference RPE on decomposed RBF, 1500 training data can be saved. In addition, 

the figure shows that ELM cannot reach the smallest average of MSE as small as 

Finite Difference RPE on decomposed RBF. 
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Figure 4.5 Convergence rate of Henon Map  

 

Convergence performance of Henon Map System can be seen on Figure 4.5. Through 

this figure, the powerful of Finite Difference RPE on decomposed RBF can be 

observed. The last three dash line (black, green and red) representing Finite 

Difference RPE on decomposed RBF start to converge and stable since the early 

training data (500 training data). On the other hand, other methods do not. ELM 

which is represented by green solid line start to converge and getting stable after 1000 

training data. Through this comparison, it can be observed that by using Finite 

Difference RPE on decomposed RBF, 500 training data can be saved. Besides that, 

the figure shows that ELM cannot reach the smallest average of MSE as small as 

Finite Difference RPE on decomposed RBF. 
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4.5 Conclusion 

This chapter discusses the adaptation of finite difference recursive RPE weight 

update for the RBF networks. The improved version of finite difference recursive 

update proposed uses time varying step sizes in this chapter is comparable or in some 

cases better than the real gradient. This leads to the adaptation finite difference or 

derivative techniques for the system identification application. 

 In this chapter also, the influence of smart clustering being look into when the 

nonlinear weight being updated and from extensive simulation studies the clustering 

did show improvement in the final value of error convergence. 

Finally a decomposed version of finite difference RPE being proposed shows 

promising results where it convergence fast and gives good final value in performance 

accuracy. The smart clustering weight initialization of decomposed RPE also has been 

investigated for improvement.  

The next chapter will look into the nonlinear system identification for lost packets 

where the feasibility of finite difference learning is at most important. 
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CHAPTER 5 

RBF RECURSIVE LEARNING WITH LOST PACKETS 

 

Chapter 3 and Chapter 4 have discussed the implementation of the training 

algorithm on system identification with regular time. The training data is always 

available on every single simulation time or known as constant sample time. This 

chapter deals with implementing the training algorithm on system identification with 

lost packets. The term packet means encapsulation of the input and output of the 

system with the time stamp. 

5.1 System Identification with Lost packets 

In practice, there are many applications in which observation of the discrete 

system are not available at every sample time, especially in the case of wireless 

system which getting large popularity now (Musab, J.O. Elamin et al., 2007). Thus, 

some observations may be missing at periodic manner or even randomly. 

Sensor failure, non response in statistical surveys and outlier are some examples 

of randomly missing data, whereas periodically missing data may appear in 

astronomical experiments, radar scans, time sharing of sensors and multi-rate 

sampling (Pintelon R et al., 2000; Isakson Alf J et al., 1993; Wallin, R and Isakson 

Alf J., 2002).  

The termed lost packets in the chapter mean there is lost input feed in random in 

an online learning framework. The chapter will look into the feasibility studies on the 

performance of finite difference RPE and the decomposed version to lost packets.
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The real gradient derivation is only valid for system with one-step-ahead prediction. 

Thus, for system with lost packets it should be viewed as multi-step-ahead prediction 

problem. Therefore, finite difference gradient estimate is needed. 

5.1.1 Simulating the Lost packets Recursive Environment. 

The system Input/output observations are assumed to be time stamped, 

encapsulated into packets and transmitted over congested environment to the modeler 

(RBF networks) where the packet is considered lost if it does not been received after a 

certain time. Assumptions made  that the lost observations are not retransmitted which 

is in accordance to transport layer protocol in UDP-like and the modeler either 

receives the observation in full or none in a single packet (both input and output). 

Thus the arrival of the packets at the identifier side is modeled as a Bernoulli process 

(βk) which has two possible values 0 and 1 at any instant time (2), where:  

 

 

The probability of β is random with time and known as the Packet Dropping 

Probability (PDP) (Asirvadam and Musab., 2009, Shcenato et al., 2007). The 

modeling of the observations arrival via Bernoulli process is illustrated in Figure 5.1. 

 

 

 

 

 

 

 
 
 

Figure 5.1: Modeling the arrival of the Input/Output using Bernoulli process. 

The system identification approach to lost packets is also known as identifying a 

system with irregular sample time. In this chapter the probability of dropping packets  
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is set to 0.5 for all simulations which mean 50% of the input-output which for the 

input structure of NARX fail to feed in to the RBF networks during its recursive 

training.  

5.2 Finite Difference Recursive update for RBF Networks with Lost packets 

This section investigates the performance of finite difference recursive update for 

RBF networks for all benchmarks in the case of with lost packets. Table 5.1 presents 

the performance of finite difference (derivative free) output. It also performs the true 

gradient based as anticipated due to irregular sampled input feed.  

 

Table 5.1 Performance comparison using Random Initialization for the System with 
Lost packets (PDP set to 0.5) 

  ELM 
Grad -RPE  

{Rand} 
FD-RPE 
{Rand} 

FD-dRPE-
{Rand} 

SELS, Nh=5         

Training 2.62E-01 6.56E-02 3.90E-02 1.22E-02 

Testing 2.62E-01 5.76E-02 4.66E-02 2.08E-02 

Mackey Glass, Nh=10      

Training 1.04E-01 1.83E-02 9.70E-03 1.00E-02 

Testing 9.51E-01 1.49E-02 9.22E-03 1.38E-02 

Narendra Time Serise, Nh=20      

Training 1.52E-02 1.93E-02 1.54E-02 2.12E-02 

Testing 3.09E-02 5.40E-02 2.80E-02 3.36E-02 

Henon Map, Nh=20      

Training 5.86E-01 5.97E-01 5.83E-01 5.65E-01 

Testing 5.72E-01 5.89E-01 5.73E-01 5.85E-01 

Chen Series, Nh=20      

Training 5.79E-01 5.72E-01 5.74E-01 5.75E-01 

Testing 6.01E-01 6.19E-01 6.17E-01 6.13E-01 

Accuracy performance based on MSE value for each benchmarks has been compared 

in Table 5.1. Through the simulation results, Finite Difference applied on RBF 

networks (FD-RPE{Rand}) and decomposed RBF networks (FD-dRPE{Rand}) able 

to perform better by having lower MSE value compared to ELM. In addition, Finite 

Difference and the actual gradient are comparable. However, Finite Difference 

sometime performs better compared to the actual gradient as on Mackey Glass Time 

series problem.  
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Tables 5.2-5.5 present results of convergence in the case of lost packets with 

variable number of training data in the case of random initialization. The tables record 

the performance of the MSE values for every 300, 500, 1000, 2000 and 3000 training 

data to examine the convergence performance for each benchmark with the whole 

method by random initialization. 

 

Table 5.2 Performance comparison using Random Initialization for the System with Lost 
packets (PDP set to 0.5) for SELS system  

 

 

 

 

 

 

Table 5.2 performs the capability of each learning method in case of random initialization to 

reach convergence for SELS. It can be seen for SELS, FD-dRPE{Rand} outperforms the 

other methods including ELM in terms of convergence rate. It converges very fast. It starts to 

converge in the first 300 training data while the others do not. Its capability to converge very 

fast is worth to decrease the number of training data.  

Number of train data   Methods    

  ELM 
FD-RPE 
{Rand} 

FD-dRPE 
{ Rand} 

300 2.46E+02 1.44E+05 7.80E-01 
500 2.06E-01 6.13E-02 2.16E-02 

1000 1.98E-01 1.11E-01 1.28E-02 
2000 1.47E-01 1.82E-02 1.11E-02 
3000 1.04E-01 9.70E-03 1.00E-02 

 
 

Table 5.3 Performance comparison using Random Initialization for the System with Lost 
packets (PDP set to 0.5) for Mackey Glass system  

 

 

 

 

 

 

Table 5.3 performs the capability of each learning method in case of random initialization to 

reach convergence for Mackey Glass system. It can be seen for Mackey Glass Time Series 

system, FD-dRPE{Rand} outperforms the other method including ELM in terms of 

convergence rate. It converges very fast. It starts to converge in the first 300 training data 

while the others do not. Its capability to converge very fast is worth to decrease the number of 

training data.  

Number of train data   Methods    

  ELM 
FD-RPE 
{Rand} 

FD-dRPE 
{ Rand} 

300 3.53E+02 7.36E+05 2.01E-02 
500 1.08E+00 6.23E-02 2.18E-02 

1000 3.31E-01 2.13E-02 2.10E-02 
2000 2.82E-01 1.64E-02 2.08E-02 
3000 2.62E-01 1.21E-02 2.10E-02 
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Table 5.4 Performance comparison using Random Initialization for the System with Lost 
packets (PDP set to 0.5) for Henon Map system 

 
 
 
 
 
 
 
 

Table 5.2 performs the capability of each learning method in case of random initialization to 

reach convergence for Henon Map system. It can be seen for Henon Map system, FD-

dRPE{Rand} outperforms the other methods including ELM in terms of convergence rate. 

FD-dRPE{Rand} converges very fast. It starts to converge in the first 300 training data while 

the others do not. Its capability to converge very fast is worth to decrease the number of 

training data. 

 

 

Number of train data   Methods    

  ELM 
FD-RPE 
{Rand} 

FD-dRPE 
{ Rand} 

300 1.73E+05 1.05E+08 5.29E-01 
500 2.25E+01 2.27E+01 6.62E-01 

1000 4.17E+02 1.19E+00 7.16E-01 
2000 5.71E-01 5.79E-01 6.72E-01 
3000 5.86E-01 5.83E-01 5.65E-01 

Table 5.5 Performance comparison using Random Initialization for the System with Lost 
packets (PDP set to 0.5) for Chen Series 

 
 
 
 
 
 
 
 

Table 5.5 performs the capability of each learning method in case of random initialization to 

reach convergence for Nonlinear Chen Series Problem. It can be seen for Nonlinear Chen 

Series problem, FD-dRPE{Rand} outperforms the other methods including ELM in terms of 

convergence rate. FD-dRPE{Rand} converges very fast. It starts to converge in the first 300 

training data while the others do not. Its capability to converge very fast is worth to decrease 

the number of training data. 

 

Number of train data   Methods    

  ELM 
FD-RPE 
{Rand} 

FD-dRPE 
{ Rand} 

300 7.99E+00 5.71E+01 5.48E-01 
500 1.98E+01 2.64E+01 6.80E-01 

1000 3.42E+01 9.10E+01 5.65E-01 
2000 1.42E+01 5.80E-01 5.83E-01 
3000 5.79E-01 5.74E-01 5.75E-01 

5.2.1 Adopting K-means Initialization to Lost packets Problems 

 In this section the influence of K-means clustering to RBF parameter 

initialization is investigated for the case of system with lost packets. The prior initial 
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of weight with unsupervised learning technique do show good performance measure 

and RBF generalization on testing data.  

Tables 5.6 presents the performance of finite difference or derivate free gradient 

estimate for RBF weight update with K-means weight initialization. Compared to the 

performance in Table 5.1, the training and testing error has improved using clustering 

techniques. 

 

Table 5.6 Performance comparison using K-means Initialization for the System with 
Lost packets (PDP=0.5) 

  ELM 
ELM   
{K-means} 

FD-dRPE    
{K-means} 

FD-dRPE 
{K-means} 

SELS, Nh=5        
Training 2.62E-01 1.22E-02 1.22E-02 1.21E-02 
Testing 2.62E-01 2.08E-02 2.08E-02 2.07E-02 

Mackey Glass, Nh=10        
Training 1.04E-01 5.13E-02 2.66E-03 2.64E-03 
Testing 9.51E-01 5.09E-02 2.60E-03 2.60E-03 

Narendra Time Serise, 

Nh=20        
Training 1.52E-02 4.33E-03 5.39E-03 4.27E-03 
Testing 3.09E-02 6.76E-03 8.12E-03 6.49E-03 

Henon Map, Nh=20        
Training 5.86E-01 5.95E-01 6.05E-01 5.65E-01 
Testing 5.72E-01 5.74E-01 5.61E-01 5.79E-01 

Chen Series, Nh=20        
Training 5.79E-01 5.79E-01 5.79E-01 5.79E-01 
Testing 6.01E-01 6.01E-01 6.01E-01 6.01E-01 

Accuracy performance based on MSE value for each benchmarks has been compared 

in Table 5.6. Through the simulation’s results in Table 5.6, Finite Difference applied 

on RBF networks (FD-RPE{K-means}) and decomposed RBF networks (FD-

dRPE{K-means}) able to perform better by having lower MSE value compared to 

ELM and ELM{K-means}. It means that Finite Difference on the nonlinear update 

combining with K-means clustering on the initialization has significance effect to 

increase the accuracy. 

Tables 5.7-5.9 present results of the convergence in the case of lost packets with 

variable number of training data for random initialization. The tables record the 

performance of the MSE values for every 300, 500, 1000, 2000 and 3000 training data 
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to examine the convergence performance for each benchmark with the whole method 

by K-means clustering initialization. 

 

Table 5.7 Performance comparison using K-means for the System with Lost packets 
 (PDP set to 0.5) for SELS system  

 

 

 

 

 

 

 

Movement of MSE among ELM, ELM{K-means}, FD-RPE{K-means}, and FD-dRPE{K-

means} on SELS has been compared in Table 5.7. Through the simulation results, it can be 

concluded that decomposed algorithm really works to increase the convergence rate. FD-

dRPE{K-means} starts to converge since the first 300 training data while others do not. In 

addition, FD-dRPE{K-means} outperforms ELM in terms of accuracy. 

Number of train data    Methods    

  ELM  

 
ELM  

{K-means} 
FD-RPE 

{K-means} 
FD-dRPE 

{K-means} 
300 3.53E+02 7.36E+05 3.53E+02 2.28E-02 
500 1.08E+00 6.23E-02 7.26E+04 1.25E-02 

1000 3.31E-01 2.11E-02 2.47E-01 2.09E-02 
2000 2.82E-01 1.71E-02 4.27E-02 1.65E-02 
3000 2.62E-01 1.28E-02 3.90E-02 1.22E-02 

 
 

Table 5.8 Performance comparison using K-means for the System with Lost packets (PDP 
set to 0.5) for Mackey Glass system 

 

 

 

 

 

 

 

Movement of MSE among ELM, ELM{K-means}, FD-RPE{K-means}, and FD-dRPE{K-

means} on Mackey Glass system has been compared in Table 5.8. Through the simulation 

results, it can be concluded that decomposed algorithm really works to increase the 

convergence rate. FD-dRPE{K-means} starts to converge since the first 300 training data 

while others do not. In addition, FD-dRPE{K-means} outperforms ELM and ELM{K-

means} in terms of accuracy. 

Number of train data    Methods    

  ELM  

 
ELM  

{K-means} 
FD-RPE 

{K-means} 
FD-dRPE 

{K-means} 
300 2.46E+02 8.28E+00 3.12E+02 2.54E-01 
500 2.06E-01 2.17E+01 4.70E-01 3.61E-03 

1000 1.98E-01 3.46E-01 7.17E+00 2.68E-03 
2000 1.47E-01 2.16E+00 2.49E-01 3.06E-03 
3000 1.04E-01 5.13E-02 2.66E-03 2.64E-03 
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Table 5.9 Performance comparison using K-means for the System with Lost packets  
(PDP set to 0.5) for Narendra Dynamic System 

 
 
 
 
 
 
 
 

 
 

Movement of MSE among ELM, ELM{K-means}, FD-RPE{K-means}, and FD-dRPE{K-

means} on Narendra Dynamic System has been compared in Table 5.9. Through the 

simulation results, it can be concluded that decomposed algorithm really works to increase 

convergence rate. FD-dRPE{K-means} starts to converge since the first 300 training data 

while others do not. In addition, FD-dRPE{K-means} outperforms ELM in terms of 

accuracy. 

Number of train data    Methods    

  ELM  

 
ELM  

{K-means} 
FD-RPE 

{K-means} 
FD-dRPE 

{K-means} 
300 4.17E+04 3.29E+03 2.19E+02 5.09E-03 
500 5.95E+00 1.04E+02 4.94E+00 3.98E-03 

1000 4.62E+03 8.16E+00 3.76E-02 4.40E-03 
2000 1.57E-02 1.02E-01 1.06E-02 4.89E-03 
3000 1.52E-02 4.33E-03 5.39E-03 4.27E-03 

Tables 5.7-5.9 show the performance of K-means with various training data 

measure. From the table of results, conclusion can be made that the performance of 

finite difference and the ELM vastly improve due prior initialization using clustering 

techniques. In overall, decomposed technique convergence fast with less training data 

and with inclusion of clustering technique the performance gets better. 

5.2.2 Adopting Fuzzy C-means Initialization to Lost packets Problems 

This section looks into the option of using Fuzzy C-means for prior setting the 

RBF weights before being trained adopted on lost packets environment. Table 5.10 

illustrates the performance of RBF with fuzzy C-means. It performs better than 

random initialization. 
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Table 5.10 Performance comparison using Fuzzy C-meansInitialization for the 
System with Lost packets (PDP=0.5) 

  ELM 
ELM                          

{Fuzzy C-means} 

FD-RPE             
{Fuzzy 

C-means} 
FD-dRPE                 

{Fuzzy C-means} 
SELS, Nh=5        

Training 2.62E-01 1.21E-02 2.10E-02 1.85E-03 
Testing 2.62E-01 2.06E-02 2.16E-02 1.95E-03 

Mackey Glass, Nh=10        
Training 1.04E-01 5.22E-02 2.75E-03 2.65E-03 
Testing 9.51E-01 5.14E-02 2.63E-03 2.61E-03 

Narendra Time Serise, Nh=20        
Training 1.52E-02 4.10E-03 5.18E-03 4.25E-03 
Testing 3.09E-02 6.03E-03 6.52E-03 6.13E-03 

Henon Map, Nh=20        
Training 5.86E-01 5.88E-01 5.87E-01 5.65E-01 
Testing 5.72E-01 5.70E-01 5.69E-01 5.78E-01 

Chen Series, Nh=20        
Training 5.79E-01 5.79E-01 6.21E-01 5.79E-01 
Testing 6.01E-01 6.01E-01 6.02E-01 6.01E-01 

 

Mackey Glass Time series problem can be one of the examples that can be observed 

from Table 5.10. It can be seen that Finite Difference on decomposed RBF networks 

can improve the accuracy by having lower MSE value compared to ELM and also 

ELM{Fuzzy C-means}. It can be concluded that Finite Difference on the nonlinear 

update combining with Fuzzy C-means clustering on the initialization has significance 

effect to increase the accuracy. 

Tables 5.11 –Table 5.13 shows the performance of fuzzy C-mean clustering 

initialization technique by using various numbers of training data.  

 

Table 5.11 Performance comparison using Fuzzy C-meansfor the System with Lost packets 
(PDP set to 0.5) for SELS system  

 

Movement of MSE among ELM, ELM{Fuzzy C-means}, FD-RPE{ Fuzzy C-means}, and 

Number of train data    Methods    

  ELM  

 
ELM  

{Fuzzy  C-Means} 
FD-RPE 

{Fuzzy C-Means} 
FD-dRPE 

{Fuzzy C-Means} 
300 3.53E+02 1.20E+05 1.20E+05 2.28E-02 
500 1.08E+00 1.25E-02 1.25E-02 1.24E-02 

1000 3.31E-01 2.05E-02 2.09E-02 2.08E-02 
2000 2.82E-01 1.62E-02 1.65E-02 1.64E-02 
3000 2.62E-01 1.22E-02 1.22E-02 1.21E-02 
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FD-dRPE{ Fuzzy C-means} on SELS system has been compared in Table 5.11. Through the 

simulation results, it can be concluded that decomposed algorithm really works to increase 

convergence rate. FD-dRPE{ Fuzzy C-means} starts to converge since the first 300 training 

data while others do not. In addition, FD-dRPE{ Fuzzy C-means} outperform ELM in terms 

of accuracy. 

 

Table 5.12 Performance comparison using Fuzzy C-meansfor the System with Lost packets 
(PDP set to 0.5) for Mackey-Glass  

 

Movement of MSE among ELM, ELM{Fuzzy C-means}, FD-RPE{ Fuzzy C-means}, and 

FD-dRPE{ Fuzzy C-means} on Mackey-Glass system has been compared in Table 5.12. 

Through the simulation results, it can be concluded that decomposed algorithm really works 

to increase convergence rate. FD-dRPE{ Fuzzy C-means} starts to converge since the first 

300 training data while others do not. In addition, FD-dRPE{ Fuzzy C-means} outperform 

ELM and ELM{Fuzzy C-means}in terms of accuracy. 

 

Number of train data    Methods    

  ELM  

 
ELM  

{Fuzzy  C-Means} 
FD-RPE 

{Fuzzy C-Means} 
FD-dRPE 

{Fuzzy C-Means} 
300 2.46E+02 2.70E+01 7.57E+03 2.53E-01 
500 2.06E-01 2.64E-01 8.57E-01 3.44E-03 

1000 1.98E-01 1.26E-01 1.70E+02 2.60E-03 
2000 1.47E-01 7.44E-01 3.16E-01 3.08E-03 
3000 1.04E-01 5.22E-02 2.75E-03 2.65E-03 

Table 5.13 Performance comparison using Fuzzy C-meansfor the System with Lost packets 
(PDP set to 0.5) for Narendra Systems 

 

Movement of MSE among ELM, ELM{Fuzzy C-means}, FD-RPE{ Fuzzy C-means}, and 

FD-dRPE{ Fuzzy C-means} on Narendra Systems has been compared in Table 5.13. 

Through the simulation results, it can be concluded that decomposed algorithm really works 

to increase convergence rate. FD-dRPE{ Fuzzy C-means} starts to converge since the first 

300 training data while others do not. In addition, FD-dRPE{ Fuzzy C-means} outperform 

ELM in terms of accuracy.  

 

Number of train data    Methods    

  ELM  

 
ELM  

{Fuzzy  C-Means} 
FD-RPE 

{Fuzzy C-Means} 
FD-dRPE 

{Fuzzy C-Means} 
300 4.17E+04 1.41E+03 1.60E+04 5.22E-03 
500 5.95E+00 1.25E-01 1.55E+00 3.83E-03 

1000 4.62E+03 1.88E+01 9.76E-01 4.27E-03 
2000 1.57E-02 2.91E-02 2.65E-02 4.75E-03 
3000 1.52E-02 4.10E-03 5.18E-03 4.25E-03 
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Figures 5.2-5.4 depict the performance of various training algorithms for system with lost 

packets. The decomposed training variant show fast convergent and most of the training 

technique set to a saturation level when the iteration proceeds with large number of training 

data.    

 

 

Figure 5.2 Convergence rate for SELS problem with Lost packets 

 

Convergence performance of SELS System on system identification with lost packets 

can be seen on Figure 5.3. Through this figure, the powerful of Finite Difference RPE 

on decomposed RBF can be observed. The last three dash line (black, green and red) 

representing Finite Difference RPE on decomposed RBF start to converge and stable 

since the early training data (less than 1000 training data). On the other hand, other 

methods do not. ELM which is represented by green solid line start to converge after 

1000 training data and getting stable after 2000 training data. Through this 

comparison, it can be concluded that by using Finite Difference RPE on decomposed 

RBF, 1000 training data can be saved. In addition, through this figure, the accuracy 

performance also can be examined. After getting stable, ELM cannot reach the 

smallest MSE as small as Finite Difference RPE on decomposed RBF (black, green 

and red dash line). 
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Figure 5.3 Convergence rate for Narendra System problem with Lost packets 

 

Convergence performance of Narendra Dynamic Time Series System for system 

identification with lost packets can be seen on Figure 5.3. Through this figure, the 

powerful of Finite Difference RPE on decomposed RBF can be observed. The last 

three dash line (black, green and red) representing Finite Difference RPE on 

decomposed RBF start to converge and stable since the early training data (500 

training data). On the other hand, other methods do not. ELM which is represented by 

green solid line start to converge and getting stable after 2000 training data. Through 

this comparison, it can be concluded that by using Finite Difference RPE on 

decomposed RBF, 1500 training data can be saved. Besides that, through this figure, 

the accuracy performance also can be examined. After getting stable, ELM cannot 

reach the smallest MSE as small as Finite Difference RPE on decomposed RBF with 

smart clustering initialization (green and red dash line). 
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Figure 5.4 Convergence rates for Henon Map with Lost packets 

 

Convergence performance of Henon Map System for system identification with lost 

packets can be seen on Figure 5.4. Through this figure, the powerful of Finite 

Difference RPE on decomposed RBF can be observed. The last three dash line (black, 

green and red) representing Finite Difference RPE on decomposed RBF start to 

converge and stable since the early training data (500 training data). On the other 

hand, other methods do not. ELM which is represented by green solid line start to 

converge and getting stable after 2000 training data. Through this comparison, it can 

be concluded that by using Finite Difference RPE on decomposed RBF, 1500 training 

data can be saved.  

5.3 Conclusion 

Chapter five has discussed simulation results of all proposed training algorithms 

on system identification application with lost packets. Five benchmarks are used to 

train the algorithms. 
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Overall, for system identification with lost packets, the finite difference recursive 

update is a viable technique to increase the accuracy compared the real gradient 

approach. Thus, this leads to the proposed finite difference technique for nonlinear 

weight update when system is irregularly sampled. Simulation results show the finite 

difference approach improves the convergence rate compared to the real gradient. 

The prior setting of weight is still an important issue in online learning especially 

for RBF networks adopted with lost packets. Simulation results show that again 

initialization becomes the crucial part on the training process and the unsupervised 

learning method such as K-means clustering and Fuzzy C-means clustering performs 

better to random initialization technique for system with lost packets. 

Applying the finite difference recursive update on decomposed RBF seems to be 

promising alternative to identify system with lost packets with much better and faster 

convergence rate compared to all counter parts. 

There is an interesting issue regarding simulation result of system identification 

with lost packets, all training algorithms perform almost the same on Henon Map and 

Chen Series Problem. Only finite difference recursive update on decomposed RBF 

can improve the performance but only in terms of convergence rate. 

The next chapter concludes the research writing on overall proposed RBF 

recursive learning approaches with influence of prior setting using clustering 

techniques. 
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CHAPTER 6 

 CONCLUSION 

 

This chapter summarizes the content, the discussion and mainly the contribution 

of this research. It is started by looking at motivation on doing this piece of research 

through the background of the research which is RBF networks itself. Then the thesis 

chapters are revisited in brief to look at the main discussion and the contributions. 

Finally, the chapter looks into the future direction which could lead from the research 

work.  

6.1 Revisiting the Motivation of this Research  

RBF networks are one of the feed forward neural networks besides the popular 

MLP. It is widely used among engineer and scientist because of its good capability 

especially in nonlinear system identification (Surandrajan  N et al., 1999; Fung Chi F., 

1996; Huang G-B et al., 2004). Its capability can replace many statistical techniques 

and compared to MLP, it has simpler topology hence can reveal the learning process 

explicitly.  

Learning or training methods for RBF networks is one of the most important parts 

in any neural networks implementation.  Many researches have done on applying 

RBF networks for various forms of purposes. However, developing an efficient 

learning method for RBF networks is also an important issue in RBF networks 

research area which this thesis focuses on. Extreme Learning Machine (ELM) is the 

latest recent learning methods for RBF networks developed by Huang (Huang, G.B et 

al., 2004; Liang, N.Y et al., 2006) with utmost simplicity. 
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It has the advantage on the efficient of running time because it does not update the 

nonlinear learning parameters (uses random initialization for determining initial 

nonlinear learning parameters) and only trains its linear weights using linear 

optimization techniques. This learning method is quite similar to hybrid training 

techniques (McLoone et al., 1998; Asirvadam et al., 2002). Thus, it just needs less 

computation cost over time in training compared to many gradients based on the 

learning methods developed before. However,  the drawbacks is the lacking of 

nonlinear learning parameter update and random initialization which make it is not 

really robust in terms of accuracy and convergence rate especially for identifying 

nonlinear system with higher order moreover with lost packets. This leads to the 

investigation based on finite difference technique which recently shown to have the 

property of particle filter approach which is based on importance sampling (Šimandl 

M. and Duníka., 2009). 

Another issue is on the centers initialization of the basis function which gives 

significant effect on the properties of the RBF networks.  Due to its locality, the 

center placement will be crucial in the RBF networks performance. Thus, the thesis 

looks into replacing the random initialization with some unsupervised learning 

methods. 

 Besides the adaptation of RBF with finite difference, another improvement is also 

being looked into by decomposing the networks to neuron level. Applying finite 

difference won decomposed RBF networks not only performs well but also show 

good convergence compared to full update. 

 Finally the thesis looks into the feasibility of finite difference technique on RBF 

and decomposed RBF to system with irregular sample time. Recently, some 

researches (Wang J et al., 2009; Asirvadam and Musab., 2009), look at the system 

identification with lost packets on linear networks. This thesis looks into nonlinear 

networks using RBF and finite difference weight update for the case of online lost 

packets system. 
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6.2 Revisiting the Thesis Chapters Contents 

Chapter 1 starts the thesis by presenting some backgrounds of the research. Some 

research’s objective, methodology and contributions are also presented. 

Chapter 2 gives the meaning to RBF and the theoretical framework on its 

interpolation and generalization. 

 Chapter 3 introduces the smart clustering techniques and the adaptation to ELM 

which is basic of a RBF to see the performance gain. The chapter introduces both K-

means and Fuzzy C-means for improving prior setting of RBF. Both clustering 

methods perform better compared to random initialization especially in terms of the 

final error value. Only RBF initialization with the clustering methods can improve the 

networks performance but it is not sufficient in improving convergence rate. As 

shown in some case studies, the clustering based initialization methods perform 

almost the same or case worse compared to random initialization. The first 

contribution by presenting the important of learning parameters initialization on fixed 

size RBF networks prior to learning process has been completed. The smart clustering 

shows better performance compared to random initialization as ELM.  

Chapter 4 looks at finite difference technique as a powerful numerical method to 

estimate gradient, a derivative estimates, of the underlying dynamics system. The 

chapter proposes a time varying finite difference, central difference, technique rather 

using an ad hoc constant step size.  Simulation results present that the derivative free 

estimate performs better than the real gradient of the nonlinear networks which leads 

to the feasibility in applying it for the case of irregular sample systems. 

In this chapter also, the finite difference technique is used on recursive prediction 

error (RPE) to update the nonlinear parameters part. The finite difference RPE is 

combined with various types of initialization methods on nonlinear learning 

parameters to observe the influence of prior setting of RBF weights. Simulations 

results show the initial setting of RBF weight do influence in final convergence value 

with smart clustering techniques give the best results in overall when applied to finite 
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difference technique for nonlinear update. The second contribution is presented by 

applying finite difference on the nonlinear update. 

This Chapter also discusses and proposes decomposed finite difference RPE 

which is an efficient approach for reducing the computational and storage 

requirements. By applying the finite difference RPE on decomposed RBF networks, a 

much better and faster convergence rate is obtained. It can be seen through the whole 

simulation results in the tables on chapter 4 for decomposed method. Finite difference 

on decomposed RBF networks starts converge since the first 300 training data while 

other methods do not. In another words it can be said that by applying finite 

difference on decomposed RBF networks, the convergence rate is obtained with 

minimal training data.  

Applying Finite Difference technique on updating nonlinear learning parameters 

combining with decomposed technique on the networks become third contributions 

which is really worth to decrease the number of training data since it can converge 

much faster compared to ELM. In addition, the decomposed technique contribute to 

reduce the memory and computation cost for training RBF networks with larger 

hidden neurons without decreasing accuracy performance. It becomes forth 

contribution. 

Chapter 5 elaborates all proposed methods for the system identification applied on 

lost packets. The finite difference presents the best fit compared to the real gradient 

estimate as the latter only applicable for one-step-ahead prediction. The influence of 

prior weights setting for RBF and the decomposition of training strategies on the 

system with irregular time interval are also being investigated in this chapter. 

Presenting extensive simulation results on fixed RBF learning using the proposed 

technique in chapter 3 and chapter 4 on system identification with irregular sample 

data has been completed through the whole discussion on chapter 5 which becomes 

fifth contribution. 
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6.3 Future Work and Discussion. 

The system studied is based on ELM but the nonlinear weights are updated using 

finite difference techniques. Future work is looking at constructive networks or rather 

fixed RBF networks. This leads to growth in networks and the possible application of 

pruning strategies. 

Another option is the finite difference gradient estimate technique can further be 

refined by adopting Richardson Extrapolation to smoothen the central difference 

performance. 

A thorough study on the time varying step size for finite difference is another 

option too. Rather than just looking time varying width of Gaussian kernel of RBF, 

there is possibility of looking at normalized input displacement, center displacement 

of Gaussian and many other worthy ideas. 

 

 

 

 

 

 

 

 

 

 

 

 



 

82 
 

REFERENCES 

 

 

Ahmad, R., & Jamaluddin, H. (2002). Radial Basis Function for Nonlinear Dynamic System 

Identification. Journal Teknologi Universiti Teknologi Malaysia, 36(A), 39-54. 

 

Asirvadam, Vijanth Sagayan. (2002). On-Line Learning and Construction for Neural Networks.  

PhD Thesis School of Electrical and Electronic Engineering, Queen's University Belfast. 

 

Asirvadam, V S., McLoone S.F., &  Irwin G.W. (2002). Minimal update sequential Learning 

Algorithms for RBF networks. Digest UKACC Control 2002 Postgraduate Symposium, 

University of Sheffield, UK,   71-76. 

 

Asirvadam, Vijanth S., & McLoone, Sean F. (2006). Sequential Learning Methods on RBF 

Networks with Novel Approach of Minimal Weight Update. Nonlinear Statistical Signal 

Processing Workshop IEEE, 189-192.   

 

Asirvadam, Vijanth S., McLoone, Sean F., & Irwin, George W. (2005).  Computationally Efficient 

Sequential Learning Algorithms for Direct Link Resource-Allocating Networks. Science 

Direct, Neurocomputing, 69, 142-157. 

 

Asirvadam, Vijanth S., McLoone, Sean F., & Irwin, George W. (2004). Fast Sequential Learning 

Methods on RBF Network Using Decomposed Training Algorithms. Proceeding of the 2004 

IEEE, International Symposium on Intelligent Control, Taipei, Taiwan, 84-89. 

 

Asirvadam, Vijanth S., & Musab J.O. Elamin. (2009). Wireless System Identification for Linear 

Networks. The 5th International Colloquium on Signal Processing and its Applications CSPA, 

Kuala Lumpur Malaysia, 118-124. 

Barwise, J., Keiler, H.J., Suppes P., & Troelstra, A.S. (1992). Classical Recursion Theory. 

ELSEVIER. 

Billings, S.A., Jamaluddin, H.B., and Chen, S. (1992). Properties of Neural Networks with 

Applications to Modelling Nonlinear Dynamical System. Int. Journal of Control,  55 (1), 193-

224.  

 



 

83 
 

Bishop, C.M. (1995). Neural Networks for Pattern Recognition. Oxford University Press.

 

Bishop, C M. (1998). Neural Networks and Machine Learning. NATO ASI Series, Series F: 

Computer and System Sciences, 168, Spinger-Verlag Berlin Heidelberg. 

 

Bomberger, J.D., & Seborg, D.E. (1995). On-line Updating of Radial Basis Function Netowrk 

Model.  IFAC Nonlinear Control Systems Design, Tahoe City, California. 

 

Brown, Kenneth M., & J.E. Dennis, Jr. (1972). Derivative Free Analogues of The Lavenberg-

Marquardt and Gauss Algorithm for Nonlinear Least Squares Approximation. Journal 

Numerische Mathematik, 289-297.Springer-Verlag. 

 

Chen, J.Y., & Qin, Z. (2006). Training RBF Networks with PSO and Improved Subtractive 

Clustering Algorithms. International Conference on Neural Information Processing,  1148-

1155. Spinger-Verlag Berlin Heidelberg. 

 

Chen, S., Cowan, C-F.N., Billings, S.A., & Grant, P.M. (1990). Parallel Recursive Prediction Error 

Algorithm for Training Layered Neural Networks. International Journal of control, 51, 1215-

1228. 

 

Chen S., & Billings S.A. (1989). Recursive Prediction Error Parameter Estimator for Nonlinear 

model. Int. Journal of control, 49(2), 569 – 594. 

 

Chen S., & Billings S.A. (1990). Neural Networks for Nonlinear Dynamic System Modeling and 

Identification. Int. Journal of Control, 56(2), 319-346. 

 

Chen S., Billings S.A., & Grant P.M. (1990). Nonlinear system Identification using Neural 

Networks. Int. Journal of control, 51.(6), 1191-1214. 

 

Chen S., Billings S.A., & Grant P.M. (1992). Recursive Hybrid Algorithm for Nonlinear System 

Identification using Radial Basis Function Networks. Int. Journal Control, 55(5),1051-1070. 

 

Chung, T.J. (2002). Computational Fluid Dynamics. Cambridge: Cambridge University Press. 

 

Cohen, S., & Intrator, N. ( 1995). Global Optimization of RBF Networks.  IEEE TNN. 

 

Du, K.L., & M N S. Swammy.( 2006). Neural Networks in a Soft computing Framework. London: 

Spinger-Verlag. 



 

84 
 

Finan, R.A., Sapeluk, A.T., & Dampir, R.I. (1996). Comparison of Multilayer and Radial Basis 

Function Neural Networks for Text-Dependent Speaker Recognition.  International 

Conference on Neural Networks (ICNN'96).   

 

Fung, Chi F., Billings, Steve A., & Luo, W. (1996). On-Line Supervised Adaptive Training Using 

Radial Basis Function Networks. Neural Network, 19, 1597-1617, Elsevier Science. 

 

Gupta, M., Jin, L., & Humma, N. (2003). Static and Dynamic Neural Networks. Willey-

Interscience. 

 

Howlett, Robert J., & Jain, Lakhmi C. (2001). Radial Basis Function Networks 1, Recent 

Development in Theory and Application. New York: Physica-Verlag Heidelberg. 

 

Huang, G.B., & Siew, C.K. (2004). Extreme Learning Machine with Randomly Assigned RBF 

Kernels.  International Journal of Information Technology, 11(1), 16-24. 

 

Isaksson, Alf J. (1993). Identification of ARX-Models Subject to Missing Data.  IEEE Transaction 

on Automatic Control, 35(5), 813-819. 

 

Junge T.F., & Unbehauen H. (1997). On-line Identification of Nonlinear Time-Variant Systems 

Using Structurally Adaptive Radial Basis Function Networks. Proc. American Control 

Conference, Albuquerque, New Mexico,1037-1041.  

 

Jun, Y., & Meng J. Er. (2008). An Enhanced On-line Sequential Extreme Learning Machine. IEEE 

Control and Decision Conference, IEEE, 2902-2907. 

 

Jun-Li., Zhang, Y-P. (2007). Modeling of Dynamic Systems Using Generalized RBF Network 

Based on Kalman Filter Method,” Spinger-Verlag Berlin Heidelberg, 676-684. 

 

Kim, K.J., & Ahn, H. (2008). A Recomender System Using GA K-means Clustering in a On-line 

Shopping Market.  Science Direct, Expert System with Application, 34, 1200-1209. 

 

Lennart Ljung. (1987). System Identification: Theory for the user.  New Jercey: Prentice 

Halls.,Englewood Cliffs. 

 

Li M.B., & Er M. J. (2006). Nonlinear System Identification Using Extreme Learning Machine. 

The ninth International Conference on Control, Automation, Robotics and Vision 2006, IEEE, 

1-4. 

 



 

85 
 

Lightbody, G., & Irwin G.W. (1992). A Parallel Algorithm for Training Neural Network Based 

Nonlinear Models. Proc. 2nd IFAC Workshop on Algorithms and Architectures for Real-Time 

Control, 99-104. 

 

Li, B., Wang, J., Li, Y., & Sung, Y. (2007). An Improved On-Line Sequential Learning Algorithm 

for Extreme Learning Machine. LNCS 4491, Berlin Heidelberg : Springer-Verlag, 1087-1093 

. 

Liang, N.Y., Huang, G.B., & Saratchandran, P. (2006).  A Fast and Accurate On-line Sequential 

Learning. IEEE Transaction on Neural Networks, 17(6), 1345-1358,   

 

Marino, M., & Scarpetta, S. (2000). On-Line in RBF Neural Networks a Stochastic Approach. 

Elsevier Science Ltd, Neural Networks 13, 719-729. 

 

McLoone, S.F., & Irwin, G.W. (1997). Fast Parallel Off-Line Training of Multilayer Perceptrons. 

IEEE Trans. Neural Networks, 8(3), 646-653. 

 

McLoone(a), S.F., & Irwin, G.W. (1998). Nonlinear Optimization of RBF Networks.  

International Journal of System Science,  29(2),179-189. 

 

McLoone(b), S.F., Brown M., Irwin G.W., & Lightbody G. (1998). A Hybrid Linear/Nonlinear 

Training Algorithm for Feedforward Neural Networks.  IEEE Transaction on Neural 

Networks, 9(4), 669-684. 

 

Musab, J.O. Elamin., Vijanth, S. Asirvadam., & Nordin, Saad. (2007). Systems Modeling with 

Lost Information Packets Using ARMAX Model. International Conference in Information 

and Advanced System, ICIAS. 

 

Michael, C. Fu. (2005). Gradient Estimation.  Handbooks in Operation Research and Management 

Science: Simulation, S.G Henderson & B.L Neson, eds, Elsevier, a pre-print version, chapter 

19, 2.  

 

Minh-Tuan, T., Huang, Hieu T., Huynh, Nguyen H. Vo., & Yunggwan won. (2007). A Robust On-

Line Sequential Extreme Learning Machine.  ISNN, Part1, LNCS, 4491, Berlin Heidelberg: 

Spinger-Verlag, 1077-1086. 

 

Neruda, R., & Kudova, P. (2004). “Learning Methods for Radial Basis Function Networks. 

Science Future Generation, Computer System, 21, Direct, Elsevier, 1131-1142. 

 



 

86 
 

Ngia Lester S.H., & Sjöberg J. (2000). Efficient Training of Neural Nets for Nonlinear Adaptive 

Filtering using a Recursive Levenberg- Marquardt Algorithm.  IEEE Transactions on Signal 

Processing, 48(7), 1915-1926. 

 

Pintelon, R., & Schoukens, J. Frequency Domain System Identification with Missing Data.  IEEE 

Transaction on Automatic Control, 45(2), 364-369. 

Paggio T., & Girosi F. (1990). Network for Approximation and Learning. Proc. IEEE 78( 9), 

1481-1497. 

 

Platt J. (1991). A Resource-Allocating Network for Function Interpolation. Neural Computation, 

3,  213-225. 

 

Powel, M.J.D. (1992). The Theory of Radial Basis Function Approximation in 1990.  Advances in 

Numerical Analysis, Wavelet, Subdivision Algorithms and Radial Basis Function, Oxford 

University Press, 2, 105-210.  

 

Roy, A., Govil, S., & Miranda, R. (1997). A Neural Network Learning Theory and a Polynomial 

Time RBF Algorithm.  IEEE Transaction on Neural Networks, 8(6), 1301-1313. 

 

Schenato, L., Sinopoli B., Franceschetti M., Poolla K., & Sastry S. (2007). Foundations of Control 

and Estimation over Lossy Networks.  Proceedings of the IEEE on Special issue on emerging 

technologies of networked control systems, 95(1),163-187. 

 

Šimandl, M., & Duníka J. (2009). Derivative-free estimation methods: New results and 

performance analysis.  Automatica,  45, Issue 7, 1749-1757. 

 

Singh, R., & Balasundaran, S. (2007). Application of Extreme Learning Machine Method for Time 

Series Analysis. Proceedings of World Academy of Science, Engineering and Technology, 26, 

81-87. 

 

Sjöberg, J., Hjalmarsson H., & Ljung L. (1994). Neural Network in System Identification. IFAC 

System Identification, 1, Denmark, 359-382. 

 

Sudkamp. Thomas, A. (2006). An Introduction to Theory of Computer Science, Languages and 

Machine. Third edition, Addison Weley. 

 

Surandrajan, N., Saratchandran, P., & Wei, Lu Ying. (1999). Radial Basis Function Neural 

Networks with Sequential Learning, MRAN and Its Application. Progress in Neural 

Processing, 11,  World Scientific Publishing Co. Pte. Ltd. 



 

87 
 

Wallin, R., & Isaksson, Alf J. (2002). Multiple Optima in Identification of ARX Models Subject to 

Missing Data.  EURASIP Journal on Applied Signal Processing, 30-37. 

 

Wang, J., Zheng, W.X., & Chen T. (2009). Identification of Linear Dynamic Systems Operating in 

a Networked Environment.  Automatica, 45, Issue 12, 2763-2772. 

 

Yingwei, L., Sundararajan N., & Saratchandran P. (1997). Identification of Time-Varying 

Nonlinear Systems Using Minimal  Radial Basis Function Neural Networks.  IEEE 

Proceedings Control Theory Application,144 (2). 

 

Yingwei, L., Sundararajan, N., & Saratchandran, P. (2000). Analysis of Minimal Radial Function 

Basis Function Network Algorithm for Real-Time Identification of Nonlinear Dynamic 

Systems. IEEE Proceedings Control Theory Application, 147(4). 

 

Young Sin, Mi. (1998). Design and Evaluation of Radial Basis Function Model for 

Approximation. A dissertation for PhD in Computer and Informatics Science in Graduate 

School of Syracuse University. 

 

Yuan, X.B., Wang, Z., Yu, S.H., & Li, Y-J. (2005). Time Series Forecasting with RBF Neural 

Network. Proceeding of the Fourth International Conference on Machine Learning and 

Cybernetic, Guangzhou, 18-21 August, 4680-4638. 

 

Zhu, Qin-Yu., Qin, A.K., Suganthan, P.N., & Huang, G.B. (2005). Evolutionary Extreme Learning 

Machine. Science Direct, Pattern Recognition,  38,1759-1763. 

 

 

 

 

 

 

 

 



 

88 
 

APPENDIX A:  

BENCHMARKS TEST PROBLEMS 

 

This section provides a brief description of the various benchmarks modeling problem used in the 

evaluation of the training algorithms in this thesis. In all cases training performance summary is 

measured by average of mean square error for 25 simulations per each algorithm on each benchmarks 

and test case. 

( ) ( )( )
2

1

1
∑

=

−Θ−=Θ=
vN

n

nkn

v

k yxf
N

JMSE  

( )( )

25

1
2

1
∑

=

−Θ−

=

vN

n

nkn

v

yxf
N

MSEofAverage  

Computed over a representative training data set ( )nn yx , . vN  is of  the training data set. 

Test Problem I: Slow Excitation Linear System (SELS) 

SELS involves the estimation of first order discrete-time system from correlated input-output data. The 

system is defined by the equation 

11 2.08.0 −− += ttt uyy  

 

Figure A.1 Simulink Model for SELS simulastion



 

89 
 

 

Figure A.2 Simulink model for SELS system 

 

The input data is generated by summation of three sinusoidal functions with various amplitude and 

frequency 

A data set contains 5000 data. Three thousands data is used as training data and 2000 others data is 

used as testing data. 

Test Problem II. Mackey Glass Chaotic Time Series Problem  

Benchmark problem II involves the identification of nonlinear auto regressive (NAR) model of chaotic 

Mackey-Glass time series defined by the differential delay equation below 

101 τ

τ

−

−

+
+−=

t

t

t

t

y

ay
by

dt

dy

 

With a=0.2, b=0.1, τ =17 and the sample rate is one second. The NAR Model is implemented with 
network input vector given by, 

][ 181261 −−−−= ttttt yyyyy
 

 

A data set contains 5000 data. Three thousands data is used as training data and 2000 others data is 

used as testing data. 
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Figure A.3 Simulink Model for Mackey Glass Chaotic simulation 

Test Problem III. Narendra’s  Dynamics System (NDYS) 

This benchmarks problem involves the identification of nonlinear dynamics system suggested by 

Narendra and Parthasarathy (1990). This governed by the equation 

( ) ( ) ( )11 5sin1.03sin3.0sin6.03.0 −− +++= kkktt uuuyy πππ
 

The identification process is run over 5000 training data (iteration) with the plant input defined as  






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
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
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200

2
sin

250

2
sin

tt
u t

ππ
 

The input vector for the RBF Networks model for this test problem is given by  

[ ]121 ,, −−−= tttt uyyx
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Figure A.4 Simulink model for NDYS problem simulation 

Test Problem IV. Chen’s Nonlinear System (CNLS) 

A simulated nonlinear time series (Chen et al.,1 992)   was employed to test the capabilities of the 

learning algorithm. The time series is described by the following nonlinear difference equation 

( )[ ] ( )[ ] ( ) ttttttt yyyyyy ηπ ++−++−−= −−−−− 1
2

2
2

11
2

1 sin1.0exp9.03.0exp5.08.0
 

where the noise tη
is a Gaussian white noise sequence with zero mean and variance 0.01. The RBF 

model is based on the nonlinear auto regressive (NAR) model structure, that is, 

tttt yyfy η+= −− ),( 21  
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Figure A.5 Simulink model for Chen Series problem simulation 

Test Problem V. Henon Map Problem 

The fifth test problem will be on Henon Map Problem.  It is a discrete time dynamical system proposed 

by French astronomer, Michael Henon. Henon Map  is described as a nonlinear dynamics system 

below 

ttt byaxx ++=+
2

1 1
 

 

tt xy =+1  

With a=1.4, b=0.3. 
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Figure A.6 Simulink model for Henon Map problem simulation 
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APPENDIX B  

RBF FUNCTION APPROXIMATION 

 

RBF networks with Gaussian kernels satisfy Stone-Weierstrass Theorem which stages necessary 

condition for function approximation (Gupta M et al., 2003; Young, Sin Mi, 1998). Some mathematical 

analysis regarding the function approximation capability of RBF network with Gaussian can be 

summarized below. 

Definition B.1 

Let a set Ω ,  

a. int ( Ω ) is collection all interior point of Ω  

b. ext ( Ω ) is collection all exterior point of Ω   

c. Ω′  is collection all limit points of Ω , it is said as derived set. 

Definition B.2.  Closure Definition 

If Ω  is a set of elements, then by the closure ][Ω of Ω , it is meant that the set of all points in 

Ω together with the set all limit points of Ω , Ω′∪Ω=Ω][  

Definition B.3. Open Set 

Ω  is open set if every elements of Ω  is an interior point  
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Definition B.4. Closed Set 

Ω  is closed set if 
cΩ is open set 

Definition B.5. Dense set Definition 

Let V be a subset of the set Ω , V is dense in Ω  if ][V = Ω  

Further discussion in approximation theory, if V is dense in Ω , then each element of Ω  can be 

approximated arbitrary well by elements of V . This denseness will play a key role in later discussion 

on the approximation capabilities of RBF networks with Gaussian. 

Definition B.6.  Compact set 

A set is said to be compact if every infinite subset of the set contains at least one limit point. 

By the above definitions, the Stone Weierstrass Theorem is discussed below to show the function 

approximation capability of RBF networks with Gaussian. 

Theorem  B.1. Stone Weierstrass  II  

Let S be a compact set with n dimension, and ][SC⊃Ω  be a set of continuous real valued functions 

on S satisfying the conditions: 

i. Identity function: The constant function 1)( =xf  is in Ω ; 

ii. Separability : for any two points Sxx ∈21 ,  and 21 xx ≠ , there exists a Ω∈f  such that 

)()( 21 xfxf ≠ ; 

iii. Algebraic Closure: for any Ω∈gf , and ℜ∈βα , , the function fg and )( gf βα + are 

in Ω  

Then Ω  is dense in ][SC . In other words, for any 0>ε and any function Ω∈f  such that 

ε<− )()( xfxg  for all Sx ∈ .   



 

96 
 

Conditions, (i) to (iii) are used to ensure the function approximation capability of RBF networks with 

Gaussian. An exponential function such as Gaussian function can process the multiplication into 

addition as follow: 

yxyx
eee

+=•  (B.1) 

Hence, it can be verified that RBF networks with Gaussian satisfies the whole condition of Weierstrass 

Theorem which mean the function approximation capability is fulfilled.  

Theorem  B.2 

Let Ω  be the set of all function that can be computed by RBF networks with Gaussian on a compact 

set 
n

S ℜ⊃ : 
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=

Ω=Ω
1N

N
 

  (B.3) 

Then Ω  is dense in ][SC  

Proof: 

Trough this theorem, it will be proven that RBF networks with Gaussian satisfies the Weierstrass 

Theorem with its three necessary conditions hence it can be proven the function approximation 

capability of RBF networks with Gaussian. 

i. Identity function  

1)( =xf  belongs to Ω , since it can be considered as a Gaussian function with infinite 

variance σ . 

ii. Separability 

Syx ∈∀ , , yx ≠ , it can be obviously verified that )()( yfxf ≠  because the 

exponential function is strictly monotic. 
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iii. Algebraic closure  

Let Ω∈gf ,  which are represented by the Gaussian function as 
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where 
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Hence, the product fg  is in Ω  so that the RBF networks with Gaussian satisfy all properties of 

Stone-Weierstrass theorem. Thus Ω  is dense in [ ]SC . 
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APPENDIX C 

PROOF OF FINITE DIFFERENCE CONVERGENCE 

 

As stated on Chapter 2, learning is an optimization process which traces the learning parameters 

that will minimize the error function. Thus, some mathematics analysis will be presented to guarantee 

that FD RPE will converge to the learning parameters which optimize the objective function. 

Definition C.1.  Convex Set 

A set 0D is said to be convex if the line segment between any two points in 0D also lies in 0D ,i.e, if for 

any  0, Dyx ∈ and any θ  with 10 ≤≤ θ , 0)1( Dyx ∈−+ θθ  

 

Let  

2* )),,(ˆ()( ycyF ii −=Θ βσ  (C.1) 

 

];[ *** σc=Θ  (C.2) 

 

h

F

h

hFhF
J

22

)()(
)(

∆
=

−Θ−+Θ
=Θ  

(C.3) 

Lemma C.1.   Let 0D  be an open convex set and 0≥K . If 0, Dyx ∈∀ , 

22
)()( yxKyJxJ −≤− , then the following inequalities hold for every 0, Dyx ∈ ,
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i. 
22

)()( yxKyJxJ
TT −≤−                  (C. 4) 

ii. there exist non negative constant C and C’ such that  

11
.)()( yxKCyJxJ −≤−                   (C.5) 

and 

22
' ACA ≤                     (C.6) 

iii. For any real rectangular matrix A 

2

1 1
2/.),)(()()( yxKCyxyJyFxF −≤−−                 (C.7) 

Theorem C.1  

Let  

0)()( ** =ΘΘ FJ T          (C.8) 

for some 0
*

D∈Θ ,  and let  

022
,,)()( DyyKyJJ

TT ∈Θ∀−Θ≤−Θ         (C.9) 

If 
2

* )(ΘFK  is a strict lower bound for the spectrum of ( ) ( )** ΘΘ JJ
T

 then 

0&00 →<∀∋>∃ hhη , FD RPE method converges locally to *Θ  

Proof 

For each 0D∈Θ , let ),( hΘλ denote the least Eigen value of 

h

hFhF T

2

),(),( Θ∆Θ∆
 

(C.10) 

For h  sufficiently small and Θ in some smaller neighborhood (than 0D ) of *Θ , λ is non negative 

jointly continuous function of h&Θ  since by hypothesis that 
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0)()0,(
2

** ≥Θ>Θ FKλ  (C.11) 

It can be found 0>′η and 1D , an open convex neighborhood of *Θ  such that 01 DD ⊂  and for 

1D∈Θ , η ′≤h ,  

( ) 2/)()0,()(),(
2

**

2

* Θ−Θ+Θ=′>Θ FKFKh λλλ  (C.12) 

Let B denote the uniform bound on 

2
2

),(

h

hF
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 for 1D∈Θ , [ ]ηη ,′−∈h  

(B exists by continuity). Now set  

2
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and 
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(C.14) 

And notice that the smallest Eigen value of nL is  0)()( 1 ≥′≥′ − λλ , hence 
1−

nL  exist and its 

2l norm is bounded by 1)( −′λ . 

For some ( )1,0∈γ  we can write  
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it is shown in (Dennis J.E.,Jr, 1970) that  
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Hence by lemma 1 
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Now choose 0>r  and 0>′′η  so small that ( ) ηη ′<′′⊂Θ ,, 1
*

DrN  and  

( ) ( ) ηλ ′′′+>Θ−Θ KCBCBKFK r20,
2

**  (C.18) 

This insures that 1<γ  where 

( ) ( ) 







Θ+

′′
′+′≡

−

2

*1

2
sup FKCKCBBK r

t

η
λγ  

   (C.19) 

Finally select ηη ′′<′  such that  

CKCB

BKr

′

−′
≤

)(2 λ
η , for ( ) 0

2

* =ΘF  
 (C.20) 

Now let us assume that for 0≥t , we have re ≤  and γ≤h . From (1) we obtain  

( ) rree tt ≤−+≤+ γγ 11  (C.21) 

This shows that FD RPE iteration is locally well defined. It can be shown that as long as 0→h , the 

method is locally converge to *Θ  

Teorema C.2 

Let F satisfies the differentiability assumption of theorem 4.1 in a neighborhood 0D of 
*Θ  of F.  

If h  is ( )( )anyFO tΘ  then FD RPE is quadratically convergent.  

Proof 

For each 0D∈Θ , let ),( hΘλ denote the least Eigen value of 
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h

hFhF T

2

),(),( Θ∆Θ∆
 

(C.22) 

For h  sufficiently small and Θ in some smaller neighborhood (than 0D ) of *Θ , λ is non negative 

jointly continuous function of h&Θ  since by hypothesis that 

0)()0,(
2

** ≥Θ>Θ FKλ  (C.23) 

It can be found 0>′η and 1D , an open convex neighborhood of *Θ  such that 01 DD ⊂  and for 

1D∈Θ , η ′≤h ,  

( ) 2/)()0,()(),(
2

**

2

* Θ−Θ+Θ=′>Θ FKFKh λλλ  (C.24) 

Let B denote the uniform bound on 

2
2

),(

h

hF
TΘ∆

 for 1D∈Θ , [ ]ηη ,′−∈h  

(B exists by continuity). Now set  

2

*Θ−Θ= tte , (C.25) 

24

),(),(

h

hFhF
L

T

n

Θ∆Θ∆
≡ , 

(C.26) 

And notice that the smallest eigen value of nL is 0)()( 1 ≥′≥′ − λλ , hence 
1−

nL  exist and its 

2l norm is bounded by 1)( −′λ . 

For some ( )1,0∈γ  we can write  

( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) (
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it is shown in (Dennis J.E.,Jr, 1970) that  

                                                                                                                                                          (C.27) 
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h
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, 
     (C.28) 

From lemma 4.1 we get 

( ) e
h

CKCBBKee tt 









′+′≤

−

2
1

λ , 

(C.29) 

To see that the convergence is quadratic, note that since there is a uniform upper bound on 

                                                         ( )
2

ΘJ  for r≤Θ−Θ
2

* ,                                             (C.30) 

                           

( ) ( ) ( )

( )
2

*

2

2

*

2

sup Θ−ΘΘ≤

Θ−Θ=Θ

Θ
t

tt

J

FFF

, 

(C.31) 

 

                                                                                                                                    

Where [ ] ( )rNt ,, ** Θ⊂ΘΘ∈Θ , hence using the above and the order equivalence of norms, h  

                                      ( ) e
h

CKCBBKee tt 









′+′≤

−

2
1

λ , )( 2
1 tt eOe =+ .                          (C.32) 

 


