ACKNOWLEDGEMENT

This present research work was funded by e-Science fund of Ministry of Science Technology and Innovation (MOSTI) and was carried out from July 2006 to January 2009 under the supervision of Assoc. Prof. Dr. Nordin Saad from the Electrical & Electronic Engineering Department and Assoc. Prof. Dr. Mohamed Ibrahim Abdul Mutalib from the Chemical Engineering Department of Universiti Teknologi PETRONAS. I would like to thank my supervisor and co-supervisor for providing the guidance and advices needed to complete this research.

I would also like to thank everyone who has directly or indirectly contributed towards this research work especially my family members, colleagues, Compressed Natural Gas Direct Injection (CNGDI) project members, PETRONAS Natural Gas Vehicle (PNGV) staff members, Petronas Research and Scientific Services (PRSS) staff members, Research Enterprise Office (REO) staff members, Postgraduate Study Programme staff members, Electrical & Electronic Engineering (E&E) Department staff members and others.

Mahidzal Dahari APRIL 2009

ABSTRACT

Metering technology offers a number of possible options for the measurement of compressible natural gas (CNG). However, the accuracy of these measurements is dependent on various dynamic factors and fluid parameters. To avoid flow measurement from such dynamic errors, a new technique or novel concept of flowmeter is needed for measuring CNG. One of the options is to use natural force phenomenon that could be derived from fundamental physics, a force known as coriolis. It is used in mass flowmeter design that uses vibration tubes to guide and measure fluid or gas based on coriolis force. The motivation behind the research is to develop and apply coriolis in an embedded FieldPoint controller proclaimed as an inferential coriolis. The major challenge is to find a suitable algorithm for coriolis in the form of a mathematical model that could measure mass and mass flowrate of CNG with maximum permissible error. To define such system, an experimental approach known as System Identification (SYSID) theory is used. Performance of inferential coriolis is tested on experimental natural gas test rig which could be summarized into three areas: single pressure flow; continuous pressure flow; multi pressure flow with disturbances. When experiment was conducted, mass flowrate was measured using inferential coriolis and a commercial flowmeter from a manufacturer i.e., Micro Motion. To validate both methods, a load cell was used as the reference. Details evaluations of three pressure flow scenarios namely the single pressure flow, the continuous pressure flow, and the multi pressure flow for a CNG refueling system are presented. From percentage error analyses, it shows that in all measurements the inferential coriolis have less error compares to commercial coriolis manufactured by Micro Motion. The findings demonstrate the viability of the SYSID approach to provide a solution to the modeling of an inferential coriolis, and confirm the qualitative behavior of the inferential coriolis in response to the different flow measurements.

ABSTRAK

Terdapat pelbagai teknologi pengukuran untuk mengukur gas asli termampat. Walau bagaimanapun, ketepatan pengukuran bergantung kepada pelbagai faktor dinamik dan parameter bendalirnya. Untuk mengelakkan pengukuran daripada kesalahan dinamik tersebut, satu teknik baru untuk pengukuran bendalir gas asli termampat diperlukan. Salah satu daripadanya ialah dengan menggunakan tenaga dari kejadian alam semulajadi yang boleh ditafsirkan secara ilmu fizik, iaitu kejadian tenaga Coriolis. Tenaga ini telah digunakan dalam pembentukan alat penyukatan jisim bendalir yang berasaskan tiub gegaran untuk mengarah dan menyukat bendalir atau gas menggunakan tenaga Coriolisnya. Motivasi dalam penyelidikan ini, adalah untuk mengaplikasikan tenaga Coriolis tersebut dalam sebuah alat pengawal FiedPoint, yang bakal dipanggil coriolis inferens. Masalah utama untuk menghasilkan alat ini ialah untuk mencari algoritma yang sesuai untuk Coriolis dalam bentuk model matematik yang dapat mengukur jisim dan halaju jisim gas asli termampat dengan ralat terbesar yang dibenarkan. Untuk mendefinisikan sistem tersebut, kaedah ujikaji makmal telah digunakan yang dipanggil Teori Identifikasi Sistem. Penilaian teknik coriolis secara inferens ini telah diuji dalam makmal, yang boleh diringkaskan kepada tiga ujikaji iaitu, ujikaji dalam satu tekanan arah, ujikaji dalam tekanan yang berterusan atau selanjar, dan ujikaji dalam pelbagai tekanan dengan gangguan. Untuk perbandingan, halaju jisim gas asli dalam ujikaji tersebut telah diukur secara coriolis inferens dan alat penyukatan yang lebih komersil iaitu Micro Motion. Untuk pengesahan pula, sebuah alat penimbang turut digunakan. Penilaian lengkap untuk senario ujikaji satu arah tekanan, tekanan yang berterusan dan pelbagai tekanan juga dilaporkan. Melalui analisis peratus ralat pula, didapati coriolis inferens telah menghasilkan ralat yang lebih sedikit berbanding Micro Motion. Penemuan ini menunjukkan keupayaan kaedah Teori Identifikasi Sistem dalam menghasilkan penyelesaian untuk coriolis inferens, dan membuktikan sifat kualitatif coriolis inferens dalam pelbagai perbezaan penyukatan bendalir.

LIST of PATENTS

- Malaysia Patent: Method and System for calibration of mass flow measurement for volumetric flow measurement device Application no: PI20054276 Prof. Dr. V.R. Radhakrishnan Assoc. Prof. Dr. Mohamed Ibrahim Abdul Mutalib Mahidzal Dahari
- Malaysia Patent: NGV refueling switching strategies optimization Application no: PF20705034 Assoc. Prof. Dr. Mohamed Ibrahim Abdul Mutalib Assoc. Prof. Dr. Nordin Saad Mahidzal Dahari

LIST of PUBLICATIONS

- N.A. Hisam, M.Dahari, M.I.A. Mutalib, and R. Ramlan, "Use of Suitable Equation of State for Conversion of Volumetric to Mass Flowrate for NGV Refueling Equipment," *Journal of Institute of Engineers Malaysia (IEM)*., Sept 2006.
- N.Saad, M. Dahari, and M.I.A. Mutalib, "Time-optimal control of natural gas vehicle refueling requiring switchings of multi-pressure banks," *International Journal of Control, Automation and System - Korean Institute of Electrical Engineers.*, 2008 (manuscript under review).
- M.Dahari, N.Saad, M.I.A. Mutalib, and N.A. Hisam, "Design and Implementation of a Minimum Switching Time Transitions for NGV Refueling," *Paper presented in NGV2006 Conference.*, Cairo, Nov 2006.
- M.Dahari, N.Saad, and M.I.A. Mutalib "Implementation of System Identification to the Modeling of Meterless NGV Refueling Dispenser," *Paper presented in ANGVA2007 Conference.*, Bangkok, Oct 2007.
- M.Dahari, N.Saad, and M.I.A. Mutalib, "Inferential Coriolis Flowmeter for NGV Refueling using System Identification," *Paper presented in 1st National Postgraduate Conference on Engineering, Science and Technology.*, University Technology PETRONAS, March 2008.
- M.Dahari, N.Saad, and M.I.A. Mutalib, "Development of Meterless NGV Refueling System," *Paper presented for 4th Biannual Postgraduate Research Symposium.*, Universiti Teknologi PETRONAS, Feb 2007.

- M.Dahari, N.Saad, and M.I.A. Mutalib, "Development of Inferential Coriolis Flowmeter for NGV Refueling using System Identification," *Paper presented for* 5th Biannual Postgraduate Research Symposium., Universiti Teknologi PETRONAS, July 2007.
- M.Dahari, N.Saad, and M.I.A. Mutalib, "Development of Inferential Coriolis Flowmeter for NGV Refueling using System Identification" *Paper presented for* 6th Biannual Postgraduate Research Symposium., Universiti Teknologi PETRONAS, Jan. 2008.
- M.Dahari, N.Saad, and M.I.A. Mutalib, "System Identification and Parameter Estimation of Coriolis Flowmeter," *Paper presented for 7th Biannual Postgraduate Research Symposium.*, Universiti Teknologi PETRONAS, June 2008.

TABLE of CONTENTS

ACKNOWLEDGEN	MENTi
ABSTRACT	ii
ABSTRAK	iii
LIST OF PATENTS	Siv
LIST OF PUBLICA	TIONSv
TABLE OF CONTE	ENTS vii
LIST OF TABLES.	xii
LIST OF FIGURES	
LIST OF ABBREVI	[ATIONSxxi
NOMENCLATURE	xxii
1.0 INTRODUCTIO	DN1
1.1 Backgroun	nd1
1.2 Problem S	statement
1.3 Motivation	n 5
1.4 Objectives	s and contribution of research
1.5 Outline of	the thesis
2.0 LITERATURE	REVIEW ON FLOWMETERS9
2.1 Introduction	on
2.1.1	Timed-fill9
2.1.2	Fast-fill9
2.2 Previous v	vorks based on momentum flowmeter12
2.2.1	Orifice plate
2.2.2	Venturi tube
2.2.3	Nozzle
2.2.4	Segmental wedge14
2.2.5	V-cone

2.2.6	Pitot tube	15
2.2.7	Averaging pitot tube	15
2.2.8	Elbow	16
2.2.9	Dall tube	16
2.3 Previous v	works based on volumetric flowmeter	17
2.3.1	Positive displacement flowmeter	17
2.3.2	Turbine flowmeter	19
2.3.3	Ultrasonic flowmeter	
	2.3.3.1 Transit time ultrasonic flowmeter	20
	2.3.3.2 Doppler ultrasonic flowmeter	
2.3.4	Vortex flowmeter	21
2.3.5	Magnetic flowmeter	21
2.4 Previous v	works based on pressure-volume-temperature (PVT)	
flowmeter	r	23
2.4.1	Classical ideal gas law	
2.4.2	Van der waals	24
2.4.3	Redlich-Kwong	25
2.4.4	Soave-Redlich-Kwong	25
2.4.5	Peng-Robinson	26
2.5 Previous v	works based on mass flowmeter	27
2.5.1	Thermal mass flowmeter	27
2.5.2	Coriolis mass flowmeter	
2.6 Defining	coriolis	
2.6.1	Defining coriolis flowmeter	
2.6.2	Principle operation of coriolis flowmeter	
2.7 Mathemat	tical derivation for mass flowrate	
2.8 Mathemat	cical derivation for density	
2.9 Practical i	mplementation of coriolis flowmeter	
2.10 Summary		

3.0 SYSTEM IDEN	TIFICATION THEORY 41	
3.1 Introduction41		
3.2 System Id	entification	
3.3 SYSID pa	rametric models	
3.3.1	General Linear (GL) model 47	
3.3.2	Autoregressive with Exogeneous Input (ARX) model47	
3.3.3	Autoregressive Moving Average with Exogeneous Input	
	(ARMAX) model	
3.3.4	Output Error (OE) model	
3.3.5	Box Jenkins (BJ) model	
3.3.6	State-space (SS) model51	
3.4 Statistical	theory of model order	
3.4.1	Akaike's Information Criterion (AIC)53	
3.4.2	Akaike's Final Prediction Error Criterion (FPE)53	
3.4.3	Minimum Data Length Criterion (MDL)53	
3.5 Mathemat	ical algorithm for coefficients of parametric models54	
3.5.1	Non-recursive model54	
	3.5.1.1 Non-recursive algorithm for GL model54	
	3.5.1.2 Non-recursive algorithm for ARX model57	
	3.5.1.3 Non-recursive algorithm for ARMAX model 59	
	3.5.1.4 Non-recursive algorithm for OE model	
	3.5.1.5 Non-recursive algorithm for BJ model	
	3.5.1.6 AR Estimation method63	
	3.5.1.7 Gauss-Newton Minimization Method 64	
	3.5.1.8 Instrumental-Variable Method	
3.5.2	Recursive model69	
3.5.3	State-space model using N4SID algorithm73	
	3.5.3.1 Estimation of system matrix	
	3.5.3.2 Estimation of Kalman gain, <i>K</i>	
	3.5.3.3 Estimation of initial states, X_0	

3.6 Validation	n of models78
3.6.1	Discrete Transfer Function
3.6.2	Power Series Expansion80
3.7 Summary	
4.0 EXPERIMENT	AL DESIGN
4.1 Introducti	on82
4.2 Design of	experimental hardware
4.2.1	Cascaded storage system
4.2.2	Flow metering system
4.2.3	Receiver system
4.2.4	Recycle system
4.2.5	Sequencing system
4.2.6	DAQ & Control System90
4.3 Design of	LabVIEW program92
4.3.1	Cascaded storage subprogram92
4.3.2	Flow metering subprogram
4.3.3	Receiver subprogram,
4.3.4	Recycle subprogram
4.3.5	Sequencing subprogram
4.4 Perform a	nd collect experimental data
4.4.1	Process flow of natural gas test rig
4.4.2	Refueling and recycling process of natural gas test rig 102
4.4.3	Collecting experimental data from natural gas test rig104
4.4.4	Analyzing experimental data using LabVIEW109
4.4.5	Selecting input and output data for SYSID113
4.5 Determine	e discrete model of coriolis mass flowrate (CMF) 117
4.5.1	Analyses of non recursive approach121
4.5.2	Analyses of recursive approach131
4.5.3	Analyses of state space approach141
4.5.4	Analysis of comparison for discrete model of CMF144

4.6 Develop a	lgorithm for inferential coriolis model	
4.6.1	Designing trend line	150
4.6.2	Identifying trend line	157
4.6.3	Finalizing trend line	
4.6.4	Implementing trend line	169
4.6.5	Practical implementation	
4.7 Summary		179
5.0 RESULTS AND	DISCUSSION	180
5.1 Introducti	on	
5.2 Results of	single pressure flow experiment	
5.3 Results of	continuous pressure flow experiment	
5.4 Results of	f multi pressure flow experiment with disturbances	195
5.5 Analysis	of percentage error for single pressure flow	
5.6 Analysis	of percentage error for continuous pressure flow	
5.7 Analysis	of percentage error for multi pressure flow	
with distu	rbances	
5.8 Discussio	n	
5.9 Summary		
6.0 CONCLUSION.		
6.1 Conclusio	on	
6.2 Recomme	endation	
REFERENCES		212
APPENDIX I		
APPENDIX II		238

LIST of TABLES

Table 3.1:	Classification of the reviewed literature for SYSID	
	parametric models	44
Table 4.1:	Tag numbers of natural gas test rig	101
Table 4.2:	Types of data taken from FieldPoint	109
Table 4.3:	Table of comparison for discrete model of coriolis mass flowrate	;
	(CMF) developed by non-recursive, recursive and state-space	
	approach	143
Table 4.4:	Types of discrete values at each column	146
Table 4.5:	R-squared value for SS-PCYLN	151
Table 4.6:	R-squared value for SS-TCYLN	152
Table 4.7:	R-squared value for SS-PT1	153
Table 4.8:	R-squared value for SS-TT1	154
Table 4.9:	R-squared value for SS-PT2	155
Table 4.10:	R-squared value for SS-TT2	156
Table 4.11:	Table of comparison for R-squared value	157
Table 4.12:	R-squared value for 2 nd order polynomial trend line	158
Table 4.13:	R-squared value for 3 rd order polynomial trend line	159
Table 4.14:	R-squared value for 4 th order polynomial trend line	160
Table 4.15:	R-squared value for 5 th order polynomial trend line	161
Table 4.16:	R-squared value for 6 th order polynomial trend line	162
Table 4.17:	R-squared value for 2 nd to 6 th order polynomial trend line	163
Table 4.18:	R-squared value for 3 rd order polynomial trend line for first	
	sample of data sets	164
Table 4.19:	R-squared value of 3 rd order polynomial trend line for second	
	sample of data sets	165
Table 4.20:	R-squared value of 3 rd order polynomial trend line for third	

	sample of data sets
Table 4.21:	R-squared value of 3 rd order polynomial trend line for forth
	sample of data sets167
Table 4.22:	R-squared value of 3 rd order polynomial trend line for fifth
	sample of data sets
Table 4.23:	R-squared value using 3 rd order polynomial trend line169
Table 5.1:	Total mass when initial receiver pressure 0 psig (single flow)183
Table 5.2:	Total mass when initial receiver pressure 100 psig (single flow)184
Table 5.3:	Total mass when initial receiver pressure 500 psig (single flow)185
Table 5.4:	Total mass when initial receiver pressure 1000 psig (single flow)186
Table 5.5:	Total mass when initial receiver pressure 1500 psig (single flow)187
Table 5.6:	Total mass when initial receiver pressure 2000 psig (single flow)188
Table 5.7:	Total mass when initial receiver pressure 0 psig (continuous flow) 189
Table 5.8:	Total mass when initial receiver pressure 100 psig (continuous
	flow)190
Table 5.9:	Total mass when initial receiver pressure 500 psig (continuous
	flow)191
Table 5.10:	Total mass when initial receiver pressure 1000 psig (continuous
	flow)192
Table 5.11:	Total mass when initial receiver pressure 1500 psig (continuous
	flow)193
Table 5.12:	Total mass when initial receiver pressure 2000 psig (continuous
	flow)194
Table 5.13:	Total mass when initial source pressure 2000-3000-3600 psig and
	receiver pressure 20 psig
Table 5.14:	Total mass when initial source pressure 1000-2000-3000 psig and
	receiver pressure 20 psig
Table 5.15:	Total mass when initial source pressure 290-1450-3600 psig and
	receiver pressure 20 psig197
Table 5.16:	Total mass when initial source pressure 3300-3300-3300 psig.
	receiver pressure 20 psig, 7 times of switching

Table 5.17:	Total mass when initial source pressure 3300-3300-3300 psig.	
	receiver pressure 20 psig, 22 times of switching	. 199
Table 5.18:	Percentage error for inferential coriolis (single flow)	200
Table 5.19:	Percentage error for Micro Motion (single flow)	. 200
Table 5.20:	Percentage error for inferential coriolis (continuous flow)	202
Table 5.21:	Percentage error for Micro Motion (continuous flow)	. 202
Table 5.22:	Percentage error for inferential coriolis (multi pressure flow with	
	disturbance)	.204
Table 5.23:	Percentage error for Micro Motion (multi pressure flow with	
	disturbance)	204

LIST of FIGURES

Figure 2.1:	Fast-fill CNG filling station	10
Figure 2.2:	Mass flowrate during fast-filling for vehicle tank pressure	11
Figure 2.3:	Orifice plate flowmeter	12
Figure 2.4:	Venturi tube flowmeter	13
Figure 2.5:	Nozzle flowmeter	13
Figure 2.6:	Segmental Wedge	
Figure 2.7:	V-cone flowmeter	
Figure 2.8:	Pitot tube flowmeter	15
Figure 2.9:	Averaging pitot tube flowmeter	15
Figure 2.10:	Elbow flowmeter	16
Figure 2.11:	Dall tube flowmeter	16
Figure 2.12:	Types of positive displacement flowmeters	18
Figure 2.13:	Turbine flowmeter	19
Figure 2.14:	Transit time ultrasonic flowmeter	20
Figure 2.15:	Doppler ultrasonic flowmeter	20
Figure 2.16:	Vortex flowmeter	21
Figure 2.17:	Inline magnetic flowmeter	22
Figure 2.18:	Insertion magnetic flowmeter	22
Figure 2.19:	PVT based flowmeter	26
Figure 2.20:	Thermal mass flowmeter	27
Figure 2.21:	Coriolis mass flowmeter	
Figure 2.22:	Deflection of tube	
Figure 2.23:	Coriolis force	29
Figure 2.24:	Coriolis in U-tube	
Figure 2.25:	Micro Motion coriolis flowmeter	30
Figure 2.26:	Coriolis principle	

Figure 2.27:	Sine wave (a) No flow (b) Mass flow	. 32
Figure 2.28:	Oscillating U-tube	33
Figure 2.29:	Deflection Angle Measurements	35
Figure 2.30:	Typical construction of coriolis flowmeter	38
Figure 2.31:	Coriolis measurement using Micro Motion flowmeter	39
Figure 3.1:	A dynamic system for coriolis	41
Figure 3.2:	Signal Flow of GL Model	47
Figure 3.3:	Signal Flow of ARX Model	47
Figure 3.4:	Signal Flow of ARMAX Model	49
Figure 3.5:	Signal Flow of OE Model	50
Figure 3.6:	Signal Flow of BJ Model	51
Figure 3.7:	Diagram of recursive system identification	69
Figure 4.1:	Flow chart of SYSID procedures	83
Figure 4.2:	Natural gas test rig	84
Figure 4.3:	Cascaded storage system	85
Figure 4.4:	Flow metering system	86
Figure 4.5:	Receiver system	87
Figure 4.6:	Recycle system	88
Figure 4.7:	Sequencing system	89
Figure 4.8:	FieldPoint system	90
Figure 4.9:	Single Line Diagram for natural gas test rig using FieldPoint	91
Figure 4.10:	LabVIEW front panel to monitor and control the test rig	. 94
Figure 4.11:	LabVIEW sub program for cascaded storage system	95
Figure 4.12:	LabVIEW sub program for flow metering and receiver system	96
Figure 4.13:	LabVIEW sub program for recycle system	97
Figure 4.14:	LabVIEW sub program for sequencing system	. 98
Figure 4.15:	Process and Instrumentation Diagram (P&ID) of natural gas	
	test rig	100
Figure 4.16:	Procedure of refueling CNG using test rig	. 102
Figure 4.17:	Procedure of recycling CNG using test rig	103
Figure 4.18:	Initial condition	105

Figure 4.19:	Low bank refueling	106
Figure 4.20:	Medium bank refueling	107
Figure 4.21:	High bank refueling	108
Figure 4.22:	Sample of data	109
Figure 4.23:	Modification of data	110
Figure 4.24:	Sample of data is converted to readable graphs	111
Figure 4.25:	LabVIEW program to convert sample of data to readable graphs.	111
Figure 4.26:	Input data for SYSID	113
Figure 4.27:	Output data for SYSID	113
Figure 4.28:	LabVIEW program to determine discrete model of CMF	
	using non-recursive approach	114
Figure 4.29:	LabVIEW program to determine discrete model of CMF	
	using recursive approach	115
Figure 4.30:	LabVIEW program to determine discrete model of CMF	
	using state space approach	116
Figure 4.31:	LabVIEW front panel to determine discrete model of CMF	
	using non-recursive approach	117
Figure 4.32:	LabVIEW front panel to determine discrete model of CMF	
	using recursive approach	118
Figure 4.33:	LabVIEW front panel to determine discrete model of CMF	
	using state space approach	119
Figure 4.34:	Discrete model of CMF using GL model (non recursive)	121
Figure 4.35:	Discrete model of CMF using ARX model (non recursive)	123
Figure 4.36:	Discrete model of CMF using ARMAX model (non recursive)	125
Figure 4.37:	Discrete model of CMF using OE model (non recursive)	127
Figure 4.38:	Discrete model of CMF using BJ model (non recursive)	129
Figure 4.39:	Discrete model of CMF using GL model (recursive)	131
Figure 4.40:	Discrete model of CMF using ARX model (recursive)	133
Figure 4.41:	Discrete model of CMF using ARMAX model (recursive)	135
Figure 4.42:	Discrete model of CMF using OE model (recursive)	137
Figure 4.43:	Discrete model of CMF using BJ model (recursive)	139

Figure 4.44:	Discrete model of CMF using state space model141
Figure 4.45:	MATLAB Simulink program to calculate discrete CMF values145
Figure 4.46:	Discrete values generated from MATLAB Simulink program146
Figure 4.47:	Sample of data to compare CMF values and actual coriolis147
Figure 4.48:	Graphs of comparison between all
	CMF models and actual coriolis
Figure 4.49:	Trend line and conceptual curve149
Figure 4.50:	Trend line150
Figure 4.51:	Non linear curve and trend lines for SS-PCYLN151
Figure 4.52:	Non linear curve and trend lines for SS-TCYLN 152
Figure 4.53:	Non linear curve and trend lines for SS-PT1153
Figure 4.54:	Non linear curve and trend lines for SS-TT1154
Figure 4.55:	Non linear curve and trend lines for SS-PT2155
Figure 4.56:	Non linear curve and trend lines for SS-TT2156
Figure 4.57:	Non linear curve for SS-PCYLN
	with 2 nd order polynomial trend line158
Figure 4.58:	Non linear curve for SS-PCYLN
	with a 3 rd order polynomial trend line
Figure 4.59:	Non linear curve for SS-PCYLN
	with a 4 th order polynomial trend line
Figure 4.60:	Non linear curve for SS-PCYLN
	with a 5 th order polynomial trend line
Figure 4.61:	Non linear curve for SS-PCYLN
	with a 6 th order polynomial trend line
Figure 4.62:	3 rd order polynomial trend line for first sample of data sets164
Figure 4.63:	3 rd order polynomial trend line for second sample of data sets 165
Figure 4.64:	3 rd order polynomial trend line for third sample of data sets166
Figure 4.65:	3 rd order polynomial trend line for forth sample of data sets167
Figure 4.66:	3 rd order polynomial trend line for fifth sample of data sets168
Figure 4.67:	Inferential coriolis program based on
	$y = 1 \times 10^{-5} x^3 - 0.0023 x^2 + 0.2592 x + 0.1053 \dots 170$

Figure 4.68:	Inferential coriolis program based on	
	$y = 1 \times 10^{-5} x^3 - 0.002 x^2 + 0.2629 x - 0.0144$	171
Figure 4.69:	Inferential coriolis program based on	
	$y = 1 \times 10^{-5} x^3 - 0.0024 x^2 + 0.2696 x - 0.1372$	172
Figure 4.70:	Inferential coriolis program based on	
	$y = 3 \times 10^{-5} x^3 - 0.0049 x^2 + 0.3746 x + 0.365$	173
Figure 4.71:	Inferential coriolis program based on	
	$y = 3 \times 10^{-5} x^3 - 0.0043 x^2 + 0.3419 x - 0.1131$	174
Figure 4.72:	Mass flowrate measurement for single bank refueling	175
Figure 4.73:	Mass flowrate measurement using three banks refueling	175
Figure 4.74:	Prototype for inferential coriolis	176
Figure 4.75:	Components for inferential coriolis using FieldPoint	177
Figure 4.76:	Single line diagram for inferential coriolis using FieldPoint	178
Figure 5.1:	P&ID diagram to validate inferential coriolis with	
	Micro Motion flowmeter and load cell	181
Figure 5.2:	Initial receiver pressure 0 psig (single flow)	183
Figure 5.3:	Initial receiver pressure 100 psig (single flow)	184
Figure 5.4:	Initial receiver pressure 500 psig (single flow)	185
Figure 5.5:	Initial receiver pressure 1000 psig (single flow)	186
Figure 5.6:	Initial receiver pressure 1500 psig (single flow)	187
Figure 5.7:	Initial receiver pressure 2000 psig (single flow)	188
Figure 5.8:	Initial receiver pressure 0 psig (continuous flow)	189
Figure 5.9:	Initial receiver pressure 100 psig (continuous flow)	190
Figure 5.10:	Initial receiver pressure 500 psig (continuous flow)	191
Figure 5.11:	Initial receiver pressure 1000 psig (continuous flow)	192
Figure 5.12:	Initial receiver pressure 1500 psig (continuous flow)	193
Figure 5.13:	Initial receiver pressure 2000 psig (continuous flow)	194
Figure 5.14:	Initial source pressure 2000-3000-3600 psig and	
	receiver pressure 20 psig	195

Figure 5.15:	Initial source pressure 1000-2000-3000 psig and	
	receiver pressure 20 psig	196
Figure 5.16:	Initial source pressure 290-1450-3600 psig and	
	receiver pressure 20 psig	197
Figure 5.17:	Initial source pressure 3300-3300-3300 psig,	
	receiver pressure 20 psig, 7 times of switching	. 198
Figure 5.18:	Initial source pressure 3300-3300-3300 psig,	
	receiver pressure 20 psig, 22 times of switching	. 199
Figure 5.19:	Variation of percentage error for	
	single pressure flow experiment	. 201
Figure 5.20:	Variation of percentage error for	
	continuous pressure flow experiment	. 203
Figure 5.21:	Variation of percentage error for	
	multi pressure flow experiment with disturbances	. 205
Figure 6.1	Advanced NGV Dispenser (AND)	. 210
Figure A:	Visual Basic program to remove outlier in sample data	. 237
Figure B:	Certificate of calibration for load cell	

LIST of ABBREVIATIONS

Words	Abbreviation
Universiti Teknologi PETRONAS	UTP
Compressed Natural Gas	CNG
Pressure-Volume-Temperature	PVT
International Association for Natural Gas Vehicles	IANGV
European Natural Gas Vehicle Association	ENGVA
Asia Pacific Natural Gas Vehicles Association	ANGVA
System Identification	SYSID
Matrix Laboratory	MATLAB
Laboratory Virtual Instrumentation Engineering Workbench	LABVIEW
Coriolis Mass Flowrate	CMF
General Linear	GL
Autoregressive Exogeneous Input	ARX
Autoregressive Moving Average with Exogeneous Input	ARMAX
Output-Error	OE
Box-Jenkins	BJ
Numerical Algorithm for Subspace State-Space	N4SID
Akaike's Information Criterion	AIC
Final Prediction Error Criterion	FPE
Minimum Data Length Criterion	MDL
Least Mean Square	LMS
Normalized Least Mean Square	NLMS
Recursive Least Squares	RLS
Kalman Filter	KF
Time Optimal Control	TOC
Advance Natural Gas Dispenser	AND

NOMENCLATURES

v	:	Velocity, ms ⁻¹
М	:	Moment
F	:	Force, N
Ø	:	Angular velocity, ms ⁻¹
<i>S</i> ₁ , <i>S</i> ₂	:	Time delay, s
f	:	frequency, Hz
т	:	Mass, kg
$\frac{-}{v}$:	Average velocity, ms ⁻¹
L	:	Distance, m
а	:	Acceleration, ms ⁻²
r	:	Radius, m
ρ	:	Density, kg.m ⁻³
A	:	Area, m ²
L	:	Length, m
τ	:	Time, s
W	:	Mass flowrate, kg.s ⁻¹
Т	:	Torque, N.m
V	:	Velocity, m ³
ϕ	:	Angular deflection

θ	:	Sets of model parameters
K	:	Elastic modulus
Т	:	Period, s
u	:	Input
У	:	Output
v	:	Disturbance
е	:	Zero mean white noise
λ^2	:	Variances
$G(q^{-1}, \theta)$:	Deterministic part
$H(q^{-1},\theta)$:	Stochastic part
q^{-1}	:	Backward shift operator
q^{-k}	:	Number of delay samples
n_a, n_b, n_c, n_d, n_f	:	Model orders
x(n)	:	State vector
Ν	:	Number of data points
р	:	Number of parameters in the model
$V_n(\hat{\theta})$:	Index of prediction error
$\varepsilon(k)$:	Residual or prediction error
$\hat{y}(k)$:	Model output
α	:	Step size
$f(\theta^{(i)})$:	Search direction
$\psi(t,\theta)$:	Gradient vector
ζ	:	Instruments variables

$\vec{w}(n)$:	Parametric vector
$\vec{\varphi}(n)$:	Data vector
$\hat{y}(n)$:	Predicted response
J(n)	:	Cost Function
$\vec{K}(n)$:	Gain vector
λ	:	Forgetting factor
#	:	Pseudo inverse
р	:	Past horizon
f	:	Future horizon
Γ_f	:	Extended system observability matrix
X	:	Kalman state
Z_m	:	Zeroes
P_n	:	Poles
k	:	Gain
Т	:	Transposed variables