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CHAPTER 3 

SYSTEM IDENTIFICATION THEORY 
 
This chapter discusses on the theoretical development of System Identification (SYSID) 

for coriolis mass flowrate (CMF) transfer function algorithm. The important point is to 

describe the mathematical theory of SYSID: the parametric structure, the statistical order, 

and the parameter estimation method, and to verify and validate the model behavior. The 

SYSID theories described and discussed here has been selected from a large number of 

sources but is not meant to provide a comprehensive review. 

 
3.1 Introduction 

Implementation of SYSID to develop an inferential coriolis is about using experimental 

data to obtain mathematical model of a coriolis dynamic system. A dynamic system for 

coriolis is shown in Figure 3.1. From input,  and output,  sequences obtained 

from the experiment, a model of how the dynamic system behaves could be figured out. 

However, there will always be some uncertainty due to noise on the signals and 

disturbances acting on the system, . A system is dynamic, when the output of the 

system at a certain time is dependent in some way on the input given at a previous time.  
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Figure 3.1: A dynamic system for coriolis [28] 

 
A system is defined as a collection of connected components that produce observable 

signals which would be useless if the signals were not observable. The system would 

interact with environment through inputs, outputs and disturbances present in the system 

and the environment [28]. 
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3.2 System Identification (SYSID) 

An equivalent description of any given system could be presented in a model. The main 

reason for using models if compared to an actual system lies in the fact that a model is 

just a description of a system and not a system itself. Whereas a system might be 

complex, expensive or inaccessible; a corresponding model could be developed simpler 

using typical approximation technique that is less expensive compares to experimental 

work and much more mobile [28].  

 

A model could be constructed in three ways: intuitive or verbal, graphs or tables and 

mathematical form. Applications solved by fuzzy logic and neural network are example 

of intuitive or verbal model, applications solved by bode plots and step responses are 

example of graphs and tables model, whilst applications solved by differential 

(continuous) and difference (discrete) equations are example of mathematical model. 

However, mathematical models are found to have exact advantages compared to others 

due to some reasons to be discussed in the following section [28]. 

 
If a system is unavailable, mathematical model could be used to optimize such system 

without requiring the presence of physical system. Different parameters and approaches 

could be tried on the model which makes it much more flexible than a real system. The 

time to scale up or down could also be changed depending on needs for time savings or 

time domain specification, or even to access some immeasurable quantities which might 

be unavailable in a real system. Furthermore, mathematical model also is safer than any 

hazardous system which would be possible to make training scenarios for operators under 

extreme conditions without taking any risks [28].  

 

Mathematical models could be described in three forms: transfer function, state-space and 

block diagram which could be presented in two kinds of notations: continuous time 

domain and discrete time domain using Laplace transform and z-transform, respectively. 

These notations could be solved by two methods: physical modeling and experimental 

modeling which is also known as SYSID [28].  
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Physical modeling is a modeling which uses fundamental principles such as physical laws 

and relevant facts to be understood which is divided into linear and nonlinear. Whilst, 

SYSID is a modeling which uses experimental work to deduce system, therefore it 

requires prototype or real system. SYSID could be divided into nonparametric and 

parametric estimation methods: nonparametric is an estimation method based on step, 

impulse and frequency response to estimate right graphical fit of a generic model, whilst 

parametric is an estimation method based on user-specified models to estimate transfer 

functions and state-space matrices [28].  

 
From quantitative research, there are five well-known user-specified models and one 

state-space approach available to identify unknown transfer function system i.e., General-

Linear (GL), Autoregressive Exogeneous Input (ARX), Autoregressive Moving Average 

with Exogeneous Input (ARMAX), Output-Error (OE), Box-Jenkins (BJ) and state-space 

known as N4SID (Numerical Algorithm for Subspace State-Space). Since, numerous 

engineering problems have been successfully identified based on these models; the 

research would implement these models for designing the coriolis mass flowrate (CMF) 

transfer function. Notably, autoregressive in ARX and ARMAX means, previous 

instances of output affects current output. The classification of several reviewed 

literatures based on these SYSID parametric models are summarized in Table 3.1.  
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Table 3.1: Classification of the reviewed literature for SYSID parametric models 
Classification References 
 
 
General Linear 
(GL) 

Ichihashi et al [43],  Hsieh and Rayner [44], Scott et al. [45], Bobet et al. [46],  Yingli et al. [47], 
Pladdy et al. [48], Haifley [49], Huaien and Puthusserypady [50], Penny and Friston [51], 
Calhoun and Adali [52], Rong et al. [53], Tarnoff and Midkiff [54], Jiang et al. [55], Cunjun et 
al. [56], Milosavljevic et al. [57], Berns et al. [58], Manimohan and Fitzgerald [59], Rong and 
Herskovitz [60], Campi and Weyer [61], Xue et al. [62], Penney et al. [63], Zhang et al. [64], 
Shen et al. [65], Young and Jachim [66], Perttunen [67], Beckmann and Smith [68], Kect et al 
[69], Ljung [70], den Dekker et al [71], Soyer [72], Dodd and Haris [73], Kim [74], Gonzalves et 
al [75] 

 
 
 
Autoregressive 
(ARX) 

Peng et al. [76], Garba et al. [77], Kosut and Anderson [78], Tian et al. [79], Ohata et al. [80], 
Suzuki et al. [81], Monden et al. [82], Hashambhoy and Vidal [83], Sekizawa et al. [84], Frosini 
and Petrecca [85], Huaiyu et al. [86], Wei et al. [87], Nounou [88], Gehalot et al. [89], Hori et al. 
[90], Chen and Lai [91], Mosca and Zappa [92], Isaksson [93], Soderstrom et al. [94], Jankumas 
[95], Kwan and Huy [96], Rivera and Jun [97], Derbel [98], de Waele and Broersen [99], 
Hadjiloucas et al [100], Espinoza et al [101], Larsson et al [102], Elkfafi et al [103], Shah et al 
[104], Ling and Zhizhong [105], Kiryu et al [106], Suzuki and Watanabe [107], Rahiman et al 
[108], Moojun et al [109], Radic-Weissenfeld et al [110], Fukata et al [111], Su et al [112], 
Mossberg [113], Nasiri et al [114], Tanaka et al [115], Iwase et al [116], Yucai [117], van 
Ditzhuijzen et al [118], Vidal et al [119], Ozsoy  et al [120] 

 
 
Autoregressive 
Moving  
Average 
(ARMAX) 
 
 

Haseyama et al. [121], Jinglu and Kumamaru [122], Landau and Karimi [123], Fung and Leung 
[124], Sakellariou and Fassois [125], Hong-Tzer et al. [126], Kyungno and Doo [127], Wang 
[128], Bore-Kuen and Bor-Sen [129], Chao-Ming et al. [130], Artemiadis and Kyriakopoulos 
[131], Song et al. [132], Hamerlain [133], Funaki et al. [134], Hong-Tzer and Chao-Ming [135], 
Guo and Huang [136], Haseyama and Kitajima [137], Bor-Sen et al. [138], Michaud et al. [139], 
Inoue et al. [140], Waller et al. [141], Jinglu et al. [142], Musto and Lauderbaugh [143], 
Timmons et al. [144], Grimble and Carr [145], Nassiri-Toussi and Ren [146], Irwin et al [147], 
Wang et al [148], Krolikowski et al [149], Duckgee et al [150], Chih-Lyang [151], Ghazy and 
Amin [152], Mrad et al [153], Bercu [154] 

 
 
Output Error 
(OE) 

Kabaila [155], Er-Wei and Yinyu [156], Kenney and Rohrs [157], Thomopoulos and Papadakis 
[158], Velez-Reyes and Ramos-Torres et al. [159], Dai and Sinha [160], Douma and Van den 
[161], Gustafsson and Schoukens [162], Jacobson et al. [163], Bhargava and Kashyap [164], 
Vogt et al. [165], Wigren and Nordsjo [166], Monin [167], Kyungno and Doo Yong [168], 
Mbarek et al. [169], Sheta and Abel-Wahab [170], Huang [171], Klauw et al. [172], Knyazkin et 
al. [173], Porat and Friedlander [174], Matko et al. [175], Doroslovacki and Fan [176], Oku et al. 
[177], Bouchard et al. [178], Sang Yoon and Nam Ik [179], Simon and Peceli [180], Piche [181], 
Roy et al [182], Wong [183], Ren and Kumar [184], Regalia [185], Baik and Mathews [186], 
Garnett et al [187], Duong and Landau [188] 

 
 
Box Jenkins 
(BJ) 

Chih-Chou and Chao-Ton [189], Smaoui et al. [190], Gersch and Brotherton [191], Tang et al. 
[192], Yu [193], Xinyao et al. [194], Triolo et al. [195], Forssell and Ljung [196], Vu et al. 
[197], Gao and Ovaska [198], Chang and Tsai [199], Yu and Chen [200], Bombois et al. [201], 
Amjady [202], Choueiki et al. [203], Ku-Long et al. [204], Matthews et al. [205], Chowdhury 
and Rahman [206], Abonyi et al. [207], Leski [208], Ninness and Hjalmarsson [209], Hughes 
[210], Vu et al. [211], Dimirovski and Andreeski [212], Dinda et al [213], Wu et al [214], 
Deacha [215], Bara [216], Yang et al [217], Teixeira and Zaverucha [218], Jiang et al [219], Gao 
et al [220], Jurado et al [221] 

 
 
State-Space 
(N4SID) 

Goethals et al. [222], Shiguo et al. [223], Qidwai and Bettayeb [224], Juricek et al. [225], Di 
Loreto et al [226], Ning Zhou et al. [227], Xiaorong et al. [228], Shi and MacGregor [229], Sima 
and Van Huffel [230], Fischer and Medvedev [231], Flint and Vaccaro [232], Jingbo et al. [233], 
Lieftucht et al. [234], Nitta [235], Lopes dos Santos et al. [236], Gustafsson [237], Chiuso and 
Picci [238], Munevar et al. [239], Trudnowski et al [240], Xianwei Zhou et al [241] 
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The articles reported in Table 3.1 have been on engineering applications such as solution 

for control system, communication, prediction and instrumentation applications. 

Generally, GL has been developed in fuzzy system, rehabilitation engineering and 

biomedical engineering. In brief, ARX has been used in intelligent transportation, 

ferroelectric control and electromagnetic compatibility, ARMAX on the other hand, has 

been implemented mainly in circuit design, automatic control and nuclear science. 

Interestingly, OE has been applied in signal processing, electrical machine and 

cybernetics, while BJ has been employed in artificial intelligence, neural network and 

adaptive process. Moreover, N4SID has been tested in nuclear science, computer aided 

design and nanotechnology. The SYSID algorithm adopted in this work have similarity to 

the methods of solving engineering problems as summarized in Table 3.1, and in fact 

would go further to investigate in detail the gray-box model of a coriolis flowmeter. The 

aim would be to implement the algorithm on a real natural gas measuring operation. 

Analyzing the requirement of implementing on a test rig, the algorithm would be 

embedded into a typical controller with an easy real-time interfacing.    

    
3.3 SYSID parametric models 

The following section describes the underlying structures about SYSID parametric 

models, different parametric model representations, reasons for choosing one 

representation over another, and how to validate the estimated models for coriolis. A 

coriolis system could be described using the following model [26], [27], [29], [30] and 

[31]. 

 
           (3.1) )(),()(),()( 11 neqHnuqGqny k θθ −−− +=
 
 
Where    and    are the input and output of the system respectively, whilst  

is zero-mean white noise or the disturbance to the system. White noise is a sequence of 

independent and identically distributed random variables of zero mean and variance,  .  

  is the transfer function of the deterministic part of the system, whilst 

  is the transfer function of the stochastic part of the system, respectively [30].  

)(nu )(ny )(ne

2λ

),( 1 θ−qG

),( 1 θ−qH



 
 
CHAPTER 3       SYSTEM IDENTIFICATION THEORY                      46 

  

 
The deterministic transfer function specifies the relationship between the output and the 

input signal, while the stochastic transfer function specifies how the output is affected by 

the disturbance. Some literatures refer to the deterministic and stochastic parts as system 

dynamics and stochastic dynamics, respectively. The term  is the backward shift 

operator, which is defined by the following equation.  

1−q

  
                         (3.2) )1()(1 −=− nxnxq
 

kq−   defines the number of delay samples between the input and the output.   

and  are rational polynomials as defined by the following equations.  

),( 1 θ−qG

),( 1 θ−qH
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θ

θ
qDqA

qCqH =−        (3.4) 

 
The vector θ  is the set of model parameters. Equations in the following sections will not 

display θ  to make the equations simpler and easier to read. The following equations 

define and : )(),(),(),( qDqCqBqA )(qF
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Where and are the model orders.  dcba nnnn ,,, fn
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3.3.1 General Linear (GL) model 

Figure 3.2 depicts the signal flow of a general linear model. 
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Figure 3.2: Signal Flow of GL Model [30] 

 
A general-linear model would provide flexibility for both the system dynamics and 

stochastic dynamics. However, a nonlinear optimization method is required to compute 

the estimation of the general-linear model. The model requires intensive computation 

with no guarantee of global convergence. By setting one or more of    

and    equal to 1, a simpler model such as ARX, ARMAX, OE and BJ model could 

be developed [30]. 

)(),(),( qDqCqA

)(qF

 
3.3.2 Autoregressive with Exogeneous Input (ARX) model 

When  and  equal to 1, the general linear polynomial model transforms 

to an ARX model. The following equation describes an ARX model.  

)(),( qDqC )(qF

 
              (3.10) )()()()()()()()( neknuqBnenuqBqnyqA k +−=+= −

 
Figure 3.3 depicts the signal flow of an ARX model. 
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Figure 3.3: Signal Flow of ARX Model [26], [27], [28], [30] 
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ARX model is the simplest model that incorporates stimulus (input signal). The 

estimation for ARX model is the most efficient of the polynomial estimation methods 

because it is the result of solving linear regression equations based on analytical form. 

The solution estimated by ARX also is unique because the solution would always satisfy 

the global minimum of the loss function. The model is highly preferable, when the higher 

model order is needed [30].  

 
However, the disadvantage of the ARX model is that disturbances are part of the system 

dynamics i.e., the transfer function of the deterministic part,    and the transfer 

function of the stochastic part,     have the same set of poles. The coupling 

would be unrealistic because the system dynamics and stochastic dynamics of the system 

do not share the same set of poles at all time. The disadvantage could be reduced if a 

signal-to-noise ratio is used. When the disturbance    of the system is not white 

noise, the coupling between the deterministic and stochastic dynamics would tend to bias 

the estimation of the ARX model [30].  

),( 1 θ−qG

),( 1 θ−qH

)(ne

 
The suitable mathematical method to identify ARX model is the least squares (LS) 

method i.e., a special case of the prediction error method (PEM). This is achieved by 

setting the model order higher than the actual model order to ensure the equation error is 

minimized, especially when lower signal-to-noise ratio is required. However, if the model 

order is increased, some dynamic characteristics of the model must be changed, such as 

the stability of the model [30].  

 
3.3.3 Autoregressive Moving Average with Exogeneous Input (ARMAX) model 

When    and    equal to 1, the general linear polynomial model transforms to 

an ARMAX model. The following equation describes an ARMAX model. 

)(qD )(qF

 
          (3.11) )()()()()()()()()()( neqCknuqBneqCnuqBqnyqA k +−=+= −

 
In the following section, Figure 3.4 depicts the signal flow of an ARMAX model. 
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Figure 3.4: Signal Flow of ARMAX Model [26], [27], [28], [30] 

 

Unlike the ARX model, the system structure of an ARMAX model includes disturbances 

dynamics. ARMAX models are useful when the dominating disturbances enter earlier in 

a process, such as at the input. For example, a wind gust affecting an aircraft is a 

dominating disturbance early in the process. The ARMAX model also has more 

flexibility in the handling of disturbance modeling than the ARX model. The suitable 

mathematical method to identify ARMAX structure is by using prediction error method, 

which is similar with ARX structure. However, the problem could not be solved in an 

analytical form; it must be solved using a computer program [30].  

 

By developing a program, an accurate estimation could be done to search for the optimal 

ARMAX model based on Newton-Gauss implementation. The searching algorithm is an 

iterative procedure, which is sometimes inefficient and can get stuck at a local minimum, 

especially when the signal-to-noise ratio is low. Therefore, further validation method is 

needed to verify whether Newton-Gauss method could achieve required quality or 

estimation stuck at a local minimum. If the estimation is stuck at a local minimum, a new 

model structure need to be selected or new model order need to be increased [30]. 
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3.3.4 Output Error (OE) model 

When    and     equal 1, the general-linear polynomial model transforms 

to an output-error model. The following equation describes an output-error model. 

)(),( qCqA )(qD
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               (3.12) 

 

Figure 3.5 depict the signal flow of the output-error model. 
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Figure 3.5: Signal Flow of OE Model [26], [27], [28], [30] 

 

The output-error model describes the system dynamics separately and does not use any 

parameters for modeling the disturbance characteristics. The suitable mathematical 

method to identify output-error model is also the prediction error method, which is 

similar to ARX and ARMAX model. However, the input signal    must be white 

noise to ensure all minima are global. There is no local minimum but a local minimum 

could exist if the input signal is not white [30].  

)(nu

 
3.3.5 Box Jenkins (BJ) model 

When    equals 1 the general-linear polynomial model transforms to a Box-Jenkins 

model. The following equation describes a Box-Jenkins model. 
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In the following section, Figure 3.6 depicts the signal flow of the Box-Jenkins model. 
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Figure 3.6: Signal Flow of BJ Model [26], [27], [28], [30] 

 

The Box-Jenkins model provides a complete model of a system. It models disturbance 

properties separately from system dynamics, which is useful when disturbances enter late 

in the process. The suitable mathematical method to identify Box-Jenkins model is also 

the prediction error method i.e., similar to the ARX, ARMAX and OE models [30].  

 
3.3.6 State-space (SS) model 

In addition to parametric models, the research also determines coriolis using state-space 

model based on N4SID algorithm. The following describes a state-space model equation. 

 

    )()()()1( nKenBunAxnx ++=+                            (3.14) 

        )()()()( nenDunCxny ++=                 (3.15) 

 

Where    is the state vector, whilst     and  )(nx DCBA ,,, K   are the system matrices. The 

dimension of the state vector   is the only setting that needs to be provided for the 

state-space model. The state-space model describes a system based on difference 

equations with an auxiliary state vector,   which the matrices often reflect physical 

characteristics of a system. Hence, the state-space models are often preferable to 

polynomial models, especially in modern control applications. In general, the state-space 

model provides a more complete representation of the system than polynomial models 

because state-space models are similar to first principle models [30]. 

)(nx

)(nx
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The previous section has described SYSID parametric models that could be used to 

estimate coriolis mass flowrate (CMF) transfer function. The following section discusses 

transformation of the models into linear difference equations with certain order. 

 

3.4 Statistical theory of model order 

The selection of model order is a step to limit the number of model orders i.e., 

 and  for parametric models. From prediction error standpoint, the higher 

the order of the model is, the better the model fits the data because the model has more 

degrees of freedom [30].  

dcba nnnn ,,, fn

 
Higher order models also require more computation time and memory. Therefore, 

underestimating the system orders will result in a biased model, whilst overestimating the 

orders will result in high model variance. In this research, model order is chosen based on 

“PARSIMONY” theory.  

 
Parsimony theory is a statistical rule that states, if there are two identifiable model 

structures that fit certain data, the simpler one i.e., the structure containing the smaller 

number of parameters will give better accuracy on average. Therefore, if the model has 

fitted the data well and passed verification test, the theory advocates choosing the model 

with the smallest degree of freedom or number of parameters. The criteria to assess the 

model order therefore not only must rely on prediction error but also must incorporate a 

penalty when the order increases [30].  

 
To determine optimal model order, the prediction error results must be plotted as a 

function of model dimension, which, the minimum point from that function would 

determine value of optimal model order. There are three well-known criterions available 

for determining model order: Akaike’s Information Criterion (AIC), Akaike’s Final 

Prediction Error Criterion (FPE), and Minimum Data Length Criterion (MDL). The 

following section discusses each criterion respectively [26], [27], [28], [30], [31]. 
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3.4.1 Akaike’s Information Criterion (AIC)  

The Akaike’s Information Criterion (AIC) is a weighted estimation error based on the 

unexplained variation of the actual data with a penalty term when exceeding the optimal 

number of parameters to represent the system [30]. An optimal model is the one that 

minimizes the following equation 

          (3.16) pVNAIC n 2))ˆ(log( += θ
 
3.4.2 Akaike’s Final Prediction Error Criterion (FPE) 

Akaike’s Final Prediction Error Criterion (FPE) estimates the prediction error when the 

model is used to predict new outputs [30]. The following equation defines the FPE 

criterion. 
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3.4.3 Minimum Data Length Criterion (MDL) 

The Minimum Data Length Criterion (MDL) is based on    plus a penalty for the 

number of terms used [30]. The following equation defines the MDL criterion. 

nV

 

    
N

NpVMDL n
ln

+=        (3.18) 

 
For all criterions,  is the number of data points, N p  is the number of parameters in the 

model, and   is an index related to the prediction error or residual sum of squares )ˆ(θnV

           (3.19) ∑
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=
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k
n kV
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where )(kε  is the residual or deviation of data between actual and model output,   

and  , respectively 

)(ky

)(ˆ ky

    )(ˆ)()( kykyk −=ε        (3.20) 
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The previous section has discussed statistical theory that could be used to determine 

optimal order. The following section discusses mathematical algorithms to estimate 

coefficients in each SYSID parametric model.  

 

3.5 Mathematical algorithm for coefficients of parametric models 

When it comes to estimating coefficients, there are different approaches and algorithms 

used for GL, ARX, ARMAX, OE and BJ. In this research, the parametric models would 

be investigated based on three approaches i.e., non-recursive (off-line method), recursive 

(on-line method) and state-space [28]. However, the main attempt for all methods is to 

minimize the error of predicted output in relation to the actual output. The following 

section describes the first approach i.e., the non-recursive algorithm.  

 

3.5.1 Non-recursive model 

Non-recursive model is an estimation that identifies coriolis system based on input-output 

data gathered at a time prior to the current time. The following algorithm derives non-

recursive model for GL model. 

  

3.5.1.1 Non-recursive algorithm for GL model 

The following algorithm is for GL single input and single output model which is 

described as [31]. 
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k   is the delay of the system. The purpose is to estimate the coefficients  , 

[ ], [ ], [ ]  and  [ ] based on the 

input-output data of a coriolis.  

],,,[ 21 aNaaa …

110 ,,, −bNbbb …
fNfff ,,, 21 … cNccc ,,, 21 … dNddd …,, 21

 

The multi-stage method is applied to have a coarse estimation for  

and , and then the Gauss-Newton minimization method is applied to refine the 

results of   and . Here is the deduction based on multi-stage 

coarse estimation specific for GL model.  
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Then equation (3.21) becomes  

 
)()()()()()( nknuqBnyqFqA ε−−=                 (3.23)      

 
Instrumental variable (IV) method is applied to estimate    and  .  )(qB )()( qFqA

 

Let  )(
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)()( ne

qD
qCn =ε ,   then equation (3.21) becomes 

 

      )()(
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qF
qBnyqA ε+−=                 (3.24) 

 
Equation (3.24) is approximated as an ARX model, whose B order is high, calculated 

using . Then, by applying instrumental variable method, the  

is calculated. Since  and  is known, 

)( dcfb NNNN +++ )(qA

)()( qFqA )(qA ))(/)()(()( qAqFqAqF =  could be 

calculated. So far, only  ,   and   is known.  )(qA )(qB )(qF
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By substituting them into equation (3.21), the following equation is derived 
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qF
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Here, as elsewhere,  denotes the estimation of  . If f̂ f 0=cN , equation (3.24) can be 

rewritten as  

)()(ˆ)( nenvqD =                    (3.26)     

 

which can be treated as an AR model. With AR model estimation, then   is 

estimated. If  , equation (3.25)  is rewritten as  

)(qD

0≠cN
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=                      (3.27) 

 
Then a high order AR model is applied to estimate  . Since   and   are 

known, equation (3.27) can be rewritten as  

)(ˆ ne )(ˆ nv )(ˆ ne

 
    )()(ˆ)1)(()(ˆ)( neneqCnvqD +−=                 (3.28) 

 
which is a form of ARX model. Then  and  can be estimated by using ARX 

model estimation method with   and   as output and input respectively. This 

section has discussed non-recursive model for GL. The following section would discuss 

non-recursive model for ARX. 
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3.5.1.2 Non-recursive algorithm for ARX model  

The following algorithm is for ARX single input and single output model which is 

described as [31]. 

 

    ()()()()( neknuqBnyqA −−=                 (3.29) 

where  ,  ,    and   are the input, output, 

and disturbance of a system respectively. The purpose is to estimate the coefficients 

 and [  based on the input-output data from coriolis.  
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Suppose the coriolis model is assumed to be higher order of difference equation models, 

then 
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The equation could be rewritten by moving all terms except the most future term i.e., 

 of the left hand side of the equation to the right hand side. Then, by representing 

in matrix notations, the following equation is established. 
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By writing down the equation for every Nk ,,2,1 …= , a series of equation is derived 
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The problem is derived as  ϕθ=y , which θ  could be determined using regression 

formula [26].  
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Equation (3.30) could be rewritten as the solution of the linear equations: 
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The previous section has discussed non-recursive model for ARX. The following section 

would discuss non-recursive model for ARMAX. 

 

3.5.1.3 Non-recursive algorithm for ARMAX model 

The following algorithm is for ARMAX single input and single output model which is 

described as [31]. 

 
   ()()()()()( neqCknuqBnyqA −−=                   (3.32) 

 

where      and  are 

the input, output and disturbance of a system respectively.  
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The purpose is to estimate the coefficients  , [  and 

 based on the input-output data of coriolis system. The multi-stage method 

is applied to have a coarse estimation for    and  , and then the Gauss-

Newton minimization method is applied to refine the results of  and  . 

Here is the deduction based on multi-stage coarse estimation specific for ARMAX model.  

],,[ 21 aNaaa … ],,, 110 −bNbbb …
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Let 

)()()( teqCtv =                  (3.33)      

 
Then equation (3.32) becomes 
 

)()()()()( tvktuqBtyqA +−=                 (3.34)     

 
Since  here is not white Gaussian noise, the instrumental variable (IV) method is 

applied to estimate  and  . The following equation is derived 

)(tv

)(qA )(qB

 
                   (3.35) )()()()(ˆ)()(ˆ)(ˆ teqCktuqBtyqAtv =−−=
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Equation (3.35) can be rewritten as  

 

     )()(ˆ
)(

1 tetv
qC

=                  (3.36) 

 
which can be treated as high order AR model. (Theoretically, it is an infinite order AR 

model. Practically, the dimension of the system cba NNN ++  is selected). With the AR 

model estimation,  can be estimated. Since the  and   are known, equation 

(3.35) can be rewritten as  

)(te )(ˆ tv )(ˆ te

 
    )()(ˆ)1)(()(ˆ teteqCtv +−=                             (3.37) 

 
which is a form of ARX model. Then,  can be estimated by using ARX model 

estimation with   and   as output and input respectively. This section has 

discussed non-recursive model for ARMAX. The following section would discuss non-

recursive model for OE. 

)(qC
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3.5.1.4 Non-recursive algorithm for OE model 

The following algorithm is for OE single input and single output model which is 

described as [31].  
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where,  and   are the input, output, 

and disturbance of a system respectively.  
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The purpose is to estimate the coefficients  and   based 

on the input-output data of coriolis system.  
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The multi-stage method is applied to have a coarse estimation for  and  , and 

then the Gauss-Newton minimization method is applied to refine the results of   and  

. Here is the deduction based on multi-stage coarse estimation specific for OE 

model. 

)(qB )(qF

)(qB

)(qF

 
Let  
 
     ()()( teqFtv =                  (3.39) 

 
Then equation (3.38) becomes  

 
)()()()()( tvktuqBtyqF +−=                 (3.40)     

 
It is obvious that equation (3.40) is in the form of ARX model. Therefore, instrumental 

variable method can be applied to estimate  and  . This section has discussed 

non-recursive model for OE. The following section would discuss non-recursive model 

for BJ. 

)(qF )(qB

 
3.5.1.5 Non-recursive algorithm for BJ model 

The following algorithm is for BJ single input and single output model which is described 

as [31]. 
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The purpose is to estimate the coefficients   

and    based on the input-output data of coriolis system. The multi-stage 

method is applied to have a coarse estimation for  and    and  the 

Gauss-Newton minimization method is applied to refine the results of   

and  . The following section is the deduction based on multi-stage coarse estimation 

specific for BJ model. 
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Let 

     )(
)(
)()()( ne

qD
qCqFn =ε                 (3.42) 

Then equation (3.41) becomes  

 
    )()()()()( nknuqBnyqF ε−−=                 (3.43) 

 

Instrumental variable method is applied to estimate   and    and have  )(qB )(qF
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Here,   denotes the estimation of  . If  f̂ f 0=cN , equation (3.44) can be rewritten as  

 
     )()(ˆ)( nenvqD =                  (3.45) 

 

which can be treated as an AR model. With the AR model estimation, the  can be 

estimated. If  , equation (3.44) can be rewritten as  
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Then, a high order AR model is applied to estimate .  Since the    and  are 

known, equation (3.46) can be rewritten as  

)(ˆ ne )(ˆ nv )(ˆ ne

 

)()(ˆ)1)(()(ˆ)( neneqCnvqD +−=                 (3.47)     

 
which is a form of ARX model. Then  and  can be estimated by using ARX 

model estimation method with     and     as output and input respectively.  
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The previous sections have discussed the non-recursive algorithm for coriolis model 

based on parametric structure i.e., GL, ARX, ARMAX, OE and BJ. The following 

section would discuss estimation based on AR model. 

 

3.5.1.6 AR Estimation Method 

The AR estimation method will be used to refine the estimation of GL, ARMAX and BJ 

model. The AR model i.e., also known as Auto-Regression model is defined as 

 

     ()()( nenyqA =                  (3.48) 

Where  ,   is white noise, and    is the signal.  is the 

backward shift operator, which means  
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The purpose is to estimate  given the signal   so that equation (3.48) holds.  )(qA )(ty

 

There are five algorithms that could be used to estimate  i.e., Least-Square (LS), 

Forward-Backward (FB), Yule-Walker (YL), Principle Component Analysis (PC) and 

Burg method [31]. Notably, this research would only use FB algorithm for refining final 

estimation of GL, ARMAX and BJ model. 
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AR coefficients can be estimated by solving the linear equations 
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This section has discussed the AR estimation method using Forward-Backward algorithm 

for estimating parametric structure i.e., GL, ARMAX and BJ. The following section 

would discuss the Gauss-Newton Minimization method. 

 

3.5.1.7 Gauss-Newton Minimization Method 

The Gauss-Newton minimization will be used to refine the estimation of ARMAX, OE, 

BJ and GL model estimation [31].  

 

The purpose of the polynomial model estimation i.e., ARMAX, OE, BJ, and GL model is 

to identify the polynomial coefficients   and   based on the 

input-output data of the coriolis system.  
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For convenience, all the coefficients to be estimated are combined together as a vector, 

i.e., θ .  Normally, a coarse estimation is calculated for θ ,  using a multi-stage method.  

 

And then, the following iteration is applied to refine  θ .  
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where  α   is the step size and   is the search direction.  )( )(if θ

 

The purpose of the iteration is to minimize  
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where  ),( θε t  is the prediction error  ),(),(ˆ θθ tyty − ,  i.e., the difference between the 

measured output and predicted output of the system. So, the problem is how to select and 

compute search direction for different polynomial model [31]. The Gauss-Newton 

minimization defines the search direction  )(θf . 
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),( θψ t   is the gradient vector of θ   and T   denotes matrix transposition. The 

computation of  ),( θψ t  will be discussed later. By inserting equation (3.53) and (3.54) to 

(3.52), it yields 
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So  )(θf   can be evaluated by solving the linear equations: 
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Gradient of ARMAX model [31]  
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Gradient of OE model [31] 
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Gradient of BJ model [31] 
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Gradient of GL model [31] 
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This section has discussed the Gauss-Newton Minimization method used for parametric 

structure i.e., GL, ARMAX, OE and BJ. The following section would discuss the 

Instrumental Variable Method. 
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3.5.1.8 Instrumental-Variable Method 

The Instrumental-Variable method will be used to identify ARX model in GL, ARMAX, 

OE, and BJ model estimation. The ARX model is given as [31].  

 
    )()()()()( neknuqBnyqA −−=  
 
If the noise   is uncorrelated to the regression variables,   and  ,  the 

coefficients of the model  and  can be estimated with least square regression 

method. However, if the noise is correlated to    and  , then the least square 

regression method does not work well. Therefore, the instrumental variable method 

described in this section could be used to solve this kind of least square problem. The 

instrumental variable method suggests the solution for the ARX model as 
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Where  ζ  contains the instruments variables. For the open loop case, the input sequence 

of the system, or its filtered version, is often a good choice of instrumental variables. One 

of the choices of instrumentals variables is  
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where   is generated from the input through a linear system )(tx
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In practical, the least square method is applied to estimate coefficients of ARX model. 

And then, the estimated  and   is used as  and   respectively, to 

have an instrumental variable estimation of the ARX model with equation (3.57).  
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The previous section has discussed non-recursive algorithm used for estimating 

coefficients of SYSID parametric models. The following section discusses the second 

approach i.e., recursive algorithm.  

 

3.5.2 Recursive model 

Figure 3.7 represents a general diagram for recursive system identification [30]. A 

recursive system identification application consists of actual coriolis system, that has an 

input signal i.e., stimulus signal   and an output signal i.e., response signal,  . )(nu )(ny

 

 
Figure 3.7: Diagram of recursive system identification [30] 

 

The input signal    is the input to both the coriolis system and the adaptive model 

[1]. The response of the system   and the predicted response of the adaptive model  

 are combined to determine the error of the system. The error of the system is 

defined by the following equation. 
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The adaptive model generates the predicted response  )1(ˆ +ny   based on    after 

adjusting the parametric vector  

)1( +nu

)(nwG  based on the error  . Figure 3.7 also shows 

how the error information   is sent back to the adaptive model, which adjusts the 

parametric vector  

)(ne

)(ne

)(nwG  to account for the error. The process is iterated until the 

magnitude of the least mean square is minimized.  

 

Coriolis 

Adaptive Model
)(ˆ ny

)(ny)(nu  
∑

)(ne  
+

_
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Before applying the recursive model estimation, the parametric model structure i.e., GL, 

ARX, ARMAX, OE and BJ that determines the parametric vector  )(nwG  need to be 

selected first [30]. Then, a recursive method is selected to automatically adjust the 

parametric vector such that the error ,   read the minimum.  )(ne

 

There are four types of adaptive algorithms that could be used in recursive model 

estimation: Least Mean Square (LMS), Normalized Least Mean Square (NLMS), 

Recursive Least Squares (RLS) and Kalman Filter (KF). However, only RLS algorithm is 

used in this research for adjusting the parametric vector )(nwG  to the minimum cost 

function.  

 

The following equation defines the cost function,  .  )(nJ

 
                      (3.63) )]([)( 2 neEnJ =

 

When the cost function   is sufficiently small, the parametric vector  )(nJ )(nwG  is 

considered optimal for the estimation of the coriolis.  

 

The modified cost function for RLS is given as [30] 

 

    ∑
−

=

−≅=
1

0

22 )(1)]([)(
N

i
ine

N
neEnJ                 (3.64) 

 
which is more robust compare to previous equation (3.63), because it includes previous  

  error terms.  N
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The parameter vector )(nwG  is initialized by using a small positive number ε as below 

 
                     (3.65) Tw ],,,[)0( εεε …G

=

 
Then, the data vector  )(nϕ

G
  is initialized.  

 
                     (3.66) T]0,,0,0[)0( …G

=ϕ

 

Next, the    matrix   is represented as below nn× )0(P

                     (3.67) 
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For  , the data vector  1=n )(nϕ

G
 is updated based on  )1( −nϕ

G
 and the current input data  

 and output data  The predicted response   is computed by using the 

following equation. 

)(nu ).(ny )(ˆ ny

    )()()(ˆ nwnny T GG
⋅= ϕ                    (3.68) 

 
Then, the error  is computed by solving the following equation )(ne

 
)(ˆ)()( nynyne −=                   (3.69)     

 

The gain vector  )(nK
G

 is updated, which is defined as equation below  

 

    
)()()(

)()()(
nnPn

nnPnK T ϕϕλ
ϕ

GG
GG

⋅⋅+

⋅
=                  (3.70) 
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The properties of system might vary with time, so the algorithm needs to be ensured that 

it tracks the variation. The forgetting factor,  λ  method could be introduced, which is an 

adjustable parameter to track the variations. The smaller the forgetting factor,  λ , the less 

previous information the algorithm would use. When a small forgetting factor is used, the 

adaptive model would be able to track time-varying systems that vary rapidly.  

 

The range of forgetting factor  λ  is between zero and one, typically 0.98 < λ  < 1.    

is a    matrix whose initial value is defined by    in equation (3.67). 

)(nP

nn× )0(P

 

Next, the parameter vector  )1( +nwG  is updated. 

 

Then, the  matrix is updated as )(nP

 
   )()()()()1( nPnnKnPnP T ⋅⋅−=+ ϕ

GG
                 (3.71) 

 

The iteration is stopped if the error compared to actual coriolis is small enough, or else, 

  is increased by  ,   and steps from equation (3.68)  to (3.71) is repeated.  n 1+= nn

 

This section has discussed the recursive estimation for parametric structure i.e., GL, 

ARX, ARMAX, OE and BJ for coriolis using an adaptive RLS algorithm. The following 

section would discuss the third approach i.e., state-space model using N4SID algorithm. 
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3.5.3 State-space model using N4SID algorithm 

The state-space model could be represented as [31]. 

 
    tttt KeBuAxx ++=�   

    tttt eDuCxy ++=                   (3.72) 

 
The state-space of N4SID is solved in three parts: 1) estimation of matrix    ,,,, DCBA

2) estimation of disturbance dynamics Kalman gain,  K  and 3) estimation of initial states  

,  based on the input and response data sequence    and  .  0X tu ty

 

The state-space model could be represented in linear regression form 
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And the parameters matrix could be solved using least squares criterion approach 
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Where # denotes the pseudo inverse [242].  

 
 
From the above equation, it shows that the system matrix could be estimated if the state 

sequence    is estimated. The following section explains the first part of N4SID i.e., 

the estimation of system matrix  . 

tX

,,,, DCBA
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3.5.3.1 Estimation of system matrix 

The system is estimated using past and future Hankel data matrices as defined below 

[31]. 
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Where  p  is the past horizon,  is the future horizon. By iterating the system equation, 

it is straightforward to get the extended model 

f

 
    ffffff EGUHXY ++Γ=           (3.76) 

 
Where   is the extended system observability matrix.  fΓ
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The Kalman state X  is unknown, but actually it could be calculated from past input and 

output data, as following 

               (3.78) [ ] pz
p

p
yu ZL

Y
U

LLX =⎥
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= ,

Therefore, the equation (3.76) would be  

 

    ffffpzff EGUHZLY ++Γ=       (3.79) 

 

fU  is projected out by multiplying ∏⊥

fU
and noise  is removed by multiplying ,  fE T

pZ
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where  zfz LΓ=β . 

 

zβ   can be estimated using the QR  decomposition equivalent for . ],,[ T
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After obtaining the  zβ ,   could be estimated by performing SVD (Singular Value 

Decomposition) on  

fΓ

zβ  weighted with  . pZ

      T
SVD

pz USVZ =β

                      (3.83) 1
ˆ Uf =Γ
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Since zβ  and  are found, the state sequence   could be estimated by solving  fΓ̂ tX

tfpz XZ Γ=β . That is 

     ( ) p
T
pf

T
ft ZX β̂ˆˆˆ 1

ΓΓΓ=
−

                (3.84) 

 

And also,    can be estimated similarly. With the    and   , the equation 

(3.74) could be solved to obtained   and   The following section explains the 

second part of N4SID i.e., the estimation of Kalman gain,  

tqX ttt XUY ,, tqX

CBA ,, .D

K . 

 

3.5.3.2 Estimation of Kalman gain K 

The estimation is given as [31].  

     ff
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The following equation can be derived 

 

           (3.86) ff
TT EGQR =333

Where     is obtained from equation (3.81). Then, the innovation process is 

transformed into unit variance white sequence, , i.e., 

TT QR 333

1e

 
     )()( 1 tFete =         (3.87) 
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∗=⊗=      (3.88) 

           (3.89) TT
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Because   is an orthonormal matrix,   is chosen, then  TQ3

T
f QE 31 =

 
            (3.90) T
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Kalman gain K , actually ,  can be identified from the first block column of    

denotes as  , 
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KF   and   can be estimated using least squares, which then leads to  F

 
     ( ) 1ˆˆˆ −= FFKK                   (3.92) 
 

 

The following algorithm explains the third part of N4SID i.e., the estimation of initial 

states,  . 0X

 

3.5.3.3 Estimation of initial states  0X

When the equation  ffffff EGUHXY ++Γ=   is at   0=t , it could be represented as 

 
         (3.93) 01000 ffffff EGUHXY ∗++Γ=

 

0fY   is computed first for zero initial states to obtain     by processing the input  

data through the estimated system with   

0ff UH

].0,,0[0 …=X   

 

By removing    from the double sides of the above equation, the following 

equation is derived 

0ff UH

 
                 (3.94) 010
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Then,    is estimated using least squares method. 0X
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Sections 3.5.1 to 3.5.3 have been to describing three main algorithms to determine 

coefficients of SYSID parametric models: non-recursive, recursive and state-space. The 

following section describes mathematical theory to validate estimated model for CMF. 

 
3.6 Validation of models 

There are three approaches to validate the predicted model: 1) By using model simulation 

to understand the underlying dynamic relationship between the model inputs and outputs, 

2) By using model prediction to test the ability of the model to predict the response of the 

system using past input and output data, and 3) By using model residual analysis to test 

the whiteness of the prediction error and the independency between the prediction error 

and the input signal using statistical techniques [30]. However, the first method is chosen 

in this research due to analyze error for estimated CMF model compares to actual 

coriolis. The following section discusses the first step based on approach (1) i.e., 

transforming linear difference equation to discrete transfer function. 

 
3.6.1 Discrete Transfer Function 

The discrete transfer function of parametric models i.e., GL, ARX, ARMAX, OE and BJ 

could be calculated by multiplying,    on the numerator and denominator part of its 

coefficients. 

mq

 
Example, if the transfer function of GL model is 
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The discrete transfer function could be determined by multiplying    with   )(qGi

mq
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For the state-space model, the discrete transfer function could be determined by finding     

Z -transform of the state-space first.  
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The state-space model is represented as 

 
    )()()()1( tKetButAxtx ++=+  

    )()()()( tetDutCxty ++=                 (3.97) 
  
By performing the Z -transform on the state-space equations 
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The following equation is derived 
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Further 
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and    is the characteristic polynomial of matrix  )det( AzI − A . The equivalent transfer 

function representation for the determinant part can be presented as follow 
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Whilst the equivalent transfer function for noise part is 
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From the discrete transfer function, a series of predicted data in time-domain could be 

developed using power series expansion method which is discussed in the following 

section. 
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3.6.2 Power Series Expansion 

The discrete transfer function 
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the power series expansion is 
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Where  i.e.,  is the discrete values [251]. 
By determining inverse 
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Z -transform of , the time-domain of predicted model is  )(zE
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Which,  T  is the sampling period. If sampling period is 1 , then  s

 …+−+−+−= )3()2()1()( 321 tEtEtEke δδδ ,  …,2,1,0=k               (3.108) 
 
If the discrete transfer function is 
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Then, the stability could be checked from zeroes and poles location such as  
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Which  and  are zeroes, poles and gain, respectively. If zeroes and poles are 

inside the unit circle of discrete plane, predicted model is considered stable and optimal. 

The detail analysis for stability could be referred from [243], [244], [245], [246], [247] 

and [248].  

nm PZ , k

 
Section 3.4 to 3.6 has shown SYSID requires different mathematical theories and 

algorithms to estimate parametric models. To simplify estimation process, LabVIEW 

software version 7.2 and LabVIEW modules such as system identification module, 

simulation module and control design module are combined to develop LabVIEW 

programs for estimating discrete CMF transfer function using non-recursive, recursive 

and state-space of SYSID [30], [31], [250], [251] and [252].  
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3.7 Summary 

This chapter discusses the theoretical development of SYSID for the coriolis mass 

flowrate (CMF) transfer function algorithm. SYSID is solved using parametric method 

i.e., based on user-specified models and state-space approach, namely General-Linear 

(GL), Autoregressive Exogeneous Input (ARX), Autoregressive Moving Average with 

Exogeneous Input (ARMAX), Output-Error (OE), Box-Jenkins (BJ) and state-space 

approach known as N4SID (Numerical Algorithm for Subspace State-Space). The 

parametric structure consists of several procedures i.e., statistical order, parameter 

estimation and validation. Statistical order is a step to limit the number of model orders 

where the higher the order of the model is, the better the model fits the data since the 

model has more degrees of freedom. Three criterions are used for determining model 

order: Akaike’s Information Criterion (AIC), Akaike’s Final Prediction Error Criterion 

(FPE), and Minimum Data Length Criterion (MDL). Parameter estimations are 

approaches and algorithms used to estimate coefficients in GL, ARX, ARMAX, OE and 

BJ based on non-recursive (off-line method), recursive (on-line method) and state-space. 

Validation is the transformation to discrete transfer function and comparison using power 

series expansion, which zeroes and poles location would verify the stability.  

 
Methods proposed in this chapter offers some promising tools for developing an 

inferential coriolis that is complex in nature. In the following chapter, the development of 

the inferential coriolis and the particular test rig required will be described and discussed.  

 

 


