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CHAPTER 3 

 

MODELING USING NEURAL NETWORKS (NN) 

Aspects of NN modeling, architecture and modes of training are described in this 

section. Multi-layer Perceptrons (MLP) is discussed in great depth while Single-layer 

Perceptron is presented as an introduction to the MLP.     

3.1 NN Architecture 

Many types of modeling task  that can be handled by NN are related to, among others, 

different NN architectures developed by researchers in this field. Table 3-1 lists the 

types of modeling tasks [47] .  

 

Table 3-1 Types of problem modeled and solved using NN 

Type of problem Description Examples 

Pattern classification 
Assigning an input pattern or symbol 
represented by a feature vector to one of 
many pre-specified classes 

Character and 
speech recognition, 
blood cell 
classification 

Clustering 

Exploring the similarity between patterns 
and placing or categorizing similar 
patterns in a cluster (also known as 
unsupervised pattern classification) 

Data mining, data 
compression 

Function 
approximation 

Suppose a set of n labeled training 
patterns or input-output pairs of {(x1,y1), 
(x2,y2), . . . , (xn,yn)} have been generated 
from an unknown function y(x) (subject 
to noise). Function approximation is 
finding an estimate of the unknown 
function, say ŷ . 

Nonlinear function 
that is too complex 
to derived 
analytically,various 
engineering and 
scientific modeling 
problems 

Prediction/forecasting Predicting a quantity in the future event 
or in the different condition 

Stock market 
prediction, weather 
forecasting, failure 
prediction 

Optimization 
Finding a solution satisfying a set of 
constraints such that an objective 
function is maximized or minimized 

The TSP, a wide 
variety of problems 
in mathematics, 
statistics, 
engineering, 
science, medicine 
and economics 
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Table 3-1 Types of problem modeled and solved using NN 

Type of problem Description Examples 

Content-addressable 
memory 

Accessing an entry in memory not only 
from its address, but also from its 
content. The content in the memory can 
also be recalled by a partial input or 
distorted content (also known as 
associative memory)  

Used in 
multimedia 
information 
database 

Control 

Consider a dynamic system defined by 
control input u(t) and resulting output 
y(t). The goal is to generate a control 
input u(t) such that the system follows a 
desired trajectory determined by a 
reference model 

Engine idle-speed 
control, kinematic 
robot control  

 

In earlier works on NN, the pioneers focused on anthropomorphic arguments to 

introduce and develop the architecture models and related methods for NN learning 

(cognitive science perspective). Nowadays, the attention is more focused on the 

algorithms and computations of NN to be applied efficiently to solve many practical 

problems in the engineering and industrial fields, without too much question on how a 

brain might work (engineering perspective) [48]. 

Based on the perspective of connecting patterns, NN can be grouped into two general 

categories: feed forward and recurrent networks. Feed forward networks have no loops 

because of the absence of feed back connections between the layers. In this sense, a set 

of inputs is carried forward and processed through the layers to produce one set of 

outputs, and hence carry no memories. Therefore, the feed forward networks are static 

because for a given input vector, the networks always generate the same output vector. 

In other words, their response to an input vector is independent of the previous state. 

On the other hand, recurrent or feed back neural networks are dynamic systems. With 

the presence of feed back connections or also known as tapped-delay line, loops occur 

and the networks are able to carry memories and retain information to be used later. 

When a new input pattern is presented, the neuron outputs are computed. However, 

because of the feed back connections, the inputs of the neurons are then modified and 

the networks lead to enter a new state. Therefore, the networks can generate different 

ouput vectors for a given input vector. In other words, their response to an input vector 

is dependent on the previous network state and the actual network state [49].  
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Figure 3-1 shows typical architectures for feed forward and recurrent neural networks. 
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Figure 3-1 NN architectures (a) feed forward with one hidden layer (gray colored 

circles), and (b) recurrent network with hidden neurons. 
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Based on the above characteristics, feed forward networks are suitable for processing of 

patterns with remarkable spatial dependencies such as in the area of pattern recognition 

and function approximation [50]. On the other hand, feed back neural networks, due to 

their inherent capability in memorizing the past information, are suitable for processes 

with spatio-temporal dependencies such as system identification and control of non-

linear dynamic systems [51, 52], time series prediction [53] and prediction of other non-

linear and non-stationary signals, for examples air pollutants [49], machine fault 

diagnostic [54]. Further description and discussion on the neural network models along 

with their variations and considerations can be found in [53, 55, 56].  

3.2 NN Modes of Training  

There are two modes of NN training: incremental and batch. In incremental mode of 

training, the weights are updated after each input is presented. This training mode seems 

to be a natural choice to be used for recurrent or feedback neural networks, because 

input pattern occurs within a time interval due to the presence of the feed back loops. 

Nevertheless, incremental mode of training can be applied to both feed forward and feed 

back neural networks. Another name for this mode of training is online, sequential or 

example-by-example training. 

Another mode of training is batch or concurrent training. In this training mode, weights 

are only updated after all input patterns are presented into the networks. In other words, 

weights are only updated once in each epoch or iteration. This mode of training is 

therefore more suitable for feed forward neural networks that are static networks or 

when example patterns are not explicit functions of time. Similar to incremental mode 

of training, batch training can also be applied to both feed forward and feed back neural 

networks. 

It is clear that in incremental mode of training, the sequence of example patterns is 

important, because weights are updated differently for different example pattern 

sequence (one epoch for one example pattern). Meanwhile, the sequence of example 

patterns is not important in batch mode of training, because weights are only updated 

after all example patterns are complete.  
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For what follows, training of NN is used in the context of supervised learning, that is 

example patterns of data or input-output pairs are provided. Generally, a set of the 

examples is called a training or learning set, through which the NN learning process 

occurs. Neural networks then extract the information contained in the example patterns 

and map the input-output relationships. For the current study, only batch mode of 

training will be used. 

3.3 Problem Formulation of NN Learning 

Problem formulation of NN employed throughout this study is now concisely presented. 

The statement starts from basic principle and then some limiting factors related to NN 

learning are described. 

Let (P,T) be a pair of random variables with values in P = m and T =  , respectively. 

The regression of T on P is a function of P, f : P  T, giving the mean value of T 

conditioned on P, E(T|P). 

Let random samples     QQ
Q T,P,...,T,PΟ 111   of size Q can be drawn from the 

distribution of (P,T) as an observation set. For Q 1, Qf̂  will denote an estimator of f  

based on the random samples, that is a map  Qf̂ : QΟ1    .,Οf Q
Q 1

ˆ , where for fixed QΟ1 , 

p  p,Οf Q
Q 1

ˆ  is an estimate of the regression function  pf . 

Furthermore, for convenience P and T will be referred to as the sets of input and 

variable output, respectively. Given the observation set Ο , learning in NN for 

realization of the estimate f̂  means adjusting to vector of parameters weight w  and 

biases b  using a set of learning rule or learning algorithm in such a way that f̂  

minimizes the objective function or empirical error defined as:  

  
2

wpˆw 



Q

q
qq ;f t)Ε(

1

    (3-1) 
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and generalizes well or outputs properly when a novel input testp  never seen before is 

feeded into the network. 

In other words, through the learning process the weights (including biases) will be 

adjusted adaptively through proper training algorithm with respect to the given 

examples and enforced to specific values so that the perceptron network performs the 

modeling task correctly or closer to the desired target.  

By keeping in mind that training in NN is principally updating the network weights 

based on the given set of examples so that the network will give proper response to new 

examples, below are two limiting factors of NN learning.    

First, only a finite number of observation points (example pairs) are available. This 

means that the available examples sometimes must be fully utilized for the NN learning 

purpose to provide proper learning of the underlying process. Hence, the practicability 

and feasibility of using limited examples for NN learning to yield accurate prediction 

output are assured. 

Secondly, the realization of target at the points of observation qp ,  q = 1, . . . ,Q,  is 

observed with an additive noise qe : 

)f(PTe qqq        (3-2) 

The observations are then noisy and the target noises qe  introduce a random component 

in the estimation error.  

3.3.1 Generalization 

Related to the limiting factors, the most important task in NN learning is for the NN 

model to capture regularity in the observations rather than learn the noise so that the NN 

model gives proper response to the novel example. If it is the case, NN is said as 

generalizing well. Otherwise, NN is said to learn very well by giving the correct 

response to the data in learning set, but predicting very poorly with respect to the new 
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data in testing set. This condition is well-known as overfitting that result in serious 

implication in critical application or safety-related areas [57]. 

Regularization is one way to achieve good generalization. Through regularization, over 

parameterization of the estimating model with respect to the number of training data is 

avoided with which overfitting is less likely to occur. Regularization will be further 

discussed when MLP is elaborated in section 3.5. 

3.4 Introduction to Multi-layer Perceptrons (MLP): Single-layer Perceptron 

The simplest neural network model is the perceptron. The perceptron model is based on 

the McCulloch-Pitts neuron model with the activation function of unit step function or 

hardlimiter. When more neurons with hardlimiter activation function are utilized,          

a single-layer perceptron will be found.  

 

Recall the McCulloch-Pitts neuron model in Figure 1-2. Now, the neuron model is 

redrawn as in Figure 3-2. The new symbols introduced in Figure 3-2 will be used 

throughout the remaining of this thesis. 

 

 

 

 

 

 

 

                           bhardlima  pw  

Figure 3-2 Perceptron neuron with an L-element input vector and hardlimiter function. 

 

The complete symbols are as follows: 

p1, p2, … , pL ≡ the individual element inputs.  

L ≡ total number of elements in the input vector. 
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w1,1, w1,2, … , w1,L ≡ weights 

b ≡ bias    

w ≡ the (single row) matrix of weights 

p ≡ the vector of inputs 

hardlim = the hardlimiter activation function 

n ≡ the sum of the weighted inputs and bias, n = wp + b 

a ≡ the output of the activation function f, that is a = f(wp + b)   

Σ ≡ the summing junction 

 

Using the hardlimiter activation function, the neuron produces a 1 if the net input n into 

the transfer function is equal to or greater than 0, otherwise it produces a 0. (There are 

many other kinds of the activation function f suitable for NN, such as pure linear, 

logistic function or tangent hyperbolic. See the discussion on MLP). 

 

)(nf        
0nif
0nif




0
1

     (3-3) 

 

In the perceptron neuron, a set of input vector p that is multiplied by weights w, and 

bias b are summed up together at the summing junction Σ. The summation n is passed 

through the activation function of hard-limiter to produce the output a. Therefore, it is 

clear that in a neuron, two processes are represented, namely summing up the weighted 

inputs wp and bias b, and passing the summation n through the activation function f.  

For simplicity, the perceptron neuron model can also be represented as in Figure 3-3. 

 

 

 

 

 

 

 

Figure 3-3 The simplified schematic of a neuron model. 
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Through the simplified schematic, the input vector p is represented by a solid dark 

vertical bar at the left. Also, the dimensions of the input vector, weight and bias matrix, 

the summation n, the activation function f and the output a are all shown clearly. 

The one-neuron perceptron can simply be extended to a single-layer perceptron (SLP) 

by adding more neurons in the neuron layer. Note that with s number of neurons in the 

perceptron layer, the dimension of biases b and weights w now become sx1 and sxR, 

respectively. The output of the perceptron becomes a vector a with dimension sx1. The 

same with the summation vector n. Figure 3-4 shows a schematic and its simplified 

schematic of a single-layer perceptron. 

Because the weight connections involved now become more complicated, it is necessary 

to indicate the strength of the connection from the jth input to the ith neuron as wi,j, 

where j = 1, 2, . . . , L and i = 1, 2, . . . , s.  

 

 

 

                                                                                     

  bpwa  hardlim  

 

 

 
(a)                   (b) 

 
Figure 3-4 A single-layer perceptron (a) its schematic (b) its simplified schematic.  

  
 

Referring to Figure 3-4 and the notation, the summation vector n can now be expressed 

as follows:  
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2

1

1xn   (3-4) 

By feeding the summation vector n into the hardlimiter activation function, the output 

vector a results. Depending on the net input n, the hardlimiter will give an output either 

of 1 or 0. 

 
3.4.1 Capability of Single-layer Perceptron 

Having detailed discussion on the structure of the one-neuron perceptron and the single-

layer perceptron, it seems naturally to think about their capabilities and what can be 

hoped by adding more neurons in a single-layer perceptron. In other words, what can a 

single-layer perceptron solve?  

 

The answer of the question is the perceptron can categorize linearly separable pattern 

classification problem. The perceptron can be used to classify input vectors that can be 

separated by a linear boundary (hyperplane). If a straight line or a plane can be drawn to 

separate the input vectors into their correct categories, the input vectors are said to be 

linearly separable. When a line or a plane can separate the input vectors correctly, two 

classes of input vector are created. If two lines are needed in order to categorize the 

input vectors correctly, four classes of input vector are created, and so forth. It can be 

summarized that a single-layer perceptron with S neurons can classify or categorize 2S 

classes. For example, if a single-layer perceptron is needed to categorize 8 classes of 

input vector, at least the single-layer perceptron must have 3 neurons. This is further 

illustrated in Figure 3-5.  

 

A simple justification for the above statement is that for the S neurons there will be S 

number of components in the output vector a making a number of 2S possibilities as the 

target vectors. For example, the associated target vectors when using 2 neurons are      

[0 0]T, [0 1]T, [1 0]T and [1 1]T, thus 4 classes of input patterns can be classified. 

. 

. 
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Moreover, it is important to note that the boundary lines (decision boundaries) are 

mathematically represented as wp + b = 0. The biases b indicate how far the boundary 

lines are shifted from the origin. This is easy to see because the lines separate between 

the region of the net input n ≥ 0 and the region of the net input n < 0. Here, p represents 

all points on the boundary and depending on the number of inputs in the network, the 

equation will represent a line or a plane. For all the boundary lines passing through the 

point of origin such as in Figure 3-5, it can be easily determined that the bias values are 

0. Note also that the lines in Figure 3-5 are only a few examples from many other 

possible separating lines that can be assigned to solving the problems.  

For a three-input vector p, the boundaries become planes instead of lines as shown in 

Figure 3-6. For more input vectors, however, the graphical display is not as convenient. 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

 

Figure 3-5 Input vectors of (a) two classes (b) four classes, and (c) eight classes. 
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Figure 3-6 A representation of the boundary plane in a three-input space. 

 

3.4.2 Perceptron Learning Rule 

The single-layer perceptron applies the method of supervised learning, that is a number 

of input-target pairs that represents the behaviour of the modeling task under 

investigation must be provided and supplied into the network. The training set of input-

target pairs are usually symbolized as follows: 

{p1, t1}, {p2, t2}, . . . , {pQ, tQ} 

where pq is an input vector to the network, tq is the corresponding (associated) target 

output and Q is the total number of training patterns (samples).     

Within the framework of supervised learning, one important thing for updating the 

weights in the single-layer perceptron is the error signal e. It is the difference between 

the desired target t and the output of the perceptron a, as stated in Equation (3-5).  

ate        (3-5) 

The error signal will also be very useful when discussing backpropagation training 

algorithm for MLP. Using the error signal multiplied by the input vector p, the initial 

weights of single-layer perceptron are moved on the suitable values so that the network 

p1 

p2 

p3 
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classifies input patterns correctly as long as the solution exists. The rule for updating the 

weights (the perceptron learning rule) then can be written as: 

Tpeww  oldnew      (3-6) 

Similarly for biases, by considering the constant inputs of one for the biases.  

ebb  oldnew      (3-7) 

Compiling the weights and biases as w, and the input vector and the inputs of one as p, 

the learning rule can be written as a single equation as in Equation (3-8): 

Tpeww  oldnew       (3-8) 

Effectively, the increment (step) of weights in single-layer perceptron training can be 

written as: 

 Tpew Δ       (3-9) 

Remembering that the associated target tq is either 0 or 1, the error values e can be 

either 0, 1 or -1. Furthermore, with respect to the error values, the perceptron learning 

rule can be summarized as follows: 

The first, if e = 0, then Δw = 0 (there is no weight update).  

The second, if e = 1, then Δw = pT. 

The third, if e = -1, then Δw = -pT. 

It can be summarized that learning in the single-layer perceptron for each training 

iteration is simply adding the previous weight values by either the incoming input 

vector p or its negative, until the classification task could be completed.  

The single-layer perceptron works with incremental mode of training, because the 

weights are updated after each input is presented where the vectors are presented 

sequentially into the network. It can be proven that as long as the solution exists, 

training for single-layer perceptron will complete in finite number of iterations [7]. 
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3.5 Multi-layer Perceptrons (MLP) 

With the discussion of single-layer perceptron, the extension to MLP is relatively 

straightforward. Nevertheless, the most interesting feature of MLP is their increased 

capability compared to single-layer perceptron. The increased capability makes MLP 

suitable for many complex and non-linear modeling problems. Characteristics of MLP 

structure, activation function and learning algorithms play important roles to the 

suitability of MLP. 

3.5.1 MLP Structure 

The subsequent discussion will be focused on MLP with one layer of hidden neurons as 

shown in Figure 3-7. For MLP with only one output neuron, its structure can be 

translated into the one as shown in Figure 3-8. In the figures, superscripts 1 and 2 refer 

to hidden and output layer, respectively. Without loss of generality, subsequent 

discussion will be on MLP with one hidden layer and one output neuron.  
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Figure 3-7 MLP with one hidden layer and multiple output. 
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As pure linear function in the output layer returns an output which is the same as the 

input, the estimate f̂  realized by the MLP given the training set Ο  can be written as: 

    oiji,

s

i
i, τ;f bbpwwwpˆ 



1

1
1

2     (3-10) 

where τ(.) is a sigmoidal function, which will be described in the following section.  

 

 

 

 

 

 

 

                         iji,tansig bpwa  11               oi purelin bawa ,  1
1

22  

Figure 3-8 MLP with one hidden layer and single output. 

3.5.2 Activation Function 

Besides hardlimiter and linear functions, other types of activation function include 

sigmoidal-based activation functions, namely hyperbolic tangent, binary sigmoid 

(logistic) and bipolar sigmoid. The sigmoidal functions are commonly used for the 

hidden nodes. 

The sigmoidal functions are chosen because of their characteristics. First, the functions 

are continuous, differentiable and monotonically non-decreasing. Second, the 
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corresponding derivatives are easy to compute and the value of the derivative at a 

particular value of the independent variable can be expressed in terms of the value of 

the function itself. Third, by using the sigmoidal functions in hidden units, a small 

change in the weights will usually produce a change in the outputs, thus indicates 

whether the weight change is good or bad. 

Various types of sigmoidal function together with the corresponding graphical 

representation are shown in Figure 3-9, 3-10 and 3-11. For hyperbolic tangent function 

with output range within the interval [-1, 1], the activation function and the 

corresponding f'(n) are given in Equation (3-11) and (3-12), respectively. 

















nn

nn

ee
eef(n)      (3-11) 

f(n))f(n))(((n)f '  11     (3-12) 

 

Figure 3-9 Hyperbolic tangent activation function. 

For binary sigmoid function (logistic function), Equation (3-13) and (3-14) apply: 

)e(
f(n) n


1

1      (3-13) 

f(n)f(n)((n)f '  1      (3-14) 
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Figure 3-10 Logistic activation function. 

For bipolar sigmoid function, Equation (3-15) and (3-16) apply: 
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Figure 3-11 Bipolar sigmoid activation function. 
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3.5.3 Training Algorithm 

The most widely used procedure in NN learning is backpropagation, which is a 

breakthrough in the resurgence of interest in NN study [58]. The term backpropagation 

refers to the manner in which error information from output layer is backpropagated 

through the layers within the network. The process is repetead consecutively 

immediately after the input samples are propagated forward through the network. For 

each propagating-backpropagating pass, the weights of the network are updated 

iteratively. The updating process is repeated until predefined stopping criterion is met. 

The stopping criteria could be in form of performance goal measured by mean square 

error (MSE), maximum iteration number, minimum performance gradient and minimum 

change in performance. 

3.5.3.1   Gradient Descent 

In principle, NN learning task is a minimization problem to particular objective function 

(recall Equation (3-1)) and the minimization problem is related to the method for 

updating the NN weights. A basic method employed for updating NN weights is 

gradient descent, which is described as follows.  

The function to be minimized is of the following special form given by Equation (3-17): 

 2

12
1)( xx 




m

j
jrf      (3-17) 

 
where   ni xxxx ,...,, 21x  is a vector where 1 ≤ i ≤ n and each of jr  is a function 

from n  to  , where 1 ≤ j ≤ m. jr  is referred to as a residual. 

Residual vector r is a vector function of x: n  to m , hence f  can be rewritten as: 

2

2
1)( rx f       (3-18) 
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The Jacobian matrix J of r  with respect to x, can be defined as: 

x
x

J





)(jr
      (3-19) 

Gradient g and Hessian H are, respectively, defined as Equation (3-20) and Equation  

(3-21): 

rJ
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If it is possible to approximate the residuals jr  by linear functions ( )(2 xjr are small) 

or the residuals jr  themselves are small, the Hessian H can be approximated as: 

JJ)x(H T2  f      (3-22) 
 

Further, if vector x represents weights vector w and f(x) represents the performance 

function E(w), the basic weights update rule, which is a gradient descent rule, in NN 

training can be written as: 

iii Eη )w(ww 1      (3-23) 

iii ηgww 1      (3-24) 

where wi+1 is weights vector at next iteration, wi is weights vector at current iteration,   

is learning rate factor and i  is iteration step. 

Thus, in NN training, the weights are moved along the negative of the performance 

function gradient g using the gradient descent learning. 
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3.5.3.2   Optimization Methods 

Equation (3-24) can be considered as a first order approximation to gradient descent and 

therefore the method is often very slow in practice. To overcome the weakness of basic 

gradient descent, methods based on second order approximation to gradient descent 

have been developed, such as Newton and Levenberg-Marquardt (LM) method.  

If E(w) is expanded using a Taylor series in minimizing the performance function, then 

the Newton’s method for updating weights will be found as shown in Equation (3-25): 

iii EE )w())w((ww  


12
1     (3-25) 

Equation (3-25) can also be written in the form of Equation (3-26): 

iii g)H(ww 1
1


       (3-26) 

LM method for updating weights is by adding an adjustable constant parameter  to 

Equation (3-26): 

iii λ g)IH(ww 1
1


      (3-27) 

where   is the lambda parameter or the parameter of LM. 

With the presence of the adjustable parameter  , the LM algorithm combines both the 

advantages of the simple gradient descent that simply moves the weights to decrease the 

error function value and the Newton’s method that has faster convergence. In practice, 

for moderate size problems, the LM algorithm is faster and robust. LM also outperforms 

the methods, because E(w) is always reduced at each iteration of the algorithm [59]. For 

further reading on optimization, the readers are directed to [60, 61]. 

The key feature in the implementation of LM is procedure to update λ during iteration 

within the backpropagation framework, which will be described in the following 

section. The adaption and the implementation of LM are described in Materials and 

Methods section.  
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3.5.3.3   Backpropagation 

The implementation of the gradient-based methods for updating NN weights within the 

framework of backpropagation is described in this section. Whenever appropriate, the 

gradient-based methods can be implemented in the backpropagation programming loop. 

The backpropagation steps can be summarized as follows.    

First, the weights and other useful parameters are initialized. 

Second, the feed forward network (propagating input-output pairs) is executed. 

Third, the error information is backpropagated and the weights are adjusted. 

Last, the steps are repeated until the difference between the target and the network 

output values is within an acceptable range of performance goal and other stopping 

criteria. 

Recal Figure 3-8. The summation and the output of the hidden nodes can be, 

respectively, written as:  

iji, bpwn  11     (3-28) 

 iji,tansig bpwa  11    (3-29) 

The MLP output is: 

oi,
o   bawnaa  1

1
222     (3-30) 

Recal Equation (3-1) where the realization of  wpˆ ;f q  is replaced by ao. The error to 

be minimized then can be written as: 

 
2

w 



Q

q
qoq a - t)Ε(

1

     (3-31) 

In vector notation:      ooΕ atat)w(  T               (3-32) 
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The individual residual or error e is defined as: 

qoq a - te       (3-33) 

Now it is necessary to derive partial derivative of E(w) with respect to the weights 

consisting of the output layer weights w2
1,i and the hidden layer weights w1

i,j to 

implement the gradient-based methods. 

Partial derivative of E(w) with respect to weights w2
1,i can be derived as: 
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The term 2n
)w(


Ε  is now derived as:  
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Therefore, partial derivative of E(w) with respect to the weights w2
1,i is : 
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In similar way, partial derivative of E with respect to the weights w1
i,j can be derived as: 
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The sensitivity term 1n
)w(


Ε is derived as: 
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Substituting term 2n
)w(


Ε  from Equation (3-35), the sensitivity term 1n

)w(


Ε  and partial 

derivative of E(w) with respect to w1
i,j are, respectively, defined as: 

)at(w)n(
n

)w(
oi,
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21
1 2     (3-39) 

p)at(w)n(
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Ε



 

T
1

21
1 2     (3-40) 

From Equation (3-36) and (3-40), it can be seen how the error information e is 

backpropagated from the output layer to the hidden layer after the feedforward step of 

inputs. 

Having the expression of partial derivatives of E(w) with respect to weights, the above 

backpropagation then can be casted into general form of pseudo-codes as follows:   

Step 1. The weights w and other useful parameters are initialized. 

Step 2. While stopping criteria are false, steps 2 – 10 are repeated. 

--------------------------------------- Feedforward phase ------------------------------------------ 

Step 3. For each training example, steps 4 – 9 are carried out. 

Step 4. The summation at the hidden nodes are calculated using Equation (3-28): 

iji, bpwn  11  and the output of hidden nodes are computed using Equation (3-29): 

 iji,tansig bpwa  11  

Step 5. The summation and the output of the output node are calculated using Equation 

(3-30): oi,
o   bawnaa  1

1
222  
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------------------------------- Backpropagation of error  phase ----------------------------------- 

Step 6. The sensitivity term at the output node is computed using Equation (3-35): 

)at(
n

)w(
o

Ε



 22 , and the increment of the output layer weights is updated using 

Equation (3-36): 1

1
21
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Step 7. The sensitivity term at the hidden nodes is computed using Equation (3-39): 
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1 2  , and the increment of the hidden layer weights is 

updated using Equation (3-40): p)at(w)n(
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1

1 2Δ   

----------------------------------- Updating weights phase ----------------------------------------- 

Step 8. The weights and biases of the output and hidden layers are updated using 

Equation (3-24). 

Step 9. Stopping criterion is checked. 

3.5.4 Bayesian Regularization 

Discovering the function f or an estimate of it f̂ from the observation data Ο  given is 

basically an ill-posed problem, as the estimate can have infinite solutions, particularly if 

the nature of the function f is hard to be assessed. 

To help in choosing one particular preferred solution from the infinitely many solutions, 

a priori information or knowledge of the function f is needed. For examples, the 

function f is assumed to be smooth, in the sense that two similar inputs will produce two 

similar outputs, or by assuming the additive noise of Equation (3-2) is drawn from 

Gaussian distribution.   
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In finding the estimate f̂  using NN approximation, the problem of learning can be 

reformulated as: how to find the estimate f̂  from a family of estimates 


F  which 

minimize both squared error E(w) of training data set and of testing data set, which is 

another statement of generalization (see section 3.3.1). Regularization is then a way to 

prevent overfitting, a condition where good generalization is hard to occur.  

Bayesian regularization was utilized in this study to improve the quality of NN 

prediction. It minimizes a linear combination of squared errors and weights. The idea is 

to find a balance between the number of parameters and goodness of fit by penalizing 

large models [62].  

The cost function of Equation (3-1) is then modified as follows:  

   



W

i
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Q

q
qq wα;f tβ)Ε(

1

2

1

2

wpˆw     (3-41) 

where: α is a weight decay parameter, β is an inverse noise variance parameter and W is 

the total number of weights. The noise is assumed to apply to the target data qt  and its 

distribution is assumed to be a zero-mean Gaussian distribution. 

Note that the new cost function consists of the sum of squared errors (ED) and the sum 

of squared weights (Ew) terms. In addition, parameters α and β are introduced for 

penalizing large models. Using the modified cost function, it is clear that there is a need 

to reestimate the parameters accordingly. One estimation method is the Gauss-Newton 

approximation implemented to the Bayesian learning within the framework of the 

Levenberg-Marquardt algorithm. The complete derivation and formulation of the 

algorithm can be found in [63] and the clear explanation of its implementation are 

further described in Materials and Methods section. 

By utilizing the form of regularization, an NN model with fewer number of parameters 

(weights) is preferred than the one with large number of weights, especially for small 

data sets or training examples to yield a smoother and stable NN response. The 

consistency of the NN prediction with respect to small or limited training examples of 

fatigue data can be seen later in the Results and Discussion section.  
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3.5.5 The Levenberg – Marquardt Training Algorithm 

After discussing backpropagation in general, this section focuses on the training 

algorithm of Levenberg-Marquardt (LM) which is used as an optimization technique in 

adjusting the NN weights. It has rapid convergence and robust performance by 

combining both the advantages of the simple gradient descent and the Newton’s method 

algorithms by the presence of the adjustable parameter , as described in 3.5.3 section. 

In adjusting the NN weights, the algorithm updates the weights for the next iteration as 

described by Equation (3-27) which is rewritten here as Equation (3-42): 

ii1i λ g)IH(ww 1
        (3-42) 

The formula can be rewritten to give the weights increment or the step ∆w as Equation  

(3-43): 

g)IH(w 1Δ  λ       (3-43) 

where: H is the Hessian matrix,   is the LM parameter,  I is identity matrix, J is the 

Jacobian matrix, r is the residual vector and g is the gradient matrix. i and i+1 are the 

previous iteration and the current iteration, respectively. 

In addition, the gradient g is given by Equation (3-44):      

rJg T       (3-44) 

 

The parameter   is controlled by the so-called gain ratio ς or the ratio between the 

actual and predicted decrease in the performance function value E(w). 

 

)ww(ˆ)w(ˆ
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EEς      (3-45) 

 

Using truncated Taylor-series [61], the predicted decrease term is defined as: 

)gw(w)ww(ˆ)w(ˆ  ΔΔΔ T λEE    (3-46) 
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3.5.6 Implementation 

The Levenberg-Marquardt formulation including the controlling parameter λ was 

implemented in Matlab environment for the NN modeling. The implementation can be 

described in the following pseudo-codes: 

Step 1.   The weights w and parameter λ were initialized.  

Step 2.   The sum of squared errors over all inputs, )w(E was computed. 

Step 3.   The Jacobian matrix J was computed. 

Step 4.  The equation g)IH(w 1Δ  λ  was solved to obtain the step or increment of 

weights ∆w (I is the identity matrix). 

Step 5.  The sum of squared errors )w(E using w+∆w was recomputed and σ was 

computed using Equation (4-5). If σ > 0.75, λnew = λ/2. If predicted decrease was close 

to actual decrease, the search direction approached the Gauss-Newton search direction 

by increasing the step size. If σ < 0.25, λ new = 2λ. If predicted decrease was far from the 

actual decrease, the search direction approached the gradient direction by decreasing the 

step size. 

 

Step 6.  If )ww( ΔE < )w(E , then wnew = w+∆w was accepted as a new iteration and λ 

from step 5 was used. The steps 2-6 were repeated until the stopping criterion is 

satisfied. 

3.5.6.1 Adaptation of Bayesian Framework within The Levenberg-Marquardt 

Algorithm 

In principle, adaptation of Bayesian framework means that the inclusion of updating 

parameters α and β within the above Levenberg-Marquardt pseudo-codes. 

Recal Equation (3-41) which is rewritten here as: 

wD αΕβΕΕ )(w       (3-47) 

where: 
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Using the modified cost function, the gradient g and Hessian H, respectively, become: 

wrJg T αβ 22       (3-50) 

IJJH T αβ 22       (3-51) 

Thus, the increment of weights ∆w becomes: 

   gIJJw T 1Δ 
 α  λβ      (3-52) 

For the purpose of updating λ, the predicted decrease term of Equation (3-46) was used, 

where g and ∆w were from Equation (3-50) and (3-52), respectively. 

Further, for the purpose of updating α and β, the Hessian formulation was utilized 

through the following equations: 

 1H   traceαIγ 2       (3-53) 

wΕ
γα

2
       (3-54) 

DΕ
γ - Qβ

2
       (3-55) 

where: γ  is the effective number of parameters, that is a measure of how many 

parameters or weights are effectively used (preferred) in the NN learning with respect to 

the cost function reduction, I is the total number of initial weights during initialization 

and Q is the number of training examples. 
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The adaptive formulation is now complete. It is clear that the parameters α and β play 

important roles to achieve the goal of balancing between the number of parameters and 

goodness of fit by penalizing large models, as stated in the previous section 3.5.4. The 

parameter β would drive the errors smaller. On the other hand, the parameter α would 

reduce the parameters (weights) size. Both would increase the generalization 

performance of the NN. 

Based on the above formulas and referring to [63], the previous pseudo-codes of 

Levenberg-Marquardt algorithm can be restated as follows: 

Step 1. The weights w and parameters λ, α and β were initialized. For example: λ = 

0.005,  α = 0 and β = 1. The algorithm is not too sensitive to the initial choice of the 

parameters. In addition, the choice of α = 0 and β = 1 means that the NN is starting from 

the original cost function. Recal Equation (3-47).  

Step 2. One step of the Levenberg-Marquardt algorithm to minimize the objective 

function was taken as per Equation (3-52). 

Step 3. The predicted decrease term was computed using Equation (4-6) based on the 

result of Step 2. 

Step 4. The parameter λ was updated based on the predicted decrease term from Step 3. 

Step 5. If )ww( ΔE < )w(E , then wnew = w+∆w was accepted as a new iteration and λ 

from step 4 was used. 

Step 6. The effective number of parameter γ  was computed using Equation (3-53) and 

the Hessian formulation of Equation (3-51) was utilized. 

Step 7. The parameters α and β were updated using Equation (3-54) for α and Equation   

(3-55) for β. 

Step 8. Steps 2-7 were repeated until the stopping criterion was satisfied or convergence 

was achieved. 



61 
 

 

Note that the Levenberg-Marquardt algorithm with Bayesian regularization parameters 

has now been described.  

 

3.5.6.2 Realization 

For the purpose of this modeling study, it is not adequate to use Graphical User 

Interface-Neural Networks Toolbox. On the other hand, Matlab provides suitable 

environment and much more flexibility for users to program their particular modeling 

tasks. Therefore, programming lines have been written in Matlab to implement the 

pseudo-codes for both updating the controlling parameter λ and the parameters α and β. 

The Matlab programming lines were run on Toshiba Satellite with OS Windows Vista 

Basic, processor of Intel Pentium Dual-Core and RAM of 1 GB (Appendix A lists the 

M-file codes to train NN incorporating Bayesian Framework within The Levenberg-

Marquardt Algorithm).   

 


