

FINAL EXAMINATION MAY 2024 SEMESTER

COURSE

YBB1063 - ORGANIC CHEMISTRY I

DATE

5 AUGUST 2024 (MONDAY)

TIME

9:00 AM - 12:00 NOON (3 HOURS)

INSTRUCTIONS TO CANDIDATES

- 1. Answer ALL questions in the Answer Booklet.
- Begin EACH answer on a new page in the Answer Booklet.
- 3. Indicate clearly answers that are cancelled, if any.
- 4. Where applicable, show clearly steps taken in arriving at the solutions and indicate **ALL** assumptions, if any.
- DO NOT open this Question Booklet until instructed.

Note

- i. There are **NINE (9)** pages in this Question Booklet including the cover page .
- ii. DOUBLE-SIDED Question Booklet.
- iii. Graph paper(s) will be provided

Universiti Teknologi PETRONAS

1. Consider the following alkyl halide (Compound A).

FIGURE Q1(i): Compound A

a. Determine the stereochemical configuration (*R* or *S*) of Compound A. Show all the working steps.

[5 marks]

b. Compound A reacts with a nucleophile (N=C) in polar aprotic solvent (acetone) to produce Product B.

FIGURE Q1(b)(ii): Product B

Draw the three-dimensional structure of Product B to illustrate the inversion of stereochemical configuration.

[3 marks]

c. Based on answer in part (b), write the reaction mechanism using curved arrows to show the formation of Product B. Include the species of transition state.

[5 marks]

- d. Compound A undergoes an elimination reaction to yield a mixture of alkenes.
 - i. Draw the structures of the alkenes produced in bond-line formula.

[3 marks]

ii. Based on the answer in **part (d)(i)**, identify the major product and provide a rationale for your selection.

[4 marks]

2. a. Figure Q2 illustrates the hydrohalogenation of an alkene.

FIGURE Q2(a): Hydrohalogenation of an alkene

i. Suggest the structure of Product C in bond-line formula.

[2 marks]

ii. Use curved arrows to illustrate the reaction mechanism leading to the formation of Product C.

[6 marks]

b. An unknown alkene with the formula C₈H₁₆ is used as the substrate with a hot oxidizing agent to produce two carboxylic acids. The synthesis route is illustrated in FIGURE Q2(b).

FIGURE Q2(b): Synthesis route to yield propanoic and pentanoic acids.

i. Suggest suitable reagent(s) for Step 1 and Step 2.

[6 marks]

ii. Draw the structure of unknown alkene in bond-line formula.

[3 marks]

iii. Rationalize your answer in part (b)(ii).

[3 marks]

3. a. FIGURE Q3(a) shows the chlorination of ethane.

FIGURE Q3(a): Chlorination of ethane

Draw the reaction mechanism using half-headed curved arrows for the following stages.

i. Initiation

[2 marks]

ii. Propagation

[4 marks]

iii. Termination

[6 marks]

b. Consider the following halogenation of 2-methypropane.

FIGURE Q3(b): Halogenation of 2-methylpropane

i. Reaction 1 yields almost exclusively Product D with only traces of Product E. Explain this observation.

[5 marks]

ii. The percentage yields of products in Reaction 2 differ markedly from those in Reaction 1. Provide an explanation for this variation.

[3 marks]

 Compound I (alkene) is the only product formed from the reaction of compound H, depicted in FIGURE Q4.

FIGURE Q4: Synthesis of compound I from compound H

a. Suggest the suitable reagents(s) and experimental condition(s) that would drive the reaction to produce only a single alkene (compound I).

[2 marks]

b. Rationalize your answers in part (a).

[6 marks]

c. Draw the reaction mechanism using curved arrows to show the formation of compound I.

[6 marks]

d. Construct the energy diagram illustrating the endothermic nature of the reaction.

[6 marks]

5. a. Draw the bond-line formula of Compounds I, II, III, IV, V, VI for the following reactions.

i.

Compound II

[2 marks]

 $ii_{\rm s}$

$$+$$
 O Et_2O Compound III $+$ H_3O^+ Compound IV

[3 marks]

iii.

$$(1) LAH in Et2O (2) H2O/H2SO4 Compound V + Compound VI$$

[3 marks]

b. Outline the synthesis of the final product using the suitable reagent(s).

i.

Final product

[6 marks]

ii.

[6 marks]

- END OF PAPER-

