
 
 

 i

 

 

 

 

Title of thesis  

 

I, MUSAB JABRALLA OMER ELAMIN  

 

hereby allow my thesis to be placed at the Information Resource Center (IRC) of 

Universiti Teknologi PETRONAS (UTP) with the following conditions: 

 

1. The thesis becomes the property of UTP. 

2. The IRC of UTP may make copies of the thesis for academic purposes only. 

3. This thesis is classified as  

      Confidential 

       Non-confidential 

 

If this thesis is confidential, please state the reason: 

                                                                                                                                              : 

 

The contents of the thesis will remain confidential for                              years. 

Remarks on disclosure: 

                                                                                                                                              : 

 

 

 

  

  

 

                     : 

Endorsed by 
 
 
 
Signature of Author  
   
 
 
 
 
Date:                 

Adaptive Linear System Identification over Simulated Wireless 

Environment  

 
 
 
Signature of Supervisor 
   
 
 
Signature of Co-Supervisor 
 
Date:                



 
 

 ii

 
UNIVERSITI TEKNOLOGI PETRONAS 

 

Approval by Supervisors 

 

The undersigned certify that they have read, and recommend to The Postgraduate Studies 

Programme for acceptance, a thesis entitled Adaptive Linear System Identification over 

Simulated Wireless Environment submitted by Musab Jabralla Omer Elamin for the 

fulfillment of the requirements for the degree of Master of Science in Electrical and 

Electronic Engineering. 

 

 

 

Date: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Main Supervisor : Dr. Vijanth S. Asirvadam 
 
 Signature                :  
 
 Date   :    
 
 Co-Supervisor  : Dr. Nordin Saad 
 
 Signature  :  
 
 Date   :     



 
 

 iii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

UNIVERSITI TEKNOLOGI PETRONAS 

 

Adaptive Linear System Identification over Simulated Wireless Environment  

 

 

By 

Musab Jabralla Omer Elamin 

 

 

A THESIS 

SUBMITTED TO THE POSTGRADUATE STUDIES PROGRAMME 

AS A REQUIREMENT FOR THE 

DEGREE OF MASTER OF SCIENCE 

IN ELECTRICAL AND ELECTRONIC ENGINEERING 

 

Electrical and Electronic Engineering  

 

BANDAR SERI ISKANDAR, 

PERAK            

 

February 2009  



 
 

 iv

 

 

DECLARATION 

 

I hereby declare that the thesis is based on my original work except for quotations and 

citations which have been duly acknowledged. I also declare that it has not been 

previously or concurrently submitted for any other degree at UTP or other institutions. 

 

 

Signature :  

 

Name  :      

 

Date  :  

  

Musab Jabralla Omer Elamin 



 
 

 v

 

 

ABSTRACT 

 

Wireless technologies have become one of the basic industrial pillars, whereas system 

identification represents an important tool in many practical engineering circumstances 

and thus sooner or later both wireless technologies and system identification should be 

linked together in sense of having an identifier that is able to reliably identify a system 

over wireless links. It is well known that wireless links are considered as unreliable 

medium and therefore the loss of the system observations across them is unavoidable. 

The system observations represent the main element in the identification process since 

the identifier relies only on these observations in order to identify the underlying function 

of the system as they are the only information available to tell about the system 

dynamics, for this reason vast amount of literature in the context of system identification 

is written about the way the excitation signal is chosen to force the system to show its 

dynamic and also about the way the sampling process is carried out to obtain informative 

observations in order to construct a satisfactory model for the system. This shows that the 

random loss of these observations (which are vital and core element of identification 

process) might deter the system modeling process. Experience shows that well sampled 

observations over regular intervals during observations loss could not guarantee a 

satisfactory model for the system. This thesis looks into the concepts of system 

identification and the behavior of the identifier components when placing wireless links 

between the system and the identifier. The thesis investigates the possibility of 

performing system identification over wireless network for both on-line and off-line 
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system identification approaches. This research work studies the effects of observations 

loss on the performance of the learning algorithms and it focuses only on first order 

autoregressive with exogenous input (ARX) model structure adopted on linear network. 

The work looks thoroughly on three forms of instantaneous learning algorithms which 

are: first order algorithms (e.g. least mean square (LMS)), second order algorithms (e.g. 

recursive least squares (RLS)) and finally high order or sliding window (SW) algorithms 

(e.g. moving average (MA)).  
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ABSTRAK 

 

Kejuruteraan tanpa wayar buat masa kini menjadi teknologi asas di adalam industri di 

mana pengenalpastian sistem mewakili perkara yang penting didalam kejuruteraan 

harian. Maka kedua-dua teknologi, tanpa wayar dan pengenalpastian sistem harus 

digabungkan supaya unit pengenalpastian dapat mengenali dan membaca sistem yang 

dinamik jika masukan datanya dihantar melalui teknologi tanpa wayar. Teknologi tanpa 

wayar diketahui mempunyai sambungan media yang tidak boleh diharapkan mungkin 

terdapat masukan datanya yang hilang melalui sambungan tersebut. Data masukan untuk 

sesuatu sistem merupakan unsur utama bagi proses pengenalanpastian sistem di mana 

unit pengenalpastian memerlukan data masukan yang bersiri untuk membina model atau 

memeta fungsi dalaman sistem tersebut yang dinamik. Terdapat banyak rujukan dalam 

hubungan pengenalpastian sistem dimana sesuatu proses atau sistem diberi data masukan 

yang tidak linear untuk membolehkan (atau memaksa secara langsung) sistem tersebut 

untuk menonjolkan ciri–ciri dinamik yang tersirat. Maka dengan itu, data-data yang 

disampel digunakan untuk membina satu model yang munasabah untuk sistem tersebut. 

Ini menonjolkan data-data yang hilang semasa proses penghantaran melalui media tanpa 

wayar yang akan memberi kesan negatif kepada proses pengenalpastian sistem. 

Pengalaman juga dapat menunjukkan data-data yang disampel dengan menggunakan 

selang yang tetap tidak juga memastikan untuk memberi model yang tepat dan betul. 

Tesis ini mengaji konsep pengenalpastian sistem dan menilai perubahan kepada unit 

pengenalpastian jika terdapat sambungan dan penghantaran data melalui teknologi tanpa 

wayar di antara sistem dan unit pengenalpastian tersebut. Tesis ini juga mengkaji 

kebarangkalian untuk melakukan proses pengenalpastian sistem (melalui media tanpa 

wayar) secara rekursi atau dalam talian atau mengunakan sistem data-data yang 

terkumpul luar talian. Penyelidikkan melalui tesis ini menilai kesan data-data yang 

mungkin hilang kepada prestasi algoritma atau prosedur yang menumpukan kepada 

struktur rangkaian linear tertib pertama ‘Autoregressive Exogenous Input (ARX)’. 

Keseluruhan proses pengenalpastian di dalam penyelidikan ini hanya melihat kepada 
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algortima linear yang diadaptasikan secara spontan. Kerja penyelidikan ini mengkaji 

secara mendalam tiga algoritma sistem pengenalan spontan di mana: algoritma linear 

tertib pertama (iaitu punca kuasa dua mean minima (LMS)), algoritman linear order 

kedua (iaitu punca kuasa dua minima rekursi (RLS)) dan akhirnya algoritma linear order 

tinggi (iaitu purata bergerak (MA)). 
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CHAPTER ONE: INTRODUCTION 

 

1.1 Introduction  

 

The increasing availability of wireless networks and the great interest they are being 

given on the industrial front as well as the emergence of wireless sensor networks were 

the prime motivations to study the possibility of performing system identification over 

wireless network.  

      

The current trend towards adopting wireless networks has its own considerable set 

of favorable reasons: first of all, it reduces the cost and time for network installation and 

maintenance. On other hand, it adds flexibility to the plant floor architecture since it 

would be easy to change it to meet the current requirements. It also makes the task of 

accessing a device into the plant network for diagnostic or programming purposes much 

easier. Furthermore, it is the solution when the plant environment involves vibrations, 

chemicals or moving parts that can damage any kind of cabling [1].     

 

The disadvantage of replacing wired network with its wireless counterpart is the 

presence of significant information losses across the wireless counterpart.    

 

1.2 Problem Statement 

  

This thesis investigates parametric system identification over lossy network. Parametric 

identification sometimes called black box modeling since the identifier looks at the 

system as if it was a black box and uses only an observed output signal (ݕ) and the 

corresponding input signal (ݑ) to model the system (see Figure 1.1), which means the 

physical features of the system are ignored and only the available observations are used 

to describe the underlying function of the system. Thus, these observations are of great 
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necessity as they are the only available source of information to tell about the system 

dynamics.  

  

 

 

 

 

 

 

 

One of the main system identification processes is to sample the system 

information at regular intervals according to certain rules in order to assure that the 

obtained observations are informative. The process always ensures observations 

presented to the identifier in-full and at the same regular intervals that they have been 

sampled at as it is demonstrated in Figure 1.2(a). The figure depicts a sequence of system 

input/output observations sent to identifier over reliable link.    

 

The challenge of this research work is that when sending the system observations 

over wireless links (which are known to be unreliable) to the identifier, the observations 

availability in full at the identifier side becomes hard to guarantee. Moreover, the 

observations structure at the identifier side might be in a random form as it is 

demonstrated in Figure 1.2(b). The figure depicts a sequence of system input/output 

observations sent to identifier over lossy link.      

 

 

  

 

 

  

 

 ଵ଴ݕ  ଽݕ ଼ݕ ଻ݕ ଺ݕ ହݕ ସݕ ଷݕ ଶݕ  ଵݕ

 ଵ଴ݑ  ଽݑ ଼ݑ ଻ݑ ଺ݑ ହݑ ସݑ ଷݑ ଶݑ  ଵݑ

 ݑ ݕ

System 

Figure 1.1: Black Box Modeling 

System Side Identifier Side 

(a) Observations Transmission over Reliable Link 

Reliable Link 
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Observations loss during wireless transmission might deteriorate the quality of the 

produced model and deter the modeling process, especially when modeling the system 

on-line or instantaneously because only current observations will be used to obtain the 

model unlike off-line case where batch of observations is used to obtain the model. 

 

1.3 Motivated Work 

   

Networked control system with random observations loss is a subject of current research 

in the field of control theory and applications. The current research looks into the system 

controllability over communication links subject to random observation loss. For 

example, in [2] Kalman filter has been used to estimate the state of a controlled system 

using observed data provided by sensor network for control purpose. The effect of 

observations loss on the statistical convergence properties of Kalman filter has been 

studied, where observations arrival has been modeled as a Bernoulli process and it has 

been assumed that observation measurements are received in full or lost completely. It 

has been showed the existence of a critical value for observations arrival rate, beyond 

which a transition to unbounded error occurs and it has been given the upper and lower 

bounds on this expected error. In [3] again Kalman filter has been studied where it is used 

to estimate the state of a controlled system for control purpose, but this time Kalman 

filtering problem has been studied with inclusion of partial observation loss. Observations 

arrival has been modeled as a Bernoulli process and the statistical convergence properties 

of Kalman filter as a function of the network throughput has been investigated. A 

 ଵ଴ݕ  ଽݕ ଼ݕ ଻ݕ ଺ݕ ହݕ ସݕ ଷݕ ଶݕ  ଵݕ

 ଵ଴ݑ  ଽݑ ଼ݑ ଻ݑ ଺ݑ ହݑ ସݑ ଷݑ ଶݑ  ଵݑ

Figure 1.2: Observations Transmission over Reliable and Lossy Links     

System Side Identifier Side 

Lossy Link 

(b) Observations Transmission over Lossy Link 
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throughput region that guarantees the error convergence and an unstable throughput 

region such that the error is unbounded have been found. In [4] optimal estimation design 

in networked control system subject to random delay and packet loss has been studied, 

where the sensors measurement of sampled linear system are transmitted to the estimator 

side via a generic digital communication network. The network has been modeled as a 

module between the plant and the estimator which delivers observation measurement to 

the estimator with possibly random delays and allows also for packets with infinite delay 

which corresponds to packet loss. Two time-invariant estimator architectures have been 

presented and it has been showed that the stability does not depend on the packet delay 

but only on the packet loss probability. Algorithms to compute critical packet loss 

probability and estimators performance in terms of their error have been given and 

applied to some numerical examples. In [5] the stability of discrete-time networked 

control systems over a communication channel subject to packet loss has been studied, 

where the behavior of packets loss has been modeled as a Bernoulli process. A necessary 

and sufficient condition for stability has been obtained and a packet dropping margin has 

been introduced as a measure of stability robustness of a system then a formula for it has 

been derived. Finally a design method has been proposed for achieving a large packet 

dropping margin.  

 

The previous work has studied the performance of control systems over lossy 

network which has motivated this research work on system identification over lossy 

network. The presented work in this thesis looks into the performance of system 

identification approaches over a communication channel subject to random observations 

loss. 

 

1.4 Research Objectives 

 

The objective of this research work is to model a sampled linear system of first order 

based on information obtained from its observations which are subject to random loss 
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across the transfer medium. This main objective can be divided into the following sub-

objectives:   

 

• Investigating the performance of system identification approaches during 

observations loss. 

 

• Highlighting the influential factors that could mitigate the observations loss effect 

on the modeling process. 

 

• Optimizing the learning algorithms according to the special features and structure 

of each one of them to improve the performance during observations loss. 

 

1.5 Research Scope 

 

This research work will discuss the performance of least squares (LS) algorithm (as an 

example of off-line approaches) during observations loss, then it will focus on 

investigating and optimizing three categories of on-line linear learning algorithms when 

observations are subject to random loss, namely:  

  

• First order learning algorithms (least means square (LMS) and normalized least 

mean square (NLMS)).  

 

• Second order learning algorithms (recursive least squares (RLS) and recursive 

instrumental variable (RIV)).  

 

• High order learning algorithms (moving average (MA) and normalized moving 

average (NMA)).    
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Throughout this research work only parametric identification and particularly first 

order autoregressive with exogenous input (ARX) model structure adopted on linear 

network will be considered.   

 

1.6 Research Methodology 

 

This thesis is conducted according to the following four phases: 

 

Phase One: 

 

• Reviewing system identification basics. 

 

• Simulating wireless links effect on the transmitted observations. 

 

• Discussing LS algorithm performance during observations loss.  

 

Phase Two: 

  

This phase starts the on-line algorithms investigation and optimzation with the 

algorithms of the first order. 

 

• Investigating the sampling process role in mitigating the observations loss effect. 

  

• Investigating the observations loss effect on the output error behavior and its 

reflection on the first order algorithms performance.  

 

• Optimizing each of LMS and NLMS on the ground of the obtained results from 

the previous two steps. 
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Phase Three: 

 

This phase continues the on-line algorithms investigation and optimzation with 

the algorithms of the second order. 

  

•  Investigating the observations loss effect on the covariance matrix structure and 

its consequences on the second order algorithms performance.  

 

• Employing the obtained results until this point to optimize each of RLS and RIV. 

 

Phase Four: 

  

This phase ends the on-line algorithms investigation and optimzation with the 

algorithms of the high order. 

 

•  Introducing some Data Store Management (DSM) strategies to reduce the 

observations loss effect.  

 

• Optimizing each of MA and NMA by adopting the introduced DSM strategies and 

exploiting the obtained results from the second phase. 

  

1.7 Thesis Organization  

 

The thesis begins at chapter 1 which describes the problem statement, motivated work, 

research objectives, research scope and research methodology. The chapter also lists 

down the thesis contributions. 
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Chapter 2 reviews system identification basics and simulates the wireless links 

effect on the transmitted observations. It also discusses the least squares (LS) algorithm 

performance during observations loss.   

 

Chapter 3 starts the investigation and optimization of the instantaneous learning 

algorithms with the algorithms of the first order. The chapter addresses the role of 

sampling process in mitigating observations loss effect. It also looks into the output error 

behavior during observations loss and its reflection on the first order algorithms 

performance. The chapter then proceeds to optimize the first order algorithms on the 

ground of the obtained results. 

  

Chapter 4 continues the investigation and optimization of the instantaneous 

learning algorithms with the algorithms of the second order. The chapter shows the effect 

of observations loss on the covariance matrix structure and its consequences on the 

second order algorithms performance. The chapter then proceeds to propose a technique 

for the second order algorithms to mitigate the effect of observations loss.   

  

Chapter 5 ends the investigation and optimization of the instantaneous learning 

algorithms with the algorithms of the high order. The chapter addresses the role of the 

data store management (DSM) strategies in mitigating observations loss effect. The 

chapter then introduces some DSM strategies and proposes some methods to improve the 

performance of the high order algorithms.     

 

Chapter 6 concludes the work and shed some light on the possible future work 

that can be carried over based on the foundation work laid out by this research. 

 

1.8 Thesis Contribution  

 

The earlier work in this thesis has tried to implement linear off-line system modeling over 

simulated wireless environment. Off-line learning approach during observations loss was 
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still able to model the system which can be attributed to the fact that off-line approach 

obtains the model from batch of the system observations and therefore observations loss 

does not deteriorate the learning process drastically as it would be the case for on-line 

approach.    

 

The main contribution of the thesis is optimizing instantaneous learning 

algorithms for instantaneous system modeling with lost observations. The thesis has 

adopted oversampling rule to compensate the lost observations and therefore the learning 

algorithms should be robust to work with correlated observations (when wireless link is 

strong) as well as random structure of observations (when wireless link is weak). The 

optimized algorithms in this thesis combine all the mentioned requirements above. 

 

The thesis has proposed a technique known as sine function based de-correlation 

(SD) for first order algorithms to treat the correlation effect instantaneously at the 

identifier side. New version of LMS known as LMS-SD has been introduced by adopting 

SD technique on LMS algorithm. The thesis has also proposed another technique known 

as error displacement based update (EDU) to mitigate the undesired contribution of the 

output error in the weights update process during observations loss. Another version of 

LMS known as LMS-SDEDU has been proposed by adopting a combination of SD and 

EDU techniques on LMS algorithm.   

 

The thesis has also proposed an optimized second order learning algorithm for 

system modeling over lossy network. The optimized algorithm known as RLS with 

weights update based on observations continuity (RLS-OC) and it uses simple weights 

update skipping technique to improve the performance.    

    

The thesis has further introduced two data store management strategies known as 

error measurement (EM) and intelligent data store management (IDSM). New version of 

MA known as MA-EMSD has been introduced by adopting a combination of EM 

strategy and SD technique on MA algorithm. Another version of MA termed as 
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intelligent moving average (IMA) has been proposed by adopting a combination of IDSM 

strategy and SDEDU method on MA algorithm.     

    

Other contribution of the thesis will be summarized as follows: 

 

1. The proposed SD technique and SDEDU method have been also adopted on 

NLMS algorithm. 

 

2. The RIV algorithm has been tested using the proposed weights update based on 

observations continuity technique. 

 

3. The NMA has been tested for both EMSD method and the intelligent approach. 

 
4. Using Matlab/SimulinkTM environment wireless links effect on the transmitted 

observations has been simulated and robust code of real time s-function has been 

written to implement the optimized algorithms.      
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CHAPTER TWO: SYSTEM IDENTIFICATION 

 

2.1 Introduction 

 

In many engineering circumstances there is a need to model a system, such circumstances 

might be the need to achieve deeper knowledge about the system, predict the system 

output, simulate the system behavior under certain conditions or extract information 

about how a regulator can be designed to control the system output [6]. 

  

Sometimes models can be constructed from physical laws and principles which is 

known as physical modeling. However, when system becomes complicated it is difficult 

or impossible task to find the physical laws that govern its behavior. Moreover, physical 

modeling is considered time consuming and needs a lot of mathematical derivations. In 

such cases the alternative option is to model the system using system identification 

approaches. 

 

System identification is the art of understanding the underlying function of the 

system by observing only its input and output. System identification deals with the 

problem of modeling dynamic system (see Figure 2.1) given an observed output signal 

    .(ݑ) and the corresponding input signal (ݕ)

 

 

 

 

  
  

  

System identification field is divided broadly into parametric and non-parametric 

identification. In parametric identification models involve parameters (e.g. coefficients of 

System  ݑݕ

Figure 2.1: System with Input u and Output y 
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difference equation) while in non-parametric identification models do not involve 

parameters and they are usually graphical representations (e.g. impulse response 

function) [7]. This work considers only parametric identification for modeling purpose.   

  

There are many standard model structures for parametric identification; some of 

the popular ones are the following: 

 

• Autoregressive (AR): 

 

௞ݕ ൌ െ ܽଵ ݕ௞ିଵ െ ܽଶ ݕ௞ିଶ െ ڮ െ ܽ௡ ݕ௞ି௡ ൅  ݁௞ 
 

 
• Autoregressive with exogenous input (ARX): 

 
  

௞ݕ ൌ െ ܽଵ ݕ௞ିଵ െ ܽଶ ݕ௞ିଶ െ ڮ െ ܽ௡ ݕ௞ି௡ 
                       ൅ ܾଵ ݑ௞ିଵ ൅ ܾଶ ݑ௞ିଶ ൅ ڮ ൅ ܾ௠ ݑ௞ି௠ ൅ ݁௞  

 
   

• Autoregressive moving average with exogenous input (ARMAX): 

                                                                        
௞ݕ ൌ െ ܽଵ ݕ௞ିଵ െ ܽଶ ݕ௞ିଶ െ ڮ െ ܽ௡ ݕ௞ି௡ 

           ൅ ܾଵ ݑ௞ିଵ ൅ ܾଶ ݑ௞ିଶ ൅ ڮ ൅ ܾ௠ ݑ௞ି௠ 
                 ൅ ݁௞ ൅  ܿଵ ݁௞ିଵ ൅ ܿଶ ݁௞ିଶ ൅ ڮ ൅ ܿ௟ ݁௞ି௟  

  

where ݕ is the system output, ݑ is the system input, ݁ is the modeling error and each of 

ܽ௜, ܾ௜ and ܿ௜ are the model weights to be estimated. 

 

Dynamic system modeling is usually carried out using ARX model structure [8], 

only ARX model structure will be considered throughout the thesis since all the 

benchmark test problems in this work are dynamic systems (see appendix A). On other 

hand, this research work investigates and optimizes instantaneous learning algorithms 

rather than model structures.      

 

(2.1)

(2.2)

(2.3)
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Parametric identification can be divided into two different forms of weights 

adjustment which are off-line and on-line identification. In off-line or batch identification 

system observations are gathered in batch then they are processed to adjust the model 

weights. In on-line or instantaneous identification system observations are processed 

instantaneously to adjust the model weights.    

  

This chapter will discuss in brief off-line identification during observations loss. 

The further chapters of the thesis will look into the instantaneous identification which 

will be the scope of this research work. 

      

2.2 Simulation of Wireless Links Effect  

 

The assumptions that have been made in this work to simulate the effect of wireless links 

on the transmitted observations are the following: 

 

• System input/output observations are to be time stamped, encapsulated into 

packets (each packet consists of one pair of input and output observations) and 

transmitted over wireless links to the identifier.  

 

• The packet is considered lost if it has not been received after a certain prescribed 

time and lost packets are not retransmitted.   

 

• The identifier receives observations in full or none and no partial loss is 

considered. 

  

• The packets arrival at the identifier side is modeled via Bernoulli process (ߚ௞) 

which has two possible values: 0 and 1 at any time instant, where: 

 

 
0   Indicates the packet has been lost completely during transmission.  

1   Indicates the packet has been received successfully.   
 = ௞ߚ
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The probability of ሺߚ௞ ൌ 0ሻ is invariant with time and known as packet dropping 

probability (PDP) [5].  

 

Modeling observations arrival via Bernoulli process with probability of 

observation received correctly (1-PDP) is corresponding to the binary symmetric channel 

(BSC) with probability of error (PDP). The throughput of this channel (for a fixed 

sampling rate and a given packet size) is the product of the sampling rate, the packet size 

and the probability of observation received correctly [3] as it is shown below:   

 

ݐݑ݌݄݃ݑ݋ݎ݄ܶ ൌ sampling rate ൈ  packet size ൈ  ሺ1 െ PDPሻ 

 

Since the probability (1-PDP) is a scaled version of the throughput for a fixed 

sampling rate and a given packet size, it can be used as a reference for the channel 

throughput. In this research work PDP will be used to describe the rate of observations 

loss.   

   

Observations arrival modeling via Bernoulli process is illustrated in Figure 2.2. In 

the figure yt and ut are the transmitted output and input respectively, yr and ur are the 

received output and input respectively and ŷ is the estimated output. 

 

 

 

 

 

 
 
 

 

   Figure 2.2: Observations Arrival Modeling via Bernoulli Process 

(2.4)

ŷ 
௧ݕ ݑ

௧ݑ

ߚ ൌ 1

ߚ ൌ 0
௥ݕ

ߚ ൌ 0

ߚ ൌ 1

௥ݑ

Identifier 

Bernoulli 
Process

System
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The transmitted signal (St) and the received one (Sr) over the lossy link are 

depicted in Figure 2.3 at different settings of PDP. From the graphs it can be seen that as 

PDP increases the received signal deteriorates.  

  

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
 

 

2.3 Least Squares (LS) 

  

Least squares algorithm is an off-line approach for modeling dynamic system by 

processing batch of its input/output observations. Least squares estimator [6] can be 

derived by rewriting ARX model in equation (2.2) using the backward shift operator 

 :as follows (ଵିݍ)

(a) PDP = 0.2    (b) PDP = 0.4 

   (c) PDP = 0.6   (d) PDP = 0.8 
Figure 2.3: Transmitted and Received Signals at Different Settings of PDP 
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where:  

ଵሻିݍሺܣ ൌ 1 ൅  ܽଵିݍଵ ൅ ڮ ൅  ܽ௡ିݍ௡ 

 

ଵሻିݍሺܤ ൌ  ܾଵିݍଵ ൅ ڮ ൅ ܾ௠ିݍ௠ 

 

The model in equation (2.5) can be written equivalently as a linear regression as follows: 

 

௞ݕ ൌ ߮௞
ߠ ் ൅ ݁௞ 

where: 

߮௞
் ൌ ሾെݕ௞ିଵ … െ ௞ିଵݑ    ௞ି௡ݕ   ௞ି௠ሿݑ …

 

ߠ   ൌ ሾܽଵ … ܽ௡  ܾଵ … ܾ௠ሿ்  

 

Assuming that  ݑଵ , ݕଵ, … ݑ௠ ,  ݕ௡ are available, the lest squares estimation (ߠ෠) for the 

weights vector (ߠ) is defined as the minimization of the sum of the squared equation 

errors:  

 

 

 

  

 

 

 

  

Now by setting the gradient of ேܸሺߠሻ to zero: 

 

൥
1
ܰ ෍ ߮௞߮௞

்
ே

௞ୀଵ

൩ ෠ߠ ൌ
1
ܰ ෍ ߮௞

ே

௞ୀଵ

 ௞ݕ

(2.8)

(2.13)

(2.5)

(2.6)

(2.9)

(2.11)ேܸሺߠሻ ൌ
1
ܰ ෍ ݁௞

ଶ
ே

௞ୀଵ

 

ଵሻିݍሺܣ ௞ݕ ൌ ଵሻିݍሺܤ ௞ݑ ൅ ݁௞

(2.12)ேܸሺߠሻ ൌ
1
ܰ ෍ ௞ݕ

ଶ
ே

௞ୀଵ

െ ൥
2
ܰ ෍ ௞߮௞ݕ

்
ே

௞ୀଵ

൩ ߠ ൅ ்ߠ ൥
1
ܰ ෍ ߮௞߮௞

்
ே

௞ୀଵ

൩  ߠ

 

(2.7)

(2.10)
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Assuming the matrix in (2.13) to be nonsingular:  

 

෠ߠ ൌ ൥
1
ܰ ෍ ߮௞߮௞

்
ே

௞ୀଵ

൩

ିଵ

൥
1
ܰ ෍ ߮௞

ே

௞ୀଵ

 ௞൩ݕ

 

Equation (2.14) is the solution of the least squares weights estimation. 

 

2.4 Off-line System Identification Setup over Wireless Network 

 

Figure 2.4 illustrates the setup of off-line system identification over wireless network, the 

figure shows that the system observations are sent to the identifier over wireless network 

and stored upon their arrival in a store at the identifier side, after receiving the whole 

training set the stored observations is processed in order to obtain the model. In the figure 

yt and ut are the transmitted output and input respectively, yr and ur are the received 

output and input respectively and ŷ is the estimated output. 

 

 

 

 

 

 

 
 

 

 

2.5 Least Squares Performance over Lossy Link 
 

Test problem I (refer to appendix A) used to show the performance of the least squares 

algorithm at different settings of PDP. Figure 2.5 shows the output of the system (actual 

output) and the model (estimated output).  

(2.14)

    
System 

௥ݕ

௥ݑ

Store 

 ௧ݕ ݑ

 ௧ݑ
Wireless 
Network 

System 

ŷ
Identifier 

Figure 2.4: Off-line System Identification Setup over Wireless Network 
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Figure 2.5: Least Squares Performance over Lossy Link at Different Settings of PDP 

(c) PDP = 0.6 

(a) PDP = 0.2 

(d) PDP = 0.8 

(b) PDP = 0.4 
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The period between 1550 and 1650 in the graphs shows clearly the estimation 

error at the sharp edges of the signals. Looking through the graphs it can be seen that as 

PDP increases the estimation error increases.   

  

The performance of the least squares algorithm is acceptable to some extend since 

it is still able to capture the changes in the system dynamics.  This capability of modeling 

the system off-line during observations loss can be attributed to the fact that off-line 

modeling is carried out by processing batch of the system observations, so even when 

some of these observations are lost the algorithm will be still having set of observations 

from which it can extract information about the system dynamics. 

 

2.6 Conclusion  

 

This chapter has reviewed basic concepts of system identification, it has started by giving 

brief introduction to system identification and showed how wireless links effect on the 

transmitted observations can be simulated, then it has proceeded to discuss the least 

squares algorithm performance (as an example of off-line identification approaches) 

during observations loss.    

 

Simulation results have showed that the least squares algorithm performance 

during observations loss is acceptable to some extend since it is still able to capture the 

changes in the system dynamics.  With careful choice of the excitation signal informative 

observations can be produced and better models can be constructed under observations 

loss circumstances using off-line approaches.    

 

In order to keep focus on the thesis contribution this research report will discuss 

only instantaneous system modeling with lost observations from next chapter onwards.   
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CHAPTER THREE: FIRST ORDER INSTANTANOUS LEARNING 

ALGORITHMS 

 

3.1 Introduction 

 

Traditionally on-line system identification using linear networks has been performed by 

assuming a standard linear structure for the model and adjusting the structure weights 

based on the system observations using an instantaneous learning algorithm.   

 

Instantaneous learning algorithms are procedures used to adjust the model 

structure weights based on the system observations. Thus, whenever a new observation is 

available the instantaneous learning algorithm measures the gradient of the performance 

surface for the current model and updates the weights in order to minimize the error 

criterion. The highly cited LMS algorithm by Widrow and its normalized version 

(normalized least mean square (NLMS)) are examples for first order instantaneous 

learning algorithms, both of them have been used in wide range of applications due to 

their simplicity, minimal computational complexity, minimal memory requirements and 

the strong theoretical basis for weights convergence [9][10]. 

 

Instantaneous learning algorithms are well studied and applied in the context of 

system identification when system observation are well sampled and fully received in 

orderly manner at the identifier side. When considering wireless network as a transfer 

medium, random observations loss becomes unavoidable (due to wireless impairments) 

which deteriorates the quality of the produced model using these algorithms.          

 

The objective of this chapter is to investigate and optimize each of LMS and 

NLMS algorithms to improve their performance during observations loss. The chapter 

highlights the role of the sampling process and shows that oversampling improves the 

performance. Since oversampling could lead to correlated observations at the identifier 
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side (when wireless link is strong), a new technique is proposed to treat the correlation 

effect instantaneously at the identifier side.  The chapter also addresses the behavior of 

the output error component during observations loss where it contributes with high 

magnitude in the weights update process and directs the algorithm sub-optimally. 

Therefore, the chapter introduces another technique to reduce this undesired contribution 

of the output error.  

 

3.2 On-line System Identification Setup over Wireless Network  

 

The difference between off-line and on-line system identification setups over wireless 

network is shown in Figure 3.1. As it can be seen from the figure in off-line case the 

system observations are stored upon their arrival in a store and processed after receiving 

the whole training set, in on-line case there is no store and the received observations are 

processed instantaneously. In the figure yt and ut are the transmitted output and input 

respectively, yr and ur are the received output and input respectively and ŷ is the estimated 

output.   

 

 

 

  

 

 

 

 

 

 

 

 

  

 

Figure 3.1: The Difference between Off-line and On-line System Identification Setups over 
Wireless Network
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3.3 Least Mean Square (LMS) 

 

The learning rule for LMS [11] is normally formulated as the minimization of the 

instantaneous mean squared output error (MSE): 

 

௞ሻߠሺܧ ൌ
1
2 ݁௞

ଶ ൌ
1
2

ሺݕ௞ െ ŷ௞ሻଶ 

 

where ݕ௞ is the system output and ŷ௞ is the model estimation at time ݇. The systems 

under consideration are linearly dependent on a given set of weights. Thus: 

 

ŷ௞ ൌ  ߮௞
 ௞ିଵߠ்

 

where ߮௞ is an n-dimensional regressor vector and ߠ௞ିଵ is an N-dimensional weights 

vector. The weights update rule is given as follows:   
 

௞ߠ ൌ ௞ିଵߠ  ൅  ௞ݏ ߣ

 

where ߣ is the learning rate (normally set to constant) and ݏ௞ is an N-dimensional search 

direction vector. When using the Widrow’s LMS method the search direction is set as the 

negative of the gradient of the instantaneous MSE cost function as follows: 

  

௞ݏ ൌ  െ
߲

ߠ߲ ൫ܧሺߠ௞ሻ൯ ൌ  ݁௞߮௞ 

 

The search direction in equation (3.4) is actually parallel to the regressor vector. 

During weights update the actual step taken along the direction of the regressor vector is 

equal to the learning rate (ߣ) multiplied by the output error (݁௞).    

 

 

 

(3.4)

(3.3)

(3.2)

(3.1)
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3.4 Observations Loss Effect 

 

Equation (3.3) shows the classical LMS algorithm which assumes periodic weights 

update where the observations reach the identifier in predefined sampling intervals. Since 

observations arrival is modeled via Bernoulli process (ߚ௞ ) during observation loss (see 

chapter 2), the weights update would depend on Bernoulli process behavior which leads 

to stochastic weights update as it is shown by the following equation: 

 

௞ߠ ൌ ௞ିଵߠ  ൅  ௞ݏ ߣ ௞ߚ

 

Test problem I (refer to appendix A) used to show the LMS performance at 

different settings of packets dropping probability (PDP). The green curve in Figure 3.2 

shows how the error minimizes until it settles at relatively small value in absence of 

observations loss while the other curves show that as PDP increases the error increases.   

 

 

  

 

 

 
 

 
 
  
 
 
 
3.5 Sampling Process Role 

 

In system identification process system is modeled from samples of its information, such 

sampling process leads to information losses and therefore sampling interval should be 

(3.5)

Figure 3.2: LMS Performance at Different Settings of PDP 
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chosen carefully to make these losses insignificant. In normal conditions the rule of 

thumb is to select the sampling interval so that it gives 4 to 6 samples during the rise time 

of the system step response [12]. When considering wireless network as a transfer 

medium, the observations availability at the identifier side becomes hard to guarantee. 

Thus, the rule of thumb mentioned above can’t be applied during observations loss. 

 

The rule adopted in this research work for wireless system identification is to 

oversample the system in order to compensate the lost observations during wireless 

transmission. Next section looks into an example shows how oversampling improves the 

performance of LMS algorithm during observations loss. 

 

3.5.1 Example of Oversampling to Aid Modeling Process  

 

In this example the step response of the system in test problem I (refer to appendix A) is 

plotted at different settings of sampling time (Ts), then the system is modeled at the 

recommended range of sampling time according to the rule of thumb and at another 

smaller sampling time (oversampling) to show the performance improvement.   

  

Figure 3.3 depicts the step response of the system at different settings of Ts, 

according to the rule of thumb it can be seen from the graphs 3.3(a) and 3.3(b) that Ts = 

0.1s and Ts = 0.13s are disqualified since they give 10 and 7 samples respectively during 

the rise time, Ts = 0.25s in graph 3.3(f) is also disqualified since it gives 3 samples 

during the rise time.     

 

In normal conditions sampling time choice would be either of those in the graphs 

3.3(c), 3.3(d) and 3.3(e) since they give 4 to 6 samples during the rise time. In the next 

part of this example the sampling time Ts = 0.13s will be considered in addition to those 

which fulfill the rule of thumb to sample the system for modeling purpose.  
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Figure 3.4 shows the LMS performance at different settings of PDP when 

sampling the system at Ts = 0.13s, Ts = 0.16s, Ts = 0.19s and Ts = 0.22s. It can be seen 

from the figure that the smallest error is at Ts = 0.13s for all the different settings of PDP.       

Figure 3.3:  Step Response of Test Problem I at Different Settings of Ts 
(e) Ts = 0.22s (f) Ts = 0.25s 

(c) Ts = 0.16s (d) Ts = 0.19s 

(a) Ts = 0.1s (b) Ts = 0.13s 
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(a) PDP = 0.3

(b) PDP = 0.6

(c) PDP = 0.9

Figure 3.4: LMS Performance at Different Settings of Ts and PDP 
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Both average and standard deviation of the instantaneous normalized mean square 

error (NMSE) over last 20000 iterations (refer to appendix A) have been recorded in 

Table 3.1 to evaluate the performance of LMS at different settings of Ts and PDP. 

  

 
 

Measure 
 

0.3 

 

0.6 

 

0.9 

 

0.13 

Average 0.0047 0.0314 0.4496 

Standard 
Deviation

7.7480e-005 3.1168e-004 0.0136 

 

0.16 

Average 0.0104 0.0537 0.5268 

Standard 
Deviation

1.5060e-004 5.0707e-004 0.0160 

 

0.19 

Average 0.0184 0.0798 0.6474 

Standard 
Deviation

2.4294e-004 4.6440e-004 0.0325 

 

0.22 

Average 0.0284 0.1122 0.6809 

Standard 
Deviation

3.3444e-004 7.8923e-004 0.0505 

 

  

3.6 Correlation Effect 

 

Observations loss across wireless network is of random nature which means at any time 

instant transmitted observations might be received or lost. In presence of observations 

loss oversampling helps to compensate the lost observations, but in contrary in absence of 

observations loss oversampling leads to correlated observations at the identifier side [13].  

     

Since the performance of LMS is strongly dependent on the nature and quality of 

the presented training data it is rare for the weights to converge to the optimal weights 

vector (כߠ) when the presented data are correlated. Instead the weights normally drift 

around an area known as minimal capture zone rather than to their desired values [13] 

[14].  

Table 3.1:  Numerical Results for LMS Performance at Different Settings of Ts and PDP 

Ts 

PDP 
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Figure 3.5(a) shows the weights trajectory for near orthogonal training data where 

the weights vector converges directly towards כߠ, graph 3.5(b) shows correlated training 

data where the weights vector drifts around minimal capture zone domain. The term ݄௜ in 

the figure is an (N-1)-dimensional solution hyperplane in N-dimensional weights space 

and the intersection of the two hyperplanes lies כߠ.    

 
 

 

 

 

 

 
 

  
Correlation level between observations can be measured by computing the 

correlation angle (ܣ௖௢௥௥) between the current regressor vector (߮௖) and the previous one 

(߮௣), as it is demonstrated by equation (3.6) and Figure 3.6 below: 
 

௖௢௥௥ܣ ൌ ቤܿିݏ݋ଵ ቆ
߮௖

்߮௣

ԡ߮௖ԡ ฮ߮௣ฮ
ቇቤ 

 

 
 
 
 
 
 
 

 

  

The value of ܣ௖௢௥௥ is confined between 0 and π 2⁄  by subtracting it from π when 

it is greater than π 2⁄ . The lower the correlation angle the greater the correlation level and 

π 2⁄  represents orthogonal vectors while 0 represents completely correlated vectors.   

(3.6)

Figure 3.6: Correlation Angle between the Current and Previous Regressor Vectors 

Figure 3.5: Weights Trajectory for a Given Training Data  

߮௖ ܣ௖௢௥௥ 
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(a) Weights Vector Converges to Optimal Value  (b) Weights Vector Converges to Minimal Capture Zone  
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Test problem II-A (refer to Appendix A) used to show the relation between each 

of the sampling time, correlation angle and weights convergence. The desired weights 

vector for the test problem is  כߠ ൌ ሾ1,0.2ሿ. Figure 3.7 shows the instantaneous 

correlation angle and the weights trajectory at different settings of sampling time.  

 

 

  

 

 

 

 

 

 
                                                                        

   
  

 

 

 

 

 

 

 
                                                                               
  

  

The above figure reveals how as the system sampled slowly the correlation angle 

increases and the weights attain faster to their optimal values. Graph 3.7(a) shows that at 

Ts = 0.3s the largest correlation angle is equal to 0.15rad while graph 3.7(b) shows that at 

Ts = 0.5s the largest correlation angle is equal to 0.4rad and finally graph 3.7(c) shows 

that at Ts = 0.7s the largest correlation angle is equal to 0.8rad, so as Ts  increases (slow 

Figure 3.7: Correlation Angle and Weights Trajectory at Different Settings of Ts 

(d) Weights Trajectory(c) Correlation Angle at Ts = 0.7s

(a) Correlation Angle at Ts = 0.3s (b) Correlation Angle at Ts = 0.5s
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sampling) correlation angle increases. Now by looking at graph 3.7(d) it can be seen that 

at Ts = 0.3s the weights vector tends to drift around and finally converges slowly to כߠ 

while at Ts = 0.5s the weights vector takes shorter path to כߠ and finally at Ts = 0.7s the 

weights vector takes the shortest path among the others between the initial value and כߠ.  

 

It can be concluded that oversampling leads to correlated observations at the 

identifier side when consecutive observations reach without loss which causes the 

learning algorithm to function sub-optimally. So there is a need to treat the correlated 

observations instantaneously at the identifier side as long as oversampling is important to 

compensate the lost observations. Next section looks into an instantaneous technique 

adopted on LMS algorithm in order to treat the correlation effect which will be likely to 

happen when wireless transmission is good.  

 

3.7 Sine Function Based De-Correlation (SD) 

 
Correlation effects can be treated during weights update by adapting the update step 

length taken parallel to the observations direction with the correlation level between the 

observations. Typically the update step length should be small as observations tend to be 

correlated and large as they tend to be orthogonal. Since the learning rate (λ) is one of the 

main factors that control the update step length (see equation (3.3)), it should be adaptive 

in nature with the correlation level between the observations.   

  

This section proposes an instantaneous technique to treat the correlation effect at 

the identifier side known as sine function based de-correlation (SD). The SD technique in 

short sets the learning rate to the sine of the correlation angle and since the correlation 

angle ranges between 0 and  π 2⁄  , the learning rate will be changing only in the range 

between 0 and 1. Thus: 

 

௦௜௡ߣ  ൌ sinሺܣ௖௢௥௥ሻ (3.7)
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Equation (3.7) shows that when observations are completely correlated (ܣ௖௢௥௥ ൌ

0) weights will be not updated as ߣ௦௜௡ will be equal to 0 while the largest step size will be 

taken when observations are orthogonal (ܣ௖௢௥௥ ൌ ߨ 2⁄ ) as ߣ௦௜௡ will be equal to 1.  

 

Test problem II-A (refer to appendix A) used to show the weights trajectory of the 

traditional LMS and LMS with the adaptive learning rate for correlated training data. The 

desired weights vector for the test problem is  כߠ ൌ ሾ1,0.2ሿ. Figure 3.8 shows that LMS 

with the adaptive learning rate takes short path to the optimal values while the traditional 

LMS tends to drift around and finally converges very slowly. 

 

 

 

 

 

 

 

 

 

 

 
 

 

In absence of observations loss the received observations will tend to be 

correlated because of oversampling. Hence, the proposed adaptive learning rate (ߣ௦௜௡) 

will be used to reduce the correlation effect. In presence of observations loss the loss 

itself will influence the sampling intervals and therefore the received observations will 

tend to be uncorrelated.  Moreover, during observations loss the received observations 

will be separated in random intervals and therefore they will be not informative. Hence, 

instead of ߣ௦௜௡ a small constant learning rate will be considered in presence of 

observations loss.   

Figure 3.8: Weights Trajectory of the Traditional LMS and LMS with the Adaptive Learning Rate 
for Correlated Training Data 
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The flowchart in Figure 3.9 illustrates the procedure of LMS-SD algorithm, where 

ܿ is a small constant learning rate and ܨ௟ is a loss flag indicates loss event when it equals 

1 and it is initially set to 0. The procedure starts by checking whether the current packet 

has been lost or not, where in case of loss ܨ௟ is set to 1 and the procedure starts over to 

check for the next packet otherwise the regressor vector (߮௞) is formed then ܨ௟ is checked 

to determine whether the previous packet has been lost or not, where in case of loss the 

small constant learning rate (ܿ) is considered otherwise the adaptive learning rate (ߣ௦௜௡) is 

considered. Once the learning rate has been determined the procedure computes the 

search direction (ݏ௞) and proceeds to update the weights (ߠ௞) and compute the output 

estimation (ݕො௞). The procedure then checks whether the obtained model is accepted or 

not, where in case of acceptance the learning process ends otherwise ܨ௟ is set to 0 since 

the current packet has been received successfully and the procedure starts over.            

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.9:  LMS-SD Algorithm Flowchart 
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Figure 3.10 shows the performance of LMS-SD in comparison with the traditional 

LMS at different settings of PDP. Graph 3.10(a) shows the algorithms performance in 

absence of loss where LMS-SD converges faster due to the adaptive learning rate. The 

rest of the graphs (3.10(b) – 3.10(d)) show that as PDP increases the performance 

degrades in general but LMS-SD performs better compared to the traditional LMS.  

 

 
   
 
 
 
 
 
 
 
 
 
 
                                                                                                                 

  

 
 
  
  
 
 
 
 
 
 
 

                                                                                  

 
3.8 Error Displacement based Update (EDU) 

  

Output error component is one of the influential factors in the weights convergence 

process since it directs the weights update and contributes in the update step length (see 

equations (3.3) and (3.4)). When observations are fully received the output error 

Figure 3.10: LMS-SD and the Traditional LMS Performance at Different Settings of PDP 

(a) PDP = 0.0 (b) PDP = 0.3 

(c) PDP = 0.6 (d) PDP = 0.9 
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minimizes until it becomes equal to 0 as the weights attain their optimal values but during 

observations loss the output error contributes with high magnitude in the search direction 

 which leads to significant changes in the weights update direction. Test problem II-A (௞ݏ)

(refer to appendix A) used to show the weights and the output error behavior under loss 

and loss free situations. The desired weights vector for the test problem is  כߠ ൌ ሾ1,0.2ሿ. 

Graph 3.11(a) shows that in absence of loss the output error minimizes until it becomes 

equal to 0 as the weights attain their optimal values. From the graphs (3.11(b) – 3.11(d)) 

the output error seems to be not directing the weights to their optimal values and 

contributing with high magnitude in the weights update which destroys the learning 

process.  

 

 

 
 
 
 
 
 
 
 
 
 
 
   
                                                                                                                     
 
 
 
 
 
 
 
 
  
 
 
 
 
                                                                                          

Figure 3.11: The Weights and the Output Error Behavior under Loss and Loss Free Situations 

(a) PDP = 0.0 (b) PDP = 0.3 

(c) PDP = 0.6 (d) PDP = 0.9 
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where in case of acceptance the learning process ends otherwise ܨ௟ is set to 0 since the 

current packet has been received successfully and the procedure starts over.      

  

Figure 3.13 shows the performance of LMS-SDEDU in comparison with the 

traditional LMS at different settings of PDP. Graph 3.13(a) shows that in absence of loss 

(PDP = 0) LMS-SDEDU converges faster due to SD technique. The rest of the graphs 

(3.13(b) – 3.13(d)) show the outperformance of LMS-SDEDU as PDP increases since 

EDU reduces the undesired contribution of output error in weights update process.      

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
  

Figure 3.12: LMS-SDEDU Algorithm Flowchart 
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3.9 Normalized Least Mean Square (NLMS) 

 

One disadvantage of LMS algorithm is that the reduction in the output error (݁௞) depends 

on the size of the regressor vector (߮௞) and therefore NLMS has been introduced in 

literature to remedy this disadvantage. This can be shown [11] by driving the relationship 

between ݁௞ and the posteriori output error ( ҧ݁௞) which obtained after updating the weights 

as it is shown in equation (3.3). Thus: 

 

 

Figure 3.13: LMS-SDEDU and the Traditional LMS Performance at Different Settings of PDP

(d) PDP = 0.9 (c) PDP = 0.6

(a) PDP = 0.0 (b) PDP = 0.3 
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ҧ݁௞ ൌ ௞ݕ  െ ߮௞
 ௞ߠ்

 

 ҧ݁௞ ൌ ௞ݕ  െ ߮௞
்ሺߠ௞ିଵ ൅  ௞ ሻݏߣ 

 

ҧ݁௞ ൌ ௞ݕ  െ  ߮௞
்ሺߠ௞ିଵ ൅  ௞߮௞ሻ݁ߣ 

 

ҧ݁௞ ൌ ௞ݕ  െ  ߮௞
௞ିଵߠ் െ ௞ԡ߮௞ԡଶ݁ߣ 

ଶ 

 

ҧ݁௞ ൌ  ݁௞ െ ௞ԡ߮௞ԡଶ݁ߣ  
ଶ  

 

ҧ݁௞ ൌ ሺ1 െ ԡ߮௞ԡଶߣ  
ଶሻ݁௞ 

 

A stable learning rate for LMS should satisfy: 

 

0 ൏ ߣ ൏
2

ԡ߮௞ԡଶ
ଶ | ݎ݋݂  ҧ݁௞| ൏  |݁௞| 

 

This motivates the development of NLMS search direction which is given as follows: 

     

௞ݏ ൌ
݁௞߮௞

ԡ߮௞ԡଶ
ଶ 

 

Since the weights update is normalized, the convergence of NLMS doesn’t depend on the 

regressor vector size.   

 

Both of SD technique and SDEDU method are applicable to NLMS; the only 

difference is that the search direction will be computed according to equation (3.19) 

instead of equation (3.4). Figure 3.14 shows the performance of NLMS-SD in 

comparison with the traditional NLMS at different settings of PDP. From the figure it can 

(3.13)

(3.14)

(3.16)

(3.17)

(3.15)

(3.18)

(3.19)

(3.12)
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be seen that NLMS-SD shows better performance and good capability of handling 

observations loss effect.    

   

 

 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
                                                                             
 

 
 

            Figure 3.15 shows the performance of NLMS-SDEDU in comparison with the 

traditional NLMS at different settings of PDP. The figure shows that NLMS-SDEDU 

outperforms the traditional NLMS in all the different settings of PDP.  

 

 

(c) PDP = 0.6 (d) PDP = 0.9 

(a) PDP = 0.0 (a) PDP = 0.3 

Figure 3.14: NLMS-SD and the Traditional NLMS Performance at Different Settings of PDP
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Table 3.2 summarizes the performance of the optimized algorithms that have been 

proposed in this chapter in comparison with their original versions. Both average and 

standard deviation of the instantaneous normalized mean square error (NMSE) over last 

20000 iterations (refer to appendix A) have been recorded in the table. The results show 

that the optimized algorithms perform better than their original versions during 

observations loss. It can also be seen from the results that the optimized algorithms based 

on SDEDU method performs better than the optimized algorithms based on SD 

technique.  

(c) PDP = 0.6 (d) PDP = 0.9 

(b) PDP = 0.3 (a) PDP = 0.0

Figure 3.15: NLMS-SDEDU and the Traditional NLMS Performance at Different Settings of 
PDP
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Measure  

0.0 
 

0.3 
 

0.6 
 

0.9 

 
 

Average 5.8072e-004 0.0047 0.0314 0.4496 

Standard 
Deviation 2.5140e-006 7.7480e-005 3.1168e-004 0.0136 

 
 
 

Average 5.7551e-004 7.1926e-004 0.0013 0.0333 

Standard 
Deviation 2.1832e-016 1.9043e-005 5.4189e-005 0.0092 

 
 

Average 5.7551e-004 6.9319e-004 9.8657e-004 0.0037 

Standard 
Deviation 2.1832e-016 1.8433e-005 4.7552e-005 3.2900e-004

 
 

Average 5.8089e-004 0.0048 0.0311 0.4518 

Standard 
Deviation 3.8430e-006 1.6100e-004 5.9911e-004 0.0127 

 
 

Average 5.7551e-004 5.8328e-004 6.0607e-004 0.0011 

Standard 
Deviation 1.6695e-016 8.1490e-006 2.5888e-005 5.2776e-004

 
 

Average 5.7551e-004 5.7970e-004 5.7983e-004 6.9815e-004

Standard 
Deviation 1.6695e-016 4.6835e-006 4.4862e-006 9.9496e-005

 
  
3.10 Conclusion  
   

This chapter has investigated the performance of the well known LMS algorithm and its 

normalized version (NLMS) when observations are sent to the identifier over lossy links. 

The chapter has showed the difference between the off-line and on-line system 

identification setups over wireless network then it has proceeded to address the role of the 

sampling process where it has showed that oversampling mitigates the effect of random 

observations loss. Oversampling could correlate the observations at the identifier side 

(when wireless link is strong) which causes the algorithm to function sub-optimally, 

PDP 

Algorithm 

Table 3.2: Numerical Results for the First Order Optimized and Original Algorithms 
Performance at Different Settings of PDP 

LMS 

LMS-SD 

LMS-SDEDU 

NLMS-SDEDU 

NLMS-SD 

NLMS 
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therefore sine based de-correlation (SD) technique has been introduced in this chapter to 

treat the correlation effect instantaneously at the identifier side. By adopting SD 

technique on LMS algorithm a new version of LMS known as LMS-SD has been 

proposed. The performance of LMS-SD has been evaluated in comparison with the 

traditional LMS at different settings of PDP; the comparison has showed that LMS-SD 

performs better than the traditional LMS.   

 

During observations loss the output error contributes with high magnitude in the 

search direction which causes significant changes in the weights update direction and 

destroys the learning process, therefore error displacement based update (EDU) technique 

has been introduced in this chapter to reduce the undesired contribution of the output 

error in the weights update process. By adopting a combination of SD and EDU 

techniques on LMS another version of LMS known as LMS-SDEDU has been proposed. 

LMS-SDEDU sets the learning rate according to SD technique and updates the weights 

according to EDU technique. The performance of LMS-SDEDU has been evaluated in 

comparison with the traditional LMS at different settings of PDP; the comparison has 

showed that LMS-SDEDU is capable of reducing the effect of random observations loss 

and improving the performance. 

 

            Finally both of SD technique and SDEDU method have been applied to NLMS. 

The performances of NLMS-SD and NLMS-SDEDU have been evaluated in comparison 

with the traditional NLMS at different settings of PDP; the comparison has showed the 

superior performance for each of NLMS-SD and NLMS-SDEDU compared to the 

traditional NLMS.   

 

Both of LMS and NLMS are based on first order weights update as there is no 

prior knowledge used for weights update. Next chapter will look into the second order 

algorithms which use prior knowledge for their weights update in form of covariance 

matrix. 
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CHAPTER FOUR: SECOND ORDER INSTANTANOUS LEARNING 

ALGORITHMS 

 

4.1 Introduction 

 

There are various forms of off-line algorithms reported in literature for both linear and 

non-linear systems, the drawback of these algorithms is that their formulation is not 

suitable for on-line or real time applications such as supervised learning, tracking of time 

varying parameters and time series prediction. Therefore, off-line algorithms are 

reformulated to on-line algorithms in order to be applicable to on-line applications [11], 

two examples of this reformulation are the recursive least squares (RLS) and the 

recursive instrumental variable (RIV). 

  

This chapter investigates the performance of RLS and RIV during random 

observations loss. The chapter starts by reviewing the reformulation of the off-line least 

squares (LS) to the on-line RLS then it highlights the capability of RLS in dealing with 

the correlated observations in contrast with the first order algorithms such as LMS and 

NLMS. The chapter then proceeds to discuss the observations discontinuity effect on the 

structure of the covariance matrix (P) and shows how this discontinuity in the covariance 

matrix structure deteriorates the performance of the algorithm. Thus, the chapter proposes 

new algorithm to improve the performance using simple update skipping technique.  

 

The chapter also reviews the reformulation of the off-line instrumental variable 

(IV) to the on-line RIV then it applies the proposed update skipping technique to RIV 

since it shares with RLS the same weights update principles. 
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4.2 Recursive Least Squares (RLS) 

 

RLS algorithm [15] [16] can be derived from the ordinary off-line least squares according 

to the following derivation starting with the weights estimation of the ordinary least 

squares which is given as: 

 

௞ߠ ൌ ൭෍߮௜߮௜்
௞

௜ୀଵ

൱

ିଵ

൭෍߮௜ݕ௜

௞

௜ୀଵ

൱ 

 

where ߮௜ is the regressor vector and ݕ௜ is the system output. Let: 

 

௞ܲ ൌ ൭෍߮௜߮௜்
௞

௜ୀଵ

൱

ିଵ

 

 

where ௞ܲ is the current covariance matrix. The previous covariance matrix ௞ܲିଵ is given 

as: 

௞ܲିଵ ൌ ൭෍߮௜߮௜்
௞ିଵ

௜ୀଵ

൱

ିଵ

 

 

The recursive covariance matrix update is then given as: 

 

௞ܲ ൌ ௞ܲିଵ ൅ ሺ߮௞߮௞்ሻିଵ 
 

௞ܲ ൌ ሺ ௞ܲିଵ
ିଵ ൅ ߮௞߮௞்ሻିଵ 

 

Using the matrix inversion lemma: 

 

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)
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ሺܣ ൅ ሻିଵܥܤ ൌ ଵିܣ െ ܫሺܤଵିܣ ൅  ଵିܣܥሻିଵܤଵିܣܥ

 

௞ܲ ൌ ሺ ௞ܲିଵ
ିଵ ൅ ߮௞߮௞்ሻିଵ ൌ ௞ܲିଵ െ ௞ܲିଵ߮௞ሺܫ ൅ ߮௞் ௞ܲିଵ߮௞ሻିଵ߮௞் ௞ܲିଵ 

 

Hence, RLS algorithm can be expressed as: 

 

௞ߠ ൌ ௞ିଵߠ ൅ ௞ܲ߮௞݁௞ 

 

݁௞ ൌ ௞ݕ െ ߮௞்ߠ௞ିଵ 
 

௞ܲ ൌ ௞ܲିଵ െ
௞ܲିଵ߮௞߮௞் ௞ܲିଵ

1 ൅ ߮௞் ௞ܲିଵ߮௞
 

 

where ௢ܲ is initially set to an identity matrix (ܫே).  

 

The recursive least squares estimation gives equal weights to the old and new 

observations vectors by accumulating observations vectors information into its 

covariance matrix. In real time identification it is normal to suppress old observations 

vectors in order to track the weight which is time varying. This can be achieved by 

introducing the forgetting factor (ߛ) in the covariance matrix update as follows:  

 

௞ܲ ൌ
1
ߛ ቆ ௞ܲିଵ െ

௞ܲିଵ߮௞߮௞் ௞ܲିଵ

ߛ ൅ ߮௞் ௞ܲିଵ߮௞
ቇ 0  ݁ݎ݄݁ݓ     ൏ ߛ ൑ 1 

 

As the value of ߛ decreases the speed of weights convergence increases but the 

estimation becomes more sensitive towards noise and when the value of ߛ increases the 

speed of the weights convergence decreases but the estimation becomes robust towards 

(4.6)

(4.8)

(4.9)

(4.10)

(4.11)

(4.7)
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noise. Hence, the choice of the forgetting factor is a trade off between the weights 

convergence speed and the estimation sensitivity towards noise.  

 

4.3 RLS and Correlated Observations 

 

When the received observations are highly correlated RLS performs better than LMS and 

NLMS [17]. This can be attributed to the fact that RLS does not depend only on the 

current presented observations as it is the case in LMS and NLMS, instead it employs 

information from old observations which are accumulated in the covariance matrix. 

   

Test problem II-B (refer to appendix A) used to show the capability of RLS in 

dealing with highly correlated observations in comparison with each of LMS and NLMS. 

The desired weights vector for the test problem is כߠ ൌ ሾ0.9,0.3ሿ. Figure 4.1 shows the 

instantaneous correlation angle and the weight convergence of the three algorithms. 

 

Graph 4.1(a) shows the instantaneous correlation angle between the subsequence 

observations in which the largest correlation angle is shown to be 0.35rad (correlated 

observations). Graph 4.1(b) summarizes the performance of RLS and NLMS, from the 

graph it can be seen that NLMS oscillates around and converges very slowly to the single 

optimal weight while RLS converges directly to it. Finally graph 4.1(c) shows clearly that 

LMS diverges with correlated observation and becomes not able to converge to the 

optimal weight at all.   

 

Figure 4.2 shows the weights trajectory of RLS, NLMS and LMS for the same 

test problem mentioned above. Graph 4.2(a) shows that RLS takes short path to the 

optimal weights while NLMS drifts around and converges very slowly. Graph 4.2(b) 

shows that LMS doesn’t converge to the optimal weights at all.  
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(a) Correlation Angle (b) Weight Convergence of RLS and NLMS 

(c) Weight Convergence of LMS 

Figure 4.1: Correlation Angle and Weight Convergence of RLS, NLMS and LMS 

(a) Weights Trajectory of RLS and NLMS (b) Weights Trajectory of LMS

Figure 4.2: Weights Trajectory of RLS, NLMS and LMS 
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It can be concluded that when the system is oversampled and consecutive 

observations reach the identifier without loss (when wireless link is strong), RLS 

functions well and the resulted correlated observations at the identifier side because of 

oversampling doesn’t lead to serious deterioration in the performance. In contrary these 

circumstances normally show poor performance for both LMS and NLMS.    

 

4.4 Covariance Matrix and Observations Discontinuity  

  

Test problem I (refer to appendix A) used to show the RLS performance over the lossy 

link. Figure 4.3 depicts the effect of observations loss on the RLS performance at 

different settings of PDP. The green curve in the figure shows the performance of RLS in 

absence of loss where the error minimizes until it settles at relatively small value. The 

other curves show that as PDP increases the error increases.   

 

 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

  

After each training iteration RLS produces near optimal estimation for the 

weights vector using information about the previous observations in form of covariance 

matrix. This can be seen from equation (4.4) where the current covariance matrix ( ௞ܲ) 

Figure 4.3: RLS Performance at Different Settings of PDP 



 

 

 

 

 

CHAPTER FOUR: SECOND ORDER INSTANTANOUS LEARNING ALGORITHMS                               49

 
equals the sum of the previous covariance matrix ( ௞ܲିଵ) (which holds information about 

previous observations in a sequenced form) and the inverse correlation of the current 

observations vector (߮௞). During random observations loss the sequence of the received 

observations tend to be irregular which creates discontinuity in the covariance matrix and 

affects its structure since there is no guarantee that ߮௞ is the observations vector which is 

right after last one has been included in ௞ܲିଵ at the identifier side.   

  

In order to illustrate this concept both of the equations (4.3) and (4.4) are merged 

in one equation as follows: 

  

௞ܲ ൌ ൭෍߮௜߮௜்
௞ିଵ

௜ୀଵ

൱

ିଵ

൅ ሺ߮௞߮௞்ሻିଵ 

 
 

Figure 4.4 illustrates the observations discontinuity concept in pictorial form. The 

figure shows a sequence of observations transmitted from the system to the identifier 

across wireless link. Assume ସܲ is a covariance matrix without suffering from 

observations discontinuity, according to equation (4.12) it should be containing 

information about the current observations vector (߮ସ) and all the observations vectors 

from ߮ଵ to ߮ଷ (which have been included in the previous covariance matrix ( ଷܲ)). Now 

assume that the observations from ߮ହ to ߮ଽ have been completely lost during 

transmission as it can be seen from the corresponding output of Bernoulli process (from 

 ଽ), this loss leads to discontinuity in ଵܲ଴ since the current observations vectorߚ  ହ up toߚ

is ߮ଵ଴ and only the observations vectors from ߮ଵ to ߮ସ are included in the previous 

covariance matrix which actually represents the previous covariance matrix for ହܲ not for 

ଵܲ଴ as it is supposed to be.  

 

 

 

 

(4.12)
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Figure 4.5(a) shows the learning curve of RLS where PDP was set to 0.3 and ߛ to 

0.9. By taking a closer look at the period from 0 to 100 (graph 4.5(b)) and the 

corresponding output of Bernoulli process (graph 4.5(c)), it can be seen that observations 

discontinuity leads to serious deterioration in RLS performance.  

 

 In graph 4.5(c) there was no significant loss during the period from 0 to 50 and 

therefore the error was minimizing at this period as it can be seen from the corresponding 

learning curve in graph 4.5(b) which indicates that RLS was performing well and 

learning the system dynamics in this region.    

  

  In contrary during the period from 60 to 80 there was a significant loss (almost no 

reception of observations) as it can be seen from graph 4.5(c). The effect of this 

observations loss on RLS performance appears clearly in the later stage during the period 

from 90 to 100 as it can be seen from Graph 4.5(b) where the learning curve starts to go 

up between 80 and 90 which indicates that the algorithm was losing its ability to learn the 

system dynamics.                                          
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ସܲ ൌ ሺ∑ ߮௜߮௜்ଷ
௜ୀଵ ሻିଵ ൅ ሺ߮ସ߮ସ்ሻିଵ
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Discontinuity  

Figure 4.4: Observations Discontinuity Effect on the Covariance Matrix Structure
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Figure 4.5:  Observations Discontinuity Effect on RLS Performance 

(c) Corresponding Output of Bernoulli Process  

(b) Zoomed Curve 

(a) Original Curve 
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Next section proposes a novel procedure to improve the performance of RLS 

algorithm during observations loss by taking into account the undesired effect of 

observations discontinuity on the covariance matrix structure and its consequences on the 

algorithm performance. 
 
 
4.5 Weights Update Based on Observations Continuity  

This section proposes a new version of RLS known as RLS with weights update based on 

observation continuity (RLS-OC). RLS-OC updates the covariance matrix (which holds 

information about the previous observations) whenever a new observation is available 

while it updates the weights vector only when there is a sort of observations continuity in 

the current covariance matrix.      

 

The flowchart in Figure 4.6 illustrates the procedure of RLS-OC algorithm, where 

 ௟ is a loss flag indicates loss event when it equals 1 and it is initially set to 0. Theܨ

procedure starts by checking whether the current packet has been lost or no, where in 

case of loss ܨ௟ is set to 1 and the procedure starts over to check for the next packet 

otherwise the regressor vector (߮௞) is formed and the covariance matrix is updated, then 

) ௟ is checked to test the observations continuity in the current covariance matrixܨ ௞ܲ), 

where in case of  ܨ௟ being equal to 0 the weights vector (ߠ௞) is updated otherwise it is 

frozen. The procedure then computes the output estimation (ŷ௞) and checks whether the 

obtained model is accepted or not, where in case of acceptance the learning process ends 

otherwise ܨ௟ is set to 0 since the current packet has been received successfully and the 

procedure starts over. 

   

Figure 4.7 shows the performance of RLS-OC in comparison with the traditional 

RLS at different settings of PDP. RLS-OC significantly outperforms the traditional RLS 

for all the different settings of PDP. The graphs in the figure show that as PDP increases 

the performance of the traditional RLS degrades while RLS-OC gives good performance, 
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but as PDP value increases RLS-OC takes longer time to learn the system which can be 

contributed to the fact that when PDP increases the probability of not updating the 

weights increases (due to the contribution of the loss flag) which delays the learning 

process. 
 
 
 
 
 
 
 
 
 
 
 
  
 
  
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
  
 Figure 4.6: RLS-OC Algorithm Flowchart 

yes no

yes no

yes 

no

௞ܲ ൌ
1
ߛ ቆ ௞ܲିଵ െ

௞ܲିଵ߮௞߮௞் ௞ܲିଵ
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4.6 Recursive Instrumental Variable (RIV) 
 

Recursive instrumental variable algorithm can be considered as a variant of RLS 

algorithm as it introduces an instrumental variables vector to RLS procedure. RIV 

algorithm can be derived by introducing the instrumental variables vector to equation 

(4.1) as follows:  

 

(b) PDP = 0.6 (a) PDP = 0.3 

(c) PDP = 0.9

Figure 4.7: RLS-OC and the Traditional RLS Performance at Different Settings of PDP 
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where: 

 

௜்ݖ ൌ ሾݕො௜ିଵ  ௜ିଵݑ   ො௜ି௡ݕ …   ௜ି௠ሿݑ …

 

where ݖ௜் is the instrumental variables vector, ݕො௜ is the estimated output and ݑ௜ is the 

system input.   
 
The current covariance matrix ( ௞ܲ) is given as: 

 

௞ܲ ൌ ൭෍ݖ௜߮௜்
௞

௜ୀଵ

൱

ିଵ

 

 

The previous covariance matrix ( ௞ܲିଵ) is given as: 

 

௞ܲିଵ ൌ ൭෍ݖ௜߮௜்
௞ିଵ

௜ୀଵ

൱

ିଵ

 

 

The recursive covariance matrix update for RIV is given as: 

 

௞ܲ ൌ ௞ܲିଵ ൅ ሺݖ௞߮௞்ሻିଵ 
   

௞ܲ ൌ ሺ ௞ܲିଵ
ିଵ ൅  ௞߮௞்ሻିଵݖ

 

 

 

(4.14)

(4.13)

(4.15)

(4.17)

(4.16)

(4.18)

௞ߠ ൌ ൭෍ݖ௜߮௜்
௞

௜ୀଵ

൱

ିଵ

൭෍ݖ௜ݕ௜

௞

௜ୀଵ

൱ 
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Using the matrix inversion lemma: 

 

௞ܲ ൌ ሺ ௞ܲିଵ
ିଵ ൅ ௞߮௞்ሻିଵݖ ൌ ௞ܲିଵ െ ௞ܲିଵݖ௞ሺܫ ൅ ߮௞் ௞ܲିଵݖ௞ሻିଵ߮௞் ௞ܲିଵ 

 

Hence, RIV algorithm can be expressed as: 

 

௞ߠ ൌ ௞ିଵߠ ൅ ௞ܲݖ௞݁௞ 

 

݁௞ ൌ ௞ݕ െ ߮௞்ߠ௞ିଵ 

 

௞ܲ ൌ ௞ܲିଵ െ
௞ܲିଵݖ௞߮௞் ௞ܲିଵ

1 ൅ ߮௞் ௞ܲିଵݖ௞
 

 

By introducing the forgetting factor (ߛ) to equation (4.22):     

 

௞ܲ ൌ
1
ߛ ቆ ௞ܲିଵ െ

௞ܲିଵݖ௞߮௞் ௞ܲିଵ

ߛ ൅ ߮௞் ௞ܲିଵݖ௞
ቇ 0  ݁ݎ݄݁ݓ     ൏ ߛ ൑ 1 

 

The weights update based on observation continuity technique is also applicable 

to RIV since it shares with RLS the same weights update principle. Figure 4.8 shows 

RIV-OC performance in comparison with the traditional RIV at different settings of PDP. 

The graphs show that as PDP increases the traditional RIV gives poor performance while 

RIV-OC shows satisfactory performance for all the different settings of PDP. Similar to 

RLS when PDP value increases RIV-OC takes longer time to learn the system dynamics 

which can be attributed to the fact that as PDP increases the probability of not updating 

the weights increases (due to the contribution of the loss flag) which delays the learning 

process.  

 

(4.20)

(4.21)

(4.19)

(4.22)

(4.23)



 

 

 

 

 

CHAPTER FOUR: SECOND ORDER INSTANTANOUS LEARNING ALGORITHMS                               57

 
Table 3.2 summarizes the performance of the optimized algorithms that have been 

proposed in this chapter in comparison with their original versions. Both average and 

standard deviation of the instantaneous normalized mean square error (NMSE) over last 

500 iterations (refer to appendix A) have been recorded in the table.  

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 
  
 
 
 
 
 
 
  
 
 
  
 
 

 (b) PDP = 0.6 (a) PDP = 0.3

(c) PDP = 0.9

Figure 4.8: RIV-OC and the Traditional RIV Performance at Different Settings of PDP
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Measure 

 
0.3 

 
0.6 

 
0.9 

 
 

Average 0.0054 0.0254 0.6110 

Standard 
Deviation 0.0048 0.0119 0.2317 

 
 

Average 5.7551e-004 5.7551e-004 5.7551e-004 

Standard 
Deviation 1.2015e-012 8.7553e-013 7.8127e-012 

 
 

Average 0.0058 0.0278 128.8472 

Standard 
Deviation 0.0056 0.0139 675.4070 

 
 

Average 5.7551e-004 5.7551e-004 5.7551e-004 

Standard 
Deviation 1.1504e-012 6.9510e-013 1.0661e-011 

 
 
 
4.7 Conclusion  

 

This chapter has investigated the performance of RLS and RIV during 

observations loss. It has started by reviewing the derivation of RLS algorithm from the 

ordinary least squares algorithm. The chapter then has proceeded to highlight the 

capability of RLS algorithm in dealing with the correlated observations compared to the 

first order learning algorithms such as LMS and NLMS, the simulation results have 

confirmed the outperformance of RLS compared to both LMS and NLMS in dealing with 

the correlated observations. 

 

Table 4.1: Numerical Results for the Second Order Optimized and Original Algorithms 

Performance at Different Settings of PDP 

Algorithm 
PDP 

RLS 

RLS-OC 

RIV 

RIV-OC 
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The chapter has also addressed the effect of observations discontinuity on the 

covariance matrix structure and its consequences on the algorithm performance. Thus, a 

novel technique has been introduced known as weights update based on observations 

continuity for both RLS (RLS-OC) and RIV (RIV-OC) algorithms. The performances of 

RLS-OC and RIV-OC have been evaluated in comparison with the traditional RLS and 

RIV respectively at different settings of PDP, the comparison has showed that RLS-OC 

and RIV-OC have the upper hand compared to their original versions.    

    

Next chapter will look into the high order algorithms which utilize information 

from data store of previous observations to perform instantaneous system identification.  



60 

 

 

CHAPTER FIVE: HIGH ORDER INSTANTANOUS LEARNING 

ALGORITHMS 

 

5.1 Introduction 

 

The major deficiency of first order instantaneous learning algorithms such as LMS and 

NLMS is that their performance is strongly dependent on the nature and quality of the 

presented training data. In particular when successive data points are highly correlated, 

weights convergence occurs very slowly if at all [13]. On other hand the superior 

convergence properties of more advanced second order instantaneous learning algorithms 

such as RLS and RIV is at the expense of significantly greater computational complexity 

and memory requirements arising from storing and updating an (n x n) covariance matrix 

at each iteration. In many practical applications these methods cannot be utilized due to 

real-time and hardware constraints [18].    

 

This chapter investigates and optimizes an alternative class of training algorithms 

during observations loss, this class is referred to as sliding window (SW) training 

algorithms. SW algorithms utilize information from sliding window or store of previous 

data points to improve the performance while maintaining the simplicity of the first order 

algorithms in terms of computational complexity and use of memory.  

 

The chapter shows the formulation of SW and outlines moving average (MA) 

algorithm as an example of SW training algorithms. The chapter then proceeds to discuss 

some data store management (DSM) strategies as they are a key consideration when 

using SW training algorithms. In this chapter two DSM strategies are proposed to manage 

the store in presence of random observations loss and based on these strategies two SW 

based algorithms are proposed to improve the performance during observations loss. 
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5.2 Sliding Window (SW) 

 

Sliding window training algorithms (also known as high order training algorithms [19]) 

use sliding window of system observations to perform instantaneous system 

identification. In sliding window training the model weights are updated using 

information obtained from store of L previous training pairs. The regressor vector (߮௞), 

weights vector (ߠ௞) and data store (ܵ݀௞) are defined as follows:  

 

 ߮௞ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

௞ିଵݕ
…

௞ି௡ݕ
௞ିଵݑ

…
ے௞ି௠ݑ

ۑ
ۑ
ۑ
ۑ
ې

௞ߠ      ൌ

ۏ
ێ
ێ
ێ
ۍ

ଵߠ
…
௡ߠ
…

ے௡ା௠ߠ
ۑ
ۑ
ۑ
ې
    ܵ݀௞ ൌ ቂ

 ߮ଵ  ߮ଶ …
ଵݕ  ଶݕ  …     

 ߮௜ …  ߮௅
௜ݕ  … ௅ݕ 

ቃ 

 

The pair (߮௜,  ௜) refers to the ݅௧௛ training vector at time ݇. The output error for thisݕ

vector with respect to the current set of weights is defined as follows:  

 

݁௜ ൌ ௜ݕ െ ߮௜
 ௞ߠ்

 

5.2.1 Moving Average (MA) and Normalized Moving Average (NMA)  

 

Given L data store vectors and the current data points ߮௞ and ݕ௞, MA algorithm 

computes moving average search direction (ݏ௞
ெ஺) for LMS as follows: 

 

௞ݏ
ெ஺ ൌ

1
ܮ ෍ ݁௜

௅

௜ୀଵ

߮௜ 

 

For the same given data NMA algorithm computes normalized moving average 

search direction (ݏ௞
ேெ஺) for NLMS as follows:  

(5.1)

(5.2)

(5.3)
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௞ݏ
ேெ஺ ൌ

1
ܮ ෍

݁௜߮௜
ԡ߮௜ԡ

௅

௜ୀଵ

 

 

5.3 Data Store Management (DSM) 

 

Managing or maintaining the data store for sliding window is as important as choosing a 

suitable training algorithm and should not be overlooked. One of the simplest strategies 

for data store management is to adopt first in first out (FIFO) strategy. This strategy 

discards the oldest training pair in the store and admits the current one as follows: 

 

߮௜ ൌ ߮௞ି௅ିଵା௜          ݕ௜ ൌ  ௞ି௅ିଵା௜ݕ

 

FIFO strategy has an advantage that the store information represents the current 

state of the system.  

 

The received observations at the identifier side might be correlated because of 

oversampling and therefore DSM strategies should take into account the correlation 

effect. Next section outlines one of the DSM strategies known as total correlation 

measurement (TCM) strategy which reduces the correlation effect.   

 

5.3.1 Total Correlation Measurement (TCM) 

 

Total correlation measurement strategy [18] manages the store based on a measure of the 

total correlation between the training pairs, it computes the total correlation angle (ܶܿ) 

between the store members as well as the current training pair (߮௞,ݕ௞), then the training 

pair with the smallest total correlation angle (߮௔,ݕ௔) is replaced with the current input 

pair (߮௞, ݕ௞) as follows:   

 

(5.4)

(5.5)
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Since TCM computes the total correlation angle for the store members as well as 

the current training pair it is possible to discard the current training pair in the process.  

 

Figure 5.1 shows store members of (L=2) and the current training pair, based on 

TCM concept the training pair (߮ଶ,ݕଶ) could possibly be discarded since it has the 

smallest total correlation angle.  

 

 

 

 

 

 

 

 

 

 

  
 

  
 

Test problem II-C (refer to appendix A) used to evaluate the performance of TCM 

strategy in comparison with FIFO strategy for MA and NMA. The desired weights vector 

(5.6)

ܽ ് ܮ ൅ 1: 

ܽ ൌ ܮ ൅ 1: 

ቂ
߮௔
௔ݕ

ቃ ൌ ቂ
 ߮௞
௞ݕ 

ቃ 

൫߮௞,ݕ௞൯ ݀݅݀݁݀ݎܽܿݏ

ܽ ൌ ݃ݎܽ ቄmin
௜

ሺܶܿ௜ሻቅܶܿ௜ ൌ ෍ ቤܿିݏ݋ଵ ቆ
߮௜

்߮௝

ԡ߮௜ԡฮ߮௝ฮ
ቇቤ

௅ାଵ

௝ୀଵ
௝ஷ௜ 

 ଵߠ

 ଵߠ

 ଶߠ

௖ߠ  
 ଶߠ

௖ߠ  

ሺ ߮௞, ௞ሻݕ

ሺ ߮ଶ, ଶሻݕ

ሺ ߮ଵ, ଵሻݕ

߮ 

 ݕ

Figure 5.1: Total Correlation Measurement Concept 
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for the test problem is  כߠ ൌ ሾ0.75,0.15ሿ.  Figure 5.2 shows that both MA and NMA 

converge faster when using TCM in comparison with FIFO.   

 

 

 

 

 

 
 
 
 

 

 
 
  
 
 
  
 
 
 
 
 
 
 
 
                                                              
 
 

 

 

 

  

During observations loss the output error contributes with high magnitude in the 

weights update process which destroys the learning process as it has been explained in 

chapter 3. Thus, DSM strategies should take into account the undesired contribution of 

the output error in the weights update process.  Next section proposes DSM strategy 

(a) Weights Trajectory for MA (b) Weight Convergence for MA 

(c) Weights Trajectory for NMA (d) Weight Convergence for NMA 

Figure 5.2:  Weights Trajectory and Convergence for TCM and FIFO Strategies 
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known as error measurement (EM) strategy to reduce this undesired contribution of the 

output error.  

 

5.3.2 Error Measurement (EM) 

 

Error measurement strategy manages the data store based on the output error value. 

Typically when the training pairs number exceeds the predefined window size for the 

store, EM strategy computes the output error for each training pair then it discards the 

training pair with the largest output error (߮௔, ݕ௔) and admits the current one  (߮௞, ݕ௞)  as 

follows:  

 

 

 

One advantage of using EM strategy is that during random observations loss the 

undesired contribution of the output error in the weights update process will be reduced 

since the store will always contain the training pairs with the smallest output error.  

  

5.3.3 Intelligent Data Store Management (IDSM) 

 

Intelligent data store management strategy keeps the store information representative for 

the current state of the system and also reduces the undesired effects of both the 

correlation and the output error. It achieves this by combining the three strategies 

mentioned previously (FIFO, TCM and EM), FIFO keeps the store information 

representative for the current state of the system and each of TCM and EM reduces the 

undesired effects of the correlation and the output error respectively. Thus, the 

insignificant training pair from IDSM point of view is the training pair which is old, 

highly correlated with others and has high output error value.  The following steps 

explain the strategy:  

 

(5.7)ܽ ൌ ሼmax݃ݎܽ
௜

|݁௜|ሽ ቂ
߮௔
௔ݕ

ቃ ൌ ቂ
߮௞
௞ݕ

ቃ    



  
 

 

CHAPTER FIVE: HIGHER ORDER INSTANTANOUS LEARNING ALGORITHMS                                66 

 
• Step 1:  Weighting the store training pairs and the current one from 1 to (L+1) 

according to the length of time they have been members of the store. Typically 

the oldest training pair is given the smallest weight (1) and the newest training 

pairs is given the biggest weight (L+1). 

 
• Step 2:  Weighting the store training pairs and the current one from 1 to (L+1) 

according to the total correlation angle. Typically the training pair with the 

smallest angle is given the smallest weight (1) and the training pair with the 

biggest angle is given the biggest weight (L+1).  

  
• Step 3: Weighting the store training pairs and the current one from 1 to (L+1) 

according to the output error value. Typically the training pair with the biggest 

output error is given the smallest weight (1) and the training pair with the smallest 

output error is given the biggest weight (L+1). 

  
• Step 4: Adding the weights that have been obtained from the three steps and 

discarding the training pair with the smallest score. 

 

5.4 Moving Average Based on Combination of EM and SD (MA-EMSD)  

    

Moving average based on combination of error management (EM) strategy and sine 

function based de-correlation (SD) technique (MA-EMSD) manages the store using EM 

strategy while sets the learning rate according to SD technique (see chapter 3). The 

procedure of MA-EMSD is illustrated by the flowchart in Figure 5.3, where ܿ is a small 

constant learning rate and ܨ௟ is a loss flag indicates loss event when it equals 1 and it is 

initially set to 0. The procedure starts by checking whether the current packet has been 

lost or not, where in case of loss the procedure sets ܨ௟ to 1 and starts over to check for the 

next packet otherwise the current observations vector is admitted into the store and the 

number of the store members is checked to see whether it has exceeded the predefined 
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window size or not, where in case of not exceeding the predefined window size ܨ௟ is set 

to 0 since the current packet been received successfully and the procedure starts over to 

check for the next packet otherwise the store member with the largest output error will be 

replaced with the current observations vector according to EM strategy. The procedure 

then proceeds to check ܨ௟ in order to determine whether the previous packet has been lost 

or not, where in case of loss the small constant learning rate (ܿ) will be considered 

otherwise the adaptive learning rate (ߣ௦௜௡) will be considered which is computed in SW 

case as follows:  

 

௦௜௡ߣ ൌ
1
ܮ ෍ sinሺܶܿ௜ሻ

௅

௜ୀଵ

 

 

Once the learning rate has been determined the procedure computes the moving 

average search direction (ݏ௞
ெ஺) then it proceeds to update the weights and compute the 

estimated output (ŷ௞). The procedure then checks whether the obtained model is accepted 

or not, where in case of acceptance the learning process ends otherwise ܨ௟ is set to 0 since 

the current packet has been received successfully and the procedure starts over.            

 

EMSD method is also applicable to the normalized moving average (NMA) 

algorithm; the only difference is that the search direction will be normalized as it is 

shown in equation (5.4). 

   

Test problem I (refer to appendix A) used to evaluate the performance of MA-

EMSD in comparison with MA-FIFO at different settings of PDP. Figure 5.4(a) shows 

that in absence of loss (PDP = 0) MA-EMSD settles faster than MA-FIFO since it sets 

the learning rate according to SD technique. The rest of the graphs (5.4(b)-5.4(d)) shows 

that during observations loss MA-EMSD performs better than MA-FIFO which can be 

attributed to the fact that MA-EMSD reduces the undesired contribution of the output 

(5.8)
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error using EM strategy which always ensures the existence of training pairs with 

smallest output error in the store.     

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 
 

 

 

 

 

  

 

 

 

 

 

Figure 5.3:  MA-EMSD Algorithm Flowchart 
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Figure 5.5 shows similar comparison between NMA-EMSD and NMA-FIFO, 

similarly the comparison shows that NMA-EMSD gives better performance compared to 

NMA-FIFO for all the different settings of PDP. 
 
 
 
  
 

Figure 5.4:  MA-EMSD and MA-FIFO Performance at Different Settings of PDP 

(a) PDP = 0.0 (b) PDP = 0.3 

(c) PDP = 0.6 (d) PDP = 0.9 
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5.5 Intelligent Moving Average (IMA) 

 

This chapter proposes another SW based algorithm termed as intelligent moving average 

(IMA) algorithm, the prefix term ‘intelligent’ is given because it uses IDSM strategy in 

addition to SDEDU method (see chapter 3). 

(a) PDP = 0.0 (b) PDP = 0.3 

Figure 5.5:  NMA-EMSD and NMA-FIFO Performance at Different Settings of PDP 

(c) PDP = 0.6 (d) PDP = 0.9 
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The procedure of IMA algorithm is illustrated by the flowchart in Figure 5.6, 

where ܿ is a small constant learning rate and ܨ௟ is a loss flag indicates loss event when it 

equals 1 and it is initially set to 0. The procedure works similar to MA-EMSD until it 

reaches the store management stage, at this point the procedure manages the store 

according to IDSM then it checks ܨ௟ to determine whether the previous packet has been 

lost or not, where in case of loss the small constant learning rate (ܿ) is considered and 

both of the error displacement (݀ܧ௞) and the output error (݁௞) are computed from the 

store training pairs as moving average (so the search direction will computed using the 

moving average output error) otherwise the adaptive learning rate (ߣ௦௜௡) is considered and 

both of the error displacement (݀ܧ௞) and the output error (݁௞) are computed using only 

the current training pair (so the search direction will be computed using only the current 

output error). Once the learning rate, output error, search direction and error displacement 

have been determined the algorithm proceeds to the weights (ߠ௞) update stage. The 

weights are updated only if the error displacement is not greater than the predefine 

threshold (ߪ) otherwise the weights are frozen. The procedure then proceeds to compute 

the output estimation ( ŷ௞) and checks whether the obtained model is accepted or not, 

where in case of acceptance the learning process ends otherwise ܨ௟ is set to 0 since the 

current packet has been received successfully and the procedure starts over.            

 

 The intelligent approach is also applicable to the normalized moving average 

(NMA); the only difference is that the search direction will be normalized as it is shown 

in equation (5.4). 
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Figure 5.7 shows the performance of IMA in comparison with MA-FIFO at 

different settings of PDP. Graph 5.7(a) shows the learning curves in absence of loss (PDP 

Figure 5.6:  IMA Algorithm Flowchart 
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= 0) where IMA settles faster since TCM strategy contributes in deciding which vector is 

discarded as the number of the store members exceeds the predefined window size, 

furthermore the procedure has been made more robust by setting the learning rate 

according to SD technique as observations become correlated. The rest of the graphs 

(5.7(b) - 5.7(d)) show that IMA outperforms MA-FIFO during observations loss which 

can be attributed to the fact that EM strategy ensures the existence of training pairs with 

smallest output error in the store and therefore the contribution of the output error in the 

weights update process is reduced. Moreover, EDU technique allows weights update only 

when the output error contribution is acceptable.  

 
 

(a) PDP = 0.0 (b) PDP = 0.3 

(c) PDP = 0.6 (d) PDP = 0.9 
Figure 5.7:  IMA and MA-FIFO Performance at Different Settings of PDP 
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Figure 5.8 shows similar comparison between NIMA and NMA-FIFO. The 

comparison shows similar pattern of performance gain. 

 

 

 

 

  

 

 

  
 
 
 
 
                                      
  

 
 
 
 
 
 
 
 
 
 

 
 
  
 
 
 
 
 

Table 5.1 summarizes the performance of the optimized algorithms that have been 

proposed in this chapter in comparison with their original versions. Both average and 

standard deviation of the instantaneous normalized mean square error (NMSE) over last 

20000 iterations (refer to appendix A) have been recorded in the table. The results show 

that the optimized algorithms perform better than their original versions during 

observations loss. It can also be seen from the results that the optimized algorithms based 

(a) PDP = 0.0 (b) PDP = 0.3 

(c) PDP = 0.6 (d) PDP = 0.9 

Figure 5.8: NIMA and NMA-FIFO Performance at Different Settings of PDP  



  
 

 

CHAPTER FIVE: HIGHER ORDER INSTANTANOUS LEARNING ALGORITHMS                                75 

 
on the intelligent approach performs better than the optimized algorithms based on 

EMSD method.  
 

 
 
 

 
Measure  

0.0 
 

0.3 
 

0.6 
 

0.9 

 
 

Average 5.7568e-004 0.0046 0.0308 0.4594 
Standard 
Deviation 8.2558e-008 9.0230e-005 3.2208e-004 0.0189 

 
 

Average 5.7551e-004 8.1726e-004 0.0024 0.0374 
Standard 
Deviation 4.0216e-013 9.5268e-006 4.6127e-005 0.0023 

 
 

Average 5.7551e-004 5.8626e-004 6.3919e-004 0.0012 
Standard 
Deviation 2.0420e-016 2.8622e-006 1.2090e-005 9.3302e-005 

 
 

Average 5.7552e-004 0.0046 0.0304 0.4585 
Standard 
Deviation 5.7917e-009 9.5090e-005 0.0011 0.0065 

 
 

Average 5.7551e-004 5.8809e-004 6.4976e-004 0.0023 
Standard 
Deviation 1.6871e-016 4.8600e-006 1.9513e-005 4.3538e-004 

 
 

Average 5.7551e-004 5.7676e-004 5.8166e-004 6.3372e-004 
Standard 
Deviation 1.6730e-016 1.4497e-006 4.9847e-006 5.0457e-005 

 
 

5.6 Conclusion  

 

This chapter has investigated the performance of sliding window (SW) training 

algorithms in presence of random observations loss. It has started by showing the 

formulation of SW and outlining moving average (MA) algorithm, then it has proceeded 

to discuss various data store management (DSM) strategies as they form a key ingredient 

of SW training algorithms. 
 
 

PDP 

Algorithm 

Table 5-1: Numerical Results for the High Order Optimized and Original Algorithms 
Performance at Different Settings of PDP 

MA-FIFO 

NMA-FIFO 

NMA-EMSD 

MA-EMSD 

IMA 

NIMA 
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With inclusion of observations loss raises other considerations, new DSM strategy 

known as error measurement (EM) strategy has been introduced. EM strategy manages 

the store based on the output error value where it always ensures the existence of training 

pairs with smallest output error in the store. New version of MA algorithm known as 

MA-EMSD has been proposed by adopting a combination of EM strategy and SD 

technique on MA algorithm. The proposed algorithm has improved the performance in 

comparison with MA-FIFO during observations loss for all the different settings of PDP.   

  

The chapter has proposed another DSM strategy known as IDSM which combines 

each of FIFO, TCM and EM strategies using weighting rules. In the environment where 

random observation loss is imminent, an adopted combination of SDEDU method and 

IDSM strategy on MA algorithm has formed another version of MA algorithm that is the 

intelligent moving average (IMA). The new algorithm has showed satisfactory 

performance and good capability of handling each of the correlation and the output error 

effects in comparison with MA-FIFO during observations loss for all the different 

settings of PDP.    
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CHAPTER SIX: CONCLUSION AND FUTURE WORK 

 

This thesis has focused the research scope on investigating and optimizing various 

instantaneous learning algorithms to allow of performing instantaneous system 

identification over wireless network. The instantaneous learning algorithms in question 

can be divided into three categories based on the order of complexity, which are: 

 

• First order algorithms (least mean square (LMS) and normalized least mean 

square (NLMS)). 

• Second order algorithms (recursive least squares (RLS) and recursive 

instrumental variable (RIV)). 

• High order or sliding window (SW) algorithms (moving average (MA) and 

normalized moving average (NMA)). 

 

The main contribution of the thesis is optimizing instantaneous learning 

algorithms for instantaneous system modeling with lost observations. The thesis has 

adopted oversampling rule to compensate the lost observations and therefore the learning 

algorithms should be robust to work with correlated observations (when wireless link is 

strong) as well as random structure of observations (when wireless link is weak). The 

optimized algorithms in this thesis combine all the mentioned requirements above and 

they have showed good performance and high capability of treating the effect of 

observations loss. 

   

6.1 Chapters Revisiting 

 

The thesis has started by discussing the performance of off-line system identification 

approaches over lossy link in Chapter 2 where it has been found that the performance 

deterioration due to observations loss is not that critical compared to the on-line 
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counterpart. This capability of modeling the system off-line during observations loss can 

be attributed to the fact that off-line approaches model the system by processing batch of 

its observations which allows of capturing the system dynamics even when some of these 

observations are lost. The effect of observations loss can be reduced for off-line learning 

by exciting the system with an appropriate stimulated signal to produce informative 

observations.   

     

Chapter 3 has started the optimization of the instantaneous learning algorithms 

with the algorithms of the first order. The chapter has looked into the sampling process 

role in mitigating the effect of observations loss where it has been found that 

oversampling improves the performance since it compensates the lost observations. Since 

oversampling could lead to correlated observations at the identifier side (when wireless 

link is strong), new technique known as sine function based de-correlation (SD) has been 

proposed to treat the correlation effect instantaneously at the identifier side using 

adaptive learning rate. New version of LMS known as LMS-SD has been introduced by 

adopting the technique on the classical LMS algorithm. During observations loss the 

output error tends to contribute with high magnitude in the search direction which leads 

to significant changes in the weights update direction and destroys the learning process. 

Therefore, a new technique known as error displacement based update (EDU) has been 

introduced, the technique reduces the undesired contribution of the output error in the 

weights update process by allowing the weights update only when the output error 

contribution is acceptable. By adopting a combination of SD and EDU techniques on 

LMS another version of LMS known as LMS-SDEDU has been proposed. Both of the 

proposed SD technique and SDEDU method have been applied to the NLMS. The 

optimized algorithms in general have showed good improvement in the performance 

compared to their original versions. The optimized algorithms based on SDEDU method 

have shown better performance than the optimized algorithms based on SD technique.    

    

Chapter 4 has continued the optimization of the instantaneous learning algorithms 

with the algorithms of the second order. The chapter has started by highlighting the 
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capability of the second order algorithms in dealing with the correlated observations, then 

it has focused on the covariance matrix behavior which represents an essential component 

of the second order algorithms. It has been found that the observation loss creates 

discontinuity in the covariance matrix structure which deteriorates the algorithm 

performance. Thus, a new version of RLS has been proposed known as RLS with weights 

update based on observations continuity (RLS-OC). The proposed algorithm updates the 

covariance matrix whenever a new observation is available while it updates the weights 

only when there is a sort of observations continuity in the current covariance matrix. The 

weights update based on observations continuity technique has been also applied to RIV 

which shares with RLS the same weights update principle. The optimized algorithms 

have shown quite satisfactory performance and high capability of reducing the effect of 

observations loss in comparison with their original versions.      

     

Chapter 5 has ended the optimization of the instantaneous learning algorithms 

with the algorithm of the high order where the main focus was on the data store 

management (DSM) strategies which form a key ingredient when using the high order 

algorithms. Two data store management strategies known as error measurement (EM) 

and intelligent data store management (IDSM) have been introduced to improve the 

performance of the high order algorithms. EM strategy manages the store based on the 

output error value where it always ensures the existence of training pairs with smallest 

output error in the store. IDSM strategy manages the store by combining three strategies 

which are first in first out (FIFO), total correlation measure (TCM) and EM using 

weighting rules. IDSM strategy keeps the store information representative to the current 

state of the system and also reduces the undesired effects of both the correlation and the 

output error. New version of MA algorithm known as MA-EMSD has been proposed by 

adopting a combination of EM strategy and SD technique on MA algorithm. Another 

version of MA algorithm known as IMA has been proposed by adopting a combination of 

IDSM strategy and SDEDU method on MA algorithm. Both of the EMSD method and 

the intelligent approach have been applied to NMA algorithm. The optimized algorithms 

in general have shown good improvement in the performance compared to their original 
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versions. The optimized algorithms based on the intelligent approach have shown better 

performance than the optimized algorithms based on EMSD method.  

 

6.2 Future Work Directions 

 

During random observations loss linear system tends to show nonlinearity and 

could be represented as though nonlinear system. Therefore, the work can be extended 

using nonlinear networks such as multilayer perceptron (MLP) or radial basis function 

(RBF) to represent the nonlinearity due to random observation loss.  

   

The initial step towards progressing from this research work is to consider hybrid 

neural network architecture (see in Figure 6.1) where the hidden nodes can be used for 

nonlinear projection [14] and the linear weights can be adjusted using the optimized 

algorithms that have been discussed in this thesis.  
 

 The work can be extended in similar way by adopting the extreme learning 

machine (ELM) [20] which updates only the linear weights to increase the speed of the 

learning process. Using ELM observations vectors can be projected to form nonlinear 

transformation through the hidden nodes then the network output can be optimized using 

the optimized algorithms that have been discussed in this thesis. 

 

 The work can be further extended using hybrid learning policies network where 

both nonlinear and linear weights are updated concurrently [21] or using sliding window 

structure [22]. One big huddle in nonlinear weights update for lost observations will be 

the formulation of the partial weights derivatives for k step ahead prediction, where k 

now can be translated as the number of the lost observations. One possible remedy will 

be to employ the finite difference rule to estimate the k step ahead prediction which 

requires the partial derivates of the weights to be computed using central differentiation 

operations.  
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Figure 6.1: MLP Network Structure 
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APPENDIX A: BENCHMARK TEST PROBLEMS 

 

 

This section provides a brief description of various benchmark modeling problems used 

to evaluate the performance of the optimized algorithms in this thesis. In all cases the 

performance is measured in terms of the instantaneous normalized mean squared error 

(NMSE) computed over a representative validation data set (߮௡ ,ݕ௡) as follows:  

  

 

ܧܵܯܰ ൌ ௞ሻߠሺܬ ൌ
∑ ሺ݂൫߮௡ ,ߠ௞൯ െ ௡ሻଶேೡݕ

௡ୀଵ

∑ ሺݕ௡ሻଶேೡ
௡ୀଵ

 

 

where ௩ܰ is the size of the validation data set. In addition to plotting the instantaneous 

NMSE evolution over time another two measures are frequently used to provide 

summary of the performance information, namely the average and the standard deviation 

of the instantaneous NMSE over the last ݌ iterations. These are defined as follows: 

 

ሻ൯ߠሺܬ௣൫ܧ ൌ
1
݌ ෍ ௞ାଵሻߠሺܬ

ேೡିଵ

௞ୀேೡି ௣

 

 

 

 

 

 

 

where ௩ܰ is the total number of iteration performed and ݌ ൑ ௩ܰ . 

 

 

(A.1)

(A.2)

(A.3)ܵ݀ݐ௣൫ܬሺߠ௞ሻ൯ ൌ ඩ
1
݌ ෍ ௞ାଵሻߠሺܬൣ െ ௞ሻ൯൧ଶߠሺܬ௣൫ܧ

ேೡିଵ

௞ୀேೡି௣
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A.1 Test Problem I: Single Tank System  

 

Modeling the dynamics of single tank system is used as a benchmark to show the 

performance of the optimized algorithms in this thesis during random observations loss. 

The system [22] is shown in Figure A.1, where the inlet flow ൫ ௜݂௡ሺݐሻ൯ is regulated by a 

valve while the outlet flow is proportional to the height given by ௢݂௨௧ሺݐሻ ൌ  ݇ ,ሻݐሺ݄ܭ

depends on the outlet valve opening flow (here ݇ was set equal to 2 m3/s/m). The 

identification problem considered here is the prediction of  ݄  given  ௜݂௡ . 

 

 

 

 

 

 

 

 

 

Figure A.1: Single Tank System 

  

This system is governed by the following equation: 
 

 

݄݀
ݐ݀ ൌ ௜݂௡ሺݐሻ െ  ሻݐሺ݄ܭ

 
 

݄ሺݐሻ ൌ නሾ ௜݂௡ሺݐሻ െ  ݐ݀ ሻሿݐሺ݄ܭ

 

 

 

Area = 1 m2

௜݂௡ሺݐሻ, ݉ଷ/sec 

݄ሺݐሻ, m 

(A.4)

(A.5)

or 
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A.2 Test Problem II: Skeleton Linear Systems  

 

Since the weights convergence behavior of instantaneous learning algorithms is best 

understood when considering systems with known weights, three first order discrete-time 

systems are included in test problem II to view their weights trajectories graphically at 

different locations in the thesis. The systems are defined by the following equations: 

 

• System A: 

௞ݕ ൌ ௞ିଵݕ 1 ൅  ௞ିଵݑ 0.2 

 

• System B: 

௞ݕ ൌ ௞ିଵݕ 0.9 ൅  ௞ିଵݑ 0.3 

 

• System C: 

௞ݕ ൌ ௞ିଵݕ 0.75 ൅  ௞ିଵݑ 0.15 

 

 

This benchmark problem is used mainly to show the weights trajectories of the 

instantaneous learning algorithms when the presented training data is correlated. 

 

 

 

 

(A.6)

(A.7)

(A.8)
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