

FINAL EXAMINATION MAY 2024 SEMESTER

COURSE :

TEB1053/TFB1113 - DISCRETE MATHEMATICS

DATE

31 JULY 2024 (WEDNESDAY)

TIME

2:30 PM - 5:30 PM (3 HOURS)

INSTRUCTIONS TO CANDIDATES

- 1. Answer ALL questions in the Answer Booklet.
- 2. Begin **EACH** answer on a new page in the Answer Booklet.
- 3. Indicate clearly answers that are cancelled, if any.
- 4. Where applicable, show clearly steps taken in arriving at the solutions and indicate **ALL** assumptions, if any.
- 5. **DO NOT** open this Question Booklet until instructed.

Note

- i. There are **SEVEN (7)** pages in this Question Booklet including the cover page and the Appendix.
- ii. DOUBLE-SIDED Question Booklet.

Universiti Teknologi PETRONAS

- 1. a. Write these propositions in logical connectives.
 - You get an A on the final, you do every exercise in the textbook, but you don't get an A in this class.

[2 marks]

 Getting an A on the final and doing every exercise in the textbook is sufficient for getting an A in this class.

[2 marks]

iii. You will get an A in this class if and only if you either do every exercise in the textbook or you get an A on the final.

[2 marks]

b. Construct a truth table for each of the following compound propositions and determine if the propositions are tautologies.

i.
$$(p \rightarrow (q \land r) \leftrightarrow (p \rightarrow q) \land (p \rightarrow r)$$

[8 marks]

ii.
$$(p \leftrightarrow q) \leftrightarrow (p \land q) \lor (\sim p \land \sim q)$$

[6 marks]

- a. 34 farmers answered a questionnaire in which 18 said that they produce apples, 20 said they produce pears and 2 said that they produce neither.
 Determine the number that
 - i. produce both apples and pears.

[4 marks]

ii. produce only apples.

[2 marks]

iii. produce either only apples or only pears.

[2 marks]

- b. Students need to answer 8 out of 10 questions in the Discrete Mathematics examination. Determine the number of ways a student can choose
 - i. the 8 questions.

[2 marks]

ii. 8 questions if the first three questions are mandatory.

[2 marks]

iii. 8 questions if at least 4 of the first 5 questions must be answered.

[2 marks]

c. Write the first 6 terms in the sequence defined by the recurrence equation and initial condition.

$$f_n = f_{n-1} - f_{n-2}, f_0 = 0, f_1 = 1$$

[6 marks]

- a. Let A = {1, 2, 3, 4}. For each of the following three relations on A, prove or disprove that it is an equivalence relation and, if it is one, write down its equivalence classes.
 - i. $R_1 = \{(1, 1), (2, 2), (3, 4), (3, 3), (4, 4)\}$

[4 marks]

- ii. $R_2 = \{(1,1),(2,2),(3,4),(4,4),(1,2),(2,1),(3,3),(4,3),(1,3),(1,4),(3,1),(4,1)\}$ [6 marks]
- iii. $R_3 = \{(1,1),(2,2),(3,4),(3,3),(4,4),(1,2),(2,1),(4,2),(2,3)\} \label{eq:R3}$ [4 marks]
- b. Consider the set A= $\{2,7,14,28,56,84\}$ and the relation $a \le b$ if and only if a divides b. Give the Hasse diagram for (A, \le) .

[6 marks]

4. a. Graph A is represented by the following adjacency matrix.

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

i. Draw the graph, A.

[4 marks]

ii. Determine whether A is a tree. Justify your answer.

[2 marks]

iii. Determine whether A is Eulerian graph. Justify your answer.

[4 marks]

b. Use the Euclidean algorithm to compute the greatest common divisor of i. (42, 101).

[3 marks]

ii. (3, 26).

[3 marks]

c. There is a total of 11 people which consist of five distinct women and six distinct men that are eligible for the election.

Calculate the number of ways to select

i. two women.

[2 marks]

ii. three men.

[2 marks]

5. a. Let $f(x) = (x^4 + 9x^3 + 4x + 7)$.

Determine the big-0 function when $O(x^4)$.

[6 marks]

- b. Let P(n) be the statement that $1+3+5+\cdots+(2n-1)=n^2$ for all positive integers n.
 - i. Calculate P(1).

[1 mark]

ii. Compute the basis step of the proof.

[2 marks]

iii. Determine the inductive hypothesis.

[4 marks]

iv. Compute the inductive steps.

[7 marks]

- END OF PAPER -

Appendix

$$p(E) = \frac{|E|}{|S|}$$

1,

$$_{2.} p(E \cap F) = p(E) p(F)$$

$$p(E|F) = \frac{p(E \cap F)}{p(F)}$$

4
$$p(F|E) = \frac{p(E|F) p(F)}{p(E|F) p(F) + p(E|\overline{F}) p(\overline{F})}$$

EVAN MANY DA

EXAM MAY 2024 U

EXAM MAY 2024 U

