ABSTRACT

Hydraulic fracturing treatment is applied to the low permeability reservoirs to improve the permeability and resultantly productivity. It has been observed in some cases that fracture stimulated wells produces less than before treatment. The present study is to identify key challenges faced in the hydraulic fracturing treatment are fracture containment and fracture conductivity. Fracture containment is, to control the height growth of the fracture upward and downward. Failure to implement fracture containment might break into an overlain gas cap or water zone underneath. While fracture conductivity is proportional to the well productivity i.e. more conductive the fracture is the more productive it is. Failing to achieve required conductivity will result in reduced productivity. The present study also analysed reported techniques which were successful to control these problems. Field examples are discussed illustrating techniques applied to contain the fracture within the pay zone and improve fracture conductivity.

ACKNOWLEDGEMENT

Beginning with the name of Allah who is gracious, beneficent omniscient, a great judge of this world and the world after ward.

I bow my head and give a great devotion to that great Allah for his guidance who made me capable to this work.

I pay reverence from the deepest process of my heart to my supervisor Dr. Ismail M. Saaid for his continuous guidance, constructive comments and support through out this work.

I am also thankful to my seniors Dr. Fareed Siddiqui, Abdul Malik Kakar, Noman Khan, Syed Dost Ali Shah and M. Attar Sirati who directly or indirectly helped me in this task.

Now I am giving special reverence and special thanks from the core of my heart to Mr. Muhammad Sanif, the man of patience, courage, friendship and the most sincere teacher and guide who helped me in each and every corner and supervised me nicely friendly and wisely in whole process of my study.

I am immensely thankful to my friends Sultan, Dost Muhammad, Hussein, Khalid, Moutaz, Eltazy, Rizwan, Yousaf, Raja, Mustafa, Herish and many others for their endless help and encouragement in whole activities throughout my study.

I do not find words heartily thanks and devotions to my parents specially my father Inam Ullah who suffered and tolerated all the hardships to educate me throughout my life for my better and bright future. I am also grateful for my mother and all family members for their love and patience during this period.

Finally, gratitude to my employer, Pakistan Petroleum Limited to has believed in me and financially supported me to pursue master in Petroleum Engineering at Universiti Teknologi Petronas, Malaysia.

Sahir Inam

TABLE OF CONTENTS

CONTENTS	PAGE
ABSTRACT	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	vii
LIST OF TABLES	ix
CHAPTER 1: INTRODUCTION	1
1.1 PROBLEM STATEMENT	6
1.2 PROJECT OBJECTIVE	6
1.3 SCOPE OF WORK	7
CHAPTER 2: LITERATURE REVIEW	8
2.1 INTRODUCTION	8
2.2 PRE-TREATMENT DATA REQUIREMENT	9
2.2.1 Formation Flow Potential	9
2.2.2 Fracture Geometry	10
2.3 TREATMENT FLUID AND PROPPANT EVALUATION	10
2.4 FRACTURING FLUID	11
2.4.1 Water Based Fluids	11
2.4.1.1 Polymers	11
2.4.1.2 Crosslinkers	12
2.4.2 Oil – Base Fluids	13
2.4.3 Multiphase Fluids	13
2.4.3.1 Foams	14
2.4.3.2 Emulsions	14
2.4.4 Additives	15

	2.4.4.1 Buffers	15
	2.4.4.2 Bactericides	15
	2.4.4.3 Breakers	15
	2.4.4 Fluid – Loss Additives	16
	2.5 PROPPING THE FRACTURE	16
	2.6 PROPPANTS	17
	2.6.1 Sand	17
	2.6.2 Resin-Coated Sand	18
	2.6.3 Intermediate-Strength Proppants	18
	2.6.4 High-Strength Proppants	18
	2.7 PHYSICAL PROPERTIES OF PROPPANTS	18
	2.7.1 Proppant Strength	19
	2.7.2 Grain Size and Grain Size Distribution	20
	2.7.3 Quality	22
	2.7.4 Roundness and Sphericity	22
	2.7.5 Proppant Density	22
2.8 ROCK MECHANICS		22
	2.8.1 Insitu Stress	23
	2.8.2 Young's Modulus	24
	2.8.3 Poison's Ratio	24
	2.8.4 Effective Stresses	25
	2.8.5 Fracture Size	26
	2.8.6 Fracture Containment	26
	2.8.7 Fracture Growth into Boundaries	27
	2.9 CHALLENGES IN HYDRAULIC FRACTURING	28
	2.9.1 Fracture Containment	28
	2.9.1.1 Factor affecting Vertical Growth	29
	2.9.2 Propped Fracture Conductivity Reduction	31
	2.9.2.1 Type and Strength of Proppant	32
	2.9.2.2 Fracturing Fluid	33
	2.10 Summary of Literature Review	36

CHAPTER 3: METHODOLOGY

37

CHAPTER 4: RESULTS AND DISCUSSION	39
4.1 INTRODUCTION	39
4.2 TECHNIQUES TO CONTROL VERTICAL GROWTH	39
4.2.1 Bracketfrac	40
4.2.2 Invertafrac	40
4.2.3 Divertafrac	40
4.2.4 Using Viscous Fracturing Fluid	40
4.3 CASE STUDY – 1	41
4.3.1 Well – I and V	42
4.3.1.1 Fracture Height Measurement	46
4.3.2 Well – III and IV	47
4.3.3 Well – II	52
4.4 PRODUCTION RESULTS	55
4.5 CASE HISTORY – 2 EAST TEXAS FIELD	57
4.5.1 Introduction	57
4.5.2 Production Results	63
4.6 CASE STUDY – 3	63
4.6.1 Introduction	63
4.6.2 Case History	65
4.7 CASE STUDY – 4	66
4.7.1 Introduction	66
4.7.2 Enzymes to remove Polymeric Damage	67
4.7.3 Canyon Sand Formation Case History	67
4.7.3.1 Treatment for damage removal	68
4.7.4 San Andres Formation Case History	69
4.7.4.1 Treatment to remove polymeric damage	69
4.7.5 Devonian Formation Case History	70
4.7.5.1 Treatment to remove polymeric damage	70
4.7.6 Viscoelastic Surfactant (VES) Treatment	71
4.8 Case Study – 5	71
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS	74
5.1 CONCLUSIONS	74
5.2 FRACTURE CONTAINMENT	74

v

5.3 FRACTURE CONDUCTIVITY	75
5.4 RECOMMENDATIONS	76
5.4.1 Fracture Containment	76
5.4.2 Fracture Conductivity	76

REFERENCES

LIST OF FIGURES

CONTENTS

Figure 2.1	Propped hydraulic fracture geometry	10
Figure 2.2a	igure 2.2a Proppants before applying closure stress	
Figure 2.2b	Effect of very high closure stress on sand	20
Figure 2.3	Effect of grain size on strength	21
Figure 2.4	Insitu stresses in the subsurface	23
Figure 2.5	Measurement of Poison's ratio	25
Figure 2.6	Fracture size limited by geometry and fluid contacts	26
Figure 2.7a	Upward fracture growth stopped at formation boundary	27
Figure 2.7b Limited upward fracture growth at formation boundary		27
Figure 2.7c Almost unimpeded upward fracture growth		28
Figure 2.8	Schematic of hydraulic fracture in three layer formation	30
Figure 2.9	Behaviour of proppants under stress	32
Figure 2.10	Typical values for fluid type and retained fracture conductivity	34
Figure 3.1	Methodology of project	38
Figure 4.1	Well I net pressure (Dead String)	45
Figure 4.2	Well V net pressure (Dead String).	45
Figure 4.3	Well I pre and post fracture gamma-ray (bracketfrac)	46
Figure 4.4	Well V pre and post fracture gamma-ray (bracketfrac)	47
Figure 4.5	Well III net pressure (Dead String).	50
Figure 4.6	Well IV net pressure (Dead String).	50
Figure 4.7	Well III pre and post fracture gamma-ray (invertafrac)	51
Figure 4.8	Well IV pre and post fracture gamma-ray (invertafrac)	52
Figure 4.9	Well II net pressure (Dead String)	54
Figure 4.10	Well II pre and post fracture gamma-ray (divertafrac)	54
Figure 4.11	Accumulated production in one year for wells	
	fractured with height containment	55
Figure 4.12	Accumulated production in one year for wells	

	fractured without height containment	56
Figure 4.13	Gain in production from fracture containment	
	to the production interval	57
Figure 4.14	Openhole log for well no. 1	59
Figure 4.15	Openhole log well no. 2	60
Figure 4.16	Cumulative production vs. Time	63
Figure 4.17 Canyon formation gas wells 9 month production		
	data treated with guar specific enzymes	68
Figure 4.18	San Andres formation oil wells 12 month production	
	data treated with guar specific enzymes	69
Figure 4.19	Devonian formation oil and gas wells 1 month data	
	treated with guar specific enzymes	70
Figure 4.20	Pictorial representation of fracture half lengths obtained	
	when stimulation treatment is performed using polymer	
	(left and) VES (right) fluids	72

LIST OF TABLES

CONTENT

PAGE

Table 1.1 Minimum hydraulic fracturing candidate well		
	selection screening criteria	3
Table 1.2	Treatment selection guidelines	5
Table 2.1	A summary of factors affecting proppant conductivity	36
Table 4.1	Information data for wells fractured with	
	height growth control	41
Table 4.2	Well I bracketfrac and fracture pumping schedule	43
Table 4.3	Well V bracketfrac and fracture pumping schedule	44
Table 4.4	Well III invertafrac and fracture pumping schedule	48
Table 4.5	Well IV invertafrac and fracture pumping schedule	49
Table 4.6	Well II divertafrac and fracture pumping schedule	53
Table 4.7	Information data for wells	58
Table 4.8	Well 1 fracture pumping schedule	61
Table 4.9	Well 2 fracture pumping schedule	62

ABBREVIATIONS

BOPD	Barrels of Oil per Day
bpm	barrels per minute
CMHPG	Carboxymethylhydroxypropyl
F _{cd}	Dimensionless Fracture Conductivity
FOI	Folds of Increase
FPP	Fracture Propagation Pressure
Frac	Fracturing
HEC	Hydroxyethylcellulose
HPC	Hydroxypropylcellulose
HPG	Hydroxypropylguar
ISP	Intermediate Strength Proppant
MMSCFD	Millions of Cubic Feet per Day
SP	Spontaneous Potential
ULW	Ultra Lightweight
VES	Viscoelastic Surfactant
X-Link	Crosslinker