APPENDICES

Appendix A

Appendix B

Figure B.1 Proton NMR spectrum for MSBIMHSO₄. The peaks 1-9 indicated, -N-C-C $\underline{H_2}$ -C-C-S-, -N-C-C-C $\underline{H_2}$ -C-S-, -N-C-C-C- $\underline{H_2}$ -S-, C $\underline{H_3}$ -N-, -N-C $\underline{H_2}$ -C-C-C-S-, O \underline{H} , -N-C \underline{H} -C-N-, -N-C-C $\underline{H_2}$ -N-, and -N-C \underline{H} -N-, respectively.

Figure B.2 Proton NMR spectrum for MSPPHSO₄. The peaks 1-8 indicated, -N-C-C $\underline{H_2}$ -C-S-, -N- C $\underline{H_2}$ -C-C-S-, C $\underline{H_3}$ -C-, -N-C-C-C $\underline{H_2}$ -S-, -O \underline{H} , -N-C-C \underline{H} -C-N-, -N-C \underline{H} -C-N-, and -N-C-C \underline{H} -N-, respectively.

Figure B.3 Proton NMR spectrum for TESPAMHSO₄. The peaks 1-6 indicated, $C\underline{H_3}$ -C-, -N-C-C- $\underline{H_2}$ -C-S-, -N-C-C-C- $\underline{H_2}$ -S-, C-C $\underline{H_2}$ -N-, -N-C $\underline{H_2}$ -C-C-S-, and -S-O \underline{H} , respectively.

Appendix C

Table C.1 Carbon (C, 12.0107 g/mol), Hydrogen (H, 1.0079 g/mol), Nitrogen (N, 14.0067 g/mol) and Sulfur (S, 32.066 g/mol) percentages in the investigated ILs

IL	С	Н	Ν	S	Predicted
100					

	(%)	(%)	(%)	(%)	formula
MPSIM	$43.23~\pm$	$6.07 \pm$	$13.37 \pm$	$16.58 \pm$	C-H. N.O.S
	0.02	0.018	0.044	0.015	$C_7 \Pi_{12} \Pi_2 O_3 S$
MSPIMHSO ₄	$27.85~\pm$	$4.58 \pm$	9.29 ±	$21.26 \pm$	$C_7H_{14}N_2O_7S_2$
	0.047	0.053	0.081	0.046	
MBSIM	$45.03~\pm$	$6.556 \pm$	$12.23 \pm$	$15.44 \pm$	$C_8H_{14}N_2O_3S$
	0.026	0.031	0.029	0.030	
MSBIMHSO ₄	$30.32 \pm$	$5.094 \pm$	$8.99 \pm$	$20.26 \pm$	$C_8H_{16}N_2O_7S_2$
	0.095	0.024	0.0164	0.073	
BPSIM	$49.05~\pm$	$7.551 \pm$	$11.38 \pm$	$13.34 \pm$	$C_{10}H_{18}N_2O_3S$
	0.03	0.005	0.045	0.038	
BBSIM	$50.93 \pm$	$7.772 \pm$	$10.80 \pm$	$12.47 \pm$	C. H. N.O.S
	0.038	0.010	0.075	0.045	C111120112035
BSBIMHSO ₄	$36.82 \pm$	6.17 ±	7.91 ±	$18.11 \pm$	$C_{11}H_{22}N_2O_7S$
	0.01	0.058	0.086	0.03	2
PSP	$48.71 \pm$	$9.66 \pm$	$5.92 \pm$	$14.73 \pm$	$C_{6}H_{10}N_{2}O_{3}S$
	0.049	0.058	0.053	0.026	
SPPHSO ₄	$24.78 \pm$	4.31 ±	$10.03 \pm$	$22.95 \pm$	C.H.N.O.S.
	0.015	0.004	0.011	0.02	C611121120752
SBPHSO ₄	$27.77~\pm$	4.599 ±	9.29 ±	$21.24 \pm$	$C_7H_{14}N_2O_7S_2$
	0.032	0.016	0.033	0.020	
MSPPHSO ₄	$27.77~\pm$	$4.62 \pm$	9.28 ±	$21.25 \pm$	$C_7H_{14}N_2O_7S_2$
	0.064	0.008	0.010	0.06	
MSBPHSO ₄	$30.23 \pm$	$5.095 \pm$	$8.985 \pm$	$20.26 \pm$	$C_8H_{16}N_2O_7S_2$
	0.040	0.025	0.022	0.035	
DEMSPAM	$48.93 \pm$	$9.57 \pm$	6.24 ±	$14.51 \pm$	C ₉ H ₂₁ NO ₃ S
	0.035	0.020	0.01	0.015	
DEMSBAMHSO ₄	$33.90 \pm$	7.312 ±	4.42 ±	$20.24 \pm$	C ₀ H ₂₂ NO ₇ S ₂
	0.020	0.010	0.004	0.072	Cy1123110702
TEPSAM	$49.26 \pm$	9.64 ±	$6.30 \pm$	$14.62 \pm$	C ₀ H ₂₁ NO ₂ S
	0.036	0.020	0.006	0.035	Cy112111030
TESPAMHSO ₄	33.73 ±	7.31 ±	4.42 ±	$20.24 \pm$	C ₉ H ₂₃ NO ₇ S ₂
	0.038	0.005	0.003	0.059	
TEBSAM	$50.97 \pm$	9.96 ±	$6.004 \pm$	13.98 ±	C ₁₀ H ₂₃ NO ₃ S
	0.011	0.025	0.034	0.086	
TESBAMHSO ₄	$36.05 \pm$	$7.58 \pm$	4.24 ±	$19.07 \pm$	C10HasNO-Sa
	0.026	0.005	0.009	0.050	C1011251007.52

Appendix D

Table D.1 The thermal decomposition of investigated zwitterionic ILs and RTILs

IL	$T_{dec} \pm 2.5$ (°C)		
MPSIM	370		
MSPIMHSO ₄	315		

MBSIM	367.9		
MSBIMHSO ₄	306		
BPSIM	372.8		
BSPIMHSO ₄	323		
BBSIM	360.2		
BSBIMHSO ₄	311.5		
PSP	347.4		
SPPHSO ₄	300.4		
BSP	352.7		
SBPHSO ₄	308.3		
MPSP	359.8		
MSPPHSO ₄	320		
MBSP	350.8		
MSBPHSO ₄	308		
DEMPSAM	328		
DEMSPAMHSO ₄	332.7		
DEMBSAM	318		
DEMSBAMHSO ₄	330		
TEPSAM	296.8		
TESPAMHSO ₄	295.4		
TEBSAM	288.8		
TESBAMHSO ₄	280		

Appendix E

Figure E.1 The effect of different catalysts on the CPO acidity reduction during the transesterification reactions. $3a = SPPHSO_4$; $4a = MSPPHSO_4$; $4b = MSBPHSO_4$, $5a = DEMSPAMHSO_4$, $5b = DEMSBAMHSO_4$, $6a = TESPAMHSO_4$, $6b = TESBAMHSO_4$.

Appendix F

Figure F.1 The effect of MSPIMHSO₄ catalyst on the TGs and FFA conversion to ME.

Figure F.2 The effect of MSBIMHSO₄ catalyst on the TGs and FFA conversion to ME.

Figure F.3 The effect of BSPIMHSO $_4$ catalyst on the TGs and FFA conversion to ME.

Appendix G

Figure G.1 Functionalized pyrazolium acidic ILs recyclability for catalyzing the transesterification of CPO with methanol under their optimal conditions. $3a = SPPHSO_4$; $4a = MSPPHSO_4$; $3b = SBPHSO_4$; $4b = MSBPHSO_4$.

Figure G.2 Functionalized ammonium acidic ILs recyclability for catalyzing the transesterification of CPO with methanol under their optimal conditions. 3a = SPPHSO4; 4a = MSPPHSO4; 3b = SBPHSO4; 4b = MSBPHSO4.

Appendix H

Figure I.1 GC standard curves for: (a) TG; (b) DG; (c) MG; (d) Gl.