83

Appendix A

Source Code

84

Al. Main Program

%

% This program is used for MSc EE UTP thesis

% Program to do DCT-based and DTCWT-based video codec
%

%

% Supervisor : Dr. Vooi Voon Yap

% voolv@petronas.com.my

%

% Unan Y Oktiawati

% G2010342

% unan_yusmaniar@utp.edu.my

% last modified : mar 07

O —— -

% initialization condition

close all;
clear all;

% call the source file

imageName = "hanif"; % name of Tile
% initialization value

err = 0;

% define variable needed

mbSize = 16; % macro block size
p = 7; % search parameter

% activate timer for counting time consuming information
tic; % start timer

% start of the program

% initialization part

for 1 = 1:30 % = 1:n n=number of frames

img INumber
imgPNumber

i; % 1 frame
i+2; % P frame

% Read the sequences

ifT imgINumber < 10
imglFile =
sprintf("F:thesis/tried/BlockMatchingAlgoMPEG/%s/gray/%s00%d.ras”,
imageName, imageName, imglNumber);

85

% state the location of the sequences fTile

elseif imgINumber < 100
imglFile =
sprintf("F:thesis/tried/BlockMatchingAlgoMPEG/%s/gray/%s0%d.ras*®,
imageName, imageName, imglINumber);

end

it imgPNumber < 10
imgPFile =
sprintf("F:thesis/tried/BlockMatchingAlgoMPEG/%s/gray/%s00%d.ras™,
imageName, imageName, imgPNumber);

elseif imgPNumber < 100
imgPFile =
sprintf("F:thesis/tried/BlockMatchingAlgoMPEG/%s/gray/%s0%d.ras”®,
imageName, imageName, imgPNumber);

end

[a,map]=imread(imglFile);
imgl = double(imread(imglFile));
imgP = double(imread(imgPFile));

% changing the frame into suitable size

imgl
imgP

imresize(imgl,[100 120]); % [a b]= size of frame
imresize(imgP,[100 120]);

% Transformation part

% 2D DTCWT decomposition level 1 using filter “near_sym b" and "qshift b~

[Y11,Yhi]
[YIP,YhP]

dtwavextm2(imgl,1, "near_sym b~ ,"qgshift_b");

dtwavextm2(imgP,1, "near_sym b~ ,"qgshift_b");

% Discrete Cosine Transform (DCT)

imgP=dct(imgP);
imgl=dct(imgl);

% Motion Estimation

% DTCWT+ARPS Motion Estimation

[motionVectl, computationsl] = motionEstARPS(YIP,Yll ,mbSize,p);
% ARPS Motion Estimation
[motionVect, computations] = motionEstARPS(imgP,imgl,mbSize,p);

% Motion Compensation

imgCompl = motionComp(Yll, motionVectl, mbSize);
imgComp = motionComp(imgl, motionVect, mbSize);

% For DTCWT, size of imgCompl should be agreed with YII
imgCompl = imresize(imgCompl,size(YIll));
% inverse transform

% 2D DTCWT reconstruction

imgDTCWT = dtwaveifm2(imgCompl,Yhl,"near_sym_b*","gshift_b");
% inverse DCT

imgComp=idct(imgComp);

% Stop the timer

time=toc; % time=time consuming

% Calculate PSNR value

DTCWTpsnr(i)=imgPSNR(imgDTCWT, imgl, 255);
Comppsnr(i)=imgPSNR(imgComp, imgl, 255);

% Display results

imshow(uint8(imgDTCWT));
figure; imshow(uint8(imgComp));

% Create an avi Tile
% For DCT-based
imgComp=uint8(imgComp) ;

A(1)=immovie(imgComp,map) ;
movie2avi (A, “hanifA.avi~);

% For DTCWT-based
imgDTCWT=uint8(imgDTCWT) ;

B(i)=immovie(imgDTCWT ,map);
movie2avi(B, “hanifB.avi~);

end

% calculating the difference PSNR

a=DTCWTpsnr-Comppsnr;
save a

% For Visual comparison purpose

figure;
subplot(131); imgl=uint8(imgl);imshow(imgl);title("imgl~);
subplot(133); imgDTCWT=uint8(imgDTCWT) ; imshow(imgDTCWT) ;

86

title("ARPS+DTCWT");
subplot(132) ; imgComp=uint8(imgComp) ; imshow(imgComp) ;title("ARPS");

% Plot figure of PSNR

figure;

i=1:i;

plot(i,DTCWTpsnr, i,Comppsnr);

% completed with title, legend and label
title(C"\it{Hanif}");

legend("ARPS+DTCWT*, "ARPS*);
xlabel (" frame no.");ylabel (*"PSNR");

87

88

A2. DTCWT

Kingsbury’s Dual-Tree Complex Wavelet Transform available from ngk@eng.cam.ac.uk.

The function:
function Z = dtwaveifm2(Yl,Yh,biort,gshift,gain_mask);

This function is used to perform an n-level dual-tree complex wavelet (DTCWT) 2-D
reconstruction by Nick Kingsbury and Cian Shaffrey Cambridge University, May 2002.

Z is the reconstructed real image matrix
Y1 is the real lowpass image from the final level
Yh is a cell array containing the 6 complex highpass subimages for each level.

gain_mask is Gain to be applied to each subband.

Used variable in this thesis are
e 'near_sym_b' or Near-Symmetric 13,19 tap filters for biort, biorthogonal filters;
e 'gshift_b' or Q-Shift 14,14 tap filters for gshift, quarter sample shift;

e ‘ones(6,length(Yh))’ as the default value of gain_mask.

The DTCWT function

% initialization value

% state the No of levels.

% check the gain_mask value, if it is not defined then use the default
value of gain_mask

4 check the input, should be in correct form or give error message

X

% do c2q function

% Do even Qshift filters on columns.

% Do even Qshift Filters on rows.

% Check size of Z and crop as required

%check to see if this result needs to be cropped for the rows
%check to see if this result needs to be cropped for the cols

% do c2q function

% Do odd top-level fTilters on columns.
% Do odd top-level filters on rows.

89

% c2q function

% Scale by gain and convert from complex w(:,:,1:2) to real quad-numbers
in z.

% Arrange pixels from the real and imag parts of the 2 subbands into 4
separate subimages (A, B, C and D).

% A--—--B
% | |
% | |
% C----D

% Recover each of the 4 corners of the quads.

90

A3. Inverse DTCWT

Kingsbury’s Dual-Tree Complex Wavelet Transform available from ngk@eng.cam.ac.uk.

the function :
function [Yl,Yh,Yscale] = dtwavexfm2(X,nlevels,biort,qshift);

Function to perform a n-level DTCWT-2D decompostion on a 2D matrix X by Nick
Kingsbury and Cian Shaffrey, Cambridge University, Sept 2001

X is 2D real matrix/Image.

nlevels is No. of levels of wavelet decomposition.

Y1 is the real lowpass image from the final level.

Yh is a cell array containing the 6 complex highpass subimages for each level.

Yscale is an OPTIONAL output argument, that is a cell array containing real lowpass

coefficients for every scale.

Variables used in this thesis are
e ‘near_sym_b'=> Near-Symmetric 13,19 tap filters for biort, biorthogonal filters;

e 'gshift_b'=> Q-Shift 14,14 tap filters for gshift, quarter sample shift.

The inverse DTCWT function

% Check if the inputs are iIn correct form or give error message

% Check to see if the image is odd iIn size, if so an extra row/column
will be added to the bottom/right of the image

% Initialization

% 1F sx(1) is not divisable by 2 then we need to extend X by adding a row
at the bottom

% Any further extension will be done in due course.

%if sx(2) is not divisable by 2 then we need to extend X by adding a
coulomb to the left

% Any further extension will be done in due course.

% Do odd top-level filters on cols.
% Do odd top-level filters on rows.

91

X

% do g2c function

% Extend by 2 rows if no. of rows of LoLo are divisable by 4;
t» Extend by 2 cols if no. of cols of LoLo are divisable by 4;

XX

% Do even Qshift Filters on rows.
% Do even Qshift filters on columns.

% do g2c function

g2c function

function z = g2c(y)

% Convert from quads in y to complex numbers in z.

% Arrange pixels from the corners of the quads into 2 subimages of
alternate real and imaginary pixels.

% a----b

A

A

% c----d

% Combine (a,b) and (d,c) to form two complex subimages.
4 Form the 2 subbands in z.

92

A4. Filter

Kingsbury’s Dual-Tree Complex Wavelet Transform available from ngk@eng.cam.ac.uk.

This function is used to filter the columns of image X using the two filters ha and hb which
is the reverse of ha. This function is introduced by Cian Shaffrey, Nick Kingsbury,
Cambridge University, August 2000. Modified to be fast if X = 0, May 2002.

The function :
function Y = colifilt(X, ha, hb)

ha operates on the odd samples of X and hb on the even samples.
Both filters should be even length, and h should be approx linear phase with a quarter

sample advance from its mid pt (ie |h(m/2)| > |h(m/2 + 1))).

The output is interpolated by two from the input sample rate and the results from the two
filters, Ya and YD, are interleaved to give Y.

Symmetric extension with repeated end samples is used on the composite X columns
before each filter is applied.

% IF m/2 is even, so set up t to start on d samples.

% Set up vector for symmetric extension of X with repeated end samples.
% Use "reflect”™ so r < m2 works OK.

% IF m/2 is odd, so set up t to start on b samples.
% Set up vector for symmetric extension of X with repeated end samples.
% Use "reflect”™ so r < m2 works OK.

A5. PSNR

Based on formula in equation 3.2 and equation 3.3

N -

1
MSE :Wz

i=0

LN

ML

(C“—R“y (3.2)

—
I}
o

(peak to peak value of original data)?

PSNR =10log,, MSE

(3.3)

% Computes image®s PSNR

%

% Input

% A - The original image

% B : The reconstructed image

% n - the peak value possible of any pixel in the images
%

% Ouput

% psnr - The image®s PSNR

%

% last updated by [Un@N] 01 mar 07

function psnr = ImgPSNR(A, B, n)
[row col] = size(A);
err = 0;

for a = 1:row
for b = 1:col
err = err + (A(a,b) - B(a,b))"2;
end
end

MSE = err / (row*col);

psnr = 10*1og10(n*n/MSE) ;

93

94

A6. ARPS

This function can be downloaded from
http://mathworks.com/matlabcentral/fileexchange/loadFile.do?objectld=8761&o0bjectType

=file

X

4 Computes motion vectors using Adaptive Rood Pattern Search method
%
% Based on the paper by Yao Nie, and Kai-Kuang Ma

% IEEE Trans. on Image Processing

% Volume 11 Number 12, December 2002 : Pages 1442:1448

%

% Input

% imgP - The image for which we want to find motion vectors
% imgl - The reference image

% mbSize : Size of the macroblock

% p : Search parameter (read literature to find what this means)

%

% Ouput

% motionVect : the motion vectors for each integral macroblock in imgP
% ARPScomputations: The average number of points searched for a
macroblock

%

% Written by Aroh Barjatya

* with modification by unan mar 07

function [motionVect, ARPScomputations] = motionEstARPS(imgP, imgl,
mbSize, p)

% define size of image

% The index points for Small Diamond search pattern

% Storing the positions of points where the checking has been already
done in a matrix that is initialized to zero. As one point is checked,
set the corresponding element in the matrix to one.

% start off from the top left of the image
% walk In steps of mbSize
% mbCount will keep track of how many blocks have been evaluated

% the Adaptive Rood Pattern search starts
% scanning in raster order

% if in the left most column then make sure that the LDSP is done with
stepSize = 2

% iFf the point due to motion vector is one of the LDSP points then no
need to calculate it again

% check at the rood pattern 5 points

% check 6 points

% The index points for first and only Large Diamond search pattern

% do the LDSP
% row/Vert co-ordinate for ref block
% col/Horizontal co-ordinate

% outside image boundary
% center point already calculated

% The doneFlag is set to 1 when the minimum is at the center of the
diamond

% row/Vert co-ordinate for ref block
% col/Horizontal co-ordinate

% row co-ordinate for the vector
% col co-ordinate for the vector

95

96

Appendix B

Subjective Visual Quality

Value Rating Description

1 Excellent | An extremely high quality video.

2 Fine A high quality video. Artifacts are not objectionable.

3 Passable | An acceptable quality video. Artifacts are not objectionable.

4 Marginal | A poor quality video. Artifacts are somewhat objectionable.

5 Inferior A very poor video, but still acceptable. Artifacts are visible and
objectionable.

6 Unusable | A bad video that it is unacceptable.

Give a value to the video displayed on the mobile phone screen using the rating scale given in the above table. Record your value on a
score sheet. Give the value on appropriate column.

Thank you for your cooperation.

B1. Subjective Visual Quality Form
(page 1)

Value

Rating

Excellent

Fine

Passable

Marginal

Caltrain A Caltrain B Football A Football B

Inferior

OO BIWIN

Unusable

Missa A

Missa B

B2. Subjective Visual Quality Form

Table B1. Frequency of Subjective Visual Quality

Value |Hanif A | Hanif B
1 2 11
2 7 14
3 19 13
4 15 8
5 3 2
6 4 2
Value Susie A | Susie B
1 0 3
2 10 22
3 17 14
4 18 5
5 4 4
6 0 1
Value | Missa A | Missa B
1 0 1
2 8 18
3 22 19
4 16 7
5 3 5
6 1 0
Value Football A Football B
1 3 3
2 6 7
3 2 13
4 6 8
5 14 13
6 19 6
Value Caltrain A | Caltrain B
1 3 1
2 4 15
3 18 9
4 11 10
5 10 13
6 4 2

100

Appendix C

Data Result

101

Table C1. Data Results

Moving area File Size File Size Compression :
Sequence (%) (kB) Method (kB) (%) Computation
caltrain DCT 80 17.525 9.763
91.64 97 DTCWT 77 20.619 10.071
Football DCT 111 43.655 10.724
94.99 197 DTCWT 86 56.345 10.870
Hanif DCT 48 20.000 6.811
84.13 60 DTCWT 42 30.000 6.8963
Missa DCT 24 17.241 7.328
84.7 29 DTCWT 22 24.138 8.649
Susie DCT 41 24.074 5.903
85.87 54 DTCWT 35 35.185 5.812
Sequence PSNR Time delta time Memory delta Memory
q (dB) (s) (s) Usage (kB) Usage (kB)
, 21.163 8.352 2387.4
Caltrain . .
' 23.149 8.800 >-448 2236.0 151.4
20.577 8.304 3780.0
Football . .
21.810 7.487 0.817 2882.4 897.6
. 31.610 7.195 828.0
Hanif . .
31.977 7.576 1.381 768.0 60.0
. 34.187 7.274 1428.0
Missa . .
' 36.164 8.024 3.750 1212.0 216.0
. 34.069 6.250 2965.0
Susie . .
35.674 6.084 0.166 2928.0 37.0

102

Appendix D

Publications

103

“Video Compression using Dual Tree Complex Wavelet Transform* in Proceeding of
IEEE International Conference on Intelligent and Advance System (ICIAS), Kuala

Lumpur, Malaysia, 2007.

“Evaluating the Effects of the Dual Tree Complex Wavelet Transform and the
Adaptive Rood Pattern Search on a Video Codec” in Proceeding of IEEE
International Conference on Industrial Electronics and Applications (ICIEA),

Singapore, 2008.

