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ABSTRACT 

In-situ generation of chlorine was obtained by electrochemical process using Metal 

Oxides - coated titanium as anode and Titanium as cathode. In this process, its effect 

will be mainly based on the electrochemical production of hypochlorite and/or 

hypochlorous acid from the chloride content of the water. Brine solutions which 

consist of different concentration of sodium hydroxide (NaCI) were being prepared 
for electrolysis at different conditions such as flow rate of brine solution entering 

reactor (4 mL/min - 12 mL/min), electrodes configurations, brine solution pH (2 - 7), 

chloride concentrations (3.6 mg/L - 100 mg/L) and current densities (1.33 mA/cm2- 
4 mA/cm2) in a continuous flow process. The system was running for 5 minutes 

before the 1 litre of sample taken so that the system was stabilized. Two conditions 

that have been identified to produced optimum value of free available chlorine (FAC) 

was at pH 5 which yield as high as 800 mg/L and electrodes configuration that 

produce optimum FAC was arrangement B, which produced 640 mg/L of FAC. From 

the 3D surface plot, it was found that FAC production increases with increase in 

chloride concentration and current density but reduces with increase in flow rate. 

Furthermore at 3.6 mg/L chloride concentration, sufficient amount of FAC was 

produced for disinfection where 0.23 mg/L, 1.98 mg/L and 2.38 mg/L of FAC was 

produced at current densities of 4 mA/cm2 and flow rate of 4 mL/min, 8 mL/min and 

12 mL/min respectively. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND OF STUDY 

Chlorine is one of the most commonly used disinfectants throughout the world. The 

principle chlorine compounds used at wastewater-treatment plants are gaseous 

chlorine (Cl2), sodium hypochlorite (NaOCI), calcium hypochlorite [Ca(OCl)2], and 

chlorine dioxide (C1O2) (Kraft, 2008). Many large cities have switched from chlorine 

gas to sodium hypochlorite because of the safety concerns related to handling and 

storage of liquid chlorine (Kraft, 2008). 

Although the use of chlorine for the disinfection of both potable water supplies and 

treated wastewater has been of great significance from a public health perspective, 

serious concerns have been raised of its continued use. Important concerns include 

(Metcalf and Eddy, 2004): 

1. Chlorine is a highly toxic substance that is transported by rail and truck, both 

of which are prone to accidents. 
2. Chlorine is a highly toxic substance that potentially poses health risks to 

treatment plant operators and the general public if released by accident. 
3. As chlorine is a highly toxic substance, stringent requirements for containment 

and neutralization must be implemented as specified in the Uniform Fire Code 

(UFC). 

4. Chlorine reacts with the organic constituents in wastewater to produce odorous 

compounds. 
5. Chlorine reacts with the organic constituents in wastewater to produce by 

products, many of which are known to be carcinogenic and/or mutagenic. 
6. Concerns exist over the discharge of chloro-organic compounds to the 

environment whose long-term effects are not known. 

7. Residual chlorine in treated wastewater effluent is toxic to aquatic life. 
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Thus, one of the ways to make chlorination safer for disinfection is by eliminating the 

hazards related to transportation and storage of chlorine. This could be done by 

producing it in-situ. In-situ chlorine generation for water disinfection can be done by 

using electrochemical process. Different terms have been in use to describe this type 

of water treatment process or the water produced by this process, such as `electrolytic 

disinfection', `electrochemical disinfection', `anodic oxidation', `functional water' 

and ̀ electrochemically activated water' (Kraft, 2008). 

Electrochemical water disinfection is a rarely used but convenient and highly efficient 

way to produce germ-free water. The technique works without the addition of 

chemical compounds to the water to be treated, but is nevertheless based on the 
biocidal action of various chemical substances (Kraft, 2008). 

A batch study (Yusoff, 2008) on electrochemical water disinfection was conducted in 

the last Final Year Project (FYP) and the optimum criteria for hypochlorite production 
in a batch system were found. A continuous study will be done in this project to 

search for the optimum criteria when the electrochemical water disinfection process is 

applied to a continuous flow. 

1.2 PROBLEM STATEMENT 

1.2.1 PROBLEM IDENTIFICATION 

Chemical agents that have been used as disinfectants such as chlorine introduce 

hazards to the environment. Many safety concerns related to the transport, storage, 

and feeding of liquid-gaseous chlorine can create a dangerous situation such as the 

potential discharge of a toxic vapour cloud due to accident while it is transported or 
due to leakage at the chlorine storage site. 
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1.2.2 SIGNIFICANCE OF THE PROJECT 

The hazards related to transport and storage of chlorine can be eliminated by 

generating it in-situ. Further study on in-situ chlorine generation will help in terms of 

minimizing the hazards towards people and environment, reducing maintenance such 

as to test leakage from the storage tanks. 

1.3 OBJECTIVES 

The main objectives of this project are: 

1. To determine the effectiveness of in-situ free available chlorine (FAC) 

generation using low chloride concentrations. 
2. To determine the flow rate, pH, concentration of electrolyte, current density 

and suitable arrangement of the electrodes for the optimum production of 

(FAC). 

1.4 SCOPE OF STUDY 

The study will focus on the in-situ hypochlorite ion generation using Metal 

Oxide-coated Titanium electrodes which have been found to produce optimum FAC 

(Yusoff, 2008), and Sodium Chloride (NaCI) brine solution electrolyte in a continuous 

flow system. The amount of free available chlorine generated will be monitored. 

Effect of the process on electrodes will also be studied. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 SCENARIO ON CHLORINE TRANSPORTATION 

Chlorine is one of many industrial agents that are harmful, yet used extensively in 

processing and transported in bulk. Chlorine gas is so deadly that it was used as a 

chemical weapon in the trenches of World War I. Yet chemicals like chlorine are 

essential to modem life and supplies are needed in every city. Chlorine is used as a 
key disinfectant for the water supply in cities, and is commonly used in cleaning and 
bleaching agents, for paper production, and to manufacture plastic products (NTSB, 

1998). 

Chlorine ranks eighth in terms of the quantities of chemicals manufactured in the U. S., 

and is transported across the nation in more than 100,000 shipments each year (NTSB, 

1998). Chlorine shipments probably have no more or fewer accidents than other 
hazardous materials per mile of transportation, but a number of recent accidents have 

highlighted the danger chlorine poses when released near populated areas (NTSB 

1998). Cases involving chlorine transportation are discussed in Section 2.1.1. 

Chlorine is transported and stored as liquid under high pressure. If it was released in 

the atmosphere, it could quickly vaporize into a toxic gas cloud nearly 500 times its 

pressurized volume (Gautrin et al., 1999). The trend is now for on site generation. 

2.1.1 METRA TRAIN (CHICAGO) CRASHED WITH CHLORINE 

TANKER 

On June 2000, the commuters on the 7: 30 am METRA train from Chicago's western 

suburbs into Union Station crashed into cars and also a tanker containing 90 tons of 

pressurized liquid chlorine, splitting one of them open and damaging a second one. A 

jet of chlorine gas exploded out through the rupture. It took fifteen minutes for the 

tanker to empty (NTSB, 1998). 
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The sub-zero temperature outside was 34 degrees warmer than chlorine's boiling 

point. A plume of yellow-green gas reached 50 feet (15 meters) into the air. 
The billowing cloud filled the railway tracks. Three commuter trains were halted on 

the approaching tracks to the accident, each crowded with more than 400 people on 
board. Within minutes the trains are full of the lethal gas (NTSB, 1998). 

The chlorine gas was blown away carrying it to North West area in which the gas 

entered the air heating system in buildings in which nearly all the workers or students 

were. Figure 1.1 shows area in Chicago that was affected by chlorine gas while Figure 

1.2 shows clouds of chlorine vapours at the scene. Hundreds of workers choked to 

death in minutes as the dense chlorine poured in through the air heating system. 
Others suffer permanent lung damage and skin burns. In a nine-storey office building 

nearby, the chlorine filled the bottom two floors, killing many occupants, but workers 

who manage to get up above the third floor survived (NTSB, 1998). 

Figure 1.1: Area in Chicago that Is 
Affected by chlorine gas, Source: (NSTB, 
1998) 

Figure 1.2: Clouds of chlorine vapours seen 
at the scene, Source: (NSTB, 1998) 
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2.1.2 MASSIVE LEAK OF LIQUEFIED CHLORINE GAS, HENDERSON, 

NEVADA 

Massive leaks of liquefied chlorine gas that occured created a dangerous cloud of 

poison gas over the city of Henderson, Nevada, in the early morning hours of May 6, 

1991. Over 200 persons were examined at a local hospital for respiratory distress 

caused by inhalation of the chlorine and approximately 30 people were admitted for 

treatment. Approximately 700 individuals were taken to shelters. It is estimated that 
from 2,000 to 7,000 individuals were taken elsewhere (Routley, 1991). 

Chlorine gas was released caused by leak of brine from heat exchanger mixing with 
liquefied gas. Mixture created corrosive acid which ate through pipes when product 

was transferred from storage tank. Leak increased as acid ate larger hole in pipe. 
Approximately 70 tons of chlorine escaped. Chlorine gas cloud dissipated with 

morning heat and winds (Routley, 1991). 

This accident was so crucial because this plant is located Clark County Island 

surrounded by the City of Henderson. Thus the population at the city were primarily 

at risk of inhaling chlorine gas. Fire fighters and plant personnel overcome when 

chlorine cloud moved in unexpected direction. Command Post had to be relocated 

three times to avoid moving cloud. Some residents exposed during evacuation; 

over 200 examined at hospitals; 30 admitted. Citizens evacuated as leak continued to 

expand and control efforts proved unsuccessful. Approximately 700 people taken to 

shelters; 2,000 to 7,000 taken elsewhere. Police officers who was assisting with 

evacuation and traffic control was also exposed to chlorine gas cloud (Routley, 1991). 
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2.1.1.3 CHLORINE TANKER RUPTURED IN ALBERTON, MONTANA 

In 1996, a train derailed in a sparsely populated stretch of line near Alberton, Montana 

Tanker cars ruptured, venting at least 17,000 gallons (64,000 litres) of chlorine as a 
dangerous plume of gas, although some reports estimate up to 100,000 gallons 
(378,000 litres) were lost. This plume was mainly directed across the Clark Fork 

River. Fortunately, there was not a major town in the vicinity, but 352 people were 
hospitalized and one person died (NTSB 1998). 

2.2 BASIC PRINCIPLES OF DISINFECTION 

Disinfection in water and wastewater treatment systems may be defined as the 

destruction of pathogens (e. g., bacteria, viruses, protozoan, or amoebic cysts) to 

provide public health protection (Metcalf and Eddy, 2004). Disinfectant chemicals for 

use in water, wastewater, and cooling tower applications include chlorine and its 

compounds (e. g., chloramines, sodium hypochlorite, and chlorine dioxide) (Metcalf 

and Eddy, 2004). 

Design considerations and operational factors for disinfectant systems are as follows 

(Casson and Bess, 2003): 

1. The microorganisms to be inactivated 

2. The concentration of microorganisms in the water 
3. The water quality in which disinfection will occur 
4. The variability of the water quality 

5. The type of disinfectant chosen for application 
6. The dose or concentration of the disinfectant applied 
7. The contact time of the disinfectant with the microorganisms 
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2.3 ELECTROCHEMICAL WATER DISINFECTION 

Compared to other chemical disinfection methods, the advantages of electrochemical 

water disinfection are obvious: no transport, storage and dosing of disinfectants are 

required. The disinfecting effect can be adjusted according to on-site demand. 

Electrochemical water disinfection shows a reservoir effect and is often more cost 

effective and requires less maintenance than other disinfection methods. Photovoltaic 

power supply makes it possible to use electrochemical water disinfection far from the 

electrical supply grid and this may be important for its application to drinking water in 

developing countries (Kraft, 2008). 

In electrochemical water disinfection, electrodes (at least one cathode and one anode) 

are inserted either directly into the volume of water to be disinfected, or into a bypass 

pipe (Kraft, 2008). A Direct Current (DC) voltage is applied between the electrodes, 
leading to the electrolysis of the water. At the anode, the main product is oxygen 
(Equation 2.1) and accompanied by an acidification of the water in the vicinity of the 

anode. At the cathode, hydrogen is formed (Equation 2.2) (Kraft, 2008): 

2H20 ý 02 + 4H+ + 4e" ........... .......... (2.1) 

2H20 + 2e > H2 + 20H" ........................ (2.2) 

2.4 FREE AVAILABLE CHLORINE 

In the nomenclature of water disinfection, the sum of concentrations of molecular 

chlorine (C12), hypochlorous acid (HOCI) and hypochlorite ion (OCI-) concentrations 
is usually termed `free chlorine' or `active chlorine'(Metcalf and Eddy, 2004). Free 

available chlorine or FAC in these forms has a strong tendency to gain electrons to 

obtain a more stable minus one (-1) oxidation state, as found in chloride. In this 

reaction, FAC serves as an oxidizing agent, and chloride is the ground state that is no 
longer very reactive. Many of reactive properties of free chlorine are a result of the 

strong tendency to return to this ground state (Bryant et al., 1992). 
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2.5 PRODUCTION OF FREE AVAILABLE CHLORINE FROM THE CHLORIDE 

CONTENT OF WATER 

If electrochemical disinfection is applied to drinking water, industrial water, or other 

solute-containing water, its effect is mainly based on the electrochemical production 

of hypochlorite and/or hypochlorous acid from the chloride content of the water 
(Kraft, 2008). 

The disinfectants or the free available chlorine is produced at the anode in a side 

reaction to oxygen evolution. The following simplified reaction mechanism describes 

the process. First, chlorine is produced electrochemically from chloride ions dissolved 

in the water (Equation 2.3) (Khelifa et al., 2004): 

2C1' ý C12 + 2e . ....... .... . ....... (2.3) 

Chlorine hydrolyses in water and hypochlorous acid (HC1O) is formed (Equation 2.4): 

C12 + H20 > HC1O + HCl ..... . ..... ...... (2.4) 

Hypochlorous acid and the hypochlorite anion form pH dependant equilibrium 

(Equation 2.5): 

HC1O < C10' + H+ ........................... (2.5) 

The disinfecting effect of free available chlorine is based on the release of atomic 

oxygen according to Equations (2.6) and (2.7): 

HC1O > 0+ C1"+ H+ ....................... (2.6) 

C10" > 0+ Cl" ............................... (2.7) 

During the disinfection, chloride ions which have been consumed by electrochemical 
free chlorine production are reformed. Thus there is no overall change in the chemical 

composition of the water during electrochemical water disinfection (Khelifa et al, 
2004). 
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2.6 EFFECTIVENESS OF HYPOCHLORITE GENERATION FOR WATER 

DISINFECTION 

The effectiveness of this method has always been accepted for water which contains 
higher concentrations of chloride ions (Kuhn and Lartey, 1975), such as seawater with 

about 19 g/l chloride (Adamson et al., 1963), or where large amounts of sodium 

chloride have been added, for instance to swimming pool water (chloride 

concentrations here are usually about (2 -5 g/1) (Kuhn and Lartey, 1975) 

For the disinfection of drinking water and other waters with much lower chloride 

content, the effectiveness of the method was not clear for a long time (Kraft, 2008). It 

was eventually demonstrated that even at very low chloride concentrations (less than 

100 mg/1) sufficient free chlorine can be produced to efficiently disinfect water. Table 

2.1 shows comparison of sodium hypochlorite with other commonly used 

disinfectants. 

A research showed on the efficiency of an electrochemical disinfection technology 

against a range of pathogens such as Escherichia coli and bacteriophage MS2. 

Disinfection of E. coli was shown to increase with increasing chlorine generation. 

After treatment for 60 minutes and a chlorine residual concentration of 1.6 mg/L, total 

measurable inactivation (7 log) of E. coli was achieved (Kerwick et al., 2005). Figure 

2.1 shows the effectiveness of generated chlorine species for disinfection. 
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Figure 2.1: Ecoli inactivation in a 0.01 M sodium chloride electrolyte at current 
densities of ± 0.5 mA/cm2 (Kerwick et al., 2005). 
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Table 2.1: Comparison of ideal and actual characteristics of sodium hypochlorite and other commonly used disinfectants 'b 

Characteristic a Chlorine Sodium Calcium Chlorine dioxide Ozone UV radiation 
h ochlorite h ochlorite 

Availability/cost Low cost Moderately low Moderately low Moderately low Moderately high Moderately high 
cost cost cost cost cost 

Deodorizing High Moderate High High High na 
ability 
Homogeneity Homogeneous Homogeneous Homogeneous Homogeneous Homogeneous na 
Interaction with Oxidizes organic Oxidizes organic Absorbance of 
extraneous matter Active oxidizer Active oxidizer High matter UV radiation 
material 
Noncorrosive Highly corrosive Corrosive Corrosive Highly corrosive Highly corrosive na 
and nonstaining 
Nontoxic to Highly toxic to Toxic Toxic Toxic Toxic Toxic 
higher form of higher life form 
life 
Penetration High High High High High Moderate 
Safety concern High Moderate Moderate High Moderate Low 
Solubility Moderately High High High High na 
Stability Stable Slightly unstable Relatively stable Unstable, must be Unstable, must be na 

enerated as used generated as used 
Toxicity to High High High High High High 
microorganisms 
Toxicity at 
ambient High High High High High High 
temperature 

a See Table Al for description of each characteristics; b na = not applicable (Metcalf and Eddy, 2004) 



2.7 EFFECTS OF FLOW RATE, SALT CONCENTRATIONS AND 

TEMPERATURE ON FAC GENERATION 

Flow rate of brine solution, salt concentrations and temperature affect the production 

of total residual chlorine. (Hsu, 2005) stated that the total residual chlorine increased 

with increased of salt concentration and decreases of water flow rate. Figure 2.2 and 
Figure 2.3 show the effects of flow rate as it decreases which produce the highest 

residual chlorine and also effects of salt concentration and temperature on residual 

chlorine production. 
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Figure 2.2: Total residual chlorine concentrations of electrolyzed oxidizing water with 

respect to water flow rate and temperature of input solution 
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Figure 2.3: Total residual chlorine concentrations of electrolyzed oxidizing water with 

respect to salt concentrations and temperature of input solution 
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2.8 SODIUM HYPOCHLORITE (NaOCI) 

Sodium hypochlorite solution is usually selected because safety in transport and 
handling are prime considerations. Chlorine is contained in a solution as hypochlorite, 

there by reducing risks of accidental release of chlorine gas. Sodium hypochlorite is 

also selected at many smaller installations since it can be fed using relatively simple 

methods that include solution feed pumps, hydraulic eductors, or simply gravity flow 

(Bryant et al., 1992). 

2.8.1 ORIGIN OF SODIUM HYPOCHLORITE GENERATION 

Chlorine gas was first prepared in 1774 by Karle Scheele of Sweden. It was not until 
1810, however, that Humphry Davy declared it an element before the Royal Society 

of London. Davy proposed the name of chlorine based on the Greek word chloros 

translated to green, greenish yellow, or yellowish green. The gas was liquefied by 

compression in 1805 by Thomas Northmore. In 1883, Faraday postulated the laws 

governing the passing of electric current through an aqueous salt solution, coining the 

word electrolysis (White, 1999). 

The first commercial production of chlorine began in 1890 by the Elektron Company 

(now Fabwerke-Hoechst A. G. ) of Griesheim, Germany (White, 1999). At first, the 

original electrolytic process was used primarily for caustic production. In 1909, the 

first commercial manufacturing of liquid chlorine began; the liquid was stored in 100- 

pound cylinders supplied from Germany (Casson and Bess, 2002). 
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2.8.2 ON SITE GENERATION OF SODIUM HYPOCHLORITE 

On-site sodium hypochlorite generation was feasible at the turn of the 20th century; 

the limitation was the electrode materials, carbon or platinum, which would dissolve 

in the electrolyte and caused cell damage, poor product quality and it is too expensive 
for practical use. No cell was developed during this period to provide reliable on-site 

sodium hypochiorite generation (White, 1999). 

Not until the development of the dimensionally stable anode for the chlorine industry 

in 1967 by an independent Belgian scientist, Henry Beer, was a reliable economic on 

site generation cell practical. In 1971 J. E. Bennet, using the dimensionally stable 

anode, developed an unseperated electrolytic cell that was patented by Diamond 

Shamrock Corporation. Many variations in the electrodes and cell configuration have 

become available in the marketplace during the ensuing 25 years for electrolysis of 
both dissolved salt solution and seawater as the system feed stock (White, 1999). 

Several proprietary systems are available for the generation of sodium hypochlorite 

from sodium chloride (NaCI) or seawater. These systems are electrical power 
intensive and, in the case of the generation from seawater, result in a very dilute 

solution, a maximum of 0.8 percent hypochlorite. (Metcalf and Eddy, 2004). 

2.9 HYPOCHLORITE SYSTEM 

Hypochlorite systems can be classified into two basic types, brine electrolysis and 

seawater electrolysis. The basis for classification is the feed stock derived from either 

crystallized salt brine systems or seawater feed for seawater electrolysis system 
(Casson and Bess, 2002). 

In on site generation, sea water systems tend to be less efficient, thereby resulting in 

excess sodium in the hypochlorite solution; brine solutions are preferable, especially 

where sodium levels must be limited in water (Bryant et al., 1992). 
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Basic components of hypochlorite systems include provisions for the delivery and 

unloading, storage facilities and feed tanks, and solution feed equipment and piping. 
Dilution tanks maybe required where low dosages would otherwise reduce the feed 

volume below levels that can be reasonably controlled with available metering 

systems (Bryant et al., 1992). 

Although the product of each system is the same sodium hypochlorite disinfectant, 

differences in the electrolysis method exists as a result of the variations in the 

calcarious hardness and other properties of the feed material (Casson and Bess, 2002). 

For brine system, crystallized salt were being used for electrolysis and the calcarious 

component can be controlled using water softening in order to remove calcium or 

magnesium from the feed water (Casson and Bess, 2002). 

In design of hypochlorite systems, there are several factors that need to be considered 

such as corrosivity and degradation of the hypochlorite. Hypochlorite can be 

extremely corrosive to wood and most metals. As such, solutions are normally stored 
in plastic, fibreglass or rubber lined containers or tanks. All hypochlorite degrade over 

time, resulting in reduction in solution strength. Factors that can affect the actual rate 

of hypochlorite degradation are listed below (Bryant et al., 1992): 

1. Solution impurities: hypochiorite degradation can be accelerated in the 

presence of some impurities such as iron, copper, nickel, and cobalt. (White, 

1999) suggest that copper and iron should not present at levels greater than 0.5 

mg/L and 1.0 mg/L respectively. 

2. Storage time: Many sodium hypochiorite suppliers recommend a maximum 

shelf life of 60 to 90 days (Laurer et al, 1986) but this depends on the storage 

conditions (eg: tank material and environment the tank located). 

3. Sunlight: Hypochlorites should be protected from ultraviolet wavelength since 
it can reduce the life of hypochiorite solutions strength. 

4. Temperature: Degradation of hypochiorite solutions increases rapidly with 
increase temperature. A common practice is to try to limit temperatures to 
80°F. 
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2.9.1 BRINE SYSTEM 

Brine systems can be used for any application requiring chlorine or chloramines as 

part of the disinfection regimen. These systems are nearly always installed inland and 

are designed to provide substantial quantities of stored sodium hypochlorite. Brine 

system is designed with excess product storage to assure that disinfection capacity is 

always available to the end user (Casson and Bess, 2002). 

To accommodate these requirements, systems are generally configured with the 

following components and operate in a manner described below (Casson and Bess, 

2002): 

1. Water softener: Essential for removal of calcium and magnesium from the 

feed water 
2. Salt dissolver: Provides the required salt solution for electrolysis 
3. Electrolyzer cell or cells: Electrolyzes the dilute brine solution 
4. DC power rectifier: Provide the direct current for electrolysis 
5. Storage tanks: Product storage to meet dosing requirements as well as any 

excess capacity essential to assure continuous dosing capabilities 
6. Hydrogen dilution blowers: Provided to dilute the by-product hydrogen 

produced during the electrolysis process 

7. Dosing pumps with dosing controls: Provide the needed disinfection dose 

based upon the chlorine residual or flow rate at the point of disinfection 

8. Cell cleaning system: Used to remove the calcarious material deposited on 

the cell cathodes during the production process 

9. Central control panel: Performs the system production control function 
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2.9.2 SEAWATER SYSTEM 

Seawater electrochlorination utilize high seawater feed flow rates to help control 

cathode fouling from the naturally occurring magnesium and calcium in seawater 
(Casson and Bess, 2002). As a result, the product concentrations of sodium 
hypochlorite are low and operating current efficiency is high. Since seawater provides 

a `free' source of salt, these systems contain smaller equipment of less variety than 
brine electrolysis system (Casson and Bess, 2002). The equipment for a sea water 

system is listed below, and generally operates in the manner described (Casson and 
Bess, 2002): 

I. Inlet water strainers: Essential for removing particulate material from the 

seawater feed stream 
2. Seawater booster pumps: Provide seawater at the appropriate pressure and 

flow to the electrolyser system 

3. Electrolyzer cell or cells: Electrolyzes the seawater feed to sodium 
hypochlorite 

4. DC power rectifier: Provides the current for electrolysis 
5. Hydrogen degassing storage tanks: For removing by-product hydrogen and 

product storage to meet shock dosing requirements 
6. Hydrogen degassing cyclone: An alternate degassing method were only 

continuous disinfectant dosing is required and hydrogen removal is 

desirable 

7. Hydrogen gas seal pot: Used with the cyclone where hydrogen is vented to 

the atmosphere without dilution 

8. Hydrogen dilution blowers: Provided to dilute the by-products hydrogen 

produced during the electrolysis process. These blowers may be applied to 

either tank or cyclone hydrogen removal systems 
9. Dosing pumps: Provide the needed disinfection dose to distance or high 

pressure applications. Direct current variation controls the dose rate rather 
than control the pump flow 

10. Cell cleaning system: Used to remove he calcareous material deposited on 
the cathode 
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2.10 APPROXIMATE COST BETWEEN HYPOCHLORITE SYSTEM AND 

OTHER ALTERNATIVE DISINFECTION TECHNOLOGIES 

There was an estimation of cost done by (Leslie et al, 1998) in order to evaluate 

alternatives of water disinfection system including chlorine gas, sodium hypochlorite 

(on-site/off-site), calcium hypochlorite, mixed oxidant, chlorine dioxide, ozone and 
UV light. The cost estimation was done to represent order of magnitude and 

comparatives estimates and not from detailed design. Table 2 shows the approximate 

cost for alternatives disinfection technologies. The cost was estimate for: 

1. A potable water plant. 
2. Capacity of 1.2 million gallons per day (MGD). 

3. Operating 24 hours a day. 

4. Chlorine dose of 1 ppm. 
5. Electricity rates of $0.042 per kilowatt hour (for Washington State). 

Table 2.2: Approximate Costs for Alternative Disinfection Technologies 
(1.2 MGD, 1 ppm chlorine dose) sources: (Leslie et al, 1998) 

Cl. ' C12= NaO 
C13 

On-site 
NaOC14 

Ca(OC1)23 MIOXtm s C102, O33 W9 

Capital 65000 15000 2500 18000 2500 21000 30000 75000 42000 
Operating 3600 3600 4400 1500 10000 2200 10000 1000 1000 

Maintenance 2600 2600 5000 1600 4600 13006 2500 1600 5000 

1.150# cylinders with scrubbers - prices from Matheson Gas Products. 
2.150# cylinders without scrubbers - prices from Matheson Gas Products. 
3. Prices from Van Waters and Roges. 
4. Prices from TMG Services, Maple Valley, WA. 
5. Prices from MIOXtm Company, Albuquerque, NM. 
6. Maintenance is generally cheaper than onsite NaOCI, since these cells do not require 

acid washing 

From the cost estimation, the capital cost for hypochlorite system were initially high 

but for operating and maintenance cost, hypochlorite system were among the lowest 

thus logically, in long period of time, the running cost will overcome the capital cost 

and make hypochlorite system is the best choice for disinfection system. 
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CHAPTER 3 

METHODOLOGY 

3.1 GANTT CHART 

A Gantt chart was prepared in the planning stage to keep track of what was planned 

and executed in order to complete this project. The Gantt chart is shown in Appendix 

(Table A-1) and the red boxes indicate what should have been completed up to week 
15. 

3.2 PROJECT FLOW 

Generally, this project was divided into the following 5 stages as been described in 

(Figure 3.1): 

Research underlying theories and potential materials 

1 Development of material and methods for laboratory 

purposes 

1 Conduct laboratory sessions 

1 Data analysis 

1 Report preparation 

Figure 3.1 Project flow 
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3.3 PROJECT PROGRESS 

Various experiments to determine operating parameters optimum production of FAC 

were conducted and the results are discussed in the Results and Discussion section. 
Besides that, journals and reading materials related to electrochemical water 
disinfection, on site hypochlorite generation and other related topics were studied in 

order to understand the theory or background about the project. There are some 

criteria that have been proved to be the optimum to achieve the highest amount of free 

available chlorine. Since this project was in continuation of a previous Final Year 

Project (FYP), the material and criteria that was found to produce optimum amount of 
free available chlorine are stated below (Table 3.1): 

Table 3.1: Data from previous study 

Electrodes 

Anode: Metal Oxide - coated titanium 

Cathode: Titanium 

Inter electrode gap 0.5 cm (between cathode and anode) 

Surface area of 

electrodes, SA, SB 15 cm2 

Current Density 200 mA/cm2 

Electrolyte 

concentrations 2M 

Time of sampling 120 minutes 

These materials and criteria's were used to find the optimum free available chlorine in 

a continuous flow process. 
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3.4 Design Expert 6.0 

The Design Expert 6.0 software was used to design and optimize the experimental 

conditions. Features of the software were: 

" Two-level factorial screening studies - Identify the vital factors that affect the 

process for the improvements. 

" General factorial studies - Discover the ideal combination of categorical 
factors and identify the vital factors that affect the process or product. 

" Response Surface Method (RSM) - Find the ideal process settings in order to 

achieve an optimal performance. 

" Mixture Design Techniques - Discover the optimal formulation. 

" Combination of process factors, mixture components, categorical factors - 
Tailor DOE to what information required. 

Design Expert software offers rotatable 3D plots for visualization of response surfaces. 
It also set the flags and explores the contours on interactive 2D graphs. The numerical 

optimization function finds maximum desirability for up to dozens of response 

simultaneously. Table 3.2 shows different factor levels that will be used and analyzed 

using the Design Expert software. 

Table 3.2 Factors that will be used for the continuous flow experiment 

Variable Factor Level -1 Level (0) Level (+1) 
A flow rates (ml/min) 4 8 12 
B current densities 1.3 mA/cm 2.7 mA/cm 4 mA/cm 

(mA/cm2) 
Chloride 

C concentrations 3.6 51.8 100 
(mg/1) 

Three factors will be considered with each having the low, medium and high levels 

designated by (-1), (0), and (+1) respectively that defined the domains of the 

variations. The three levels factorial appeared to be most appropriate for this 

particular study. 

21 



3.5 MATERIAL 

3.5.1 SODIUM CHLORIDE 

This chemical was used to prepared the brine solution for the electrolysis process. 

3.5.1.1 PHYSICAL DATA 

" Molecular weight: 58.44 

" Chemical formula: NaCl 

" Colour: white 

" Physical form: powder 

" Common synonyms: Salt, rock salt, Saline 

3.5.1.2 Toxicology 

" May caused irritation to respiratory tract is inhaled 

" Causes irritation, redness and pain to eyes 

" Very large dosage can caused vomiting, diarrhoea, and prostration if 

inhaled 

3.5.1.3 Occupational release 

" Keep in tightly closed container, stored in a cool, dry and ventilated 

area 

" Observed all warnings and precautions listed for the product 

" Protect against physical damage 

3.5.2 ELECTRODES 
Mixed Metal Oxide - coated titanium will be used as anode because it has been 

shown that it has high current efficiency and could resist corrosion, while titanium 

will be used as cathode in this electrolysis process. 4 pairs of electrodes will be 

used for this experiment. The properties of electrodes are shown below: 

Table 3.3: Surface area and positions of electrodes 

Electrodes Surface area/electrode positions 
Mixed oxide-coated titanium 23.6 cm anode 

Titanium 17.3 cm2 cathode 
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3.5.3 ELECTROLYTIC CELL 

Perspex is used to fabricate the electrolysis tank in which electrodes will be installed. 

The cell was designed to contain 1 litre of water. The dimension of the cell is 0.29 m 

x 0.05 mx0.07 m. 

3.6 METHODS 

This study will determines the effects of 4 factors that will generate optimum value of 
free available chlorine. The factors are flow rates of brine solution entering the reactor, 

pH of brine solution, current densities and electrolyte concentrations. The sequence of 

activities carried in laboratory session and data analysis were described in Figure 3.1 

Designing reactor, prepare materials 
ý 

"1 litre tank 
" Sodium chloride (NaCl) 
" Mixed Metal oxide - 

coated titanium and 
titanium electrodes 

4 
Preparing solution 

(2 litre for each experiment) 

t 
Adjustment of pH 

ý 

Electrochemical Treatment 

I 
Statistical Analysis 

(Using Design Expert 6) 

I 
Optimum Parameter Conditions Obtained: 

1. NaCI concentrations 
2. Current densities 
3. Flow rates 
4. pH 

Figure 3.2: Sequence of activities 
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The experiment will be conducted with different flow rates, pH, current densities, 

electrolyte concentrations and electrode arrangements (as shown in Figure 3.2) to 

observe the effect on free available chlorine production. The arrangement of the 

electrodes is shown below: 

0000 

Qi, 
" "" " ++++ 

Arrangement A 

+-+- 
ý . .. Qin 

ýý 

" "" " +-+- 

Arrangement B 

+. _. +. _. 
Qin 

_ý 

" "" " +-+ 

Arrangement C 

" Anode: Mixed Metal Oxide - coated Titanium 

" Cathode: Titanium 

_>Qout 

_ýQout 

_ýýQout 

Figure 3.3: Arrangement of electrodes in the electrolysis tank 
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3.6.1 EQUIPMENT SETUP 

BRINE SOLUTION 
U\ZC 

WATER PlllP 
STORAGE 
TXN Ii 

Figure 3.4: Schematic diagram of equipment setup for hypochlorite generation in 

continuous flow 

Figure 3.3 shows the experimental set-up to use in this study. Brine solution from 

a storage tank will be pumped to the electrolysis tank for in-situ hypochlorite 

generation. The effluent will be analyzed for free available chlorine concentrations 

to determine the effect of various process parameters mentioned above (Section 

3.5). The actual set-up of this experiment is shown in figure 3.4. 

Anode: Mixed 
Metal Oxide - coated Titanium 

Figure 3.5: Actual equipment setup for hypochlorite generation in continuous flow 

ANODE: 
MIXED METAL OXIDE - COATED TITANIUM 
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The equipment was set-up in a fume cupboard in Universiti Teknologi 
PETRONAS environment lab and several experiments was conducted to test the 

effect of pH and electrodes configuration in production of free available chlorine. 
The experiment was set up in a fume cupboard because of safety reason. 
Electrochemical process produces chlorine gas and it is dangerous if inhaled. 

3.6.2 FINDING OPTIMUM pH FOR OPTIMUM GENERATION OF FREE 

AVAILABLE CHLORINE CONTENT 

1. The equipment was been set-up as shown in Figure 3.4. 

2. The electrodes were arranged according to arrangement I as shown in section 

3.5. 

3. A brine solution of NaCl having concentrations of 1 g/1 was prepared in the 

storage tank. 

4. The water pump was set to a flow rate of 10 ml/min. 

5. The pH of the electrolyte was adjusted to 2. 

6. The water pump nozzle was connected to the electrolytic cell and the pump 

was switch on. 
7. After the electrolyte comes out through the outlet pipe, the power supply is 

switch on and the current is set to be 2 Ampere. 

8.1 litre of sample was collected after the power supply was switch for 5 

minutes in order for the electrolytic cell becomes stable. 

9. The sample is tested using DPD method for Free Available Chlorine. 

10. Step 1 until 8 was repeated but using different pH of electrolyte which was 3, 

4,5,6and7. 
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3.6.3 FINDING SUITABLE ELECTRODE ARRANGEMENTS TO 
GENERATE FREE AVAILABLE CHLORINE 

1) The brine solution pump was set to be 12 mL/min. 
2) 2 litres of brine solution having concentrations of l mg/L of NaCI was 

prepared. 
3) The electrodes was arranged as shown in figure 3.5: 

0000 
Qin 

--ý 

" "" " ++++ 

>Q out 

4) The brine solution pump nozzle was connected to the electrolytic cell and the 

pump was switched on. 
5) The system was left until a continuous flow developed (a constant flow at 

output) and the DC power supply was switched on. 

6) The current density for the system is adjusted to be 10 mA/cm2. 

7) 1L of sample was collected from the outlet after the system had stabilized and 
DPD method was used to measure the amount of FAC. 

8) Step 1 until 6 but was repeated using different current density which was 20 

mA/cm2 and also 30 mA/cm2. 
9) Step 1 until 8 was repeated but using different arrangement of electrode as 

shown below: 

+-+- 

. ... 
+" " +" " 

" "" " +-+- 

Arrangement B Arrangement C 

10) A graph of Free Available Chlorine (FAC) and current density was plotted 

" "" " +-+ 
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3.6.4 PROCEDURE FOR ELECTROCHEMICAL PROCESS IN 
CONTINUOUS FLOW 

1) The brine solution pump is set to be 4 mL/min. 
2) 2L of brine solution having chloride concentrations of 100 mg/L was prepared. 
3) The electrodes was arranged as shown in figure 3.5: 

+-+- 

. ... 
Qin >Qout 

" "" " +-+- 

Figure 3.6: Electrodes configuration (arrangement B) 

4) The brine solution pump nozzle was connected to the electrolytic cell and the 

pump was switched on. 

5) The system was left until a continuous flow developed (a constant flow at 

output) and the DC power supply was switched on. The Current density was 

set to be 1.33 mA/cm2. 
6) 1L of sample was collected from the outlet after 5 minutes and DPD method 

was used to measure the amount of FAC. 

7) Water pumped and power supply was switch off and the electrolyte in the cell 

was discharge by disconnecting the pump nozzle from the cell. 

8) Step I until step 7 was repeated but using different current density: 

2.67 mA/cm2,4 mA/cm2. 

9) Step 1 until step 8 was repeated using different chloride concentrations: 

3.6 mg/L, 51.8 mg/L. 

10) Step 1 until step 8 was repeated using different flow rate: 8 ml/min, 12 ml/min. 

11) Results were analysed using 3-level factorial design using Design Expert 6.0 

28 



3.6.5 DPD METHOD 

This method uses HACH spectrophotometer (DR 2800) for testing free chlorine 
(hypochlorous acid and hypochlorite ion) in water and treated water. 

1. The program was stored: test number 80 chlorine, F&T PP 

2. Blank preparation was prepared 

3. The surface of blank was wiped and inserted into the cell holder with the fill 

line facing right 
4. Zero button was pressed until the indicator shows 0.00 mg/1 Cl2 

5. Another square cell was filled with 10ml of sample and add with one DPD 

Free Chlorine Pillow 

6. The sample cell was swirled for 20 seconds until pink colour developed* 

7. The sample was inserted into the cell holder within 1 minute of adding reagent. 
Press the read button 

8. Results shows reading in mg/l C12 

*If the pink colour fades away after DPD Free Chlorine Pillow been added, the 

sample should be diluted and test the sample again using DPD method. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 FINDING OPTIMUM pH FOR FREE AVAILABLE CHLORINE 

GENERATION 

An experiment was conducted to find the optimum pH to generate Free Available 

Chlorine. The experiment was done because there was no data regarding pH in order 

to generate optimum free available chlorine. Table 4.1 and figure 4.1 show the results 

of the experiment which show that pH 5 is the optimum pH for FAC production. 

Table 4.1: Concentrations of FAC* at different value of electrolyte's pH 
Electrolyte concentrations: 1l 
Flow rate: 10 ml/min 
Current Densities: 33 mA/cm2 
Electrode's configuration: Arran gement A 

H Concentrations of FAC* 
Before Electrolysis After Electrolysis (mg/1) 

2.17 2.61 200 
3.14 8.31 540 
4.15 8.77 670 
5.16 8.74 800 
6.11 8.73 630 
7.13 8.22 620 

*Free Available Chlorine 

Free Available Chlorine vs pH 

900 
800 
700 
600 
500 

v 400 
LL 300 

200 
100 - 

0- 

540 

670 

800 

r 630 

ý ---- 200 

23456 

pH 

Free Available Chlorine (mg/L) 

Figure 4.1: Concentrations of FAC* at different value of electrolyte's pH 
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4.2 FINDING SUITABLE ELECTRODES CONFIGURATIONS FOR OPTIMUM 

FREE AVAILABLE CHLORINE GENERATION 

An experiment was conducted to relate between electrodes configuration and 

production of FAC. It was found that arrangement B is the best configuration among 
the three configurations as it produced the highest amount of FAC which was 640 

mg/L at current density of 30 mA/cm2. Table 4.2 and Figure 4.2 shows the 

concentrations of FAC been produced at different electrodes arrangement at 3 

different level of current densities. 

Table 4.2: Concentrations of FAC* at different arrangement of electrodes 

Electrolyte concentrations: 1l 
Flow rate: 12 ml/min 

Current densities Concentrations of Electrodes configuration (mA/cm2) FAC (mg/1) 
A 

___ 
10 100 

"""" Q. UI =ý 20 330 
"""" 
++++ 30 520 

B 
++ 10 260 

"""" Q 
20 480 

""0" 

30 640 

C 10 320 
+" --" +" __" 

Q. Q- UI 460 
"""" 

30 590 

31 



FAC vs Current Densities 

Z 
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30 

I--Arrangement A -- Arrangement B Arrangement C 

Figure 4.2: Concentrations of FAC* at different arrangement of electrodes 

Based on Figure 4.2, it was found that suitable arrangement of electrodes to produce 
FAC was arrangement B since it yields the highest amount of FAC which was 640 

mg/L. From the beginning of the experiment, never expect that electrodes 

configuration could bring affect on FAC generation. From the graph above, 
Arrangement B produced about 25% more FAC than Arrangement A and this is a 

clear indicator that arrangement of electrodes do affects FAC production. 
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4.3 DETERMINATION OF EFFECTS OF FLOW RATE, CURRENT DENSITY, 

AND CHLORIDE CONCENTRATION TOWARDS FAC GENERATION. 

4.3.1 ANALYSIS OF VARIANCE (ANOVA) 

The ANOVA approach is a very useful way to evaluate effects of a parameter in a 

system. It includes a full analysis of variance, prediction equations, and case statistics. 

By using ANOVA, equations that relate these parameters with the productions of 

FAC will be generated and parameters which are not significant will be left out. Table 

4.1 shows the analysis of electrochemical process using mixed metal oxide and 

titanium electrodes to generate FAC. 

Table 4.3: ANOVA analysis 

Source 

Sum of 

Squares DF 

Mean 

Square 

F 

Value 
Prob > 

F 

Model 3084.39 9 342.71 9.23 0.0001 
A 288.72 1 288.72 7.77 0.0107 

B 1091.53 1 1091.53 29.39 c 
0.0001 

C 591.11 1 591.11 15.91 0.0006 
Az 1.34 1 1.34 0.036 0.8513 
B2 0.43 1 0.43 0.012 0.9155 
C2 313.71 1 313.71 8.45 0.0082 
AB 160.16 1 160.16 4.31 0.0497 
AC 82.95 1 82.95 2.23 0.1493 
BC 518.37 1 518.37 13.96 0.0011 

Residual 817.21 22 37.15 
Lack of Fit 786.87 17 46.29 7.63 0.0169 
Pure Error 30.33 5 6.07 
Cor Total 3901.59 31 

significant 

significant 

For ANOVA, if the value of "Prob > F" less than 0.05, it indicates that the term is 

significant. Thus, by looking at the ANOVA of the system, the model (experiment) is 

significant or in other word meaning that the experiment results can be accepted. 
From the experiment results, it is also indicated by using Design Expert software that 
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factor A (flow rate), B (current density), C (chloride concentrations) are significant in 

this model. Changing in this parameter would obviously change the amount of FAC 

produced. The relationship between factor AB and BC have been identified as 

significant towards the production of FAC. 

The ANOVA also create an equation to simulate the significant terms towards the 

production of FAC. The Final equation in terms of coded factors is shown in eq. [1] 

Free Available Chlorine = 13.59 - 4.00(A) + 7.79(B) + 5.73(C) - 6.62(C2) - 3.65 

(AB) + 6.57 (BC) ......... eq [1] 

4.3.2 MODEL DIAGNOSTIC PLOTS 

The plot of actual and predicted values, student residual, cook's distance and outlier T 

were termed as model diagnostic plots. These models were used to determine the 

quality of the points taken into analysis. Table A2 shows the diagnostic case statistics 
for this system using mixed metal oxide and titanium as electrodes. 

Predicted value in table A2 were generated using Prediction equation which shown in 

equation I while "residual" are the difference between actual and predicted point. 
"Leverage" is a numerical value between zero and one that indicates the potential for 

a design point to influence the model. As an example, a value of one means that the 

predicted value will be forced to be exactly equal to the actual value, with zero 

residuals. 

For student residual, cook's distance and outlier T plots can be briefly describe as 
below (Yusoff, 2008): 

1) Student Residual: is the residual divided by the estimated standard deviation 

(Std Dev) of that residual. It measures the number of standard deviations 

separating the actual and predicted values. 

2) Cook's distance: is a measure of how much the regression changes if the case 

is deleted. The regression does not change much since the statistics is in 

average region. Relatively large values are associated with cases with high 

leverage and large studentized residuals. 
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3) Outlier T: is the number of standard deviations between actual data point and 
the predicted value at that point using a model based on all the data expect this 

point. The statistics shows that data point fits in with the other points for this 

mode, therefore there is no outlier. 

4.3.2.1 NORMAL PLOT OF RESIDUALS 

Normal plot of residuals can show wether the results have abnormalities or not. The 

residuals plot should yield straight line. From the normal plot of residuals as shown in 

figure 4.1, ideally this will be a straight line, indicating no abnormalities. 
Furthermore, it also indicates that only minor tranformation of the response needed to 

provide better analysis. 
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Figure 4.3: Normal Probability versus Studentized Residuals 
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4.3.2.2 RESIDUALS VERSUS PREDICTED 

The size of the studentized residual should be independent of its predicted value. In 

other word, the spread of the studentized residuals should be approximately the same 

across all levels of the predicted values. In this case, the residuals were distributed 

within constant variance and if there were residuals expanding the constant variance, a 

transformation is needed where it is not implies for this experiment. All data were in 

between the constant range of residuals. Figure 4.2 shows the plot of the residuals 

versus the predicted response values for the electrochemical process. 
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4.3.2.3 RESIDUALS VERSUS RUN NUMBERS 

For this plot of residual versus run numbers, the spread of the studentized residuals 

should be approximately the same across all levels of the run numbers. Besides that it 

also should be within the constant range of residuals. For this experiment, the data 

point were evenly distributed and been plotted within the constant range of residuals. 
Figure 4.3 shows the plot of studentized residuals versus the experimental work order. 
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4.3.2.4 OUTLIER T VERSUS RUN NUMBERS 

Observations that differ considerably from the main body of the data are called an 

outlier. Residuals that are far outside this interval may indicate the presence of an 

outlier; that is, an observation that is not typical of the rest of the data. (C. 

Montmogery et al., 2007). Indication of an outlier is important to make better analysis 

of a group of data. For this outlier plot, all the points fall well within the red lines set 

at plus or minus 3.5. Thus there is no outlier for this experiment data. 
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4.3.2.5 PREDICTED VERSUS ACTUAL PLOT 

In the ANOVA plot analysis, the square of the correlation coefficient, R2, always 
indicates the proportion of the total variance in one variable that is predictable from 

its relationship with other variables. The higher the R-squared values (closed to 1) 

means the better will be the goodness of fit (Yusoff, 2008). For this experiment, the 

value for R-squared is 0.7905 and adjusted R-squared is 0.7049 which is quite near to 

one. Figure 4.5 shows the plot of actual response values versus the predicted response 

values for the electrochemical process. 
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Figure 4.7: Predicted versus actual values 
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4.3.3 3D SURFACE PLOTS 

From 3D surface plots, the suitable condition to produce sufficient FAC can be 

determined. Figure 4.6, Figure 4.7 and Figure 4.8 shows 3D surface plot for this 

experiment which been done in different flow rate, 12 mL/min, 8 mL/min and 4 

mL/min respectively. From the 3D plots, it can be concluded that FAC production 
increase as the current density and chloride density were increase and the highest 

amount of FAC that can be produced was 17.1 mg/L at 12 mL/min (as in Figure 4.6). 
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Figure 4.8: 3D plot of Free Available Chlorine with respect to current density and 

chloride concentration at flow rate of 12 mL/min. 

It is also indicated that as the flow rates reduce, the amount of FAC generated was 

also reduce. Besides that, it is proven that although the electrolysis was done in low 

concentrations of chloride, but still sufficient amount of FAC can be produced. From 

the 3D plots, at 3.6 mg/L chloride concentrations, 0.23 mg/L, 1.98 mg/L and 2.38 

mg/L of FAC were produced at current density of 4 mA/cm2 and flow rate of 12 

mL/min, 8 mL/min and 4 mL/min. 
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Figure 4.9: 3D plot of Free Available Chlorine with respect to current density and 

chloride concentration at flow rate of 8 mL/min. 
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Figure 4.10: 3D plot of Free Available Chlorine with respect to current density and 

chloride concentration at flow rate of 4 mL/min. 
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4.3.4 CONTOUR MODEL GRAPH 

Contour model graph is another method to represent the finding. By using contour 

model graph, the contour lines can represent the effects of parameters that are 
investigated towards the response. For this experiment, the amount of FAC (response) 

increase as the current density and chloride concentration increases. As figure 4.9 

shows, the contour represent FAC values at 12 mL/min. 
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Figure 4.11: Contour plots of FAC with respect to chloride concentrations and current 
density at 12 mL/min 

Figure 4.10 and Figure 4.11 show FAC values at 8 mL/min and 4 mL/min 

respectively with respect to the chloride concentrations and current density. From the 

graphs, it is clearly shown that as the current density and chloride concentrations 

increase, the production of FAC also will increases. 
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DESIGN-EXPERT Plot 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

In-situ electrochemical process to generate FAC in low chloride concentrations really 

could be developed as a new disinfection method based on the results that been 

obtained. Although the value of FAC concentration generated at 12 ml/min just 1.44 

mg/L, the current density can be increase to increase FAC production so that it could 

reach 2 mg/L which is WHO standards for water disinfection. The nature (eg: shape, 

surface area) of the electrodes also can be changed so that the efficiency of producing 

FAC can be increase. This was proved important since arrangement of electrodes do 

effect FAC production. As a conclusion: 

1) FAC production increases with increase in chloride concentration and current 
density 

2) FAC production reduces with increase of flow rate 

3) Sufficient amount of FAC can be produced at low concentration of chloride, 

where at 3.6 mg/L of chloride, 0.23 mg/L, 1.98 mg/L and 2.38 mg/L of FAC 

was produced at current density of 4 mA/cm2 and flow rate of 4 mL/min, 8 

mL/min and 12 mL/min. 

It is recommended that sample of river water and wastewater effluent to be use in the 

future to test the performance of this system as a disinfection system. Besides that, it 

is also recommended to perform this system in full scale project in order to determine 

the effectiveness of this system producing FAC for disinfection purposes. 
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Table A-1 
Suggested Milestone for the Second Semester of 2-Semester Final Year 
Project 

No Detail/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 Project Initiation 

i Project Briefing 
ii) Topic Selection 
iii) Proposal Draft 
iv) Submission of Proposal 

2 Research/Project Development 
i) Get information, Flow progress 
ii) Preparation & submission Prelim Report 
iii) Preparation & submission Progress 
Report 
iv Seminar 

3 Laboratory 
i Method/ procedure 
ii) Survey materials, tools & equipments 
iii) Setup, run & testing 
iv) Anal sis & Finalize data "p 

4 Project completion 
i) Preparation and poster presentation 
ii) Preparation & submission Interim Report 
iii) Preparation & oral presentation 
iv) Submission of dissertation 

x= proposed week of submission / presentation Y= done in the first semester 
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Figure B. 1: Electrochemical process in the fume cupboard 

Figure B. 2: Pink colour will developed 
if there is FAC after adding DPD free 
Chlorine reagent 

Figure B. 3: Spectrophotometer DR 
2800 
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Figure B. 4: DPD pillow, Free Chlorine Reagent 

50 



Std Run 
'Factor 1 'Factor 2 Factor 3 Response 1 

Block A: FLOW RATEB: CURRENTC: CHLORIDE CONCENTRA1FREE AVAILABLE CHLORINE (FAC 
mL/min mA/cm2 ma/L ma/1 

24 1 Block 1 12.00 2.67 100.00 3.5 
9 2 Block 1 12.00 4.00 3.60 1.44 

21 3 Block 1 12.00 1.33 100.00 1.35 
14 4 Block 1 8.00 2.67 51.80 15.5 
19 5 Block 1 4.00 1.33 100.00 5.38 
20 6 Block 1 8.00 1.33 100.00 1.26 
18 7 Block 1 12.00 4.00 51.80 12 
5 8 Block 1 8.00 2.67 3.60 1.37 

30 9 Block 1 8.00 2.67 51.80 19.5 
32 10 Block 1 8.00 2.67 51.80 19 
10 11 Block 1 4.00 1.33 51.80 1.25 
16 12 Block 1 4.00 4.00 51.80 33.8 
2 13 Block 1 8.00 1.33 3.60 0.47 

, 28 14 Block 1 8.00 2.67 51.80 19 

15 15 Block 1 12.00 2.67 51.80 4 

7 16 Block 1 4.00 4.00 3.60 2.38 

31 17 Block 1 8.00 2.67 51.80 20 

13 18 Block 1 4.00 2.67 51.80 18.6 

23 19 Block 1 8.00 2.67 100.00 4.4 
22 20 Block 1 4.00 2.67 100.00 6.8 

3 21 Block 1 12.00 1.33 3.60 0.3 

12 22 Block 1 12.00 1.33 51.80 0.67 

11 23 Block 1 8.00 1.33 51.80 0.86 

25 24 Block 1 4.00 4.00 100.00 46 

17 25 Block 1 8.00 4.00 51.80 11 

4 26 Block 1 4.00 2.67 3.60 1.43 

29 27, Block 1 8.00 2.67 51.80 14 

26 28 Block 1 8.00 4.00 100.00 24.5 

8 29 Block 1 8.00 4.00 3.60 1.18 

27 30 Block 1 12.00 4.00 100.00 20 

6 31 Block 1 12.00 2.67 3.60 0.88 

1 32 Block 1 4.00 1.33 3.60 0.59 

1 for Layout of Design of C: \Users\New User\Desktop\Final Year\Ghafar FYP\Ghafar Raw data\response3 factor. dx6 09: 01 PM Dec 05,2009 
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