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AAB1032

The overhanging beam shown in FIGURE Q1 is pin-supported at point A, while
the beam has a total length of 6 m to point C. At the end of the beam is 5 kN
force attached to the system. The beam is loaded with uniform distributed load
of 2 kN/m from A to B where a roller supports the beam. From location B, the
uniform distributed load of 2 kN/m trims to form a triangular distributed load
which ends at 0 kN at point C. Point D is located just to the left of the roller

support at B, where the couple moment acts.
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FIGURE Q1

a. Determine the internal normal force, shear force, and moment at point D
showing the free-body diagram.
[13 marks]

b. Analyze the forces and moment at point D when it is moved where the final
location of point D is 2 meters from support A while the distributed loads are
replaced with a point load of 20 kN at 1.5 m to the left of point C. Explain

the effect of stability on the system.

[12 marks]
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Referring to FIGURE Q2,
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FIGURE Q2

Compute the moments of inertia I, and I, for the beam’s cross-
sectional area about the x and y axes.
[13 marks]

Determine the distance y to the centroid C of the beam’s cross-sectional

area.
[3 marks]

Compute the moment of inertia I,> about the x’ axis.

[3 marks]

Determine the distance x to the centroid C of the beam’s cross-sectional

area.
[3 marks]

Compute the moment of inertia I, about the y’ axis.
[3 marks]
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Appendices

Cartesian Vedtor

A=A+ Aj+AK

Magnitude
A=Val+ AT+ A
Directions
A oA AL
W, =—=—i+—j+—Kk
ATAT AT AN A
= cos ai + cos Bj + cos yk

cos“a + coszﬁ + coszy =1
Dot Product

A‘B= ABcos b
= A,B, + A.B,+ A.B.

Cross Product

i i k
C=AxB=[A, A, A.
B, B, B

Cartevian Position Vector
r=(x - i+ {(yp-yit(n- )k

Cartestan Force Vector

F:Fu=F(—:-)

Moment of a Force

M, = Fd i j k
M,=r XF=|r, r T
Fl FV F.'

Moment of o Foree About a Specified Axis
Uy U, u.
My=urx¥=1r, r nr

FY F“!’ FZ

Simplification of a Force and Conuple System

FR = 2F
(MR)() = IM + ZMy

F quilibrium
Farticle
IF=0ZF =0.2ZF. =0
Rigid Body-Two Dimensions
2F,=0.3F =0.2ZM, =
Rigid Body-Three Dimensions
R, =02F =0,2ZF. =0
EMe=0.SM =0,2M.. =0

YFrietion
Static (maximum) F, = u, N
Kinetic Fk

1
x
2z

Center of Grasifs

Particles or Discrete Parts

Body

Area and Mass Moments of Invrtia

l=/r2dA 1=/r2dm

Purallel-Axis Theorem

KINEMATICS
Particle Rectilinear Motion
Variable a Constant a = a,
dv v=1v +a:t
a=—
L § = 8o + vyt +l t?
ds =S 0 2 a,
LT v? = vy? + 2a,(s — sp)

vdv=ads

I =17+ Ad? I =T+ md?
Radius of Gyration
T ]

k=NAz T Am

Virtual Wosk
SU =0
/}' aw /'f dW f? aw

X == Y= zZ=

[dw




Cartesian Yector

Centroid Location

p——

Fyuoilibrism

Ceniroid Location

A =0r
r
B X
o)
\_2rsin@
L

Circular sector arca
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Area Moment of Inentia

L=l §in 28

I, =1r*@+%in2@

Az i o = Ilo rrl
ir
TC X I =jnr
l_d 4
3x
Quarter and semicircle arcs Quarter circle area
— =
f— b —| A=lab A=xrt
:’f éa X X ’I = }K’A
.“‘L —_‘ C
|— I = }11"
ib
Semiparabolic area Circular area
' \ -A = bh
i
I T : o
b -_l E h e i X l, = ‘_b’i
3 2
’:}::—- |“T b= ! 5= i’
i ’ -
Exparabolic arca Rectangular area
f—a
'I_ A= %bh
b
_’f_ ¢ L, L= Loh}
el S, N b -
N v
A= 3ab —— JT
$a—
Parabolic area Taangular grea
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Note: In the table below, the overbar indicates the moment of inertia is taken about an axis that
passes through the centroid, denoted as ‘C’. Parallel axis theorems are:

I =1 +4d’° 1,=1 +Ad’ I, =1 +Axy

Here, A4 is the area of the shape, d is the distance from the centroidal axis to the desired paraliel
axis, and X y are the x and y distances of the centroid from the origin of the desired coordinate

frame.
Rectangle:
L=dwew 1 =lpw
12 3 T
I=Xpn 1 =lpy .
T2 73
I, =0 Area = bh L 3
Triangle:
IL=Lpp I =Lap
36 12
jwzw Area:lbh
: 72 2
Circle:
I=I=1z
) 4
I.,=0
X
Area = m?
Semi-circle:
I =1 =1 ]_x.:(ﬁ_i),“
S 8 Orx
= 2
I, =0 Area:%
Ellipse:
I =Ymp T =lmy
X y 4
I =
Xy
Area = mab




Double Angle Formulas Haif Angle Formulas
sin20 =2sinfcos® | ., l-cos20
- sin“ @ =———
cos 26 =cos’ @—sin’ 6 2
_ 29 . 1-cosé
=2cos 8 -1 sin 2 =k ‘3203
=1-2sin’ @ ’
2tané ec *’ﬁzlicm
tan 28 = —— 2
1-tan” &
. l+cos8
sm— =% j———
2
6 I-cosé
fan — =+
2 l1+cosé
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