

FINAL EXAMINATION MAY 2024 SEMESTER

COURSE

AAB1032 - STATICS AND DYNAMICS

DATE

1 AUGUST 2024 (THURSDAY)

TIME

9.00 AM - 11.00 AM (2 HOURS)

INSTRUCTIONS TO CANDIDATES

:

:

- 1. Answer **ALL** questions in the Answer Booklet.
- 2. Begin **EACH** answer on a new page in the Answer Booklet.
- 3. Indicate clearly answers that are cancelled, if any.
- 4. Where applicable, show clearly steps taken in arriving at the solutions and indicate **ALL** assumptions, if any.
- 5. DO NOT open this Question Booklet until instructed.

Note:

- i. There are **NINE** (9) pages in this Question Booklet including the cover page and appendix.
- ii. DOUBLE-SIDED Question Booklet.

Universiti Teknologi PETRONAS

1. The overhanging beam shown in FIGURE Q1 is pin-supported at point A, while the beam has a total length of 6 m to point C. At the end of the beam is 5 kN force attached to the system. The beam is loaded with uniform distributed load of 2 kN/m from A to B where a roller supports the beam. From location B, the uniform distributed load of 2 kN/m trims to form a triangular distributed load which ends at 0 kN at point C. Point D is located just to the left of the roller support at B, where the couple moment acts.

FIGURE Q1

 Determine the internal normal force, shear force, and moment at point D showing the free-body diagram.

[13 marks]

b. Analyze the forces and moment at point D when it is moved where the final location of point D is 2 meters from support A while the distributed loads are replaced with a point load of 20 kN at 1.5 m to the left of point C. Explain the effect of stability on the system.

[12 marks]

2. Referring to **FIGURE Q2**,

a. Compute the moments of inertia I_x and I_y for the beam's cross-sectional area about the x and y axes.

[13 marks]

b. i. Determine the distance \overline{y} to the centroid C of the beam's cross-sectional area.

[3 marks]

ii. Compute the moment of inertia $\overline{I}_{x'}$ about the x' axis.

[3 marks]

c. i. Determine the distance \bar{x} to the centroid C of the beam's cross-sectional area.

[3 marks]

ii. Compute the moment of inertia $\overline{I_{y'}}$ about the y axis.

[3 marks]

Appendices

Cartesian Vector

$$\mathbf{A} = A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k}$$

Magnitude

$$A = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

Directions

$$\mathbf{u}_A = \frac{\mathbf{A}}{A} = \frac{\mathbf{A}_x}{A} \mathbf{i} + \frac{\mathbf{A}_y}{A} \mathbf{j} + \frac{\mathbf{A}_z}{A} \mathbf{k}$$
$$= \cos \alpha \mathbf{i} + \cos \beta \mathbf{j} + \cos \gamma \mathbf{k}$$
$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

Dot Product

$$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$$

= $A_x B_y + A_y B_y + A_z B_z$

Cross Product

$$\mathbf{C} = \mathbf{A} \times \mathbf{B} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_{\lambda} & A_{y} & A_{z} \\ B_{\lambda} & B_{y} & B_{z} \end{bmatrix}$$

Cartesian Position Vector

$$\mathbf{r} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}$$

Cartesian Force Vector

$$\mathbf{F} = F\mathbf{u} = F\left(\frac{\mathbf{r}}{r}\right)$$

Moment of a Force

$$M_{o} = Fd$$

$$M_{o} = \mathbf{r} \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ r_{x} & r_{y} & r_{z} \\ F_{x} & F_{y} & F_{z} \end{vmatrix}$$

Moment of a Force About a Specified Axis

$$M_a = \mathbf{u} \cdot \mathbf{r} \times \mathbf{F} = \begin{vmatrix} u_x & u_y & u_z \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}$$

Simplification of a Force and Couple System

$$\mathbf{F}_R = \Sigma \mathbf{F}$$
$$(\mathbf{M}_R)_O = \Sigma \mathbf{M} + \Sigma \mathbf{M}_O$$

KINEMATICS

Particle Rectilinear Motion

Variable a	Constant $a = a_c$
dv	$v = v_0 + a_c t$
$a=\frac{1}{dt}$	$s = s_0 + v_0 t + \frac{1}{2} a_c t^2$
$v = \frac{ds}{dt}$	$s = s_0 + v_0 t + \frac{1}{2} a_c t$ $v^2 = v_0^2 + 2a_c (s - s_0)$

v dv = a ds

Equilibrium

Particle

$$\Sigma F_{\rm t} = 0$$
, $\Sigma F_{\rm t} = 0$, $\Sigma F_{\rm r} = 0$

Rigid Body-Two Dimensions

$$\Sigma F_{\lambda} = 0, \ \Sigma F_{\lambda} = 0, \ \Sigma M_O = 0$$

Rigid Body-Three Dimensions

$$\Sigma F_x = 0$$
, $\Sigma F_y = 0$, $\Sigma F_z = 0$
 $\Sigma M_{x'} = 0$, $\Sigma M_{y'} = 0$, $\Sigma M_{z'} = 0$

Friction

Static (maximum) $F_s = \mu_s N$

Kinetic

 $F_k = \mu_k N$

Center of Gravity

Particles or Discrete Parts

$$\bar{r} = \frac{\Sigma \tilde{r} W}{\Sigma W}$$

Body

$$\tilde{r} = \frac{\int \tilde{r} \ dW}{\int dW}$$

Area and Mass Moments of Inertia

$$I = \int r^2 dA \qquad I = \int r^2 dm$$

Parallel-Axis Theorem

$$I = \overline{I} + Ad^2$$
 $I = \overline{I} + md$

Radius of Gyration

$$k = \sqrt{\frac{I}{A}}$$
 $k = \sqrt{\frac{I}{m}}$

Virtual Work

$$\delta U = 0$$

$$\overline{x} = \frac{\int \widetilde{x} \, dW}{\int dW} \qquad \overline{y} = \frac{\int \widetilde{y} \, dW}{\int dW} \qquad \overline{z} = \frac{\int \widetilde{z} \, dW}{\int dW}$$

Equilibrium Cartesian Vector Centroid Location Centroid Location Area Moment of Inertia $I_r = 2\theta r$ $I_1 = \frac{1}{4} r^4 (\theta - \frac{1}{2} \sin 2 \theta)$ $I_{\tau} = \frac{1}{4} r^4 (\theta + \frac{1}{2} \sin 2 \theta)$ Circular are segment Circular sector area Quarter and semicircle arcs Quarter circle area $A = \frac{2}{3}ab$ Semiparabolic area Circular area $I_y = \frac{1}{12}hb^3$ Exparabolic area Rectangular area $A = \frac{1}{2}bh$ $\frac{2}{3}a$

Titangular area

Parabolic area

Note: In the table below, the overbar indicates the moment of inertia is taken about an axis that passes through the centroid, denoted as 'C'. Parallel axis theorems are:

$$I_x = \overline{I}_x + Ad^2$$
 $I_y = \overline{I}_y + Ad^2$ $I_{xy} = \overline{I}_{xy} + A\overline{x}\overline{y}$

 $I_x = \bar{I}_x + Ad^2$ $I_y = \bar{I}_y + Ad^2$ $I_{xy} = \bar{I}_{xy} + A\bar{x}\bar{y}$ Here, A is the area of the shape, d is the distance from the centroidal axis to the desired parallel axis, and $\bar{x} \bar{y}$ are the x and y distances of the centroid from the origin of the desired coordinate frame.

Rectangle: $\bar{I}_{x'} = \frac{1}{12}bh^3$ $I_x = \frac{1}{3}bh^3$ $\bar{I}_{y'} = \frac{1}{12}b^3h$ $I_y = \frac{1}{3}b^3h$ $\bar{I}_{xy'} = 0$ Area = bh	h b/2 x x h/2 x
Triangle: $\bar{I}_{x'} = \frac{1}{36}bh^3$ $I_x = \frac{1}{12}bh^3$	→ s ←
$\bar{I}_{xy} = \frac{b(b-2s)h^2}{72} \qquad Area = \frac{1}{2}bh$	$ \begin{array}{c c} h \\ \hline & C \\ \hline & h/3 \\ \hline & x \end{array} $
Circle: $\bar{I}_x = \bar{I}_y = \frac{1}{4} \pi r^4$ $\bar{I}_{xy'} = 0$ $Area = \pi r^2$	r c x
Semi-circle: $I_{x} = \bar{I}_{y} = \frac{1}{8}\pi r^{4}$ $\bar{I}_{x'} = \left(\frac{\pi}{8} - \frac{8}{9\pi}\right) r^{4}$ $\bar{I}_{xy'} = 0$	y 4r/3π x x
Ellipse: $\bar{I}_{x} = \frac{1}{4}\pi ab^{3} \qquad \bar{I}_{y} = \frac{1}{4}\pi a^{3}b$ $\bar{I}_{xy'} = 0$ $Area = \pi ab$	b C x

Double Angle Formulas	Half Angle Formulas
$\sin 2\theta = 2\sin \theta \cos \theta$	$\sin^2\theta = \frac{1-\cos 2\theta}{\cos^2\theta}$
$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$	2
$=2\cos^2\theta-1$	$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$
$=1-2\sin^2\theta$	
$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$	$\cos^2\theta = \frac{1+\cos 2\theta}{2}$
1-tan 0	$\sin\frac{\theta}{2} = \pm \sqrt{\frac{1+\cos\theta}{2}}$
	2 V 2
	$\tan\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$

³⁴ •