

FINAL EXAMINATION MAY 2024 SEMESTER

COURSE :

CEB2043/CFB2053 - REACTION ENGINEERING I

DATE

12 AUGUST 2024 (MONDAY)

TIME

9.00 AM - 12.00 NOON (3 HOURS)

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions in the Answer Booklet.
- 2. Begin **EACH** answer on a new page in the Answer Booklet.
- 3. Indicate clearly answers that are cancelled, if any.
- 4. Where applicable, show clearly steps taken in arriving at the solutions and indicate **ALL** assumptions, if any.
- 5. **DO NOT** open this Question Booklet until instructed.

Note:

- i. There are **SEVEN (7)** pages in this Question Booklet including the cover page and appendix.
- ii. DOUBLE-SIDED Question Booklet.
- iii. Graph paper will be provided.

Universiti Teknologi PETRONAS

 a. Explain the importance of Chemical Reaction Engineering knowledge to a chemical engineer.

[6 marks]

b. Liquid phase isomerization of xylenes was carried out adiabatically at 250°C. The reaction rate data is summarized in TABLE Q1. The reactant enters the reactor at 50 kmol/h with initial concentration of 4 mol/dm³.

TABLE Q1: Conversion, X, versus. reaction rate, $-r_A$, data

X	0.0	0.2	0.3	0.4	0.6	0.7	0.9
-r _A (mol/dm³·s)	0.050	0.030	0.025	0.020	0.011	0.008	0.005

 With the help of Levenspiel Plot, determine the best flow reactor to convert 80% of the reactant. Justify your answer.

[15 marks]

ii. Calculate the space time, τ , for the proposed reactor in **part (b)(i)**. [5 marks]

- 2. An elementary gas phase reaction A → B + 2C is carried out in a flow reactor under isothermal condition with negligible pressure drop. The reaction rate constant, k, at 127°C is 0.001 min⁻¹. Pure reactant A flows at 10 atm and 127°C with entering molar flow rate of 2.5 mol/min.
 - a. Identify the best flow reactor (CSTR or PFR) to achieve 80% conversion of reactant A. State THREE (3) appropriate assumptions made in your calculation. Justify your answer.

[20 marks]

b. Evaluate the effect of neglecting the expansion factor in designing the reactor in **part (a)**.

[4 marks]

 a. Gas product, D, is produced from multiple reactions involving two reactants, A and B, as per the following chemical reactions scheme and reaction kinetics:

$$A + B \rightarrow C + D$$
 $-r_{AI} = k_I C_A^2 C_B$ $k_I = 0.035 \text{ dm}^6/\text{mol}^2 \cdot \text{s}$ $E_I = 35,000 \text{ J/mol}$ $A + D \rightarrow E$ $-r_{A2} = k_2 C_A C_D$ $k_2 = 0.008 \text{ dm}^3/\text{mol} \cdot \text{s}$ $E_2 = 17,000 \text{ J/mol}$

Propose the best reactor scheme and operating conditions (concentration and temperature) to maximize the desired product and minimize the byproduct. Justify your proposal with appropriate diagram.

[12 marks]

b. Methane (CH₄) is partially oxidized in auto thermal reforming process to produce the desired product, carbon monoxide (CO) and hydrogen (H₂) gas. At the same time, the by-product CO₂ and H₂O are also produced in the following multiple reactions:

$$CH_{4} + 2O_{2} \stackrel{k_{1}}{\leftrightarrow} CO_{2} + 2H_{2}O \qquad r_{1}=10\exp\left(\frac{-10,000}{RT}\right)CH_{4}O_{2}^{2}$$

$$CH_{4} + O_{2} \stackrel{k_{2}}{\leftrightarrow} CO_{2} + 2H_{2} \qquad r_{2}=10^{2}\exp\left(\frac{-15,000}{RT}\right)CH_{4}O_{2}$$

$$CH_{4} + 0.5O_{2} \stackrel{k_{3}}{\leftrightarrow} CO + 2H_{2} \qquad r_{3}=10^{4}\exp\left(\frac{-8,000}{RT}\right)CH_{4}O_{2}^{0.5}$$

This process is to be conducted in PFR. Identify suitable reactor scheme and operating conditions (concentration and temperature) to maximize the desired product. Justify your answer with appropriate illustration.

[14 marks]

4. The isomerization of normal pentane (*n*-C₅H₁₂) to produce isopentane (*i*-C₅H₁₂) is conducted adiabatically in a flow reactor by following the elementary reaction below:

$$n-C_5H_{12} \leftrightarrow i-C_5H_{12}$$

The total molar flowrate entering the reactor is 120 kmol/h at 150°C with 70 mol% of n-C₅H₁₂ and the balance is inert gas.

Given that:

- $\Delta H_{RX} = 25.14 \text{ kJ/mol}$
- Activation energy, E = 23.7 kJ/mol
- $k = 22.3 h^{-1}$ at 360 K
- $K_c = 2.05$ at 333 K
- $C_{p,n-C_5H_{12}}$ = 225 J/mol·K at 273 K
- $C_{p,i-C_5H_{12}}$ = 225 J/mol·K at 273 K
- C_{p,inert} = 350 J/mol·K at 273 K

Evaluate the possibility to achieve 80% conversion for this process. Justify your answer with appropriate calculations.

[24 marks]

- END OF PAPER -

APPENDIX

Numerical Integration of Integrals:

1. Trapezoidal rules

$$\int_{X_0}^{X_1} f(X)dX = \frac{h}{2} [f(X_0) + f(X_1)] \qquad where \quad h = X_1 - X_0$$

2. Simpson's one-third rules (three points)

$$\int_{X_2}^{X_2} f(X)dX = \frac{h}{3}[f(X_0) + 4f(X_1) + f(X_2)] \qquad \text{where} \quad h = \frac{X_2 - X_0}{2}$$

3. Simpson's three-eight rules (four points)

$$\int_{X_0}^{X_3} f(X)dX = \frac{3}{8}h \left[f(X_0) + 3f(X_1) + 3f(X_2) + f(X_3) \right]$$
where $h = \frac{X_3 - X_0}{3}$

4. Five points quadrature formula

$$\int_{X_0}^{X_4} f(X)dX = \frac{h}{3} [f(X_0) + 4f(X_1) + 2f(X_2) + 4f(X_3) + f(X_4)]$$
where $h = \frac{X_4 - X_0}{4}$

Useful integrals in reactor design:

$$\int_0^X \frac{dX}{X^2} = -\frac{1}{X}$$

$$\int_{0}^{X} \frac{dX}{1 - X} = \ln \frac{1}{1 - X}$$

$$\int_{0}^{X} \frac{dX}{(1-X)^2} = \frac{X}{1-X}$$

$$\int_{0}^{X} \frac{dX}{(1+\varepsilon X)} = \frac{1}{\varepsilon} \ln (1+\varepsilon X)$$

$$\int_{0}^{X} \frac{(1+\varepsilon X)}{(1-X)} dX = (1+\varepsilon) \ln \frac{1}{1-X} - \varepsilon X$$

$$\int_{0}^{X} \frac{(1+\varepsilon X)}{(1-X)^{2}} dX = \frac{(1-\varepsilon)X}{1-X} - \ln \frac{1}{1-X}$$

$$\int_{0}^{X} \frac{(1+\varepsilon X)^{2}}{(1-X)^{2}} dX = 2\varepsilon (1+\varepsilon) \ln(1-X) + \varepsilon^{2} X + \frac{(1+\varepsilon)^{2} X}{1-X}$$

$$\int_{0}^{X} \frac{dX}{(1-X)(M-X)} = \frac{1}{M-1} \ln \frac{M-X}{M(1-X)} \qquad M \neq 1$$

General equation for non-isothermal reactor energy balance:

$$\dot{Q}-\dot{W_s}-F_{A0}\sum\Theta_iC_{Pi}(T-T_0)-F_{A0}X[\Delta H^0_{RX}(T_R)+\Delta C_P(T-T_R)]=0$$

Other useful information:

o Arrhenius relationship

$$\begin{split} k_{2(T)} &= k_{1(T_1)} exp\left[\frac{E}{R}\left(\frac{1}{T_1} - \frac{1}{T}\right)\right] \\ K_{C(T)} &= K_{C(T_2)} exp\left[\frac{\Delta H_{RX}^0}{R}\left(\frac{1}{T_2} - \frac{1}{T}\right)\right] \end{split}$$

o Ideal gas constant:

$$R = 8.314 \text{ kPa} \cdot \text{dm}^{3} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

$$= 8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

$$= 0.082 \text{ dm}^{3} \cdot \text{atm} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

$$= 0.082 \text{ m}^{3} \cdot \text{atm} \cdot \text{kmol}^{-1} \cdot \text{K}^{-1}$$

o Energy conversion:

$$1 \text{ cal} = 4.18 \text{ J}$$

