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Control Relevant System Identification Using  

Orthonormal Basis Filter Models 

 
 

Abstract 
 

Models are extensively used in advanced process control system design and 

implementations. Nearly all optimal control design techniques including the widely used 

model predictive control techniques rely on the use of model of the system to be 

controlled. There are several linear model structures that are commonly used in control 

relevant problems in process industries. Some of these model structures are: Auto 

Regressive with Exogenous Input (ARX), Auto Regressive Moving Average with 

Exogenous Input (ARMAX), Finite Impulse Response (FIR), Output Error (OE) and Box 

Jenkins (BJ) models. The selection of the appropriate model structure, among other 

factors, depend on the consistency of the model parameters, the number of parameters 

required to describe a system with acceptable accuracy and the computational load in 

estimating the model parameters.  

ARX and ARMAX models suffer from inconsistency problem in most open-loop 

identification problems. Finite Impulse Response (FIR) models require large number of 

parameters to describe linear systems with acceptable accuracy.  BJ, OE and ARMAX 

models involve nonlinear optimization in estimating their parameters. In addition, all of 

the above conventional linear models, except FIR, require the time delay of the system to 

be separately estimated and included in the estimation of the parameters. 

Orthonormal Basis Filter (OBF) models have several advantages over the other 

conventional linear models. They are consistent in parameters for most open-loop 

identification problems. They are parsimonious in parameters if the dominant pole(s) of 

the system are used in their development. The model parameters are easily estimated 

using the linear least square method. Moreover, the time delay estimation can be easily 

integrated in the model development. However, there are several problems that are not yet 

addressed. Some of the outstanding problems are: 

(i) Developing parsimonious OBF models when the dominant poles of the system 

are not known 

(ii) Obtaining a better estimate of time delay for second or higher order systems 
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(iii) Including an explicit noise model in the framework of OBF model structures 

and determine the parameters and multi-step ahead predictions 

(iv) Closed-loop identification problems in this new OBF plus noise model frame 

work 

This study presents novel schemes that address the above problems. The first problem is 
addressed by formulating an iterative scheme where one or two of the dominant pole(s) of 
the system are estimated and used to develop parsimonious OBF models. A unified 
scheme is formulated where an OBF-deterministic model and an explicit AR or ARMA 
stochastic (noise) models are developed to address the second problem. The closed-loop 
identification problem is addressed by developing schemes based on the direct and 
indirect approaches using OBF based structures. For all the proposed OBF prediction 
model structures, the method for estimating the model parameters and multi-step ahead 
prediction are developed. All the proposed schemes are demonstrated with the help of 
simulation and real plant case studies. The accuracy of the developed OBF-based models 
is verified using appropriate validation procedures and residual analysis.  
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Control Relevant System Identification Using  

Orthonormal Basis Filter Models 

Pengenal-pastian Sistem untuk tujuan Proses Kawalan berasaskan model 

‘Orthonormal Basis Filter’ 

 
Abstrak 
Penggunaan model di dalam rekabentuk and perlaksanaan sistem kawalan terkini adalah 

sesuatu yang sering digunapakai. Hampir keseluruhan teknik rekabentuk kawalan optima 

termasuklah teknik proses kawalan berasaskan ramalan model (‘model predictive 

control’) menggunakan atau memerlukan model sistem terbabit untuk perlaksanaannya. 

Untuk tujuan proses kawalan, terdapat beberapa jenis struktur model linear yang sering 

digunapakai untuk pengenal-pastian sistem di industri. Antara struktur-struktur model ini 

termasuk: ‘Auto Regressive with Exogenous Input (ARX)’, ‘Auto Regressive Moving 

Average with Exogenous Input (ARMAX)’, ‘Finite Impulse Response (FIR)’, ‘Output 

Error (OE)’ dan ‘Box Jenkins (BJ)’. Pemilihan struktur model yang tepat bergantung 

kepada parameter model yang konsisten, bilangan parameter yang diperlukan untuk 

mengenal-pasti sistem terbabit sepenuhnya dan beban pemprosesan CPU dalam 

menganggarkan nilai parameter-parameter terbabit. 

Model ARX dan ARMAX kerap memberikan model  yang tidak konsisten apabila 

digunakan untuk pengenal-pastian sistem terbuka (’open loop system identification’). 

Model FIR pula memerlukan bilangan parameter yang banyak untuk mengenal-pasti 

sesuatu sistem linear sepenuhnya. Model BJ, OE and ARMAX  melibatkan ’nonlinear 

optimization’ dalam menganggarkan parameter-parameter berkaitan. Tambahan pula, 

kesemua model-model yang disebut di atas, kecuali model FIR, mengkehendaki 

penganggaran ’time delay’ sistem dilakukan berasingan dahulu sebelum penganggaran 

parameter dapat dilakukan. 

Model ‘Orthonormal Basis Filter (OBF)’ mempunyai beberapa kelebihan berbanding 

model-model linear yang disebut di atas. Parameter-parameter yang diberikan oleh model 

OBF ini selalunya mempunyai nilai yang konsisten bila digunakan untuk pengenal-

pastian sistem terbuka. Bilangan parameter yang diberikan juga adalah terhad pada tahap 

minimum jika ‘pole’ dominan untuk sistem berkenaan digunakan semasa pembinaan 

model OBF tersebut. Parameter-parameter model OBF juga boleh senang didapati dengan 

menggunakan kaedah ‘least square’. Selain itu, penganggaran ‘time delay’ boleh di 
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integrasikan dengan mudah secara serentak semasa pembinaan model. Walau 

bagaimanapun, terdapat beberapa masalah didalam penggunaan model OBF yang masih 

belum dapat di selesaikan. Antaranya termasuk: 

(i) Pembinaan model OBF dengan bilangan parameter terhad pada tahap 

minimum (’parsimonious OBF model’) jika ’pole’ dominan sistem 

berkenaan tidak diketahui 

(ii) Mendapatkan anggaran ’time delay’ yang lebih tepat untuk sistem tidak 

linear, i.e. sistem tahap kedua dan ke atas 

(iii) Memasukkan model ’noise’ yang ekplisit di dalam struktur model OBF 

dan mendapatkan nilai-nilai parameter dan ramalan unjuran  kehadapan 

(’multi-step ahead predictions’) 

(iv) Pengenal-pastian sistem tertutup (’closed-loop system identification’) 

dengan menggunakan model OBF yang baru ini bersama dengan model 

’noise’ 

Kajian ini membentangkan kaedah terbaru untuk mengatasi empat perkara yang disebut 
di atas dan sumbangan utama projek penyelidikan ini adalah terhasilnya model OBF yang 
baru yang mengambil kira empat perkara tersebut. Perkara pertama diatasi dengan 
merumuskan ‘iterative scheme’ dimana satu atau dua daripada ‘pole’ dominan sistem 
berkenaan dianggarkan dan digunakan untuk pembinaan model OBF dengan bilangan 
parameter terhad pada tahap minimum (’parsimonious OBF model’). Rumusan kaedah 
bersekutu yang melibatkan pembinaan ‘OBF-deterministic’ model dan eksplisit AR atau 
ARMA stokastik (noise) model dibentangkan untuk mengatasi perkara kedua di atas. 
Pengenal-pastian sistem tertutup dibina dengan menggunakan kaedah secara langsung 
dan tidak langsung berdasarkan struktur OBF. Kaedah untuk menganggarkan parameter 
model dan ramalan unjuran kehadapan (’multi-step’) telah dibina untuk kesemua struktur 
ramalan model OBF. Semua kaedah/formulasi yang dibentangkan ini di demonstrasikan 
dengan menggunakan proses simulasi dan kajian semasa loji sebenar. Ketepatan dan 
keberkesanan model OBF yang diunjurkan di dalam projek penyelidikan ini  di uji dan 
dibuktikan dengan menggunakan prosedur-prosedur keberkesanan yang berkaitan dan 
analisis residual.  
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CHAPTER 1 

INTRODUCTION 

1.7 Background 
The stringent environmental and safety requirements and the growing competition in the 

global market have put a tremendous challenge on process industries. On the other hand, 

the rapid development in computer and software technology, the advancement of 

instrumentation and data acquisition facilities and the sustained achievements in the 

formulation efficient computational algorithms have brought incredible opportunities. 

The meeting of these strong challenges and resourceful opportunities has led to the birth 

of several model based technologies, like model based control systems, online process 

optimizations and fault detection and diagnosis, to mention a few. At the centre of all 

these technologies is the mathematical model of the system.     

Models are extensively used in advanced process control design and implementations. 

Nearly all optimal control design techniques rely on the use of model of the system to be 

controlled. In model predictive control (MPC), models are used to predict the future 

values of the output which is used in calculating the optimal control move.  

In control systems, models are used either in simulation or prediction tasks. In simulation, 

an input u(k) is applied on the process model to compute the undisturbed output sequence 

y(k), [1, 2]. Simulation models are fully deterministic and they do not include explicit 

noise models. Simulation is used in optimization, control, fault detection and soft sensors 

[2]. In prediction, past inputs and outputs are used to predict the current or future outputs. 

The latter is called multi-step ahead prediction. Prediction models include explicit noise 

models of the system.  

A turning point in the history of process control is the successful introduction of model 

predictive controllers (MPC) in process industries [3, 4].  MPC has been widely accepted 

in process industries due to many of their advantages in realizing an efficient control 

performance especially in multivariable systems. There exist a number of MPC 

implementations currently each differing from other in terms of how the MPC problem 

has been formulated, the type of model used for prediction and the techniques used in 

solving the optimization problem. A complete design of MPC includes the necessary  
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mechanism for obtaining the best possible model, which captures the dynamics fully and 

allows the prediction to be calculated [5, 6].   

Models can be developed from physical and chemical principles or from experimental 

data. Models developed from chemical and physical principles are called first-principle or 

white-box models while models developed from experimental data are called empirical or 

black-box models. First-principles models are developed using equations derived from 

theoretical analyses of the physical and chemical processes occurring in the system, e.g., 

principle of conservation of mass and energy. Black- box models are developed using 

mathematical and statistical principles. The variables and parameters of first principle 

models are determined by the physical and chemical principles governing the system. In 

contrast to black-box models, first-principles models directly incorporate any prior 

knowledge of the system. Since the parameters of first-principles models are related to 

system properties, their values can, in principle, be measured directly from the real 

system, or estimated. However, first principle models are difficult to apply in process 

industries because of lack of knowledge of the physical and chemical properties of the 

complex industrial processes. Attempting to fill this gap of knowledge incurs a lot of cost 

and consumes a lot of time. Therefore, it is the empirical models that are commonly used 

in process industries.  

The process of developing models from experimental data is known as system 

identification. When the intended use of the model is related to control system design or 

implementation the process of modeling is known as control-relevant system 

identification. The development of simple models like first order plus time delay models 

from simple step test is straightforward and inexpensive in principle. Nevertheless, to 

develop reliable models from step-test data, either the process should be too simple or the 

experiment should be carried out in extremely controlled environment. It is difficult to get 

either of these conditions in industrial processes. Therefore, modern system identification 

relies on properly designed identification tests with more complex computational 

facilities. The major steps in system identification are design of experiment, selection of 

the class of models, selection of the model structures and model validation. 

Models may be linear or non-linear. While control technologies using non-linear model 

are emerging and there are a lot of research in the areas of nonlinear system identification 
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linear models still dominate the industry. The orthonormal basis filter models which are 

the focus of this research are linear models.   

1.8 Linear Models 
There are several linear model structures in use. Some of the most common are Finite 

Impulse Response (FIR), Auto Regressive with Exogenous input (ARX), Auto Regressive 

Moving Average with Exogenous Input (ARMAX) and output error (OE) and Box-

Jenkins (BJ) models. The structures of the various models are given below: 

Auto Regressive with Exogenous Input (ARX): 

 )(
)(

1)(
)(
)()( qe

qA
ku

qA
qBky +=  (1.1) 

Auto Regressive Moving Average with Exogenous Input (ARMAX): 

 )()()()()( qeqCkuqBky +=
)()( qAqA  (1.2) 

Output Error (OE): 

 
)()()()( qekuqBky +=

)(qF  (1.3) 

Box Jenkins (BJ): 

 )(
)(

)(
)(

)( qe
qD

ku
qF

ky +=

)()()()( qekuqBky

)()( qCqB
 (1.4) 

Finite Impulse Response (FIR):   

+=  (1.5)  

where A(q), B(q), C(q), D(q) and F(q) are polynomials in the shift operator q and u(k), 

y(k) and e(k) are the input, output and white noise sequences, respectively.  

Some of the most important factors in selecting model structures are: 

• The computational load in estimating the model parameters  

• The consistency of the model parameters 

• The number of parameters required to describe the model with acceptable 

accuracy. 
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Auto Regressive with Exogenous Input (ARX) and Finite Impulse Response (FIR) 

models have been popular because of the computational simplicity with which the model 

parameters are estimated. In both cases, linear least square method can be used to 

estimate the parameters. Output error (OE) and Box-Jenkins (BJ) models are very rarely 

used for complex problems, like MIMO, because of the heavy computational load related 

to their parameter estimation. Parameter estimations in both OE and BJ involve nonlinear 

optimization.  

Consistency of model parameters is another important factor in model structure selection. 

Consistency of model parameters refers to the possibility of estimating the model 

parameters without systematic deviation from their optimal values [1, 2] . The systematic 

deviation of model parameters from their optimal values is called bias. Model structures 

suffering from inconsistency in their parameters will result in biased estimates of the 

parameters and the bias will not be eliminated even if the number of data points is 

increased to infinity. ARX and ARMAX models suffer from inconsistency in most open-

loop identification problems [1, 2, 8].  This is because of the common denominator 

dynamics of the deterministic and stochastic components, represented by A(q), that the 

structure requires and which many practical open-loop problems do not satisfy.  

The number of parameters required to capture the dynamics of a system with acceptable 

accuracy is still another factor in selecting the appropriate model for a given identification 

problem. This will affect both the identification and implementation phases of the model. 

It is already noted that, no matter what the linear structure is, when the number of 

parameters increases the variance error in parameter estimation increase[2]. This shows 

that models which require large number of parameters to capture the dynamics of a 

system will face the problem of increased variance error in the estimation of their 

parameters. On the other hand, during implementation like in MPC, an optimization 

problem is solved using the models to obtain the control output at each move. When the 

complexity of the model increases, obviously, the computational load of the optimization 

process at each control move increases. Therefore, it is very advantageous both at 

identification and implementation stages to get models that are parsimonious in their 

parameters. FIR models suffer heavily from this problem. They generally require large 

number of parameters to describe linear systems with acceptable accuracy.  BJ models 

also suffer from this problem due to the large number of parameters, related to the four 
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polynomials in its structure to be determined.  Due to these problems, BJ models are 

rarely used in MIMO system identification problems[2]. 

Moreover, it is known that in several control implementations, time delays in the system 

that is controlled affect the performance of the control system enormously[7]. Therefore, 

accurate estimation and incorporation of time delays into the model is another critical 

issue. All conventional linear model structures, except FIR, need the time delay of the 

system to be separately estimated and included in the model development process. This, 

in some cases, causes inconvenience in estimation of the model parameters using the 

conventional linear model structures. 

Orthonormal Basis Filter (OBF) models can be considered as a generalization of FIR 

models in which the trivial filters in FIR models are replaced with more complex and 

more realistic orthonormal basis filters. OBF models have several characteristics that 

make them very promising for control relevant system identification compared to most 

conventional linear models. Their parameters can be easily estimated using linear least 

square method. They are consistent in their parameters for most practical open-loop 

identification problems. Parsimonious OBF models can be developed when the dominant 

pole(s) of the system is (are) known. Time delays can be easily estimated and 

incorporated into the model. However, there are several problems that are not yet 

addressed which this research attempts to address. The solution to these outstanding 

problems will bring significant contribution to linear model development by making OBF 

models more flexible and comprehensive.  

1.9 Research Problems 

It is already stated that OBF models have several qualities that make them attractive for 

control relevant system identification. However, there are still several problems to be 

addressed to make effective use of OBF models.  To develop parsimonious OBF models, 

estimate of the dominant pole(s) of the system should be known a priori. The use of 

arbitrarily chosen pole(s) leads to a model that needs large number of parameters to 

describe the system with reasonable accuracy. However, estimation of the dominant 

pole(s) of a system is not a trivial task and getting estimate from preliminary step tests 

lead to inaccurate results in complex systems, like multiple-input multiple-output 

(MIMO) systems, and systems with significant unmeasured disturbances. 
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Estimation of time delay is another important issue related to OBF model development. 

Patwardhan et al. [8, 9] proposed the tangent method for estimating the time delay(s) of a 

system from the noise-free step response of its OBF model. The method is effective and 

accurate for systems that can be described by first order plus time delay (FOPTD) model. 

However, for second-and higher-order systems with significant time constants the time 

delay estimate by the tangent method leads to less accurate results.  

Another problem of OBF models is the fact that conventional OBF structures do not 

include explicit noise model. Nevertheless, in several control system design and 

implementations, including classical and advanced control systems, the noise model plays 

an essential role [7-9].   

Closed-loop identification using OBF models is another issue that did not get sufficient 

consideration yet. There are several situations where conducting the identification test in 

closed loop is more preferable than in open loop. Two of the most compelling situations 

are: when safety and economic considerations make open-loop test not viable and when 

the system is open-loop unstable and is stabilized by feedback controller. In these 

situations conducting the identification test in closed-loop becomes the only option. When 

system identification test is conducted in closed-loop, the input and noise sequences in the 

resulting identification data set will be correlated. Conventional OBF models fail to give 

consistent models in such cases. Moreover, the fact that OBF models have non-minimum 

phase zero in their structure makes them difficult to use in the classical closed-loop 

identification approaches.  

 Therefore the most outstanding problems this research attempt to address are:  

(v) How to develop parsimonious OBF models when the dominant poles of the 

system are not known? 

(vi) How to obtain a better estimate of time delay for second or higher order 

systems? 

(vii) How to include an explicit noise model in the framework of OBF model 

structures and determine the parameters and multi-step ahead predictions? 

(viii) How to address closed-loop identification problems in this new OBF plus 

noise model frame work? 
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1.10 Research Objectives 
The objective of this research is to develop control relevant system identification schemes 

using orthonormal basis filters that address the outstanding problems in the conventional 

OBF models. This includes 

• Developing an identification scheme that enables the development of 

parsimonious OBF models in the absence of good estimates of the dominant poles 

of the system 

• Developing a method for obtaining a better estimate of the time delay for second-

and higher-order systems 

• Proposing structures that are based on orthonormal basis filters that include 

explicit noise models. Deriving the parameter estimation algorithm and the multi-

step-ahead prediction formula for both open-loop and closed-loop system 

identification. 

• Developing MATLAB code to conduct system identification using the proposed 

methods. 

• Demonstrating the effectiveness of the proposed schemes using appropriate 

simulation and real plant case studies.   

1.11 Research Methodology 
The verification and validation of all proposed structures and schemes will be carried out 

by rigorous mathematical derivation and relevant case studies.  

1.11.1 Rigorous Mathematical Derivation 

Methods proposed for developing parsimonious OBF models and time delay estimations 

will be verified using rigorous mathematical derivations. In addition, the parameter 

estimation and multi-step-ahead prediction schemes for each proposed model structure 

will be developed and verified using rigorous mathematical derivations.  

1.11.2 Case studies 
In addition to rigorous mathematical derivations, the effectiveness of the proposed 

methods will be demonstrated using relevant simulation and real plant case studies. The 

simulation case studies will be designed so that they reflect the issues in discussion 

appropriately and closely match real life problems. In addition, details of the systems, the 
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inputs, outputs and level and type of noise will be appropriately presented.  In both 

simulation and real plant system identification case studies the appropriate identification 

procedures will be followed. These include appropriate choice of inputs, choice of 

excitation signals, model structure selection, appropriate parameters estimation and 

validation. The choice of inputs in the real plant case studies will be in accordance with 

the use of the models in control relevant implementations.  

Excitation signals 

It is known that process behavior that is not represented within the identification data set 

cannot be described by the model unless prior knowledge is explicitly incorporated[2]. In 

this research, excitation signals will be designed so as to result in an identification data 

that adequately represent the system. In addition, in all simulation studies appropriate care 

will be given to consider limitations in real plant. In real plant system identification the 

excitation signal is designed so as to give the maximum excitation which results in the 

maximum possible signal to noise ratio (SNR)[2]. In all simulation case studies in this 

research, the excitation signals will be designed so as to reflect the limitations in 

increasing the level of excitation in real plants. Therefore, the SNR in the simulation 

identification case studies in this research will be limited to less than 10.  

The spectrum of the input signal is another design problem that should be properly 

addressed in all identification case studies since it determines the frequencies where the 

power is put in. It is known that pseudo random binary signals (PRBS) are well suited for 

identification since they excite all frequencies equally well[2]. Therefore, in this research 

in all identification case studies the excitations signal will be PRBS.  

Validation 

In both, simulation and real plant system identification case studies appropriate validation 

will be conducted. Validation of the input (deterministic) model will be carried out by 

comparing the prediction or simulation of the developed model with the output of the 

system for a separate validation data that is not used in identification.  The comparison 

will be done both graphically by plotting the prediction and the system output and 

numerically using the percentage prediction error (PPE). The PPE is defined as 
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Validation of noise models in all simulation identification case studies that involve noise 

model development are carried out by comparing the spectrum of the estimated noise 

model with the noise transfer function of the system. The spectrum of a stochastic process 

described by v  where {e(t)} is a white noise with mean zero and 

covariance λ is defined as 

2
)()( iweHλω =Φ  (1.7) 

where H(q) is the noise transfer function and v(t) is the noise [1]. Numerical values of the 

comparison are obtained using the PPE. 

Residual Analysis 
In addition to the above validation procedures, residual analysis is conducted to test the 

accuracy of the developed overall (deterministic plus stochastic) model of the system. A 

model is considered to be accurate if the residual of the model, i.e., the system output 

minus the model prediction, is white noise. If the residual is white noise then the model 

has extracted all information about the system except a random noise that cannot be 

predicted. It should be noted that white noise is a random noise with mean zero and 

variance λ. Three different methods are used to test whether the residual is white noise or 

not. These methods are: the qq-plot, comparison of the distribution of the residuals and 

the white noise added to the system and the correlation among the residuals.  

The qq-plot is a statistical plot, which is a graphical method of comparing two 

distributions by plotting their quantiles against each other[10]. Figure 1.1 depicts a typical 

qq-plot of the residual of a linear model against a white noise added to the system. When 

two distributions are the same all the points in the qq-plot will lie on a straight line with 

slope 1 and passing through the origin. If the points lie in a straight line but with different 

slope and origin the distribution are the same but they have different scales, i.e., mean and 
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variance for normal distributions. If the points do not lie on a straight line, the two 

distributions are different.  
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Figure 1.1 Typical qq-plot of the residual of a linear model against a white noise added to 

the system 

Figure 1.2 shows a typical histogram distribution of a white noise signal generated using 

MATLAB. In this research, the qq-plot will be used in all identification simulation case 

studies to test if the residuals are white. 
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Figure 1.2 Typical histogram distribution of a white noise signal generated using 

MATLAB 

Instead, the whiteness of the residuals is tested by inspection of the histogram distribution 

of the residuals. 
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In real plant identification case studies the distribution of the residual can be directly 

obtained using the MATLAB function ‘hist’ which takes the residuals as input. In all 

distributions, the frequency is normalized. In simulation case studies, the white noise 

added to the system is available and the distribution of the residuals can be compared to 

the distribution of the white noise. In such cases the distributions will be shown by 

plotting the values of the residuals against the frequency which is determined using the 

MATLAB function ‘hist’. Figure 1.3 shows a typical comparison of the residual of a 

model and the white noise added to the system. 
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Figure 1.3 Typical distributions of the residuals and the white noise  

added to the system 

1.12 Scope of the Research 
The scope of the research will be as stated below.  

(i) Development of relevant schemes, methods or structure that address each of the stated 

problems of the research, the schemes will include: 

• An identification scheme (algorithm) to develop parsimonious OBF 

models in the absence of good estimate of the dominant pole(s) of the 

system 
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• A method for estimating the time delay of second order and higher order 

systems 

• A structure that will result in OBF model and a noise model as unified 

model.  

• Methods for estimating the model parameters and multi-step-ahead 

predictions of the proposed methods 

• Closed-loop identification schemes based on OBF model that can handle 

open-loop stable and open-loop unstable systems.  

(ii) Development of MATLAB codes based on the methods and schemes proposed 

• All relevant MATLAB codes for conducting system identification based 

on the proposed schemes and methods. 

(iii) Relevant simulation case studies that demonstrate each proposed method 

(iv)  Open-loop system identification of a pilot scale distillation column using the 

proposed method and the relevant MATLAB code developed 

(v) Real plant,  lab-scale, closed-loop identification case study   
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CHAPTER 2 

LITERATURE REVIEW 

2.7 Introduction 

Models are extensively used in advanced control systems. The performances of such 

systems heavily rely on the accuracy of the models used in the design and/or 

implementation of the control system. For example, in model predictive control (MPC), 

the performance of the control system is directly related to the quality of the prediction 

model. The complete design of MPC includes the necessary mechanism for obtaining the 

best possible model which should be accurate enough to fully capture the dynamics and 

allow the prediction to be calculated. 

There are several classical linear model structures that are used in model based control 

systems. The appropriate choice of a model structure for a particular system depends on 

factors related to the accuracy of the model, the modeling process and implementations. 

Some of the most important factors in this respect are:  the capacity of the model 

structures to capture the dynamics of the system satisfactorily, the computational load of 

estimating the model parameters, the number of parameters required to describe the 

model with acceptable accuracy. 

Most linear models consist of deterministic (plant) and stochastic (noise) models. The 

plant model describes the relation between the plant input and output while the noise 

model describes the effect of disturbances on the system output. In many advanced 

control implementations it is the plant model that is given much emphasis, however, 

current studies [8, 10]  show that the noise model also plays important role in improving 

the regulatory performance of the control system. Therefore noise (disturbance) model 

development is becoming an issue in system identification. 

System identification tests can be carried out either in open loop or in closed loop. While 

identification from open-loop test data dominates in industry, there are several instances 

where closed-loop identification is the only viable option. Two of the most compelling 

situations are: when safety and economic consideration makes open-loop test not viable 

and when the system is open-loop unstable. When identification tests are carried out in 

open loop, in most applications, there is no correlation between the input and the noise 
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sequences and identification is straightforward. However, when identification tests are 

undertaken in closed loop the input and noise sequence are correlated and needs more 

careful treatment.  

In this chapter, a review of literature on control relevant system identification and 

relevant issues are presented. The first section discusses literature related to linear system 

identification in general, with more emphasis on classical structures. In the second 

section, the evolution and state of the art of OBF models is discussed. In the third and 

fourth sections, disturbance modeling and identification from closed-loop data, 

respectively, are reviewed. The last section gives a brief summary of the chapter.  

2.8   System Identification 

There exists extensive literature on system identification. One of the most prominent 

books on system identification is the one written by Ljung [1]. This book provides firm 

theoretical foundation for users of system identification on the different phases of system 

identification cycle, from design of experiment to model validation. It covers most of 

both linear and nonlinear models, identification in closed-loop and subspace methods.  

There are several works related to the use of linear system identification in modeling 

industrial processes [11-14]. 

Ljung [15] presented state of the art of linear system identification in both time and 

frequency domains. The paper mainly discusses the interplay between methods that use 

time and frequency domain data. It also discusses direct estimation of continuous-time 

models.  

A very pragmatic approach of system identification is presented by Nelles [2]. Even 

though, the book is mainly targeted for nonlinear system identification, it also contains a 

good deal of information on linear models including orthonormal basis filter models. It 

clearly points out the difference between the various approaches, and their strengths and 

weaknesses. The book emphasizes on the practical aspects of system identification and it 

is a very good starting material for practitioners. However, it lacks depth in theoretical 

aspects of system identification. Another practical oriented system identification book, 

which includes application to advanced control system, is written by Ikonen and Najim 

[16]. It includes basic issues in identification, control and prediction. The main system 
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identification and prediction techniques are given in the form of algorithms. It deals with 

the most common linear and nonlinear models and also advanced control systems, 

particularly model predictive control. It treats both linear and nonlinear model predictive 

control systems. There are several books on both linear and nonlinear system 

identification with various approaches and emphasis [17-21].  In addition, there is 

extensive up-to-date literature on the various linear structures used in industrial 

applications [12, 13, 15, 24-33]. 

The scope of this research is limited to linear models and particularly orthonormal basis 

filter (OBF) models. However, to understand the reasons for the OBF model becoming 

popular, it is necessary to investigate the various linear models and their strengths and 

weaknesses. A general linear dynamic model consists of a deterministic part and a 

stochastic part as shown in Figure 2.1. According to this general model, the output is the 

sum of the input u(k) and noise e(k) filtered by their respective filters  

[1, 2, 17].  Equation (2.1) represents the general linear model shown in Figure 2.1.     
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Figure 2.1 Block Diagram for the general linear model 
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This general model leads to a much complicated model where parameter estimation is 

very difficult. Therefore, it is most commonly simplified by making assumptions on the 

polynomials A, B, C, D and F. The objective of simplifications is either getting a realistic 

model for a specific problem or making it simple to estimate the model parameters. Some 
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of the most commonly used linear model structures derived from this general model 

structure are discussed below. 

2.8.1 Auto Regressive with Exogenous Input (ARX) Model 

Autoregressive with exogenous input (ARX) model is derived from the general linear 

model by assuming C(q) = D(q) = F(q) = 1. ARX models are very popular in industrial 

applications because of the simplicity in estimating the model parameters [2].  There are 

still some works on improved methods for estimating the ARX model parameters [22, 

23]. 
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qBky +=   (2.2) 

2.8.2 Auto Regressive Moving Average with Exogenous Input (ARMAX) Model 

The ARMAX structure is derived from the general linear model by assuming  

D(q) = F(q) = 1. The parameters of the ARMAX model are calculated by nonlinear 

optimization or by extended least square method. In the extended least square method, 

first a high order ARX model is developed, and the prediction error is taken as an 

approximation for the white noise e(q) in calculating the ARMAX model. Moore et al. 

[13, 28] present various techniques for estimating the parameters of ARMAX model in 

the presence of unmeasured disturbances.    

 )(
)(
)()(

)(
)()( qe

qA
qCku

qA
qBky +=  (2.3) 

 

2.8.3 Output Error (OE) Model 

The output error structure does not include a noise model where A(q)=C(q)=D(q)= 1.   

 
)()()()( qekuqBky +=

)(qF  (2.4) 

 

2.8.4 Box Jenkins (BJ) Model 

The Box Jenkins structure is the most flexible among the linear model structures. It is 

derived from the general structure by assuming A(q) = 1 [2].  Pintelon et al. [24-26] 
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presented three consecutive papers, on the theoretical and application aspects of BJ 

models.  
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2.8.5 Finite Impulse Response (FIR) Model   

The finite impulse response model is the simplest of the linear models. It is a linear 

combination of delay filters, q-1, q-2, …, q-m. Lo and Kwon [27] developed a technique for 

estimating the parameters of the FIR model by combining time domain and frequency 

domain techniques. Theoretically, the presented techniques lead to parameters that are 

globally optimum. 

 )()()()( qekuqBky +=  (2.6) 

The most widely used linear models are the ARX and FIR models[2]. Their  popularity is 

due to the simplicity in estimating the model parameters using the linear least square 

method [2].  However, it is known that both ARX and FIR models have serious 

drawbacks in application [1, 2, 20] . The ARX model structure leads to biased and non-

consistent parameter estimation and the FIR model needs very large number of 

parameters to capture the dynamics of a system with acceptable accuracy. Bias, as 

described by Nelles [2], is the systematic deviation of the model parameters from their 

optimal value. Inconsistency refers to the fact that the bias does not approach zero as the 

number of data points approach infinity.  This inconsistency in estimates of the ARX 

model parameters is caused by the assumption of common denominator dynamics for 

both the input and noise transfer functions given by 1/A(q), which does not describe most 

practical open-loop processes. As indicated by Nelles [2], all model structures that have 

an independently parameterized transfer function and noise model allow one to estimate 

the parameters of the transfer function consistently even if the noise model is not 

appropriate. However, ARX and ARMAX models do not fulfill this condition and lead to 

non-consistent parameter estimation in most systems. As it is noted previously, the FIR 

model, the other very popular model, needs a very large number of parameters to capture 

the dynamics of a system with reasonable degree of accuracy [2, 8, 20]. To understand 

this fact, the FIR model can be considered as truncated form of the convolution sum 

where the model parameters are the impulse responses of the system.  For a stable system, 
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the impulse response, gi, decays to zero as i goes to infinity.  If the sampling rate of the 

process is 1/10 of the slowest time constant and the settling time is taken to be T95 (4τ ), 

then the number of parameters required to describe the system will be 30.  

The output error (OE) and the Box Jenkins (BJ) model structures assume independent 

transfer function and noise models, and hence they allow consistent parameter estimation. 

However, the OE structure do not include explicit noise model and in cases where the 

noise of the system is colored and noise model is required, it becomes inadequate.  The 

BJ model structure is the most flexible form of the linear models  

[1, 2, 17]. However, determination of the model parameters in both cases involves 

nonlinear optimization. In addition, in case of BJ, because of the large number of 

parameters involved in the equation, it is rarely used in practice, especially, in MIMO 

systems [2]. Moreover all linear models that are discussed, except FIR, assume a priori 

knowledge of the time delay of the system in estimating their parameters. Therefore to 

use these linear models effectively, time delays must be known, or estimated separately.  

2.9   Orthonormal Basis Filter Models 

One of the earliest works on rational orthonormal bases was contributed by Takenaka 

[36] in the 1920’s in relation to approximation via interpolation, with the subsequent 

implications for generalized quadrature formula.  In subsequent works, in the 1960s, 

Walsh [37] contributed extensively in the applications of orthonormal bases for 

approximation, both in discrete time and continuous time analysis. In similar periods, 

Wiener [38] examined applications of continuous time Laguerre networks for the purpose 

of building optimal predictor. Kautz [39, 40] contributes significantly on the formulation 

of generalized orthonormal basis filters (GOBF) and their continuous versions for the 

purpose of network synthesis.  

Engineering applications of orthonormal parameterizations emerged in the 1970s in the 

areas of digital filter structure’s implementations [41]; and Laguerre bases were examined 

for the purposes of system identification in the same period [41]. In the period 1980s-

1990s, there was a great deal of interest in engineering literature in control relevant 

system identification [42-48], signal processing [49-53], and applications to modeling and 

predicting stochastic stationary processes [54-55].  In the last decade there has been quite 

a lot of work in the approximation properties of orthonormal bases functions [56-64]. 
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New methods for finding optimal function approximations can be found in [65-72]. 

Realization theory is another area where there has been major progress since 1999 [73-

83]. Fast algorithms for adaptive signal processing have recently been derived in [84-87]. 

One of the most comprehensive linear model structures, as noted previously, is the box 

Jenkins (BJ) model structure. However, BJ model structure is nonlinear in its parameters 

and the parameter estimation involves nonlinear optimization. Reformulating the problem 

as linear regression may help in estimation of the parameters using linear least squares. 

However, the estimated parameters affect both the transfer function and the noise model 

and can cause biased parameter estimation. One possibility to deal with this problem is to 

develop a linear structure that is a priori linear in parameters [88].  
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where 

θ = the model parameters  

y(k) = output sequence 

u(k) = input sequence 

fi = a set of rational functions in the shift operator q  

n  = model order 

Since the model is linear in its parameter and the parameters are linear in y(k) and if u(k) 

is not correlated with the noise, finite data variance for θ can be calculated. Furthermore, 

θ parameterizes only the transfer function and not the noise model, and therefore it is not 

biased by measurement noise [88].    

The next problem is the choice of appropriate rational functions that will result in fast 

convergence. In the simplest case, when fi(q) is a set of delays, the resulting model will be 

a finite impulse response (FIR) model. However, when the dynamics of the true system 

has a slow pole, FIR needs very large number of parameters to accurately capture the 

system dynamics [20, 88]. 

The solution for this problem was found by selecting the function fi(q) such that it 

incorporates a priori knowledge of the system in the form of the system’s poles.  This led 

to the extensive use of Laguerre and Kautz filters which are sets of orthonormal basis 
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functions [43, 47-49, 62, 68, 69, 71-73, 89-91]. The Laguerre and Kautz filters allow 

incorporation of one real pole, and a pair of complex conjugate poles, respectively. Then 

generalized constructions of orthonormal basis functions which allow incorporation of 

multiple poles into the rational function were introduced [46, 88]. It was also shown by 

Van den Hof et al. [92] that Laguerre and Kautz filters are special cases of the 

generalized orthonormal basis filter model. Finding an appropriate estimate of the poles 

for the filters is an important step in estimating the parameters of the OBF models. 

Arbitrary choice of poles may lead to a non-parsimonious model. Van den Hof et al. [92] 

showed that for a SISO system with poles }.,..,2,11|:|{ 0njforaa jj =< , the rate of 

convergence of the model parameters is determined by the lowest magnitude of Eigen 

value. 
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where pk is an arbitrary set of poles. 

Therefore, a good approximation by a small number of parameters can be obtained by 

choosing a basis for which ρ is small. It was shown that the poles determined by Van Den 

Hof et al. [92] method, closely match the dominant poles of the system [48]. If the 

dominant poles of the system are known then it is possible to develop parsimonious OBF 

models with an appropriate selection of the type of filter.  

Laguerre and Kautz filter models have shortcomings concerning time delays. Time delays 

in both cases are estimated by non-minimum phase zeros. This shortcoming is alleviated 

by using the Markov-OBF structure.  Time delay in Markov-OBF is included by placing 

some of the poles at the origin [8]. For a SISO system with dead time equal to d samples, 

the basis function can be selected as:   

               for i  = 1, 2, …, d (2.9) 
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Patwardhan and Shah [8] presented a two-step method for estimating and incorporating 

time delays into GOBF models. In the first step, the time delays in all input-output 
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channels are assumed zero and the model is identified with GOBF. In GOBF models the 

time delay is approximated by a non-minimum phase zero and the corresponding step 

response is an inverse response. The time delay is then estimated from a tangent drawn at 

the point of inflection and incorporated into the GOBF model using (2.10). 

OBF model structures have several advantages over the conventional linear model 

structures. Unlike ARX and ARMAX model structures, OBF models result in consistent 

parameter estimation. OBF models can capture the dynamics of linear systems, with 

acceptable accuracy, with much fewer numbers of parameters than FIR models.  The 

parameters of OBF models can be easily estimated using linear least square method. In 

addition, in OBF model development a priori knowledge of time delay is not required, 

but can be easily estimated and incorporated into the model. 

However, there are still some problems to be addressed. First, there are several instances 

where it is difficult to find the dominant time constant of the process easily. One such 

situation is where there is significant unmeasured disturbance in the system. In such 

cases, finding a good estimate of the dominant pole is not a trivial task. If arbitrary poles 

are used to formulate the orthonormal basis filters, the resulting OBF model will require 

large number of parameter to capture the dynamics with acceptable accuracy. Second, 

OBF models are essentially simulation models and do not provide explicit noise 

models[2]. However, in design of control systems with disturbance rejection the noise 

model plays an essential role. 

2.10   Disturbance Modeling 

Disturbance models play a central role in any advanced control system design that 

includes disturbance rejection [9, 28]. In model predictive control (MPC) application, 

plant-model mismatch and unmeasured disturbances can lead to offset unless the 

controller design addresses these problems appropriately [28].  In the early formulation of 

MPC, the offset problem was handled by designing an ad-hoc disturbance estimator 

which gives the controller an implicit integral action. The simplest method for 

incorporating integral actions in MPC is to generate the output targets by shifting the set 

points using disturbance estimates. The disturbance model in this approach assumes that 

the plant-model mismatch is due to step disturbances in the output and the disturbances 

remains constant throughout the prediction horizon. Disturbance models are also essential 
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in feedforward control system design. In fact, the performance of any feedforward control 

system highly depends on the accuracy of the disturbance model [29] . 

In their conventional form, OBF model structures cannot be effectively used in the 

presence of unmeasured disturbances unless a noise model is developed and included in 

the control system design. Patwardhan et al. [10] showed that the regulatory performance 

of MPC system improves significantly by including a noise model to the OBF simulation 

model. In their work [8], the residual of the OBF model is whitened with auto regressive 

(AR) noise model. The AR noise model is parameterized in terms of OBF parameters and 

a minimal-order state-space model is realized. In their subsequent paper [9], they used 

this state-space model in MPC and fault tolerant control systems. However, AR models 

are not parsimonious and they need a large number of parameters to capture the dynamics 

of the unmeasured disturbance with acceptable accuracy. In addition, development of the 

noise model could be integrated with the development of the OBF model so that a unified 

OBF model and the corresponding disturbance model are developed together as a single 

model. Combining the noise model to an OBF model and treating it as a single model 

would also improve the predictive capability of the model.  

2.11   System Identification Using Closed loop Data 

System identification can be carried out using input-output data either from open-loop or 

closed-loop tests. When a system identification test is carried out in open loop, in most 

cases, the noise sequence is not correlated to the input sequence and OBF model 

identification is carried in a straight forward manner. However, when the system 

identification test is carried out in closed loop, i.e., the data is collected while the system 

is controlled using feedback controller, the input sequence is correlated to the noise 

sequence [30-32] . In such cases, if conventional OBF model development technique is 

used,  the resulting model will not be consistent in parameters[2]. Nevertheless, there are 

several reasons to conduct the identification tests in closed-loop in many instances, viz., 

[1, 2, 30-32] : 

• Feedback controller is required to stabilize the process 

• Safety and cost consideration may not allow the process to run open-loop 

• The excited frequencies in closed-loop operation are better suited than the 

frequency band in open-loop operation 
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• The linearization of the controller is desired 

• The model is to be used for the design of improved controller 

Figure 2.2 depicts the configuration of the closed-loop system identification. 

 
Figure 2.2 Configuration for closed-loop identification test 

There are various approaches for handling system identification from closed-loop data. 

Van den Hof [33] discusses the various issues and approaches in closed-loop system 

identification of both parametric and non-parametric models. In the parametric 

identification there are three approaches: 

• Direct identification 

• Indirect identification 

• Joint input/output identification  

2.11.1 Direct Identification 

In the direct identification, the standard identification approach (prediction error) is 

directly applied without considering the effect of the feedback controller [2, 33]. Due to 

the ignored correlation between the input and noise sequences, all methods which are 

based on correlations such as instrumental variable, spectral analysis and correlation 

analysis cannot be used[2].  In the direct method, if the system is present in the model set, 

then a consistent estimate is obtained in each of the following conditions: 

• Sufficiently exciting signal r1 and r2 are present 

• C is a controller of sufficiently higher order  

• C is a controller that switches between several settings during the experiment 

However, if the system is not in the model set the direct identification method fails [33]. 
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2.11.2 Indirect Identification 

The indirect identification method is based on external excitation signals r1 and/or r2. The 

two prominent indirect identification methods are the two-stage method and the coprime 

factor identification method [2, 33] .  In the two-stage method, the process input sequence 

u is replaced by a simulated input sequence ur which is uncorrelated to the noise 

sequence. Then the standard prediction error method is utilized.  In the first stage, the 

transfer function S(q) relating u and r1 is estimated. The simulated process input ur is, 

then, determined by filtering r1(k) using S(q). In the second stage, the noise-free simulated 

input sequence ur and the plant output sequence, y(k), are used to develop the plant model 

using the standard prediction error method. In the coprime factor identification, the 

transfer functions Gy(q) and Gu(q), from r1 to y, and from r1 to u, respectively, are 

identified and the ratio of Gy(q) to Gu(q) is taken as an estimate of the plant model. 

Although there is a wide-ranging literature on closed-loop identification, only limited 

material related to OBF model development using closed-loop test data is available. 

Gáspér et al. [94] used the two-stage method to identify a GOBF model from a closed-loop 

simulation data. While this paper is the only one in this area, it lacks clarity and depth on 

its presentation and the simulation exercise, which is the main subject of the paper, is less 

relevant to closed-loop identification. First, in the simulation model, which is used to 

generate the identification data, only the plant and the controller transfer functions are 

given. It appears that, no noise or unmeasured disturbance is introduced into the 

simulation system. This makes the identification case-study less relevant to closed-loop 

identification; since it is the correlation of the noise sequence to the input sequence that 

makes closed-loop identification unique and difficult. The soul of the problem is missing 

or at least not described. Second, the work did not use any standard validation procedure 

to judge the accuracy of the developed GOBF model.  Third, the GOBF model is not 

explicitly presented in the paper; therefore it is impossible to make any conclusion about 

it. Fourth, the paper does not give any information about noise model development. 

2.12 Summary 

There is extensive literature both on system identification, in general, and OBF models in 

particular. From the literature review, it is observed that there is a lot of significant 

development in the area of linear system identification for dynamic systems. Compared to 



 

 

25

25

most classical linear models, OBF models have several characteristics that make them 

very promising for control relevant system identification. They are parsimonious in their 

parameters, the parameters can be easily calculated using linear least square method, their 

models are consistent in parameters and time delays can be easily estimated and 

incorporated into the model. On the other hand, there are several issues that are not yet 

addressed. First, parsimonious OBF models are developed only if the poles of the system 

or at least the dominant poles of the system are known a priori. However, there are many 

instances where it is difficult to get good estimate of the time constants from simple 

preliminary tests. Second, OBF models are simulation models and therefore they do not 

provide explicit noise model. It is already discussed that in many control applications the 

noise models play critical role in improving the performance of the control system. In 

addition, it is observed that there is almost nothing in the open literature on closed loop 

identification related to OBF models. However, there many instances where closed loop 

identification is the best or even the only possibility to develop prediction models. These 

observations show that while there is significant progress in control relevant system 

identification using OBF models, there is still significant room for improvement. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 3  

ORTHONORMAL BASIS FILTER MODELS 

3.8 Introduction 

entional OBF model development approach may result in non-

parsimonious models.  

ics. 

This is because of the sigmoidal nature of the step response of higher order systems. 

 estimate by the tangent method, to get a better estimate of the 

apparent time delay. 

One of the major advantages of orthonormal basis filter (OBF) models, as discussed in 

the earlier chapters, is that they can capture the dynamics of a linear system with 

acceptable accuracy with relatively fewer number of parameters, i.e., they are 

parsimonious in parameters. However, this is true only if the poles used in the model 

development are close to the dominant poles of the system [8, 20, 93]. If the poles used in 

the OBF model development are far away from the dominant pole of the system, OBF 

models need larger number of parameters to capture the dynamics with reasonable 

accuracy. Therefore, when it is difficult to obtain a good estimate of the dominant poles 

of the system, the conv

Another important advantage of OBF model is the fact that time delays can be easily 

estimated and incorporated into the model. It is pointed out, in the literature review, that 

Patwardhan and Shah [8] proposed a method to estimate the time delay by drawing a 

tangent at the inflection point of the step response of the OBF model. While this method 

is very effective to estimate the time delay of systems that can be accurately modeled by 

FOPTD models, the accuracy is low for systems with second and higher order dynam

In this chapter these two problems are addressed. The problem of parsimonious OBF 

model development is addressed by first developing an OBF model from arbitrary set of 

poles. Then a FOPTD or a SOPTD model is developed from the step response of the 

noise-free OBF model. Estimates of one or two of the dominant poles of the system are 

then obtained from the FOPTD or SOPTD model, respectively, and used to develop 

parsimonious OBF models. The process is repeated, iteratively, until a convergence 

criterion is fulfilled. The second problem is addressed by developing a scheme where the 

time delay contribution of the sigmoidal step response curve is estimated and subtracted 

from the time delay
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In the first section, the theory of OBF model development is presented. In the second and 

third sections, development of FOPTD and SOPTD models from noisy data using OBF 

models, respectively, are addressed. In the fourth section, development of parsimonious 

OBF models from arbitrary set of poles is treated. The methods developed are 

demonstrated using illustrations and simulation case studies.   

3.9 Theory of OBF models 

The notations and terminologies differ very much among the published literature and text 

books. Ljung [1] has been accepted and followed as a standard by many authors in the 

field of linear system identification. The notations and terminologies in this thesis, 

whenever possible, follow Ljung. However, the notations in OBF models follow 

Heuberger et al. [20].  

Consider a discrete time linear system  

=  (3.1)  

where u(t) =  the input signal 

 y(t) = output signal 

G(q) = the transfer function of the system 

The q in (3.1) is the forward shift operator which defines q u(t) = u(t + 1) and q−1 is the 

delay (backward shift) operator, q−1u(t) = u(t − 1).    

For stable systems, the impulse response representation is given by 
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where gk are the impulse response coefficients and the corresponding transfer function is 

defined as  

  (3.3) 

The transfer function on the complex plane z∈ C is denoted by 

  (3.4) 
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The frequency response of the system is represented by G(eiω). In most systems, there is 

at least one delay between the input and the output signals, therefore strictly proper 

transfer function is assumed. 

=
∞→

zG
z  (3.5)  

i.e., g0 = 0. This is because the input normally does not instantly affect the output. Let T 

denote the unit circle {z: |z| = 1} and E denote exterior of unit disc {z: |z| > 1}. The Hardy 

space H2, of square integrable functions on T and analytic in E is considered. The inner 

product of two filters,  ( f1(z) and  f2(z) ) ∈ H2, is denoted by (3.6) [20].  
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where * denotes the complex conjugate. The norm of f1(z)  is defined as  

)()()( zfzfzf = 111  

The filters are said to be orthonormal if they satisfy the property 

 0)(),( 21 =zfzf  

 1)()( 21 == zfzf  
A stable system, G(q), can be approximately represented by a finite–length generalized 

Fourier series expansion as:  

  (3.7) 
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n

where {li}, i =1, 2, …, n are the model parameters, n is the number of parameters, and   

fi(q) are the orthonormal basis filters for the system G(q).  

3.9.1  Types of Orthonormal Basis Filters  

There are various types of orthonormal basis filters. The selection of an appropriate type 

of filter for a given system is one of the most important steps in OBF model 

development. The different types of filters are discussed in this section. 
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3.9.1.1 Laguerre Filter 

The Laguerre filters are first-order lag filters with one real pole. They are, therefore, more 

appropriate for well damped processes [2, 20, 44]. The Laguerre filters are given by 
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i
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2

−

−
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,   1<p  (3.8) 

where p is the estimated pole which is related to the time constant, τ, of the system by  

  (3.9) 
)/( τsTep −=

3.9.1.2 Kautz Filter 

Kautz filters allow the incorporation of a pair of conjugate complex poles. They are, 

therefore, effective for modeling weakly damped processes [2, 8, 20]. The Kautz filters 

are defined by 
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 (3.10c) 

             -1 < a < 1 and -1 < b < 1    n = 1, 2, … 

 

3.9.1.3 Generalized Orthonormal Basis Filter  

Van den Hof et al. [46] introduced the generalized orthonormal basis filters and showed 

the existence of orthogonal functions that, in a natural way, are generated by stable linear 

dynamic systems and that form an orthonormal basis for the linear signal space . They 

showed that pulse, Laguerre and Kautz filters are generated from inner functions and their 

minimal balanced realizations.  Ninness and Gustafsson [88] unified the construction of 

orthonormal basis filters. The GOBF filters are formulated as   
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where p ≡ {pj : j = 1, 2, 3, …} is an arbitrary sequence of poles inside the unit circle 

appearing in complex conjugate pairs. 

3.9.1.4 Markov-OBF  

When a system involves time delay and an estimate of the time delay is available, 

Markov-OBF can be used. The time delay in Markov-OBF is included by placing some of 

the poles at the origin [8]. For a SISO system with time delay equal to d samples, the 

basis function can be selected as:   

  for i  =1, 2, …, d (3.12a) 
i

i zf -=

 
d

j j

j

i

i
z

pq
qp

pq

p -
1-i

1

*2

∏
)(
)1(

)(

1

= −

−

−

−
di pqf ),(+ =

 for i = 1, 2, …, N (3.12b) 

Patwardhan and Shah [8] presented a two-step method for estimating time delays from 

step response of GOBF models. In the first step, the time delays in all input-output 

channels are assumed zero and the model is identified with GOBF. In GOBF models, the 

time delay is approximated by a non-minimum phase zero and the corresponding step 

response is an inverse response. The time delay is then estimated from a tangent drawn at 

the point of inflection. 

3.9.2 Estimation of GOBF Poles 

Finding an appropriate estimate of the poles for the filters is an important step in 

estimating the parameters of the OBF models. Arbitrary choice of poles may lead to a 

non-parsimonious model. Van den Hof et al. [92] showed that for a SISO system with 

poles {aj : | aj | < 1 for j =1, 2 , …, n}, the rate of convergence of the model parameters is 

determined by the magnitude of the slowest Eigen value. 
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 (3.13)  

where pk = arbitrary poles. 
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Therefore, a good approximation by a small number of parameters can be obtained by 

choosing a basis for which ρ is small. It is shown that the poles determined by Van den 

Hof et al. method closely match the dominant poles of the system  [8, 20, 48, 92].  

3.9.3 Model Parameter Estimation 

In using OBF models, the output can be expressed as a linear combination of the input 

sequence filtered by the respective filters. Expanding (3.7) 

 )()(...)()()()()(ˆ 2211 kuqflkuqflkuqflky nn+++=  (3.14) 

Equation (3.14) is not linear in its parameters and therefore estimation of parameters is 

not a simple task. However, (3.14) can be modified such that it is linear in parameters, as 

 )(...)()()(ˆ 2211 kulkulkulky fnnff +++=  (3.15) 

where  is the filtered input given by )(ku fi

ifi )()()( kuqfku =  (3.16) 

Once the dominant poles of the system and the types of filters are chosen, the filters  

f1,  f2, …, fn  are fixed. The filtered input, ufi, is determined by filtering the input sequence 

with the corresponding filter. 

For an OBF model with n parameters, naturally, the prediction can be started from the nth 

instant in time. Equation (3.15) can be expanded and written in matrix form as 
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where N is the future time instant.  

Equation (3.17) in vector-matrix notation is given by 

θXy =ˆ  (3.18)  
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]whereθ = [ is the parameter vector,  is the output vector = [ ] 
and X is the regressor matrix given by 

T
nlll ...,,, 21 ŷ ŷ Nnn yyy ˆ...,,ˆ 1+

  (3.19) 
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Since (3.18) is linear in parameters, the model parameters can be estimated using linear 

least square formula (3.20).  

   (3.20) yXXX TT 1)(ˆ −=θ

3.10 Development of FOPTD model from OBF model 

Parsimonious OBF models can be developed from arbitrary set of poles by first 

developing an OBF model and estimating the dominant poles of the system from its noise 

free step response. Then these dominant poles can be used instead of the arbitrary poles to 

develop parsimonious OBF models. A typical step response of an OBF model for a well 

damped system is shown in Figure 3.1. 

 

t 

y(t) 

 
 Figure 3.1 Typical step response of an OBF model for a well damped system 
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This process can be repeated iteratively to get more accurate parsimonious OBF model. 

For a well damped system, estimate of one dominant pole and time delay of the system 

can be obtained by developing a FOPTD model from the step response of the OBF model. 

It is observed from Figure 3.1 that time delay in OBF models are estimated by non-

minimum phase zero and the step response appears as an inverse response. Three 

different approaches are compared to develop FOPTD models from the step or impulse 

response of OBF models and they are discussed in the following sections. 

3.10.1 Estimation of FOPTD parameters 

The transfer function of a FOPTD model is given by  
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 (3.21) 

The parameters of the FOPTD models are estimated from the step or impulse response of 

the OBF model. Three different methods, namely, the moment, the tangent and 

interpolation methods are compared.  

3.10.1.1 Moment method 

The moment method for estimation of model parameters from impulse response is 

discussed in detail in [34]. In this section, estimation of FOPTD model parameters is 

discussed. The jth moment and normalized moment of the impulse-response function g(t) 

is defined by (3.22) and (3.23), respectively  

   (3.22) 
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  (3.23) 

The parameters of FOPTD model are estimated from the moments of the impulse 

response g(t) by (3.23)-(3.26). 

=   (3.24)  

( )2
12 μμτ −=   (3.25)  

τ μ τ= − 1d   (3.26) 

 



 

 

34

3.10.1.2 Tangent Method 

In the tangent method, the gain of the system is first estimated from the step response of 

the model using 

 )(lim
0

sGK
s→

=   (3.27) 

The time constant and the time delay can be estimated from the tangent line drawn at the 

point of inflection on the normalized response curve as shown in Figure 3.2.  

 

 
 Figure 3.2 Determination of FOPTD parameters using the tangent method 

The inflection point is the point at which the tangent to the step response curve attains the 

maximum slope. It can be easily found by determining the instant of maximum slope, i.e., 

by filtering the step response y(k) with the filter given in (3.28)  and finding the value of k 

at which Δy is maximum.  

 ( ) )(1 1 kyqy −−=Δ   (3.28) 
Since the tangent is a translated function of a straight line passing through the origin, its 

equation for the tangent line is given by 

 )( di tay τ−=   (3.29) 

where ai is the slope at the inflection point and τd is the time delay. From the inflection 

point , τd is determined as  ( )ii yt ,
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The time constant is estimated from the inverse of the slope ai as  

 
ia

1
=τ  (3.31) 

Equations (3.27), (3.30) and (3.31) define the FOPTD model by the tangent method. 

3.10.1.3 The interpolation method 

The interpolation method is the simplest of the three methods. First, the time delay is 

estimated using (3.30) of the tangent method. The time constant is determined from the 

response time at which 632.0=y . This method is found effective if the procedure is 

applied at several points and the average of the estimates of the time constants is taken as 

the estimate of the time constant. To find the average of the estimated time constants at 

several points, the following procedure is used. 

The step response of FOPTD model is given by  

ττ /)(1 dtey −−−=
  (3.32)   

For t = ατ + τd (3.32) becomes, 
α

α
−−= ey 1

  (3.33) 

For a given αy , the response time tα is obtained using interpolation from the normalized 

response curve.   

The time constant at t= tα 

α
ττ α dt −

=   (3.34) 

The mean time constant can be estimated by  
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It is observed that values of α  between 0.8 and 2 gives good results. From several 

simulation studies it is also observed that the third method is more reliable and gives 

more accurate estimate than the other two. 
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3.10.2 Estimation of the dominant time constant 

It is already pointed out that to develop parsimonious OBF models, it is essential to get 

good estimate of one or more of the dominant poles of the system. For systems that have 

well damped second order or higher order dynamics with one dominant time constant, the 

time constant estimated by the proposed interpolation method is close to the dominant 

time constant. This is based on the fact that in systems that have only one dominant time 

constant the contribution of the other time constants dies out quickly and the time 

constant which is estimated by the interpolation method will be close to the dominant 

time constant. Therefore, once estimate of the dominant time constant is obtained by the 

proposed method, the discrete dominant pole is easily calculated using (3.9).  

3.10.3 Simulation Studies 

The purpose of the case study in this section is to show that a well damped higher order 

system can be effectively approximated by a FOPTD model using the proposed 

interpolation method from a noisy identification data with an arbitrary initial pole of the 

OBF model. The dominant pole and the time delay can then be determined from the 

estimated FOPTD model. The system is represented by a fourth order transfer function 

plus time delay and unmeasured disturbance, given by 
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  (3.36) 

where U(s) and E(s) is the are the plant input and white noise, respectively. 
 

The four poles of the system are -1/16, -1/1.5, -1 and -1/0.5. The corresponding discrete 

poles of the input transfer function are 0.9394, 0.5134, 0.3679 and 0.1353. The dominant 

pole obviously is 0.9394 which corresponds to the dominant time constant of 16. The 

identification data is shown in Figure 3.3.  
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Figure 3.3 Input-output data used for identification of system (3.36) 

For the purpose of identification, a PRBS signal generated with the MATLAB function 

‘idinput’ of band [0 0.02] is introduced into the system. The output of the system is 

corrupted with unmeasured disturbance whose input is a white noise of mean 0.0126 and 

standard deviation of 0.5979. The signal to noise ratio (SNR) is 7.7356. Four thousand 

data points are generated using SIMULINK and 3000 of them are used for modeling and 

the remaining for validation. An OBF model with 12 Laguerre filters and a crude estimate 

of the dominant pole of 0.8187 corresponding to a time constant of 5 is developed. The 

parameters of the OBF model are   

l =[ 0.0051    0.7205    1.1478    0.9917   -0.0253    0.0339    0.3872   -0.1978    0.1545 

   -0.0393    0.0221    0.0121]; 

τd =14 (discrete) 

The step response of the OBF model and the system are shown in Figure 3.4. 
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Figure 3.4 Step responses the OBF model compared to the system (3.36) 

A FOPTD model is developed from the step response of the OBF model by the proposed 

interpolation method. The estimated FOPTD model is given by 

 18.16
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s
esG  (3.37) 

The step responses of the OBF model and the FOPTD model given by (3.37) are shown 

in Figure 3.5. It is observed from the figure that the FOPTD model closely matches the 

OBF model.  

It is also observed from (3.37) that the time constant and the time delay estimates are 

close to the dominant time constant and time delay of the system 16 and 12, respectively. 

The corresponding dominant discrete pole of the system for sampling interval of 1 time 

unit is 0.9414.  The simulation study shows that a FOPTD model that approximate a well 

damped higher order system that has one dominant pole can be effectively developed 

from the noise free OBF model, which itself  is developed from the noisy identification 

data. It also shows that the time constant and time delay estimates of the FOPTD model 

are close to the dominant time constant and time delay of the system. 
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Figure 3.5 Step responses of the OBF and estimated FOPTD model of system (3.36) 

3.11 Development of SOPTD model from OBF models 

Second order plus time delay (SOPTD) model can be similarly developed from the  

noise-free OBF model. As it is already pointed out, the time delay in OBF models is 

approximated by non-minimum phase zeros. Because of this approximate nature of the 

time delay, current methods of developing a SOPTD model from step response of OBF 

models are not effective. The two commonly used methods for development of SOPTD 

model from the step response of linearly approximated systems are the Smith method  

[9, 99] and the Rangaiah and Krishnaswamy methods [35, 36]. 

The Smith method is a graphical method of determining the SOPTD parameters from the 

step response of a system. The time at which the normalized step response reaches 20% 

(t20) and 60% (t60), with apparent time delay removed, are first determined from the step 

response data. The value of the damping coefficient, ζ, and τ/t60 are then determined from 

a graph using the ratio t20/t60. From τ /t60 and t60, the natural period, τ, is calculated. The 

method can be used to identify both underdamped and overdamped systems.   
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Rangaiah and Krishnaswamy [100, 101] proposed various methods for determining the 

parameters of SOPTD models. For underdamped systems they presented two different 

methods. The methods are based on finding three points that minimize the integral 

absolute error (IAE) between the actual response and the step response of a SOPTD 

model by which the process is to be approximated.  Seborg et al. [7] indicates that the 

methods works quite well for the range 0.707 ≤ ζ ≤ 3.0.  

The Smith technique has major difficulties in its application. Removing the apparent time 

delay in finding t60 and t20 is not a simple task and it is even more difficult for OBF step 

responses. Graphical method for estimating the apparent time delay is usually inaccurate 

and the parameter estimation is seriously affected. The Rangaiah and Krishnaswamy 

method gives good results only in a limited range and, in addition, it doesn’t treat both the 

underdamped and overdamped cases together.  

In this section, a novel method for determining the parameters of the SOPTD model is 

presented. The method is uniquely effective in developing SOPTD models from OBF 

models. It can be used to identify both underdamped and overdamped second order 

systems with or without apparent time delay and to approximate a higher order system 

with a SOPTD model.  It eliminates the need of estimating the apparent time delay 

separately and enables to determine all the parameters including the apparent time delay 

with high accuracy.   

3.11.1 Estimation of SOPTD Model Parameters  

In the following part the development of this novel method is discussed. The discussion is 

based on overdamped response, however, it can be easily shown, the results hold true for 

underdamped response also without any change. 

The transfer function of a second order system with time delay is given by  
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where 

K = Gain 

τd = time delay  
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ζ = damping coefficient 

τ = natural period of oscillation 

3.11.1.1 The Damping Factor  

The expression for the normalized step response of an over-damped second order process 

is given by 
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where 
KM

tyty )()( = is the normalized response. 

  

Differentiating (3.39) with respect to time and rearranging  
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or using a for slope of the tangent 
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The time to reach the inflection point ti is found by differentiating (3.41) with respect to 

time and equating it to zero and solving the resulting equation for ti. This is based on the 

fact that the slope of the tangent attains its maximum value at the inflection point. 

Differentiating (3.41) with respect to time and equating it to zero and rearranging  
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Evaluating y  at ti using (3.39) 
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 (3.45) 

Using (3.43) in (3.45) 
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Simplifying and rearranging (3.46) results in 
121 ζαζ −−= eyi  (3.47)  

Equation (3.47) shows that the normalized response at the inflection point, iy , depends 

only on the damping coefficient. Figure 3.6 shows this relation, ζ = f ( )iy , in a graphical 

form. 

 
Figure 3.6 Damping coefficient, ζ, as a function of the normalized step response at the 

inflection point, iy
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If the normalized response at the inflection point is obtained, the damping coefficient can 

be estimated using (3.47). However, since (3.47) is implicit in ζ, the solution should be 

obtained either using the graph, Figure 3.6, or a root finding method like false position, 

bisection or Newton Raphson method. It should be noted that the graph covers both the 

overdamped and underdamped cases.  

 

It is proposed that the false position method is applied if numerical software packages like 

MATLAB are used. This is because the method is fast and if any interval containing the 

root is known finding the root is guaranteed. The following, novel, explicit empirical 

formula gives a very good first estimate for the damping coefficient as a function of iy  

and hence the initial interval for the false position method.  

 9.1805.1805.1
0 −+=

iy
ζ  (3.48) 

The actual damping coefficient ζ is  

)07.01(0= ζ ±ζ  (3.49)  

Therefore the false position method can be easily used with the initial interval given by 

(3.48). It is observed that only three to four iterations are required to get ζ with acceptable 

accuracy. If the step response of the system is underdamped an improved result can be 

obtained by measuring the overshoot. In this case, the following relation can be used, 

 22 π+w
ζ =

w
  (3.50) 

where w = ln(overshoot). 

3.11.1.2 The Natural Frequency  

An equation relating the natural frequency of a SOPTD model to any time differences and 

their corresponding values of the normalized step response is derived in this section.  

The normalized response for SOPTD model is  
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Note that (3.51) is different from (3.39) because of the time delay term in (3.51). 

From (3.51), it is observed that  
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 (3.52) 

Since the LHS of (3.52) contains t,τd and τ, the remaining variables that determine (3.51) 

are y and ζ, which constitute the RHS of (3.52). 

Consider two distinct points, m and n, on the normalized step response curve. The tm and 

tn are the times at which the normalized step response reaches m% and n% of the ultimate 

response, respectively. Applying (3.52) at the points m and n yields 
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Dividing (3.53) by (3.54) and taking the logarithm on both sides 
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If m and n are fixed, the RHS of (3.55) will be a function of ζ only. Rearranging (3.55)  

(1 mn ttm −=τ  (3.56)  

where  
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Graphical representation of (3.57) is easily generated from the standard response of a 

second order process by varying ζ while keeping all other parameters constant. Figure 3.7 

shows (3.57) in graphical form. 
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Figure 3.7 Coefficient, m1, as a function of the damping coefficient 

for tm and tn equal to t20 and t40, respectively 

Equation (3.56) and Figure 3.7 are sufficient to determine the natural frequency of the 

SOPTD transfer function. Since the apparent time delay is cancelled from any difference 

of response times the result of (3.56) does not depend on the apparent time delay.   

3.11.1.3 Estimation of time delay 

Figure 3.8 depicts a typical step response of an overdamped second order plus time delay 

process. The most commonly used method for determining the time delay is the 

maximum slope method. In this method, a tangent is drawn at the inflection point and the 

intersection point to the time axis is taken as the approximate value of the time delay. In 

the proposed method, the time delay by this maximum slope method is divided into two 

parts: the apparent time delay (τd) and the contributed time delay (τdc) as shown in Figure 

3.8. The contributed time delay is that part of the time delay added to the true time delay 

(apparent time delay) when the tangent method is used due to the sigmoidal nature of the 

response curves of second and higher order systems. The total time delay (τdt) determined 

by the maximum-slope method is the sum of τd and the τdc. Hence, the apparent time 

delay can be calculated by subtracting the contributed time delay from the time delay 

determined by the maximum slope method. 
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Figure 3.8 Typical step response of an overdamped SOPTD system  

with apparent time delay and contributed time delay separated 

   dcdtd τττ −=  (3.58) 

Since the contributed time delay does not depend on the pure time delay, it can be 

calculated from the parameters of the second order transfer function without the apparent 

time delay. Consider the step response of a second order process without time delay 

shown in Figure 3.9.  

 
Figure 3.9  Step response of an overdamped second order system  

without time delay 
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In this case, the time delay by the maximum-slope method equals to the contributed time 

delay since the apparent time delay is zero.   

Let iy and ti be the normalized response at the inflection point and the time to reach the 

inflection point, respectively, as shown in Figure 3.9.  From the equation of the tangent 

we get, 

 
i

i
idc a

yt −=τ  (3.59) 

where ai  is the slope of the tangent at the inflection point.  

 Evaluating the slope given by (3.41) at ti 

 )sinh(
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−

 (3.60) 

Using (3.43) in (3.60)  

 ( )1sinh 2
1

1

−=
−

ζα
αζeai

12 −ζτ  (3.61) 

or 

 
ia
2ατ =    (3.62) 

where  

( )1sinh
1

1 2
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1 −
−

= − ζα
ζ

α αζe  (3.63) 

Note that α2 also depends on ζ only. 

Using (3.62) and (3.43) in (3.59) 
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  (3.64) 

To avoid error propagation due to using calculated value of τ, we can directly calculate 

τdc. Using (3.56) in (3.64) and rearranging 

= −τ  (3.65)  

where 
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In (3.66) m1 and m2 depend only on the damping coefficient and since the damping 

coefficient is a function of iy only, the value in the bracket can be obtained if iy is known.  

The value of m2 can be calculated directly or using a graph. Figure 3.10 shows the 

graphical representation of m2 = f (ζ). 
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Figure 3.10 Coefficient, m2, as a function of the damping coefficient 

for tm and tn equal to t20 and t40, respectively 
 

3.11.1.4 Estimation of dominant poles 

For systems that are second or higher order dynamics with two dominant poles, the poles 

estimated by the proposed method are close to the two dominant poles of the system. This 

is because, if the system has two dominant poles the contribution of the other poles die 

out quickly and the dynamics of the system is mainly dominated by the two dominant 

poles. 

In summary, once the gain is determined from the ultimate response, the remaining 

parameters can be easily determined from the normalized step response. The damping 

coefficient is a function of the value of the normalized response at the inflection point 

only. It is directly read from Figure 3.6 or determined by root finding method using 
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(3.47). The natural period and the contributed time delay are calculated from the values of 

t20 and t40 using (3.56) and (3.65), respectively. The values of m1 and m2 are obtained 

from Figures 3.7 and 3.10 using the damping coefficient. Step by step description is given 

in the Algorithm 1. Good estimates of two of the dominant poles of the system are 

obtained from the two poles of the SOPTD model. 

Algorithm 3.1 

1. Determine the gain from the ultimate response 

2. Determine ti and iy at the inflection point in the normalized response curve 

3. Estimate the total time delay,τdt, by the tangent method  

4. Determine tn and tm  (e.g. t20 and t40) of the normalized response 

5. Estimate ζ using Figure 3.6 or solving (3.47) 

6. Estimate τ using (3.56) 

7. Determine the contributed time delay τdc using (3.65) 

8. Estimate the apparent time delay using (3.58) 

3.11.2 Simulation Case Studies 

In the previous section, an algorithm is developed to obtain a SOPTD model from the step 

response of an OBF model. The purpose of the simulation case studies in this section is to 

demonstrate that an SOPTD model with good accuracy can be developed from a noisy 

data of a higher order system using the proposed methods and an arbitrarily chosen pair 

of poles. In addition, it is also shown that the two poles of the estimated  SOPTD model 

are good estimates of the two dominant poles of the system and the estimated time delay 

is closer to the time delay of the system than the time delay estimate by the tangent 

method proposed by Patwardhan and Shah [8]. The first and the second case studies 

consider a well damped and a weakly damped higher-order systems that have two 

dominant poles, respectively.  

3.11.2.1 Identification of a well damped higher order system 

The system is represented by the well damped fourth order transfer function and 

unmeasured disturbance  
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 (3.67) 
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It can be observed from the transfer function (3.67) that the system has two dominant 

time constants, 16 and 6. The corresponding dominant poles of the system are -1/16 and  

-1/6. Since OBF is a discrete time model, the corresponding discrete time dominant poles 

for a sampling interval of 1 time unit is calculated using (3.9) and their values are 0.9394, 

0.8465. The unmeasured disturbance has a transfer function given by the second term of 

the RHS of (3.67) with white noise E(s) of mean 0.0319 and standard deviation 1.2925 

and the SNR is 7.8960. The input output data used for identification is shown in  

Figure 3.11. 
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Figure 3.11 Input u(k) and output y(k) used for identification of system(3.67) 

An OBF model is developed with 12 parameters and alternating poles of 0.7165 and 

0.9672 corresponding to time constants of 3 and 30, which are crude estimates of the 

dominant time constants. Estimates of the parameters of the OBF model and the time 

delay are 

     l = -0.1343    1.1591    0.6331    0.3694   -0.5841   -0.1390    0.3581   -0.0673    0.1021 

           0.0021    0.0091   -0.0357] 

     τd =15 (discrete) 

The step responses of the system and the OBF model are shown in Figure 3.12. 
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Figure 3.12 Step responses of the system, OBF model and SOPTD model  

for system (3.67) 

 

The estimated SOPTD model from the noise free OBF model by the proposed method is 
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 (3.68) 

The discrete poles of the estimated SOPTD model are 0.9365 and 0.8540. The two 

discrete poles of the estimated SOPTD model compared, obviously, are close to the 

dominant poles of the system 0.9376 and 0.8473. The best estimate of the time delay by 

the tangent method is 16.0386 and the time delay estimated by the proposed method is 

13.3. Clearly, the time delay estimate by the proposed method is closer to the true time 

delay than that estimated by the tangent method.  The step response of the OBF model 

and the estimated SOPTD model are shown in Figure 3.13. It is observed from Figure 

3.13 that the SOPTD model approximates the OBF model with good accuracy. 
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Figure 3.13 Step response of the OBF and SOPTD models for system (3.67) 

 

3.4.2.2 Identification of a weakly damped higher order system 

This case study is the extension of the previous case study for a weakly damped system.  

The transfer function of the system is given by  
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 (3.69) 

The system has a pair of conjugate poles -0.1000 ± 0.1732i and two real poles -1 and -2. 

The corresponding discrete poles of the system for a sampling interval of 1 time unit are 

0.8913 ± 0.1559i, 0.1353 and 0.3679.        

 

A PRBS signal with band [0 0.02] is introduced into the system to generate the 

identification data. The system output is corrupted with unmeasured disturbance whose 

input is a white noise signal of mean and standard deviations of 0.0368 and 1.4914, 

respectively. The signal to noise ratio is 8.3532. The input-output data used for 

identification is shown in Figure 3.14. 
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Figure 3.14 Input u(k) and output y(k) used for identification of system(3.69) 

An OBF model with twelve parameters and alternating discrete poles of 0.7165 and 

0.9672, corresponding to time constants of 3 and 30 with sampling interval of 1 time unit 

is developed. The poles are purposefully chosen far away from the dominant poles for 

demonstrating the effectiveness of the system. Estimates of the parameters of the OBF 

model and the time delay are 

l =  [1.4029  1.1528 -0.3492 -1.2825  0.2691  1.4680 -0.6332 -0.8240  0.8638  -0.6611              

-0.4047    0.6879] 

         τd = 13 (discrete) 

SOPTD model is developed from the step response of the estimated OBF model. The step 

response of the system and the OBF model are compared in Figure 3.15. The estimated 

SOPTD model from the noise free OBF model by the proposed method is 
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The discrete poles of the estimated SOPTD model are 0.8925 ± 0.1514i. Compared to the 

four discrete poles of the system 0.1353, 0.3679, 0.8756 ± 0.1367i, the two discrete 

complex conjugate poles of the estimated SOPTD model are, obviously, close to the 

dominant complex conjugate poles of the system. The best estimate of the time delay by 
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the tangent method is 15.2590; the time delay estimated by the proposed method is 13.2, 

therefore, closer to the true time delay, τd = 12, than the estimate by the tangent method. 

The step response of the OBF model and SOPTD model are shown in Figure 3.16. 
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Figure 3.15 Step responses of the system and OBF model for system (3.69) 
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Figure 3.16 Step response of the OBF model and the estimated SOPTD model  

for system (3.69) 
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The result of the simulation studies demonstrate that SOPTD model can be effectively 

developed from the step response of an OBF model that is developed from a noisy data 

and an arbitrary pairs of poles. It is also shown that the two poles of the SOPTD model 

are good estimates of the dominant poles of the system and the time delay is closer to the 

time delay of the system than that estimated by the tangent method proposed by 

Patwardhan and Shah [8]. 

3.12 Parsimonious OBF modeling  

It is already pointed out in various sections that one of the main advantages of OBF 

models is the fact that they are parsimonious in parameters. Nevertheless, it is shown that 

to get parsimonious OBF model, the poles used in the filters must be close to the 

dominant poles of the system [8, 48, 92]. When the dominant poles of the system are not 

available and using arbitrarily chosen poles may lead to models that require larger 

number of parameters to capture the dynamics with reasonable accuracy, i.e., the models 

will be non-parsimonious. However, there are many situations where it is difficult to get 

good estimates of the dominant poles of the system directly. One such situation is when 

there is significant unmeasured disturbance in the system. In the previous sections, two 

novel schemes were formulated for developing FOPTD and SOPTD models from the step 

response of a noise free OBF model which, itself, is developed from a noisy identification 

data and arbitrarily chosen poles. It was also shown that the poles of the FOPTD and 

SOPTD models are good estimates of the dominant poles of the system. These poles can 

be used to develop parsimonious OBF model. The iteration continues until the percentage 

prediction error improvement is small enough.  

The proposed iterative scheme is shown in flow chart in Figure 3.17. First, an OBF mode 

is developed from the identification data using a crude estimate or arbitrarily chosen 

poles. Then, one or two of the dominant poles of the system are estimated using the 

methods proposed in the previous sections. The estimated dominant poles are used to 

develop more accurate OBF model. A better estimate of the dominant poles is obtained 

from the new OBF model. The process is repeated until a convergence criterion is 

satisfied. One possible convergence criteria is the improvement in the percentage 

prediction error. For a fixed number of parameters, the percentage prediction error 

improves as the estimate of dominant pole is improved.   
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Figure 3.17 Flowchart for developing a parsimonious OBF,  

FOPTD or SOPTD model iteratively 

3.13 Case Studies 

In this section, three full scale system identification case studies for a well damped and a 

weakly damped higher order systems using the proposed schemes are presented.  In the 

first case study, a well damped fifth order system that has one dominant pole is modeled 

by parsimonious OBF model using the proposed iterative method based on FOPTD model 

with an arbitrarily chosen pole.  In the second and third case studies a well damped and a 

weakly damped systems, respectively, are modeled by a parsimonious OBF model using 

the proposed iterative scheme based on SOPTD model with arbitrarily chosen pair of 



 

 

57

( )

poles. The accuracy of the developed OBF models are tested using percentage prediction 

errors (PPE) and residual analysis. Since, noise model development issues are not yet 

considered, only white noise is added to the systems so as to make the residual analysis 

possible. The percentage prediction error is defined as 
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represents the mean value of measurements { } and  predicted value 

of . 

)(kyi

)

3.13.1 Identification of well damped system with one dominant pole 

In this case study, the system is represented by (3.71)  
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where E(s) is a white noise signal. 

The discrete poles of the system, for a sampling interval of 1 time unit are 0.9460    

0.4895, 0.4346, 0.1889 and 0.03570. The system is well damped and has one dominant 

pole 0.9460. Figure 3.18 presents the plot of the input output data used for identification. 
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Figure 3.18 Input-output data used in identification of system (3.71) 
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To conduct the identification, a ‘PRBS’ input signal is introduced to the system with band 

[0 0.01].  Four thousand data points with sampling time interval of 1 time unit are 

generated using SIMULNIK and 3000 of these data points are used for identification and 

the remaining 1000 data points are used for validation. White noise, e(t), with mean and 

standard deviation of 0.8948 and 0.0221, respectively, is added to the output of the 

system. The signal to noise ratio is 7.9064.  

To choose the number of parameters, first OBF models with 6, 8, 10 and 12 Laguerre 

filters are developed with an initial pole of 0.3679 corresponding to a time constant of 1 

time unit. The pole is chosen purposely far away from the true pole for demonstrating the 

effectiveness of the proposed iterative scheme.  The percentage prediction errors for the 

four OBF models in three iterations are given in Table 3.1. 

       Table 3.1 Percentage prediction errors for system (3.71) 

iterations OBF-6 OBF-8 OBF-10 OBF-12 

1 

2 

3 

30.9343

12.7496

9.7741

  22.8916

   10.1990

    9.7665

18.1122

    9.7751

    9.7468

14.9787 

9.5985 

9.5983 

 

It is observed from Table 3.1 that, although, the percentage prediction error 

improvements from 6 parameters to 12 parameters OBF models are high at the first and 

second iterations, at the third iteration the difference is less than 0.2%.  Therefore, 

considering the prediction error improvement to be insignificant compared to the number 

of parameters difference, OBF model with 6 parameters is chosen to be a parsimonious 

OBF model with acceptable accuracy 

The estimated time constant is 20.75 after three iterations. The dominant pole of the 

system is estimated to be 0.9643. The final OBF model is developed with 6 Laguerre 

filters and one pole equal to 0.9643. The estimated OBF parameters and the time delay 

are   

l = [0.3278 1.4428 1.4512 -0.0700 -3.1896e-004 0.1574]  

τd = 13 sampling intervals 



 

 

59

Model Validation 

Figure 3.19 depicts the OBF model output and the noisy actual output of the system for 

the validation data points 3001-4000. The noise free output of the system and the OBF 

output of the validation data are depicted in Figure 3.20. 
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Figure 3.19 Noisy system (3.71) output and the OBF output 

for the validation data points 
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Figure 3.20 Noise free output of system (3.71) and  

the OBF predictions of the output 
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The step responses of the OBF model and the SOPTD estimated model are shown in 

Figure 3.21. 
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Figure 3.21 Comparison of step responses of the system without noise, the SOPTD model 

and the OBF model of system (3.71) 

3.13.1.1 Residual Analysis 

The qq-plot of the residual and the white noise introduced into the system is shown in 

Figure 3.22.  

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

white noise

re
si

du
al

 q
ua

nt
ile

s

 quantiles  
Figure 3.22 qq-plot of the residual and the white noise introduced into system (3.71) 
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In plotting Figure 3.22, the first 30 residuals are removed because of the initial condition 

requirement of prediction equations.Figure 3.23 shows the distribution of the residuals 

compared to the distribution of the white noise added into the system. 
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Figure 3.23 Distribution of the residual of the OBF model and the original white noise 

introduced into the system 

Correlation among the residuals is given by 

  =R̂ [-0.0070  0.0093 -0.0148 -0.0044  0.0005  0.0279 -0.0465 -0.0056  0.0401 -0.0132] 

This simulation study shows that a parsimonious OBF model can be effectively 

developed from a noisy identification data and arbitrarily chosen poles using the proposed 

iterative method based on FOPTD model, for well damped higher order systems that have 

one dominant pole. The residual analysis results also show that the parsimonious OBF 

model is accurate enough because the residual of the model is almost the same white 

noise added to the system. It means, essentially all the dynamics of the deterministic part 

is captured by the parsimonious OBF model.  
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3.13.2 Identification of well damped system–two dominant poles 

In this case study, the system is represented by (3.72)  
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++++
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−

 (3.72) 

where E(s) is a white noise signal. 

The discrete poles of the system, for a sampling interval of 1 time unit are 0.9546, 0.9200, 

0.1889 and 0.0357. The system is well damped and its two dominant discrete poles are 

0.9546 and 0.9200. White noise, e(t), with mean and standard deviation of 0.0147 and 

0.5966, respectively, is added to the output of the system. The signal to noise ratio is 

8.5225. To conduct the identification, a ‘PRBS’ input signal is introduced into the system 

with band [0 0.02].  Four thousand data points, with sampling interval of 1 time unit, are 

generated using SIMULNIK and 3000 of these data points are used for identification and 

the remaining 1000 data points for validation. The input-output data used for 

identification are shown in Figure 3.24.  
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Figure 3.24 Input-output data used in identification for system (3.72) 

To choose the number of parameters, OBF models with 6, 8, 10 and 12 GOBF filters are 

developed with an initial alternating poles 0.3679 and 0.6065 corresponding to time 

constants of 1 and 2 time units. The poles are purposely chosen far away from the true 
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pole for demonstrating the effectiveness of the iterative scheme.  The percentage 

prediction errors for the four OBF models after sufficient number of iterations for 

convergence are given in Table 3.2. It is observed from Table 3.2 that, although, the 

percentage prediction error improvements from 6 to 12 parameters are high at the first 

iteration the percentage prediction errors are almost the same after convergence. 

Therefore GOBF model with six parameters (GOBF-6) is selected to be the parsimonious 

GOBF model without much compromise on the accuracy. 

Table 3.2 Percentage prediction errors of system (3.72) 

iterations GOBF-6 GOBF-8 GOBF-10 GOBF-12 

1 

2 

3 

4 

5 

6 

54.4639 

   18.6767 

   12.5275 

   11.9232 

   11.8738 

   11.8686  

41.8491 

   22.8638 

   12.0272 

   11.8638 

- 

- 

31.4682 

   11.8885 

   11.8553 

- 

- 

- 

23.8351 

   11.9926 

   11.8696 

   11.8657 

- 

- 

The dominant discrete poles of the system after convergence are estimated to be 0.9433 

and 0.9115. The final model is developed with 6 GOBF filters with alternating poles of 

0.9433 and 0.9115. The estimated GOBF parameters and the time delay are   

l = [0.6730 1.0197 0.5912 -0.4760 0.1321 -0.0759] 

τd = 14 sampling intervals 

Model Validation 

Figure 3.25 depicts the GOBF model output and the noisy actual output of the system for 

the validation data points 3001-4000. The noise free output of the system and the GOBF 

output of the validation data are depicted in Figure 3.26. 
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Figure 3.25 GOBF model output and the noisy actual output of the system for the 

validation data points of system (3.72) 
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Figure 3.26 Noise free output of the system and the GOBF simulation output  

for the validation data of system (3.72) 

 

The step responses of the system (without the noise) and the GOBF model are shown in 

Figure 3.27. It is observed from Figure 3.27 that the step response of the parsimonious 

GOBF model is very close to the step response of the system. 
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Figure 3.27 Comparison of step responses of system (3.72) without noise  

and the corresponding GOBF model  

3.13.2.1 Residual Analysis 

The qq-plot of the residual and the white noise introduced into the system is shown in 

Figure 3.28. In plotting Figure 3.28, the first 30 residuals are removed because of the 

initial condition requirement of prediction equations. Figure 3.29 shows the distribution 

of the residuals compared to the distribution of the white noise added into the system. 
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Figure 3.28 qq-plot of the residual and the white noise introduced  

into system (3.72)  
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Figure 3.29 Distribution of the residual of the OBF model and the original white noise 

introduced into system (3.72) 

Correlation among the residuals is given by 

R̂ [0.0028  0.0140 -0.0019  0.0055  0.0095  0.0284 -0.0200  0.0075  0.0379 0.0028] =

This simulation study shows that a parsimonious OBF model can be effectively 

developed from a noisy identification data and arbitrarily chosen poles using the proposed 

iterative method for well damped higher order systems. The residual analysis results also 

show that the parsimonious OBF model is accurate enough because the residual of the 

model is almost the same white noise added to the system. It means, essentially all the 

dynamics of the deterministic part is captured by the parsimonious OBF model.  

3.13.3 Identification of weakly damped system 

In this simulation study, an underdamped fifth order system with time delay and additive 

white noise is considered. The transfer function of the system is given by (3.73) with 

poles, -0.0667 ± 0.1528i, -0.8333, -1.2500 and -1.6667. The corresponding discrete poles 

for a sampling interval of 1 time unit are 0.9246 ± 0.1423i,   0.4346, 0.2865 and 0.1889.           

              )()( sEs +
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The mean and standard deviation of the white noise added to the output of the system has 

mean and standard deviation of 0.0245 and 0.9943, respectively, and the signal to noise 

ratio is 8.5755. The input-output data used for model development are shown in Figure 

3.30. 
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Figure 3.30 Input-output data used in identification of system (3.73) 

To conduct the identification, a ‘PRBS’ input signal is introduced to the system with band 

[0 0.02].  Four thousand data points are generated using SIMULNIK and 3000 of these 

data points are used for identification and the remaining 1000 data points are used for 

validation.  

To choose the number of parameters GOBF models with 6, 8, 10 and 12 parameters  are 

developed with an initial discrete alternating poles of 0.3679 and 0.6065 corresponding to 

a time constant of 1 and 2 time units with sampling interval of 1 time unit. The initial pair 

of poles is chosen purposely far away from the true poles to show the effectiveness of the 

iterative scheme. Note that the dominant poles of the system are complex conjugates 

while the initial poles chosen are real. The percentage prediction errors for the four OBF 

models in three iterations are given in Table 3.3. It is observed from Table 3.3 that, 

although, the percentage prediction error has larger variation at the first iteration with 

increase in number of parameters, after convergence OBF-6 (OBF with 6 parameters) the 

difference is very small. The improvement in PPE from 6 to 12 parameters is less than 

0.5% and it can be considered insignificant. Therefore OBF-6 is chosen as the best 
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structure since it provides the most parsimonious model without significant compromise 

on the accuracy.  

Table 3.3 Percentage prediction errors for system (3.73) 

iterations OBF-6 OBF-8 OBF-10 OBF-12 

1 

2 

3 

4 

5 

6 

19.2845 

   14.9182 

   13.1845 

   12.6423 

- 

- 

13.9814 

   12.7760 

   12.5346 

   12.4953 

   12.4885 

   12.4884 

13.5539 

   12.3463-

- 

- 

- 

- 

12.7687 

   12.2426 

- 

- 

- 

- 

The dominant discrete poles of the OBF-6 model, after convergence, are estimated to be 

0.8877 ± 0.1357i at the fourth iteration. The final OBF model is developed with 6 Kautz 

filters and a pair of complex conjugate poles 0.8877 ± 0.1357i. The estimated OBF 

parameters and time delay are   

l = [0.0245 -0.7936 4.1265 0.6691 -0.2770 -0.1524] 

τd = 14 sampling intervals 

The best time delay estimate by the tangent method is 16.8201. 

Model Validation 

Figure 3.31 depicts the OBF model output and the noisy actual output of the system for 

the validation data points 3001-4000. The noise free output of the system and the GOBF 

output of the validation data are depicted in Figure 3.32. 
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Figure 3.31 GOBF model output and the noisy actual output of the system for the 

validation data points of system (3.73) 
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Figure 3.32 Noise free output of the system (3.73) and the GOBF predictions  

of the output  

The step responses of the system (without the noise) and the parsimonious GOBF model 

are shown in Figure 3.33. 
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Figure 3.33 Comparison of step responses of system (3.73) without noise 

and the OBF model  

3.13.3.1 Residual Analysis 

The qq-plot of the residual and the white noise introduced into the system is shown in 

Figure 3.34. In plotting Figure 3.34, the first 30 residuals are removed because of the 

initial condition requirement of prediction equations.  
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Figure 3.34 qq-plot of the residual and the white noise introduced into system (3.73)  
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Figure 3.35 shows the distribution of the residuals compared to the distribution of the 

white noise added into the system. 
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Figure 3.35 Distribution of the residual of the OBF model and the original white noise 

introduced into system (3.73) 

Correlation among the residuals is given by 

=R̂ [-0.0110  0.0199 -0.0168  0.0039  0.0102  0.0545 -0.0616  0.0029  0.0734  -0.0106] 

This simulation study, like the previous two simulation studies, shows that a 

parsimonious OBF model can be effectively developed from a noisy identification data 

and arbitrarily chosen poles using the proposed iterative method for weakly damped 

higher order systems also. The residual analysis results also show that the parsimonious 

OBF model is accurate enough because the residual of the model is almost the same white 

noise added to the system. It means, essentially all the dynamics of the deterministic part 

is captured by the parsimonious OBF model.  

3.14 Summary 

In this chapter, two important problems related to OBF model development were solved. 

One of the problems is, how to develop parsimonious OBF model if good estimate of the 

dominant pole of the system is not available. The other problem is how to get a better 

time delay estimate when the system has second or higher order dynamics.  
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The first problem is addressed by developing an iterative scheme in which the dominant 

poles of the system is estimated from the noise-free OBF model, which itself is developed 

from the noisy identification data with arbitrarily chosen poles. Parsimonious OBF 

models of well damped, higher order systems can be developed using the proposed 

method based on pole estimation with FOPTD models or SOPTD models. Parsimonious 

OBF models of weakly damped, higher order systems can be developed using the 

proposed method based on pole estimation with SOPTD models.  When FOPTD model 

based iterative method is used Laguerre filters are the most appropriate since only one 

pole is estimated. When SOPTD based iterative method is used, both GOBF and Kautz 

filters (for weakly damped systems) can be used. The second problem is addressed by 

reducing the contributed time delay from the time delay estimate by the tangent method. 

For this purpose the SOPTD model is used. Therefore, when the SOPTD based iterative 

method is used two dominant poles and a better time delay estimate is obtained.   

Three different approaches are compared for determining the FOPTD parameters the 

interpolation method is found effective. A novel method for estimating the parameters of 

the SOPTD model is developed. While the method is effective for estimating the SOPTD 

model from the step response of any system it is uniquely effective for estimating the 

SOPTD parameters from step response of OBF models.  

Each major section is supported by relevant simulation study. The final simulation study 

shows all major identification issues including residual analysis. The simulation study 

also confirms that the proposed method is reliable and effective in developing 

parsimonious OBF models from a crude estimate or arbitrarily chosen poles.   

 

 

 

 

 

 

 



 

 

CHAPTER 4  

OBF BASED PREDICITON MODELS 

4.5 Introduction 

Conventional OBF models are simulation models and they do not include explicit noise 

models [2, 8, 20].  In their conventional form, OBF model structures, therefore, cannot be 

effectively used in the presence of unmeasured disturbances, unless a noise model is 

separately estimated and included. Patwardhan et al. [8] showed that the regulatory 

performance of MPC system improves significantly by including a noise model to the 

OBF simulation model. In their work, the residual of the OBF model is whitened with 

Auto Regressive (AR) noise model. The AR noise model is parameterized in terms of 

OBF parameters and a minimal order state space model was realized. In their subsequent 

paper [9], they used this state space model in MPC and fault tolerant control systems. 

However, AR models are not parsimonious and they need a large number of parameters 

to capture the dynamics of the unmeasured disturbance with acceptable accuracy. In 

addition, development of the noise model could be integrated with the development of the 

OBF model so that a unified OBF plus noise model is developed as a single model. 

Combining the noise model to an OBF model and treating it as a single model would also 

improve the prediction capability of the model.  

Another related issue is that, although, there is a wide-ranging literature on closed loop 

identification, only limited material related to closed loop identification using OBF plus 

noise models is available. Gáspér et al. [30] presented a paper on closed-loop 

identification related to OBF models. However the paper lacks clarity and depth on its 

presentation. First, in the simulation model, which was used to generate the identification 

data, only the plant and the controller transfer functions were given. It appears that, no 

noise or unmeasured disturbance is introduced into the simulation system. This makes the 

identification simulation case-study less relevant to closed-loop identification; since it 

was the correlation of the noise sequence to the input sequence that makes closed-loop 

identification unique and difficult. When a system identification test is carried out in open 

loop, in general, the noise sequence is not correlated to the input sequence and OBF 

model identification is carried in a straight forward manner. However, when the system 

identification test is carried out in closed loop, the input sequence is correlated to the 
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noise sequence and conventional OBF model development procedures fail to provide 

consistent model.  

Nevertheless, there are several reasons to conduct identification tests in closed-loop. 

Some of the compelling reasons for conducting identification test on closed loop are  

[1, 2, 30-32]: 

• Feedback controller is required to stabilize the process 

• Safety and cost consideration may not allow the process to run open-loop 

• The excited frequencies in closed-loop operation are better suited than the 

frequency band in open-loop operation 

• The linearization of the controller is desired 

• The model is to be used for the design of improved controller 

Therefore, closed loop identification using OBF plus noise model is an important issue to 

be addressed to make full use of the benefits of OBF models.  

In this chapter, unified schemes for developing OBF based prediction models from  

open-loop and closed-loop identification data that provide explicit noise model are 

proposed. In the first section, two novel unified schemes in which Box-Jenkins (BJ) type 

models are developed by combining orthonormal basis filter model and conventional time 

series models are presented. In the second section, novel schemes for developing OBF- 

based prediction model from closed loop data are presented.  In each section, the structure 

of the proposed models, the procedures for estimation of model parameters and the 

formula for multi-step ahead predictions are presented. The proposed schemes are 

demonstrated using simulation and real plant case studies. 

4.6 Open-loop Identification using OBF–AR and OBF-ARMA Models  

In this section, two novel unified schemes for developing BJ type models from open-loop 

identification data by combining orthonormal basis filter model and conventional time 

series models are presented. The models have an OBF deterministic part and an AR or 

ARMA noise part. The proposed models inherit all the advantages of an OBF model 

together with an explicit noise model. This enables the design of control systems for 

disturbance rejection that results in better regulatory performance. Furthermore, 

combining a noise model to an OBF model and treating it as a single model results in a 

prediction model with a higher prediction capability than an OBF simulation model. The 
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proposed methods are easily extended to develop models for MIMO systems using 

multiple MISO models.  The advantages of the proposed models over BJ models are:  

• Model parameters can be easily and accurately determined without involving non-

linear optimization 

• Time delays can be easily estimated, and unlike in BJ models, a prior knowledge 

of time delays is not required 

• The identification and prediction schemes can be easily extended to MIMO 

systems. 

The basis of OBF-AR/ARMA models is the fact that when the noise sequences are 

uncorrelated with the input sequence an OBF model can be easily developed for the 

deterministic part regardless of the type of noise. Van den Hof et al. [46] showed that if 

the noise sequences are uncorrelated with the input sequences, a parsimonious GOBF 

model can be developed even if the noise is colored. They demonstrated in their 

simulation study that the residuals of the GOBF model closely match the noise introduced 

into the system.  In this section, the OBF models are independently developed assuming 

the noise sequences are uncorrelated with the input sequences which is generally the case 

for open-loop identification.  

4.6.1 Model Structures 

The BJ model structure (4.1) is known to be more flexible and comprehensive structure of 

the conventional linear models[1, 2, 16].  

)(
)(
)(

)(
)(
)(

)( ke
qD
qC

ku
qF
qB

ky +=
  (4.1) 

In the BJ model, B(q)/F(q) describes the deterministic part of the model whereas 

C(q)/D(q)  describes the stochastic part of the model. The proposed BJ-type model 

structure is obtained by replacing the deterministic part of the model with OBF model 

structure. In the following part, the structure of the proposed models and their 

corresponding block diagrams are presented. 
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4.6.1.1 OBF-AR model structure 

The OBF-AR model structure assumes an OBF and AR structures for the input and noise 

transfer functions, respectively. Figure 4.1 illustrates the structure of OBF-AR models.   

)(
1

qD

)(qGOBF
 

Figure 4.1 OBF-AR structure 

The corresponding transfer function model for the OBF-AR model is given by  

 
)(

)(
1)()()( ke
qD

kuqGky OBF +=
 (4.2) 

4.6.1.2 OBF-ARMA model structure 

The OBF-ARMA structure has more flexible noise model than the OBF-AR structure. 

The OBF-ARMA structure is depicted in Figure 4.2. 

)(qGOBF
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   Figure 4.2 OBF – ARMA structure 



 

 

77

Equation (4.3) represents the corresponding transfer function for the OBF-ARMA 

structure.  

 )(
)(
)()()()( ke

qD
qCkuqGky OBF +=  (4.3) 

It can be noted from (4.3) that the OBF-ARMA structure does not assume common 

denominator dynamics and hence it should not be confused with an OBF model with an 

ARMAX structure. However, since the orthonormal filters have both numerator and 

denominator polynomials it is similar to BJ structure.  

4.6.2 Estimation of Model Parameters 

The model parameters of both OBF-AR and OBF-ARMA structures are estimated based 

on the prediction error method as explained in the following sections. 

The prediction error e(k) is defined as 

 )1|(ˆ)()( −−= kkykyke  (4.4) 

 

4.6.2.1 Estimation of Model Parameters for OBF-AR model structure 

Introducing the prediction error (4.4) in (4.2) and rearranging leads to  

( ) )()(1)()()()1-|(ˆ kyqDkuqGqDkky OBF + −=  (4.5)  

Assuming that the noise sequence is uncorrelated to the input sequence, the parameters of 

the OBF model can be estimated separately. These parameters can then be used to 

calculate the OBF simulation model output using (4.6).  

)()()( kuqGky OBFobf =  (4.6)  

Inserting (4.6) in (4.5)  

( ) )()(1)()()1|(ˆ kyqDkyqDkky obf= + −−
 (4.7)  

Equation (4.7) is linear in parameters since yobf (k) is already known. With D(q) monic, 

(4.7) can be expanded and rearranged to yield  

)(...)2()1()()1|(ˆ 21 Dmobf nkrdkrdkrdkykky −− − − − − −=−  (4.8)  

where  



 

 

78

)()( iyiy obf−=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

−−−−

−−−

−−−

)(...)2
.
.
.

)2(...)1
)1(...)2

nNrN

rn
rn

  nD is the order of the polynomial D(q) 

)(ir    

Note that r(i) represents the residual of the output y(k) of the system from the OBF model 

output yobf (k). The model parameters in (4.8) can be calculated by the linear least square 

formula (3.20) with the regressor matrix given by (4.9).  

  (4.9) 
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where n = nD. 

The step-by-step procedure for estimating the OBF-AR model parameters, explained 

above, is outlined in Algorithm 1.  

Algorithm 4.1 

1. Develop parsimonious OBF model  

2. Determine the output sequence of the OBF model yobf (k) for the 

corresponding input sequence u(k) 

3. Determine the residuals of the simulation model r(k ) = y(k) - yobf (k) 

4. Develop the regression matrix X given by (4.9) 

5.  Determine the parameters of the noise model using (3.19) enforcing monic 

condition, i.e., d0 = 1. 

It may be noted that if estimates of the dominant poles of the deterministic part are not 

available, an iterative technique proposed in Chapter 3 can be followed in order to 

develop a parsimonious OBF model.  

4.6.2.2 Estimation of Model Parameters for OBF-ARMA model structure 

The OBF-ARMA equation is given by (4.3) 
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 )(
)(
)()()()( ke

qD
qCkuqGk OBF +=

)()()() kyqCky

y  (4.3) 

Substituting the prediction error in (4.3) and rearranging yields 

 ()()()()1|(ˆ)( qDkuqGqDkkyqC OBF +−=−  (4.10) 

As in the case of OBF-AR model, if the noise sequence is uncorrelated with the input 

sequence, the OBF model parameters can be calculated separately and be used to 

calculate the simulation model output yobf(k) using (4.6).   

Introducing (4.6) in (4.10) results in  

 )()()()()()()1|(ˆ)( kyqCkyqDkyqDkkyqC obf +−=−  (4.11) 

Expanding and rearranging (4.11) results in 

  (4.12) )(...)2()1( 21 nkeckeckec n −++−+−

)(...)2()1()()1|(ˆ 21 mkrdkrdkrdkykky mobf +−−−−−−−=−

where e(k) is the prediction error sequence as defined by (4.4).  

Equation (4.12) in the form shown above is similar to linear regression. However, since 

the prediction error sequence, e(k-i), itself is a function of the model parameters, it is 

nonlinear in parameters. To emphasize the significance of these two facts such structures 

are commonly known as pseudo-linear[1, 2]. The model parameters can be estimated by 

either a nonlinear optimization method or an extended least square method [2]. In this 

work, the extended least square method is used to estimate the parameters.  A simple two-

step method is also proposed.  

The extended least square method is an iterative method where the prediction error 

sequence is estimated and updated at each iteration using the prediction error of OBF-

ARMA model. A good initial estimate of the prediction error sequence is obtained from 

the OBF-AR model. The parameters for the noise model are estimated using the linear 

least square method with (4.13) and (4.14) as parameters vector and regressor matrix, 

respectively.   From the derivation, it should be remembered that all the poles and zeros 

of the noise models should be inside the unit circle and both the numerator and 

denominator polynomials should be monic. If an OBF-AR model with a high-order noise 

model can be developed, the residuals of the OBF-AR model will generally be close to 

white noise. In such cases, the noise model parameters of the OBF-ARMA model can be 



 

 

80

estimated using linear least square method in one iteration. Such a simplified method is 

called a two-step method in this study. The step-by-step procedure for estimating OBF-

ARMA model parameters is outlined in Algorithm 4.2.  

  (4.13) 
T

nm cccddd ]......[ 2121=θ

where    n = nC, the order of the polynomial C(q) 

m = nD, the order of the polynomial D(q) 

mx=max (m, n)+1 
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   (4.14) 

  (4.15) 
TNymxymxyy )](...)1()([ +=

Algorithm 4.2  

1. Develop a parsimonious OBF model  

2. Determine the OBF simulation model output yobf(k) for the corresponding 

input sequence u(k) 

3. Determine the residual of the simulation model r(k ) = y(k) - yobf (k) 

4. Develop OBF-AR prediction model 

5. Determine the residual of the OBF-AR model, )(ˆ ke  

6. Use yobf(k), r(k) and e(k) ≈ )(ˆ ke to develop (4.14) 

7. Use (3.20) to estimate the parameters of the OBF-ARMA model  
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8. Re-estimate the prediction error )(ˆ)()( kykyke −= from the OBF-ARMA 

model developed in step 7 

9. Repeat steps 6 to 8 until convergence is achieved 

Convergence criteria 

There are several possibilities for the convergence criteria. One possibility is the 

maximum deviation in the parameters of the noise models in two consecutive iterations 

can be taken as convergence criteria. When the model is intended for prediction the 

improvement in percentage prediction errors can be used as convergence criteria.  

4.6.3 Multi-step ahead Prediction 

Multi-step ahead predictions are required in several applications such as model predictive 

control. In this section multi-step ahead prediction equation and related procedures for 

both OBF-AR and OBF-ARMA are derived. 

4.6.3.1 Multi-step ahead Prediction using OBF-AR model 

Using (4.6) in (4.2) the OBF-AR equation becomes 

 )(
)(

1)()( ke
qD

kyky obf +=  (4.16) 

i-step ahead prediction is obtained by replacing k with k + i 

 )(
)(

1)() ike
qD

ikyik obf +++=+(y  (4.17) 

To calculate the i-step ahead prediction, the error term should be divided into current and 

future parts as shown in (4.18) [16]. 

)()()(
)(
)(

)( ikeqEke
qD
qF

ik i
i ++++)( yiky obf=+   (4.18) 

The last term in (4.18) contains only the future error sequence which is not known. 

However, since e(k) is assumed to be a white noise with mean zero, (4.18) can be 

simplified to  

 )(
)(
)(

)()| ke
qD
qF

ikykik i
obf ++=+(ŷ   (4.19) 
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Fi and Ei  are determined by solving the Diophantine equation (4.20) which is obtained by 

comparing  (4.17) and (4.18)  

 )(
)(

)(
)(

1
qD

qFq
qE

qD
i

i

i

−

+=   (4.20) 

Equation (4.19) could be taken as the final form of the i-step ahead prediction equation. 

However, in application, since e(k) is not measured the equation cannot be directly used. 

The next steps are added to solve this problem. 

Rearranging (4.16) 

 )()()(
)(

1 kykyke
qD obf−=  (4.21) 

Using (4.21) in (4.19) to eliminate e(k) 

  (4.22) ))()()(()()|(ˆ kykyqFikykiky obfiobf −++=+

Rearranging (4.22) 

  (4.23) )()())(1)(()|(ˆ kyqFqqFikykiky i +−+=+ −
iiobf

Rearranging the Diophantine equation (4.20) 

( ) )()()(1 qEqDqFq ii
i =− −

)()()()()()|(ˆ kyqFikyqDqEkiky iobfi

 (4.24)  

Using (4.24) in (4.23)  

= + ++
 (4.25)  

Equation (4.25) is the usable form of the multi-step ahead prediction equation for the 

OBF-AR model. Given an OBF-AR model, the solution of the Diophantine equation to 

get Ei and Fi and the prediction equation (4.25) forms the procedure for i-step ahead 

prediction of the OBF-AR model. 

4.6.3.2 Multi-step ahead Prediction using OBF-ARMA Model 

Using (4.6) in (4.3) the OBF-AR equation becomes 

)(
)(
)()()( ke

qD
qCkyky obf +=

  (4.26)  

i-step ahead prediction is obtained by replacing k with k + i 
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To calculate the i-step ahead prediction, the error term should be divided into current and 

future parts. 
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obf ++++=+
  (4.28) 

Since e(k) is assumed to be a white noise with mean zero, the mean of Ei(q) e(k+i) is 

equal to zero, and therefore (4.28) can be simplified to  

 )(
)(

)()|(ˆ ke
qD

ikykiky obf ++=+
)(qFi

 (4.29) 

Fi and Ei  are determined by solving the Diophantine equation (4.30) which is obtained by 

comparing  (4.27) and (4.28)  

 )()( qDqD
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)()( qFq
qEqC i

i +=
i−

 (4.30) 

Rearranging (4.26) 

( ))()(1)(1 kykyke −=  (4.31) )()( qCqD obf

Using (4.31) in (4.29) to eliminate e(q) 
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  (4.32) 

Rearranging (4.32) 
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Rearranging the Diophantine equation (4.30) 
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Using (4.33) in (4.32) results in the final usable form of the i-step ahead prediction for 

OBF-ARMA model.   
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Since yobf (k+i) is the output sequence of the simulation OBF model, if the OBF model 

parameters are determined its value depends only on the input sequence u(k+i). 

Therefore, the i-step ahead prediction according to (4.34) depends on the input sequence 

up to instant k+i and the output sequence up to instant k.  

4.6.4 Multiple-Input Multiple-Output (MIMO) Systems 

The procedures for estimating the model parameters and i-step ahead prediction can be 

easily extended to MIMO systems by using multiple-MISO models[2]. First, a MISO 

OBF model is developed for each output using the input sequences and the corresponding 

orthonormal basis filters. Then, AR model is developed using yobf(k) and the residual of 

the OBF simulation model.  The OBF-ARMA model is developed in a similar manner, 

with an OBF model relating each output with all the relevant inputs and one ARMA noise 

model for each output using Algorithm 4.2. 

4.6.5 Case Studies 

In this section, the proposed methods are illustrated using three case studies. The 

objective in the first two simulation case studies is to establish the fact that the proposed 

methods are effective in developing prediction models that have acceptable accuracy for 

linear time invariant systems for both well damped and weakly damped systems. In 

addition, the prediction capability of the GOBF-AR and GOBF-ARMA models are 

compared.  The plant model is validated using a separate validation data for each 

simulation case study and by comparing the percentage prediction errors. The accuracy of 

the noise models are compared by using the noise spectrum, and the percentage prediction 

error of the spectrum of the noise model. 

In the first and second case studies a well damped system and a weakly damped system 

with unmeasured disturbances, respectively, are considered. In the third case study, the 

proposed method is used for developing OBF-ARMA model for a pilot-scale binary 

distillation column. The distillation column is part of a reaction-separation system which 

uses acetone-iso propyl alcohol as feed material. The case study is a multiple-input 

multiple output (MIMO) real plant case study.   
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4.2.5.1 Well damped System with Box Jenkins Structure 

In this simulation case study, OBF-AR and OBF-ARMA models are developed for a well 

damped system that has a Box-Jenkins structure. The OBF-AR and OBF-ARMA models 

are developed with various orders and compared within themselves and with each other. 

The system is represented by (4.35). Note that both the numerator and denominator 

polynomials of the noise model are monic and their roots are located inside the unit circle. 

Figure 4.3 shows the input–output sequences used for model development.          
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Figure 4.3 Output y(k) and input sequences u(k) used for  

identification of system (4.35) 

The mean and standard deviations of the white noise, e(k), added to the system are  

0.0123 and 0.4971, respectively, and the signal to noise ratio (SNR) is 6.6323 . The input 

signal is a pseudo random binary signal (PRBS) of 4000 data points generated using the 

‘idinput’ function in MATLAB with band [0  0.03] and levels [-0.1 0.1]. Three thousand 

of the data points are used for model development and the remaining 1000 for validation. 

The corresponding output sequence of the system is generated using SIMULINK with a 

sampling interval of 1 time unit. 
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OBF-AR model development 

Following the principle applied in Chapter 3, the number of OBF model parameters is 

chosen to be six and estimated dominant poles 0.9114 and 0.8465. Therefore, a GOBF 

model with six parameters and alternating poles of 0.9114 and 0.8465 is developed. The 

estimated GOBF model parameters and the time delay (τd ) respectively, are: 

 l= [3.7273 5.6910 1.0981 -0.9955 0.3692 -0.2252]  

      τd = 5 time units 

The estimated noise models with nD = 2, 5 and 7 for GOBF-AR model are given by 

(4.36), (4.37) and (4.38), respectively. The corresponding standard deviations of the 

residuals are 0.5573, 0.5055 and 0.5040.  
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Noise model selection 

Figure 4.4 presents the spectrum of the three noise models (4.36)-(4.38).  The percentage 

predication errors of the spectrums of the three noise models with respect to the original 

transfer function of the noise in the system are given in Table 4.1.  

Table 4.1 PPE of the three AR noise models of system (4.35)  

nD PPE 

3 

5 

7 

54.3378 

1.5137 

0.9104 
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Figure 4.4 Spectrums of the AR noise models for nD = 2, 5 and 7 compared to the noise 

transfer function of system (4.35) 

It is obvious from both Figure 4.4 and Table 4.1 that the noise model with nD = 7 is the 

closest to the original noise transfer function of the system. Therefore this noise model 

together with the GOBF model described earlier form the OBF-AR model representing 

the system.  

Model Validation 

In the following part, the validation of the OBF-AR model is conducted. The one-step-

ahead prediction of the OBF-AR, the prediction of the OBF (simulation model) and the 

system output for the validation data are shown in Figure 4.5.  For the sake of clarity only 

the first 200 data points are shown in the figure. The PPE of the one step-ahead prediction 

of the OBF and OBF-AR models with respect to the original output are 21.9474 and 

2.7826, respectively.  It is observed from Figure 4.4 and the PPE values that the OBF-AR 

model gives a much better prediction than the OBF model alone.  
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Figure 4.5 Validation of GOBF and GOBF-AR model with nD = 7 for system (4.35) 

The spectrum of the final estimated noise model compared to the system’s noise transfer 

function is shown in Figure 4.6. The PPE of the spectrum of the estimated noise model 

compared to the noise transfer function in the system is 0.9104. 
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Figure 4.6 Spectrum of the system’s noise transfer function compared to the estimated 

noise model for system (4.35) 
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Residual Analysis 

A model is assumed to have captured the dynamics of the system if it predicts all 

information except the white noise. In the following part the white noise added to the 

system and the residuals are compared. Figure 4.5 depicts the qq-plot of the white noise 

added to the system and the residuals of the OBF-AR model. 
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Figure 4.7 qq-plot for the white noise added to the system and the residuals of the 

OBF-AR model for system (4.35) 

Figure 4.8 presents the distribution of the residuals of the OBF-AR model compared to 

the white noise added to the system. It is observed from the figure that the distribution of 

the residuals closely matches the distribution of the white noise added to the system. 
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Figure 4.8 Distribution of the residual compared to the white noise for system (4.35) 

 

The correlation among the residuals is given by 

R̂  [-0.0112  0.0034 -0.0058 -0.0067  0.0024  0.0040 -0.0136 -0.0006  0.0166 -0.0064] =

This simulation case study demonstrates that an OBF-AR model can be effectively 

developed using the proposed algorithm.  It is observed from Figure 4.5 that the plant 

model mismatch caused by the unmeasured disturbance is taken care of by the AR noise 

model. It is also observed that to capture the dynamics with acceptable accuracy the AR 

model order should be large enough.  

OBF-ARMA model development using two-step method 

In this section an OBF-ARMA model is developed using the proposed two step method 

for the system described by (4.35). Since the system is the same as that used for OBF-AR 

model and since the OBF model does not depend on the type of the noise model the same 

OBF model is used. Thus, a GOBF model with six parameters and alternating poles of 

0.9114 and 0.8465 is developed. The estimated GOBF model parameters and the time 

delay (τd ) respectively, are: 

       l= [3.7273 5.6910 1.0981 -0.9955 0.3692 -0.2252]  

      τd = 5 time units 
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The noise model 

 The residuals of the OBF-AR model with the given OBF model and an AR model with 

nD = 7 is used to estimate the parameters of the ARMA model with orders nD = nC = 2, 4, 

6 and the corresponding models are given by (4.39) (4.40) and (4.41), respectively.  
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Selection of noise model order 

Figure 4.9 presents the spectrum of the three noise models (4.39)-(4.41). It is observed 

from the figure that the spectrums of the noise models for nD= nC = 2 and nD = nC = 4 are 

close to the system’s noise transfer function.  
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Figure 4.9 Spectrums of the ARMA noise models for nD = nC = 2, 4 and 6 compared the 

noise transfer function of system (4.35) 

The percentage predication errors of the spectrums of the three noise models with respect 

to the original system’s noise transfer function are given in Table 4.2.  
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Table 4.2 PPE of the three ARMA noise models for system (4.35) 

nD=nC PPE 

2 

4 

6 

  0.0739 

   0.4261 

   1.7496 

Although it is difficult to choose which noise model is the closest to the system’s noise 

transfer function from Figure 4.9, it is observed from Table 4.2 that the noise model with 

nD = nC = 2 is the closest, it is also the most parsimonious. Therefore this model together 

with the GOBF model described previously is chosen as the OBF-ARMA model of the 

system. 

Model validation 

The validation of the OBF-ARMA model developed using the two-step method is 

presented in this part. Figure 4.10 shows the comparison between the one-step-ahead 

predictions of the OBF-ARMA model compared to the systems output for the validation 

data (3001-3200).  
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Figure 4.10 One-step-ahead prediction of the OBF-ARMA model compared to the 

system’s output for the validation data for system (4.35)  
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The percentage prediction error of the OBF-ARMA model with respect to the system’s 

output is 2.7148. The accuracy of the model is acceptable if this prediction error can be 

accounted for by the white noise that cannot be predicted. Figure 4.11 depicts the 

comparison between the spectrums of the selected ARMA noise model and the system’s 

noise transfer function. 

0 0.2 0.4 0.6 0.8 1

10
0

10
1

ω

Φ

 

 

system's noise TF
ARMA model

 

Figure 4.11 Spectrum of the noise model compared to the spectrum of the system’s noise 

transfer function for system (4.35)  

Residual Analysis 

The qq-plot of the residuals compared to the white noise is shown in Figure 4.12. It is 

observed that most points lie on a straight line with a slope equal to one and passing 

through the origin. This shows that the residual has the same distribution as the white 

noise added to the system. Figure 4.13 depicts the distribution of the residual compared to 

the white noise. 
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Figure 4.12 qq-plot of the white noise introduced into system (4.35) 

and the residuals of the OBF-ARMA model  

 

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

values

fr
eq

ue
nc

y

 

 

white noise
residuals

 

Figure 4.13 Distribution of the residual compared to the  

white noise introduced to system (4.35) 

The correlation among the residuals is given by 

R =ˆ  [-0.0128 0.0051 -0.0079 -0.0028 -0.0033  0.0104 -0.0166 -0.0004  0.0169 -0.0052] 
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It is observed from the residual analysis that most points in the qq-plot lie on a straight 

line and the slope of the qq-plot is equal to 1,  indicating the residual and the white noise 

are from the same distribution. This is confirmed by Figure 4.13 which shows that the 

distribution of the residual and the white noise. The fact that the values of the correlation 

among the residual for the first ten sequences are close to zero shows that there is no 

correlation among the residuals which shows that the residual can be considered white 

noise. 

OBF-ARMA model using the iterative method 

In this section the same system (4.35) is identified using the OBF-ARMA model by the 

iterative (extended least square) method. The OBF model is not changed by the structure 

of the noise model. Therefore, the OBF model is defined by the six GOBF filters and 

alternating poles of 0.9114 and 0.8465 with parameters 

        l= [3.7273 5.6910 1.0981 -0.9955 0.3692 -0.2252]  

     τd = 5 time units 

Noise model selection 

The percentage prediction errors of OBF-ARMA model with various orders of noise 

model that converge after different number of iterations are shown in Table 4.3.  

Table 4.3 PPE of OBF-ARMA models with different orders of noise model that 

converge after different iterations for system (4.35) 

PPE  

iterations nD = nC = 2 nD = nC = 4 nD = nC = 6 

1 

2 

3 

4 

2.2948 

2.2872 

2.2867 

2.2860 

2.3188 

- 

- 

- 

2.3321 

2.3311 

- 

- 

Te noise model with nD = nC =2 which is obtained at the fourth iteration is the one that 

has the minimum PPE, the noise model is given by (4.42). Therefore, GOBF model 

together with this ARMA noise model comprise the OBF-ARMA prediction model.  
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Model Validation 

The one-step-ahead prediction of the OBF-ARMA model and the out put of the system 

for the validation data points 3001-3200 are depicted in Figure 4.14. 
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Figure 4.14 One step ahead prediction of the OBF-ARMA model compared to the output 

of system (4.35) 

The PPE of the one step-ahead prediction of the OBF-ARMA model for the validation 

data points 3001-4000 is 2.8374.  

The spectrum of the final estimated noise model compared to the original transfer 

function of the noise It is observed from Figure 4.14 that including the ARMA noise 

model has significantly improved the prediction capacity of the model. It is also observed 

from Figure 4.15 that the noise model is also close to the system’s noise transfer function. 

The PPE of the spectrum of the noise model with respect to the spectrum of the system’s 

noise transfer function is 0.0647%. in the system is shown in Figure 4.15.  
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Figure 4.15 Spectrum of the ARMA noise model by the iterative method compared to the 

noise transfer function of system (4.35) 

Residual Analysis 

If the residual is close to white noise it means the remaining prediction error 0.9104 % 

cannot be predicted and the accuracy of the model is acceptable. Figure 4.16 depicts the 

qq-plot of the white noise added to the system and the residuals of the OBF-ARMA 

model. 
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Figure 4.16 qq-plot for the white noise added to the system and the residuals of 

the OBF-AR model of system (4.35) 
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Figure 4.17 presents the distribution of the residuals of the OBF-ARMA model, 

developed using the iterative method, compared to the white noise added to the system. It 

is observed from the figure that the distribution of the residuals closely matches the 

distribution of the white noise added to the system. 
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Figure 4.17 Distribution of the residual compared to  

the white noise introduced to system (4.35) 

 

The correlation among the residuals is given by 

R =ˆ  [-0.0130 0.0055 -0.0106 -0.0018 -0.0031 0.0092 -0.0190 -0.0024  0.0156 -0.0048] 

The result of the validation and residual analysis shows that the iterative (extended least 

square method) also gives models with acceptable accuracy. It also gives the means by 

which to compare and choose the number of iterations that gives best predictions. The 

residual analysis shows that the residual has the same distribution as the white noise with 

mean close to zero.  

Multi-step-ahead Predictions 

Table 4.4 gives the percentage prediction errors for 1 to 5 steps ahead using the OBF, 

OBF-AR and OBF-ARMA modes of system (4.35).  The OBF model used is the common 

one in the case study while the AR and ARMA noise models are those given by (4.36) 
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and (4.42). It is noted from the table that the OBF-AR and the OBF-ARMA models 

significantly improve the short term prediction capability of the OBF model. 

Table 4.4 The PPEs for 1 to 5 step- ahead- predictions of OBF-AR and OBF-ARMA 

models compared to OBF model for system (4.35) 

i OBF OBF-AR OBF-ARMA 
1 
2 
3 
4 
5 

21.9474 
21.7492 
21.6920 
21.6725 
21.6238 

2.5190 
11.1503 
18.7316 
21.6287 
21.6258 

  2.5208 
   11.0782 
   18.5377 
   21.3985 
   21.4287 

 

4.2.5.2 Weakly Damped System with Box-Jenkins Structure 

In this simulation case study, OBF-AR and OBF-ARMA models are developed for a 

weakly damped system that has a Box-Jenkins structure using the proposed methods. The 

system is represented by (4.43). The roots of the system’s input transfer function are 0.8, 

0.4 and 0.9000 ± 0.2000i. Because of the complex conjugate poles, the system is weakly 

damped. 
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Both the numerator and denominator polynomials of the noise model are monic and their 

roots are located inside the unit circle. The white noise sequence, e(k), added to the 

system has mean  0.0041 and standard deviation of 0.4974. The signal to noise ratio is 

6.9654.  The input used for excitation is a pseudo random binary signal of band [0 0.03] 

and level [-0.02 0.02]. Figure 4.3 shows the input and output sequences used for 

identification.      
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Figure 4.18 Output y(k) and input sequences u(k) used for  

identification of system (4.43) 

Four thousand data points generated using SIMULNK, with a sampling interval of 1 time 

unit and 3000 of them are used for identification and the remaining for validation.  

OBF-AR model development 

Following the principle used in Chapter 3, the number of OBF model parameters is 

chosen to be eight and estimated dominant poles 0.9262 ± 0.1341i. Therefore, an OBF 

model with eight Kautz filters and complex conjugate poles of 0.9262 ± 0.1341i is 

developed. The estimated OBF model parameters and the time delay (τd ) respectively, 

are: 

        l = [-16.2951 28.1518 -18.0434 -43.9996 -25.4772 -8.5612 -1.8118 11.2131]; 

     τd = 12 sampling intervals 

The estimated noise models with nD = 2, 5 and 7 for GOBF-AR model are given by 

(4.44), (4.45) and (4.46), respectively. The corresponding standard deviations of the 

residuals are 0.5977, 0.5127 and 0.5065.  

 21 7384.04379.11
1

)(
1

−− +−
=

qqqD  (4.44) 



 

 

101

 54321 1885.06189.02147.18774.19151.11
1

)(
1

−−−−− −+−+−
=

qqqqqqD  (4.45) 

7-6-5-4-3-2-1- 1033.0-3520.00.6815-0475.11.4920119-0203.29588.1-1
1

)(
1

qqqqqqqqD +++
=

  (4.46) 

 

Noise model selection 

Figure 4.19 presents the spectrums of the three noise models (4.44)-(4.46).  
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Figure 4.19 Spectrums of the noise models for nD = 2, 5 and 7 compared to the noise 

transfer function of system (4.43) 

The PPE of the spectrums of the three noise models with respect to the original transfer 

function of the noise in the system are given in Table 4.5.  

Table 4.5 PPE of the three noise models for system (4.43) 

nD PPE 

3 

5 

7 

43.6865 

    5.5449 

    1.0426 

From Figure 4.9 and Table 4.5, it is determined that the noise model with nD = 7 is the 

closest to the original noise transfer function of the system. Therefore this noise model 

together with the OBF model described earlier forms the OBF-AR model of the system.  
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Model Validation 

The one-step-ahead prediction of the OBF-AR, the prediction of the OBF (simulation 

model) and the system output for the validation data are shown in Figure 4.20.  For the 

sake of clarity only the first 200 data points are shown in the figure. 
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Figure 4.20 Validation of OBF and OBF-AR model of system (4.43) 

The PPE of the one step-ahead prediction of the OBF and OBF-AR models with respect 

to the original output are 22.5394 and 2.9289, respectively.  It is observed from Figure 4.4 

and the prediction is highly improved by including the noise model.  

The spectrum of the final estimated noise model compared to the original transfer 

function of the noise in the system is shown in Figure 4.6. The PPE of the spectrum of the 

estimated noise model compared to the noise transfer function in the system is 1.0426. 
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Figure 4.21 Spectrum of the system’s noise transfer function compared to the estimated 

AR noise model of system (4.43) 

Residual Analysis 

Figure 4.22 depicts the qq-plot of the white noise added to the system and the residuals of 

the OBF-AR model. 
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Figure 4.22 qq-plot for the white noise to system (4.43) and the residuals of the 

OBF-AR model. 

Figure 4.23 presents the distribution of the residuals of the OBF-AR model compared to 

the white noise added to the system. It is observed from the figure that the distribution of 

the residuals closely matches the distribution of the white noise added to the system. 
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Figure 4.23 Distribution of the residual compared to  

the white noise for system (4.43) 

The correlation among the residuals is given by 

=R̂  [0.0090 0.0018 0.0163 -0.0076 0.0181 -0.0226 0.0110 0.0061 -0.0076 0.0031] 

From the study in this section it is observed that weakly damped systems are also 

identified with acceptable accuracy using the proposed OBF-AR structure.  It is also 

noted that just as in the case of the well damped system, the order of the AR model 

should be large enough to capture the dynamics accurately. The validation analysis shows 

that the PPE of the one-step-ahead prediction of the OBF-AR model is 2.9289. The 

residual analysis shows that the residual of the OBF-AR model can be considered white 

noise and its distribution is the same as the distribution of the white noise introduced into 

the system.  

OBF-ARMA model development using two-step method 

OBF model 

OBF model with eight Kautz filters and complex conjugate poles of 0.9262 ± 0.1341i and 

model parameters 

        l = [-16.2951 28.1518 -18.0434 -43.9996 -25.4772 -8.5612 -1.8118 11.2131]; 

     τd = 12 sampling intervals 

define the OBF model. 
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The residuals of the OBF-AR model with the given OBF model and an AR model with  

nD = 7 is used to estimate the parameters of the ARMA models with orders nD = nC = 2, 4, 

6 and the models (4.47) - (4.49) are obtained.  The standard deviation of the residuals of 

the OBF-ARMA model with the three noise models for nD = nC = 2, 4, 6 are 0.5011, 

0.4956, 0.4950, respectively. 

 21

21

5307.01874.11
0042.07815.01

)(
)

−−

−−

+−
−+

=
qq
qq

q
q(

D
C

 (4.47) 

 43

43 0229.05879.02286.05190.01)(
−−−−

−−−−

+−+−
−+−−

=
qqqqqC

21

21

 (4.48) 4347.06682.18962.25061.21)( qqqqqD

6

6

0201.0
0585.0

−

−

q
q

54321

54321

1883.07953.08823.16930.23014.21
0142.02288.03519.00364.03102.01

)(
)(

−−−−−

−−−−−

+−+−+−
−−−−−−

=
qqqqq
qqqqq

qD
qC

 

(4.49) 

Selection of noise model order 

Figure 4.24 depicts the spectrums of the three noise models given by (4.47)-(4.49). It is 

observed from the figure that the spectrums of all the noise models are close to the 

system’s noise transfer function.  
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Figure 4.24 Spectrums of the ARMA noise models for nD = nC = 2, 4 and 6 compared to 

the system’s noise transfer function of system (4.43)  

The percentage predication errors of the spectrums of the three noise models with respect 

to the original system’s noise transfer function are given in Table 4.6.  
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Table 4.6 PPE of the three ARMA noise models for system (4.43) 

nD=nC PPE 

2 

4 

6 

0.6866 

0.8788 

1.6681 

Although it is difficult to choose which noise model is the closest to the system’s noise 

transfer function from Figure 4.24, it is observed from Table 4.6 that the noise model with 

nD = nC = 2 is the closest, it is also the most parsimonious. Therefore this noise model 

together with the OBF model already stated form the OBF-ARMA model of the system. 

Model validation 

Figure 4.25 shows the comparison between the one-step-ahead predictions of the OBF-

ARMA model and the systems output for the validation data points (3001-3200). The 

percentage prediction error of the OBF-ARMA model with respect to the system’s output 

for the validation data points is 3.2539. 
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Figure 4.25 One-step-ahead prediction of the OBF-ARMA model compared to the output 

of system (4.43) for the validation data  

Figure 4.11 presents the comparison between the spectrums of the selected ARMA noise 

model and the system’s noise transfer function. 
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Figure 4.26 Spectrum of the noise model compared to the spectrum noise transfer 

function of system (4.43) 

Residual Analysis 

The qq-plot of the residuals with respect to the white noise added to the system are shown 

in Figure 4.27. The distribution of the residual compared to the white noise is shown in 

Figure 4.28. 
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Figure 4.27 qq-plot of the white noise introduced into system (4.43) and the residuals of 

the OBF-ARMA model 
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Figure 4.28 Distribution of the residual compared to the white  
noise introduced to system (4.43) 

 

The correlation among the residuals is given by 

R̂  [0.0090 0.0018 0.0163 -0.0076 0.0181 -0.0226 0.0110 0.0061 -0.0076 0.0031] =

It is observed from the results in this section that the two-step method of developing the 

OBF-ARMA model results in a model with acceptable accuracy for weakly damped 

systems also. The residual analysis shows that the distribution and size of residuals of the 

OBF-ARMA model, developed using the two-step method, are close to that of the white 

noise added to the system. 

OBF-ARMA model development using  the iterative method 

In this section the same weakly damped system (4.43) is identified using the OBF model 

by the iterative (extended least square) method. The OBF model is not changed by the 

structure of the noise model. Therefore, the OBF model is defined by the eight Kautz 

filters with complex conjugate poles of 0.9262 ± 0.1341i and model parameters and time 

delay given by: 

        l = [-16.2951   28.1518 -18.0434 -43.9996 -25.4772 -8.5612 -1.8118 11.2131]; 

     τd = 12 sampling intervals 



 

 

109

Noise model selection 

The residuals of the OBF-ARMA model with nD = 7 is used for the first iteration, to 

estimate the parameters of the ARMA model with orders n = m = 2, 4, 6 and the 

minimum percentage prediction errors of the OBF-ARMA model are found iteratively to 

be 1.4596, 1.4536 and 1.4562, respectively.  The noise models corresponding to these 

PPE values are given by (4.50)-(4.52) and their respective standard deviations are 0.4958, 

0.4961 and 0.4969. 
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(4.52) 

The percentage prediction errors of the spectrums of the three noise models (4.50)-(4.52) 

are found to be 0.8628, 1.1043 and 1.4638, respectively. Therefore, the noise model that 

has the minimum PPE and the most parsimonious (4.50) is chosen to represent the 

system’s noise transfer function. This noise model and the OBF model mentioned earlier 

constitute the OBF-ARMA model of the system. 

Model Validation 

The one-step-ahead prediction of the OBF-ARMA and the output of the system for the 

validation data points 3001-3200 are depicted in Figure 4.29. The PPE of the one step-

ahead prediction of the OBF-ARMA model for the validation data is 3.1247.  
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Figure 4.29 One step ahead prediction of the OBF-ARMA model compared to the output 

of system (4.43) 

The spectrum of the final estimated noise model compared to the noise transfer function 

in the system is shown in Figure 4.30. The PPE of the spectrum of the estimated noise 

model compared to the noise transfer function in the system is 0.8628. 
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Figure 4.30 Spectrum of the ARMA noise model by the iterative method compared to the 

noise transfer function of system (4.43) 
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Residual Analysis 

Figure 4.31 depicts the qq-plot of the white noise added to the system and the residuals of 

the OBF-ARMA model developed using the iterative extended least square method. 

Figure 4.32 presents the distribution of the residuals of the OBF-ARMA model, 

developed using the iterative method, compared to the white noise added to the system.  
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Figure 4.31 qq-plot for the white noise added to system (4.43) and the residuals of 

the OBF-AR model 
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Figure 4.32 Distribution of the residual compared to the white noise introduced into 

system (4.43) 
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It is observed from the figure that the distribution of the residuals closely matches the 

distribution of the white noise added to the system. 

The correlation among the residuals is given by 

=R̂  [0.0050  0.0096  0.0074  0.0018  0.0037 -0.0022  0.0019  0.0039 -0.0045  0.0062] 

The result of the validation and residual analysis shows that the iterative (extended least 

square method) also gives models with acceptable accuracy. It also gives the means by 

which to compare and choose the number and best values of the parameters of the ARMA 

noise model. 

Multi-step-ahead predictions 

Table 4.7 gives the percentage prediction errors for 1 to 5 steps ahead using the OBF, 

OBF-AR and OBF-ARMA modes of system (4.43).  The OBF model used is the common 

one in the case study while the AR and ARMA noise models are those given by (4.46) 

and (4.50), respectively. In this case study also,  the short tem predictions (1 and 2) are 

improved significantly.  

Table 4.7 The PPE for 1 to 5 step- ahead- predictions of OBF-AR and OBF-ARMA 

models compared to OBF model for system (4.43) 

i OBF OBF-AR OBF-ARMA 
1 
2 
3 
4 
5 

17.6009   
17.2751   
17.0646   
16.9795 
16.9501 

   1.6837 
    9.1221 
   17.3056 
   22.0325 
   23.4470 

   1.6815 
    9.1705 
   17.4871 
   22.3616 
   23.8396 

 

4.2.5.3 Identification of a Pilot –Scale Binary Distillation Column  

Model development for a pilot scale binary distillation column is considered in this real 

plant case study. The distillation column is a part of a reaction-separation system where 

the output from the reactor is the feed for the distillation column. Isopropyl Alcohol (IPA) 

is dehydrogenated in the catalytic packed bed tubular reactor. The products from the 

reactor, acetone and hydrogen, together with unreacted IPA are cooled in a plate heat 

exchanger and sent to a vapor-liquid separator where hydrogen is separated from 

condensed acetone and IPA. This acetone-IPA mixture is stored in an intermediate 
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storage vessel and fed to the distillation column for separation. The bottom product of the 

column consisting mainly of IPA is recycled back to the reactor.  In the present study, the 

distillation column alone is operated with an acetone-IPA mixture as the feed and the 

product streams are recombined.  

A snapshot of the 5.5m high distillation column is shown in Figure 4.33. The major 

dimensions of the column and the nominal operating conditions are given in Table 4.8.  

The column is provided with RTD sensors and sampling ports at every tray, flow meters 

in the feed line, product streams and reflux line, differential pressure sensors in the 

stripping and enriching sections and a pressure sensor at the top of the column. 

Appropriately sized control valves are provided in all flow lines. 

 

Figure 4.33 Snapshot of the distillation column 
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Table 4.8. Major dimensions and nominal operating conditions of the distillation column 

Description Value 

Height 5.5 m 

Diameter 0.15 m 

Number of trays 15 

Type of tray  Bubble cap 

Tray spacing 35 cm 

Tray numbering Bottom to top 

Feed Tray Tray 7 

Feed rate 0.5 l/min 

Reflux flow rate 0.7 l/min 

Steam flow rate 20 kg/hr 

Distillate flow rate 0.3 l/min 

Bottom product flow rate 0.2 l/min 

Feed composition, mole 
fraction 

0.1824 
(acetone) 

Bottom Temperature  80.5  oC 

Top temperature 72.7 oC 

Column pressure 1.013 bar 

 

A Honeywell Experion PKS DCS is installed for data acquisition and control. 

Experiments are conducted for a constant feed rate and fixed feed composition for 

variations in reflux flow rate and steam flow rate. The column pressure is maintained 

constant by manipulating the cooling water flow rate to the condenser. The liquid levels 

in the reflux drum and column bottom are controlled by manipulating the top and bottom 

product flow rates, respectively. The reflux and steam flow rates are varied by changing 
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the setpoints of the respective controllers according to a PRBS sequence. The 

temperatures at tray 1 (bottom) and tray 14 (top) are used as output signals.  The input 

signals to the reflux flow rate (FR) and steam flow rate (Fst) controllers and the output 

signals of temperatures from tray 1 (T1) and tray 14 (T14) are used for the system 

identification in this case study. 

For the system identification tests, the input sequences are designed as a low frequency 

pseudo random binary signal (PRBS) generated using the ‘idinput’ function in MATLAB 

with band [0 0.04]  and levels [18 22] kg/hr and [0.4 0.8] lt/min for steam and reflux flow 

rates, respectively. The input levels are selected such that maximum excitation is 

achieved while enabling the smooth running of the column.  

Four thousand data points are collected with a sampling interval of 5s. The first three 

thousand data points are used for model identification and the rest 1000 data points are 

used for validation. Since, it is already shown that OBF-ARMA is more flexible, 

parsimonious and accurate, in this case study, the distillation column is developed using 

GOBF-ARMA model. The input and output sequences used for identification are 

presented in Figure 4.34. 
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Figure 4.34 Input-output sequences used for identification of the distillation column 



 

 

116

⎦⎣

GOBF-ARMA Model  

The present case study is a 2 x 2 system and therefore four OBF models and two noise 

models are required to be developed. The transfer function of the distillation column is 

given in the following form 

  (4.53) ⎥
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where 

G = OBF models  

H = Stochastic part of the model (ARMA)  

      e1, e2 = innovation sequences 

 

Selection of OBF model 

Preliminary studies using the procedure developed in Chapter 3 show that the four 

transfer function relating the two outputs to the two inputs are described better by one 

dominant pole and six Laguerre filters.  The estimated dominant poles for the four 

transfer functions are given by 

   (4.54) ⎥
⎦

⎤
⎢
⎣

⎡
=

9702.08805.0
4112.09515.0

p

Therefore, four OBF models, each with six Laguerre filters and one dominant pole given 

by (4.54), were developed. The estimated OBF model parameters are 

L11 = [0.0298    0.0037    0.0035    0.0018   -0.0005    0.0050] 

L12 = [0.0214    0.1017    0.0497   -0.0949    0.1252   -0.0112] 

   L21 = [0.0137    0.0326    0.0028    0.0348   -0.0128    0.0375] 

L22 = [-0.8330    0.2001   -0.2893    0.0377   -0.1374    0.0870] 

The time delay estimates in number of sampling intervals are  

τd =  ⎥
⎤

⎢
⎡

05
50
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Selection of noise model 

Noise models with various orders are compared, the minimum percentage prediction error 

of the OBF-ARMA model with the selected OBF model and various orders of noise 

models using the proposed iterative extended least square method are given in Table 4.9. 

The order of the first AR noise model is 6. 

   Table 4.9 Minimum prediction errors for distillation column 

Model order 

nD=nc 

Minimum 
PPE 

2 0.2269

3 0.1904

4 0.1910

5 0.1907

Since the percentage prediction error difference between orders 2 and 3 is less than 0.05% 

and since order 2 is more parsimonious (2 numerator, 2 denominator) the noise order is 

chosen as nD = nC = 2. 

The two ARMA noise models are given by (4.55) and (4.56), respectively.  

 21

21

1 9082.09077.11
1225.08415.01

−−

−−

+−
−−

=
qq
qqH  (4.55) 

 21

21

2 7607.07575.11
64265.02176.01

−−

−−

+−
−−

=
qq
qqH  (4.56) 

The standard deviations of the innovation sequences e1 and e2 are 0.0288 and 0.0655, 

respectively.  

Model Validation 

The outputs of the OBF model (simulation model) of the distillation column top and 

bottom temperature compared to the system outputs for the validation data points are 

shown in Figure 4.35 (a) and (b). The percentage prediction error of the OBF model for 

the top and bottom temperatures, respectively are 11.5293 and 18.7596. 
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Figures 4.35 Prediction by the OBF-simulation model compared to the systems output for 

top (a) and bottom (b) Temperatures 

The one-step-ahead prediction by the OBF-ARMA model compared to the system’s 

outputs is shown in Figure 4.36 (a) and (b). The PPE values of the OBF-ARMA model 

for the validation data points for the top and bottom temperatures are 0.4345 and 0.6562 

respectively.   
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Figures 4.36 One-step-ahead prediction by the OBF-ARMA model compared to the 

systems output for top (a) and bottom (b) Temperatures 
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It is observed from the values of the PPE and Figure 4.36 that the noise model has 

significantly improved the prediction capability of the model. 

Residual Analysis 

The distribution of the residuals of the OBF-ARMA model for the validation data, for the 

top and bottom temperatures are shown in Figure 4.37 (a) and (b), respectively. The 

correlation among the residuals is given by 

=1R̂ 10-3×[0.5481 0.2218 0.0660 -0.0458 -0.0928 -0.1238 -0.1077 -0.0762 -0.0539      

0.0405] 

=2R̂ 10-3×[0.9227 0.9406 -0.4896 -0.4175 -0.7111 -0.5041 -0.1605 -0.1698 -0.0329                      

-0.0043] 

This case study of a real plant clearly shows the effectiveness of the proposed OBF-

ARMA model. Besides providing explicit noise models for each output channel, 

including the noise model has greatly improved prediction capacity of the models. The 

distributions of the residuals are close to a normal distribution with mean zero. The values 

of the correlation among the residuals are close to zero, which means that the sequences 

of the residuals are not correlated. The residual analysis, therefore, confirms also that the 

model has acceptable accuracy. 
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Figure 4.37 Distribution of the residuals of the OBF-ARMA model of the distillation 

column for the validation data points: (a) Top temperature and (b) Bottom temperature 

In this section, a unified scheme for developing BJ type time series models from open-

loop test data by combining orthonormal basis filter model and conventional time series 

models is presented. The models have an OBF deterministic model and an AR or ARMA 

noise model. It is illustrated that the proposed model structures inherit all the advantages 

of an OBF model together with an explicit noise model. Furthermore, it is shown that 

combining the noise model to an OBF model and treating it as a single model results in a 

prediction model with a higher prediction capability than the conventional OBF model, in 

the presence of unmeasured disturbances. Algorithms for estimating the model 

parameters are developed. In addition, schemes for multi-step ahead prediction for both 

OBF-AR and OBF-ARMA models are developed. It is illustrated by both simulation and 

real plant case study that the proposed methods are effective for system identifications of 

both SISO and MIMO systems. 

4.7 OBF based prediction Models from Closed-Loop Data 

When a system identification test is carried out in open loop, in general, the input 

sequence is not correlated to the noise sequence and OBF model identification is carried 

out in a straight forward manner. However, when the system identification test is carried 
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out in closed loop the input sequence is correlated to the noise sequence and conventional 

OBF model development procedures fail to provide consistent model parameters.  

In this section, the problem of model development from closed-loop data is considered. 

The problem has two distinct aspects, namely, model development from closed loop data 

when the system is open-loop stable and when the system is open-loop unstable. In all 

cases, both the system and noise model are considered important. Three different methods 

based on direct and indirect approaches are used to deal with the problems. The first is 

based on the indirect approach while the second and third are based on the direct 

approach.  

While the general approaches dealing with closed loop system identification are not new, 

the special nature of OBF structure makes a direct implementation of conventional OBF 

model development impossible, and therefore considerable adjustments are required.  

First, from the structure of OBF models it can be easily seen that it have non-minimum 

phase zero. This will make it impossible to use in denominator, since that will make the 

resulting models unstable. This is particularly related to the two-step, indirect 

identification approach. Second, as it is pointed out in the theory of OBF model, in 

Chapter 3, the conventional OBF structure is designed for stable processes. Therefore, as 

a direct implication they cannot be used to model open-loop unstable processes.  

In the first section, the two-step indirect identification approach is presented. In this 

thesis, this method is named the “decorrelation method” to identify it from the two-step 

method proposed in Chapter 3. In the second and third sections, the direct closed loop 

identification methods using OBF models with ARX and ARMAX structures, 

respectively, are discussed. In the last section, two simulation and one real plant case 

studies related to the proposed methods are presented.  

4.7.1 Indirect Closed-loop Identification Using the Decorrelation Method  

In this section, a two step method which is based on decorrelating the noise sequence 

from the input sequence is adopted for OBF model development. While the general 

approach is not new, it needs some serious considerations and changes to use it for OBF 

model development. In this respect the scheme is novel.  
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4.7.1.1 Identification Scheme  

Consider the closed-loop block diagram shown in Figure 4.38.  
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Figure 4.38 Block diagram of the system used in closed-loop identification 

In the figure  

 r1= is the external excitation signal 

 r2 = set point 

        G(q) = process model to be identified 

       H(q) = disturbance model to be identified 

      Gc(q) = controller transfer function  

     Gm(q) = sensor and transmitter transfer function  

        e(k) = innovation sequence  

The decorrelation method is based on using a simulated input ur, which is not correlated 

with the noise, in place of the plant input u which is correlated with the noise. Then, the 

standard prediction error method can be utilized with the prediction errors. 

 ( ))()()(
)(

1)( kuqGky
qH

ke r
r

r −=  (4.57) 

where Hr(q) describes the influence of the disturbance in the closed loop system, i.e., 

 )()()(1
)()(

qGqGqG
qHqH

mc

r

+
=  (4.58) 

To perform the identification, first the transfer function from r1 to u is identified.  
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 )(
)()(

1 kr
kuqS =  (4.59) 

From closed-loop relations 

 )()()(1
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mc+
=

1)()( rqSku r =

)(ˆ q

)(ˆ qH r

 (4.60) 

The simulated input ur is obtained by filtering r1(k) using S(q) 

  (4.61) 

The prediction error (4.56) based identification method is used to obtain G  

and . The actual noise model is estimated using (4.62), which is derived from 

(4.58) and (4.60) 

 )(
)()(ˆ

qS
qHqH

r

=  (4.62) 

In order to develop the GOBF-ARMA model, at the first stage, any appropriate structure 

can be chosen for S(q). However, the selected structure should satisfy the following 

conditions 

(1) It should not have non-minimum phase zeros, otherwise the noise model 

obtained from (4.62) will be unstable 

(2) The numerator of S(q) should be  monic so that the denominator of the noise 

model will be monic and prediction becomes possible.  

In light of the above conditions, OBF structure cannot be used in the first stage to identify 

S(q), because it contains non-minimum phase zero and therefore it does not satisfy 

condition (1). BJ and Output Error (OE) can be used with special modifications; however, 

the requirement of nonlinear optimization makes them not good choices.  Modified forms 

of ARX structures could be used; however preliminary simulation studies indicate that the 

inconsistency problem seriously affects the accuracy of the final models. It is found that a 

modified form of the ARMAX structure results in models that have acceptable accuracy. 

The proposed modified ARMAX structure for the first stage, modeling of S(q), is 

discussed below. 
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In the development of the standard linear structures, the model is generally assumed to be 

strictly proper[2]. This is because the input does not affect the output instantaneously. 

The resulting standard ARMAX model is  

 ...)1()(
...)1()(...)1()(

1

11

kecke
kubnkyakyaky n

+−++
++−=−++−+

  (4.63) 

However, (4.63) does not satisfy the second condition, since the coefficient of u(k) is 

different from 1, i.e., b0 = 0 ≠ 1, not monic. To satisfy this requirement that the numerator 

should be monic, (4.63) is modified to the following form.  
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 (4.64) 

Since ARMAX is not the final model of the system, but an intermediate stage for 

estimating the simulated input and the noise model, the modification will not affect the 

quality of the final model negatively. 

4.7.1.2 Estimating the Modified ARMAX Model parameters 

From (4.64) the one step-ahead prediction becomes  
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 (4.65)  

 The regressor matrix for finding the parameters of (4.64) is for m = n = p 
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where e(i) is the prediction error. 

The prediction error can be estimated from a corresponding ARX model with high order. 

The regressor matrix for the corresponding ARX model is  
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Using (4.67) in the least square formula (3.20) the parameters of the high-order ARX 

model are estimated. The model parameters are used to estimate the one- step-ahead 

prediction. The prediction error is then calculated using the one step-ahead prediction and 

the actual output using 

= − −kkykyke  (4.68)  

The prediction error estimate is used in forming the regressor matrix (4.66). The 

parameters of the modified ARMAX model are, then, estimated using (4.66) in (3.20). 

The prediction error, and consequently the ARMAX parameters can be improved by 

estimating the parameters of the ARMAX and using it in (4.66) iteratively. 

4.7.1.3 The simulated input  

Once the modified ARMAX mode is developed, its deterministic part is taken as an 

estimate of S (q). Therefore the simulated input is obtained by 

)(
)(

)( 1 kr
qA

ku =

)(ˆ qH r

)(qBr

 (4.69)  

4.7.1.4 The Final Model 

Using the simulated input from (4.69) as an input and the plant output, y(k), an OBF-

ARMA model is developed using the Algorithm 4.2. While the OBF model is the 

deterministic part of the estimate of the plant model, G(q), the ARMA noise model 

obtained at this stage is not the true noise model. It is the effect of the noise on the closed 

loop response denoted by  in (4.62). The true noise model is estimated using the 

noise model from the OBF-ARMA model, C(q)/D(q), in (4.62). Note that  

S(q) = B(q) / A(q) from the modified ARMAX model. 
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qAqB
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Therefore the, OBF model together with the noise model given by (4.70) defines the 

proposed OBF-ARMA model. 

4.7.2 Direct Closed-loop Identification  

The motivation for the structures proposed in this section is the problem of closed-loop 

identification of open-loop unstable processes. Closed-loop identification of open-loop 

unstable processes requires that any unstable poles of the plant model G(q) should be 

shared by the noise model H(q), otherwise the predictor will not be stable.  It is indicated 

by both Ljung [1] and Nelles [2] that if this requirement is satisfied closed-loop 

identification of open-loop unstable processes can be handled without problem. Based on 

this fact, the decorrelation method cannot be used for open-loop unstable processes, 

because the OBF component in the OBF-ARMA structure is inherently stable, i.e. no 

unstable poles, and it does not necessarily share any pole with the noise model.  In this 

section, two different linear structures that satisfy these requirements and which are based 

on OBF structure are proposed. While the proposed models are, specially, effective for 

developing prediction model for open-loop unstable process that are stabilized by 

feedback controller, they can be used for open-loop stable process also. These two linear 

model structures are OBF-ARX and OBF- ARMAX structures. 

4.7.3 Closed–loop Identification Using OBF-ARX model 

Consider an OBF model with ARX structure given by (4.71) 
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)())(1()()1 kyqAqGOBF

 (4.71) 

Rearranging (4.71)  

 |(ˆ kky = − −−  (4.72) 

With A(q) monic (4.72) can be expanded to  

)()2()1()()1|(ˆ 21 mkyakyakyaqGkky mOBF −− − − − −=−  (4.73)  



 

 

127

)(...)2

)(...)

nkyak

kulk

n

fmm

−−−−

Note that, (4.73) can be further expanded to  
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Therefore, the regressor matrix for the OBF-ARX structure is given by 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

−

−

)(
.
.
.

)(

nNy

nmx

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−

−−−−−−−

=

)...2()1()()...1()(
.....
.....
.....

)...2()1()()...1()(

21

21

NyNymNuNuNu

ynxymxymmxumxumxu

X

fmff

fmff

 (4.75) 

where m = order of the OBF model 

           n = order of A(q) 

        mx = max (n, m) + 1  

         ufi = input u filtered by the corresponding OBF filter fi  

The parameters are estimated using (4.75) in the least square equation (3.20). Note that in 

using (3.20) the size of y must be from mx to N. 

 

4.7.4 Closed–loop Identification Using OBF-ARMAX model 

Consider the OBF model with ARMAX structure 
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Rearranging (4.76)  

 )()1)(()())(1()()1|(ˆ keqCkyqAqGkky OBF −+−−=−  (4.77) 

With A(q) and C(q) monic, expanding (4.77) 
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 (4.78)  

From (4.78) the regressor matrix is formulated for orders m, n, p  
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where m = order of the OBF model 

                       n = order of the A(q) 

                       p = order of C(q) 

                     mx = max ( n, m, p) + 1  

                       ufi= input u filtered by the corresponding OBF filter fi  

                     e(i) = the prediction error 

To develop an OBF-ARMAX model, first an OBF-ARX model with high A(q) order is 

developed. The prediction error is estimated from this OBF-ARX model and used to form 

the regressor matrix (4.79). The parameters of the OBF-ARMAX model are, then, 

estimated using (4.79) in (3.20). The prediction error, and consequently the OBF-

ARMAX parameters can be improved by estimating the parameters of the OBF-ARMAX 

model iteratively. 

4.7.5 Multi-step ahead Prediction using OBF-ARX /ARMAX models 

In this section the schemes for multi-step ahead prediction of the OBF-ARX and OBF-

ARMAX structures are formulated. 

4.7.5.1 Multi-step ahead Prediction using OBF-ARX Model 

Consider the OBF-ARX model  
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i-step ahead prediction is obtained by replacing k with k + i 
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To calculate the i-step ahead prediction, the noise term can be divided into current and 

future parts.  
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Since e(k) is assumed to be a white noise with mean zero, the mean of Ei(q) e(k+i) is 

equal to zero, and therefore (4.82) can be simplified to   
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Rearranging (4.82) 
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Comparing (4.81) and (4.84), Fi and Ei can be calculated by solving the Diophantine 

equation.   
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Rearranging (4.80) 
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Using (4.86) in (4.83) to eliminate e(k) 
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 (4.87) 

Rearranging the Diophantine equation (4.85) 
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Finally using (4.88) in (4.87), the usable form of the i-step ahead prediction formula, 

(4.89), is obtained. 

 )()()()()|(ˆ kyqFikyqEkiky iobfi ++=+  (4.89) 

Note that in (4.89), there is no any denominator polynomial and hence no unstable pole. 

Therefore, the predictor is stable regardless of the presence of unstable poles in the OBF-

ARX model. It should also be noted that, since yobf (k+i) is the output sequence of the 

simulation OBF model, once the OBF model parameters are determined its value depends 

only on the input sequence u(k+i). Therefore, the i-step ahead prediction according to 

(4.89) depends on the input sequence up to instant k+i and the output sequence up to 

instant k.  

4.7.5.2 Multi-step ahead Prediction using OBF-ARMAX Model 

Consider the OBF-ARMAX model (4.90)  
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The i-step ahead prediction is obtained by replacing k with k + i 
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To calculate the i-step ahead prediction, the error term should be divided into current and 

future parts.  
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Since e(k) is assumed to be a white noise with mean zero, the mean of Ei(q) e(k+i) is 

equal to zero, and therefore (4.92) can be simplified to   
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Rearranging (4.93) 
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Comparing (4.94) to (4.91), Fi and Ei can be calculated by solving the Diophantine 

equation.   
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Rearranging (4.90) 
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Using (4.96) in (4.93) to eliminate e(k) 
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Rearranging the Diophantine equation, (4.95) 
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Finally using (4.98) in (4.97), the usable form of the i-step ahead prediction formula, 

(4.99), is obtained. 

 )(
)(
)(

)(
)(
)(

)|(ˆ ky
qC
qF

iky
qC
qE

kiky i
obf

i ++=+  (4.99) 

When OBF-ARMAX model is used for modeling open-loop unstable processes that are 

stabilized by a feedback controller, the common denominator A(q) that contains the 

unstable pole does not appear in the predictor equation, (4.99). Therefore, the predictor is 

stable regardless of the presence of unstable poles in the OBF-ARMAX model, as long as 

the noise model is invertible. Invertiblity is required because C(q) appears in the 

denominator.  It should also be noted that, since yobf (k+i) is the output sequence of the 

simulation OBF model, once the OBF model parameters are determined its value depends 

only on the input sequence u(k+i). Therefore, the i-step ahead prediction according to 

(4.99) depends on the input sequence up to instant k+i and the output sequence only up to 

instant k.  
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4.7.6 Case Studies 

In this section, three case studies that demonstrate the application of the proposed  

closed-loop identification techniques are presented. The first and second case studies are 

simulation case studies while the third one is a real plant case study. The first case study 

demonstrates how OBF-ARMA, OBF-ARX and OBF-ARMAX models can be developed 

from closed-loop data of a feedback controlled open-loop stable system. In the second 

case study closed loop identification of an open-loop unstable system that is stabilized by 

a feedback controller is presented. In all case studies, the accuracies of the models are 

examined by residual analysis. 

4.7.6.1 Close-loop identification of open-loop stable process  

In this closed-loop identification simulation case study, an open-loop stable system is 

identified from closed-loop test data using GOBF-ARMA, GOBF–ARX, GOBF-

ARMAX models. The GOBF-ARMA model is developed using the de-correlation (two-

step) method, which is an indirect closed loop identification method. The second and 

third models are developed using direct closed loop identification approaches. The 

deterministic and stochastic components of the system are given by (4.100a) and 

(4.100b), respectively. 
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 (4.100a) 
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A feedback proportional controller, with Kc=1.0 is used to control the system. The 

controller gain is chosen so that the closed loop response is stable and gives not more than 

25% overshoot. The block diagram of the feedback controlled system is shown in  

Figure 4.39. A white noise sequence with mean -0.0070 and standard deviation 0.0993 is 

introduced into the system.  The signal to noise ratio (SNR) is 6.7350. An external 

excitation signal, r1, is used for the purpose of identification.  
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Figure 4.39 Block diagram of the closed loop system 

The excitation signal, r1, is a ‘PRBS’ signal generated using the MATLAB function 

‘idinput’ with band [0  0.02] and level [ 2 -2]. Four thousand data points are generated 

and 3000 of these data points are used for identification while the remaining 1000 data 

points are used for validation. The changes in the external excitation signal, r1, system 

input, u(k), and system output, y(k), are shown in Figure 4.40. 
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Figure 4.40 Data used for system identification of system (4.100)  
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OBF-ARMA model using the decorrelation method 

To determine the simulated input, the transfer function S(q), from r1 to u is first estimated 

using the proposed modified ARMAX  model 

 21
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3843.03514.11
3774.035.11)( −−
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+−
+−

=
qq

qqqS  (4.101) 

The simulated input ur is then estimated by filtering r1 with S(q). The next step is 

developing the OBF-ARMA model using ur as the input and y as output. To estimate the 

dominant pole, assuming they are not known, a preliminary test is conducted using the 

SOPTD and FOPTD iterative methods developed in Chapter 3 starting with poles 0.3679 

and 0.6065. It was found that the system can be expressed with acceptable accuracy using 

OBF models with four Laguerre filters and one dominant pole 0.9326.  The OBF 

parameters are found to be: 

l = [0.0275 0.0304 -0.0160 0.0054] 

τd = 5 sampling intervals. 

The ARMA noise model, which reflects the effect of the noise in the closed-loop 

response, is given by   

 21
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 (4.102) 

Using (4.101) and (4.102) in (4.62) we get estimate of the noise model, 

 4321 0876.01255.08171.08475.11 −−−− −++− qqqq

4321 0144.0153.00126.00856.11ˆ
−−−− −+−−

=
qqqqH  (4.103) 

Model Validation 

The simulation output of the OBF model compared to the system’s output for the 

validation data points is shown in Figure 4.41. The percentage prediction error of the 

OBF output compared to the systems output is 16.4473. The spectrum of the estimated 

noise model compared to the system’s noise model has a percentage prediction error of 

0.7629 and is shown in Figure 4.42. 



 

 

135

3000 3200 3400 3600 3800 4000
-1

-0.5

0

0.5

1

k

y

 

 

OBF
system

 

Figure 4.41 Output of the OBF model compared to the output of system (4.100) for the 

validation data points 
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Figure 4.42 Spectrum of the noise model compared to the system’s noise transfer function 

of system (4.100) 

The one-step-ahead prediction of the OBF-ARMA model developed using the de-

correlation method compared to the system’s output, for the first 500 validation data 

points, is shown in Figure 4.43.  
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Figure 4.43 One-step ahead prediction of the OBF-ARMA model identified using the 

closed-loop data compared to the output of (4.100) for the validation data points 

The PPE for the whole validation data points (3001-4000) is 1.3615. The accuracy of the 

OBF-ARMA model is acceptable if the remaining prediction error can be accounted for 

by the white noise. This is checked by comparing the residual of the OBF-ARMA model 

to the white noise of the system using residual analysis.   

Residual Analysis 

The qq-plot of the residual of the OBF-ARMA model and the white noise added to the 

system for the validation data points is shown in Figure 4.44. The distribution of the 

residuals of the OBF-ARMA model compared to the white noise added to the system is 

shown in Figure 4.45. The correlation among the residuals 

=R̂  [0.0002  0.0007  0.0003  0.0006  0.0003  0.0011 -0.0000  0.0005  0.0012 0.0005] 



 

 

137

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

white noise quantiles

re
si

du
al

 q
ua

nt
ile

s

 

Figure 4.44 qq-plot of the residual with respect to the white noise  

added into system (4.100) 

 

Figure 4.45 Distribution of the residual of the OBF-ARMA model compared to the white 

noise added into system (4.100) 
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OBF-ARX model using the direct identification method 

Pole and number of parameters selection 

The dominant pole method to develop parsimonious models is not applicable in the OBF-

ARX structure since the two structures are different. However, the best pole and number 

of OBF parameters can be estimated by comparing the PPE of various poles and number 

of OBF parameters. The results of such a comparison are presented in Table 4.10. 

 Table 4.10 PPE for various poles and number of OBF parameters for nA = 4 for 

system (4.100) 

 Number of OBF parameters 
pole 4 5 6 7 
0.6 6.1217 6.1371 6.1375 6.1263 
0.7 6.1388 6.1319 6.0690 6.0384 
0.8 6.1060 5.9931 6.0039 6.0033 
0.9 6.0200 6.0190 6.0174 5.9929 

0.91 6.0180 6.0175 6.0129 6.0083 
0.92 6.0166 6.0172 6.0123 6.0102 
0.93 6.0192 6.0187 6.0179 5.9978 

 

From Table 4.10 it is observed that the effect of the poles and the number of parameters 

on the percentage prediction error is very small. The difference between the minimum 

PPE with 7 and 4 numbers of parameters is less than 0.03%. A further study on the order 

of the noise polynomial, shows that the accuracy is almost the same for nA = 3. Therefore 

the most parsimonious model, with four OBF parameters and pole 0.92, with noise order 

3 is chosen.   

OBF-ARX model 

The OBF parameters for 4 Laguerre filters and pole of 0.92 is   

l = [0.0071    0.0061   -0.0022    0.0006]; 

The denominator polynomial A(q) 
32 0303.0 −− − qq1 0072.07600.01)( − +−= qqA  

Therefore the noise model is  

 321 0303.00072.0
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−−− −− qq76.01
)(ˆ

−
=

q
qH  (4.104) 
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Model Validation 

The output of the deterministic component the OBF-ARX model (simulation model) 

compared to the system’s output for the validation data points is shown in Figure 4.46. 

The PPE of the simulation model compared to the systems output is 15.4916.  
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Figure 4.46 Output of the simulation model compared to the output of system (4.100) for 

the validation data points 

The spectrum of the noise model (4.104) compared to the spectrum of the system’s noise 

transfer function (4.100b) is shown in Figure 4.47. The standard deviation of the residuals 

of the OBF-ARX model is 0.0993. The PPE of the spectrum of the noise model compared 

to the system’s noise transfer function is 2.2431. 

 
Figure 4.47 Spectrum of the noise model compared to the s noise transfer function of 

system (4.100) 
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The one step-ahead-prediction using the OBF-ARX model compared to the system’s 

output for the validation data points is shown in Figure 4.48 and the PPE is 6.0047. 
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Figure 4.48 One-step-ahead prediction of the OBF-ARX model compared to the output of 

system (4.100) for the validation data points  

Residual Analysis 

The qq-plot and of the residuals with respect to the white noise added to the system is 

shown in Figure 4.49. It is observed from the figure that almost all the points on the  

qq-plot lie on a straight line with slope equal to one. This shows that the residuals have 

nearly the same distribution as the white noise.   
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Figure 4.49 qq-plot of the residual compared to the white noise  

added into system (4.100) 
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Figure 4.50 shows the distribution of the residuals compared to the white noise. It is noted 

from the figure that, just it is observed in the qq-plot, the two distributions are nearly the 

same. 
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Figure 4.50 Distribution of the residuals compared to the white noise  

added into system (4.100) 

The correlation among the residuals for τ = 10 is 

R̂ = 10-3[-0.5670 0.0210 -0.3419 -0.0552 -0.3030 0.4642 -0.6579 -0.1072 0.5404 -0.1271] 

The correlation among the residuals which is close to zero also shows that the residuals are white 

and there is no significant correlation among the residuals.  

OBF-ARMAX model using the direct identification method 

Pole and number of parameters selection 

The dominant pole method to develop parsimonious models is not applicable in the OBF-

ARX structure since the two structures are different. However, the best pole and number 

of OBF parameters can be estimated by comparing the PPE of various poles and number 

of OBF parameters. The results of such a comparison are presented in Table 4.11. From 

Table 4.11 it is observed that the minimum PPE for OBF-4 (the most parsimonious 

among the tested) is 6.7929 while the smallest PPE in all the tabulated values is 6.7440 

for OBF-7. The difference between the two percentage prediction errors is less than 

0.05% which is insignificant. 
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 Table 4.11 PPE for various poles and number of OBF parameters for nD = nC = 2 

of system (4.100) 

pole OBF-4 OBF-5 OBF-6 OBF-7 OBF-8 

0.7 8.2334 8.6993 6.9257 6.8113 6.7927 

0.8 6.9117 6.7680 6.7455 6.7440 6.8056 

0.9 6.7929 6.8001 6.7599 6.8777 6.8925 

0.91 6.7978 6.8122 6.7551 6.7898 6.8858 

0.92 6.8123 6.8303 6.7702 6.7527 6.7920 

 

Therefore the most parsimonious model, OBF-4 with pole 0.9 is chosen for the OBF-

ARMAX model. It is also observed that increasing the order of the noise model does not 

improve the prediction capacity. Therefore the most parsimonious model, with four OBF 

parameters and pole 0.9, with noise order nD = nC = 2 is selected.   

OBF-ARMAX model 

The OBF parameters for 4 Laguerre filters and pole of 0.90 is   

l = [0.0068 0.0079 -0.0010 2.5302e-004]; 

The denominator polynomial A(q) 
21 1268.06401.01)( −− −−= qqqA  

Therefore the noise model is  

 21

21

1268.06401.01
0446.01196.01)(ˆ

−−

−−

−−
−+

=
qq
qqqH  (4.105) 

Model Validation 

The output of the deterministic component the OBF-ARMAX model (simulation model) 

compared to the system’s output for the validation data points is shown in Figure 4.51. 

The PPE of the simulation model compared to the systems output is 16.7642. The 

spectrum of the noise model (4.105) compared to the spectrum of the system’s noise 

transfer function (4.100b) is shown in Figure 4.47. The standard deviation of the residuals 

of the OBF-ARMAX model is 0.0992. The PPE of the spectrum of the noise model 

compared to the system’s noise transfer function is 2.3659. 
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Figure 4.51 Output of the simulation model compared to the output of system (4.100) for 

the validation data points 
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Figure 4.52 Spectrum of the noise model compared to the noise transfer function of 

system (4.100) 

The one step-ahead-prediction using the OBF-ARMAX model compared to the system’s 

output for the validation data points (3001-3500) is shown in Figure 4.52 and the PPE is 

6.7929. 
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Figure 4.53 One-step-ahead prediction of the OBF-ARMAX model compared to the 

system output for the validation data points for the system (4.100) 

Residual Analysis 

The qq-plot and of the residuals with respect to the white noise added to the system is 

shown in Figure 4.54. It is observed from the figure that almost all the points on the  

qq-plot lie on a straight line with slope equal to one. This shows that the residuals have 

nearly the same distribution as the white noise.  Figure 4.55 shows the distribution of the 

residuals compared to the white noise. It is noted from the figure that the two distributions 

are nearly the same. 
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Figure 4.54 qq-plot of the residual compared to the white noise for the system (4.100) 
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Figure 4.55 Distribution of the residuals compared to the white noise  

for the system (4.100) 

The correlation among the residuals for τ =10  

=R̂ 10-3[0.2161 0.2646 -0.2554 0.0676 -0.1891 0.5927 -0.6389 -0.1289 0.6668 0.1040] 

The correlation among the residuals which is close to zero also shows that the residuals 

are white and there is no significant correlation among the residuals.  

This case study demonstrates that closed-loop identification of open-loop stable processes 

can be effectively carried out using the proposed methods, namely the decorrelation 

method, the direct methods using OBF-ARX and OBF-ARMAX models. The accuracy of 

the models in each modeling approach is checked by residual analysis and it is shown that 

the accuracy is acceptable in all cases.  

Multi-step-ahead predictions 

The PPEs of the 1 to 5 step ahead predictions of the OBF-ARX and OBF-ARMAX 

models are shown in Table 4.12. The noise models for the OBF-ARX and OBF-ARMAX 

models are given by (4.104) and (4.105) respectively.  It should be noted that the 

simulation model in OBF-ARX and OBF-ARMAX models is no more the OBF model 

but OBF/A(q) as it can be observed from  (4.80) and (4.90). Therefore, it is the simulation 

model that is compared with the prediction model in the multi-step ahead predictions 

shown in Table 4.12. It is observed in this case study also that the short tem predictions of 

the model are improved significantly by using prediction models.  
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Table 4.12 The PPE for 1 to 5 step- ahead- predictions of OBF-AR and OBF-ARMA 

models compared to OBF model for system (4.100) 

 OBF-AR OBF-ARMA 
i Simulation Prediction Simulation Prediction 
1 
2 
3 
4 
5 

13.9972   
13.6573   
13.3222   
13.0615   
12.8490 

   5.7058 
    8.5580 
   10.1461 
   11.0073 
   11.5397 

14.0022 
   13.6632 
   13.3295 
   13.0704 
   12.8595 

   5.7075 
    8.5571 
   10.1473 
   11.0043 
   11.5363 

4.7.6.2 Close-loop identification of open-loop unstable process  

In this case study, an OBF model with ARX and ARMAX structures are used to identify 

an open-loop unstable process which is stabilized by a feedback control system. The plant 

and noise transfer functions of the system are given by (4.106a) and (4.106b) 

 )17)(115(
12.0)(

2.1

+−
=

−

ss
esG

s

 (4.106a) 

 21

1

421.0342.11
6.01)( −−

−

+−
−

=
zz

zzH  (4.106b) 

The plant transfer function has one RHS pole, 1/15, therefore is open-loop unstable. The 

system is stabilized using a proportional feedback controller with Kc = 11.  A white noise 

sequence with mean 0.0049 and standard deviation 0.1989 is added to the system and the 

SNR is 9.9702. An external excitation signal, r1, is introduced into the system to conduct 

the identification. The excitation signal is, a PRBS signal generated using  the MATLAB 

function ‘idinput’ with band [0  0.02] and level of [-1  1].  The block diagram of the 

feedback control system to be identified is shown in Figure 4.56. 
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Figure 4.56 System stabilized by feedback controller 
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The excitation signal, the plant input and the plant output used for identification are 

shown in Figure 4.57. Four thousand data points, with a sampling interval of one time 

unit, are generated using SIMULINK and 3000 of them were used for identification and 

the remaining 1000 are used for validation.  
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Figure 4.57 Data sequences used for identification 

Closed-loop identification using OBF-ARX model 

Pole and number of parameters selection 

The dominant pole method to develop parsimonious models is not applicable here 

because the plant is open-loop unstable and the OBF poles should be stable by definition. 

Only the poles of the polynomial A(q) which is common for both the plant and noise 

model can contain the unstable pole. The pole and number of OBF-parameters can be 

selected by comparing the PPE as it is done in the previous case study.  Such a 

comparison is carried out using the values of PPE for various poles and order A(q) equal 

to 4 is shown in Table 4.13. Further study shows that increasing the order of the 

polynomial A(q) doe not reduce the PPE. From Table 4.13 it is observed that the effect of 

the poles and the number of parameters on the percentage prediction error is very small, it 

is however clear that OBF model with 5 Laguerre filters and a pole between 0.3 and 0.4 

gives the lowest PPE. It was further checked that the pole equal to 0.4 is good enough. 
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Table 4.13 PPE for various poles and number of OBF parameters for nA = 4 for 

system (4.106) 

 Number of OBF parameters 

pole 4 5 6 7 

0.2 5.6688 5.6461 5.6285 5.6285 

0.3 5.6628 5.6239 5.6384 5.6384 

0.4 5.6567 5.6143 5.6502 5.6358 

0.5 5.6421 5.6254 5.6556 5.6298 

0.6 5.6412 5.6345 5.6518 5.6420 

 

OBF-ARX model 

The OBF model has five Laguerre filters with pole 0.4 and the parameters are estimated 

to be  

l = [0.0168   -0.0191    0.0137   -0.0107    0.0081]; 

The denominator polynomial A(q) is estimated 
4321 04.00298.01268.09103.01)( −−−− −−−−= qqqqqA  

Therefore the noise model is  

 4321 04.00298.01268.09103.01
1)(ˆ

−−−− −−−−
=

qqqq
qH  (4.107) 

Note that the poles of the noise model are shared by the plant model as defined by (4.71). 

The four poles of the noise model are 1.0840, -0.3284, 0.0774 ± 0.3261i. The pole 1.0840 

is outside the unit circle and is shared by both the plant model and the noise model, in 

accordance with the theory. 

Model Validation 

The one-step-ahead prediction by the OBF-ARX model compared to the output of the 

stabilized system for the validation data points is shown in Figure 4.58 and the 

corresponding PPE is 5.6143. The simulation model and the noise spectrum are irrelevant 

for such cases, because both are unstable. However, the accuracy of the model can be 

checked by residual analysis. 
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Figure 4.58 One-step ahead prediction by the OBF-ARX model compared to the output of 

system (4.106) 

Residual Analysis 

Figure 4.59 shows the qq-plot of the OBF-ARX model with respect to the white noise 

added to the closed-loop system. The distribution of the residual compared to the white 

noise is shown in Figure 4.60. It is observed that the figure that the residuals have similar 

distribution to the white noise.  

 
Figure 4.59 qq-plot of the residual of the OBF-ARX model compared to the white noise 

added into system (4.106) 
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Figure 4.60 Distribution of the residuals compared to the white noise  

added into system (4.106) 

The correlation among the residuals is estimated to be  

R̂ = [-0.0021 0.0007 -0.0005 -0.0006 -0.0007 0.0027 -0.0034 -0.0008 0.0022 -0.0012] 

It is observed from both the-one-step ahead prediction and the residual analysis that the 

OBF-ARX prediction model captures the dynamics of the open-loop unstable system with 

acceptable accuracy.  

Closed-loop identification using OBF-ARMAX model 

Pole and number of parameters selection 

The same procedure as the previous case is used to determine the number of OBF-

parameters and the OBF-pole. OBF model with four numbers of parameters and pole 

equal to 0.7 is chosen to develop the OBF-ARMAX model. 
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 Table 4.14 PPE for various poles and number of OBF parameters for nD  =  nC = 2 

for system (4.106) 

 Number of OBF parameters 

pole 4 5 6 7 

0.3 6.2929 6.3150 6.2252 6.2007 

0.4 6.2835 6.2590 6.1969 6.1892 

0.5 6.2624 6.1718 6.2410 6.2448 

0.6 6.2154 6.3477 6.3457 6.4538 

0.7 6.1931 6.4100 6.3964 6.4847 

0.8 6.2722 6.2559 6.2801 6.3174 

0.9 6.4841 6.3211 6.3245 6.3227 

 

OBF-ARMAX model 

The OBF model has four Laguerre filters with pole 0.4 and parameters  

l = [0.0028 -0.0014 2.9540e-004 9.5944e-004]; 

The denominator polynomial A(q) 
21 3289.03696.11)( −− −−= qqqA  

The noise model is  

 21

21

4503.04963.11
0683.04728.01)(ˆ

−−

−−

−−
−−

=
qq
qqqH  (4.108) 

The discrete poles of the noise model that are also shared by the plant model are 1.0590 

and 0.3106. It is observed that one of the poles, 1.0590, is outside the unit circle hence it 

is the unstable pole shared by the plant model and the noise model as the theory requires. 

Note that the poles of the noise model are shared by the plant model as defined by (4.76). 

 

Model Validation 

 The one-step-ahead prediction by the OBF-ARMAX model compared to the output of 

the stabilized system for the validation data points is shown in Figure 4.61 and the 

corresponding PPE is 6.1931.  
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Figure 4.61 One-step-ahead prediction of the OBF-ARMAX model compared to the 

output of the system for the validation data points  

The simulation model and the noise spectrum are irrelevant for such cases, because both 

are unstable. The accuracy of the model can be checked by residual analysis, as in the 

case of the OBF-ARX. 

Residual Analysis 

The mean and standard deviation of the residuals of the OBF-ARMAX model are -0.0026 

and 0.2160. The qq-plot of the residual of the OBF-ARMAX model with respect to the 

white noise added to the system for the validation data points are shown in Figure 4.62.  It 

is noted from the figure that, the residual is a normally distributed signal with mean 

around zero, similar to the white noise. However, it can also be observed that there is 

small deviation at the intercept. This is due to a small increase in the standard deviation of 

the residual as compared to the white noise as can be seen in Figure 4.63 also. The 

distribution of the residuals of the OBF-ARMAX model compared to the white noise 

added to the system is shown in Figure 4.63. 
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Figure 4.62 The qq-plot of the residual of the OBF-ARMAX model with respect to the 

white noise added into system (4.106) 
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Figure 4.63 Distribution of the residual of the OBF-ARMAX model compared to  the 

white noise added into system (4.106)  

The correlation among the residuals is given by 

=R̂ [0.0079 0.0063 0.0042 0.0037 0.0024 0.0057 -0.0007 0.0009 0.0047 0.0025] 
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Multi-step-ahead predictions 

In this case study, the system is open-loop unstable and the simulation model is therefore 

unstable. However, it is already noted that OBF-ARX and OBF-ARMAX models provide 

stable predictors. Table 4.15 shows the 1 to 5 step-ahead predictions using OBF-ARX and 

OBF-AMAX models for system (104). No comparison is made with the simulation model 

because the system is unstable and any simulation model will result in unbounded 

prediction.  

Table 4.15 The PPE for 1 to 5 step- ahead- predictions of OBF-AR and OBF-ARMA 

models compared to OBF model for system (4.106) 

i OBF-AR OBF-ARMA 
1 
2 
3 
4 
5 

   5.4142 
    9.4583 
   14.0973 
   19.1860 
   25.1145 

   5.3191 
    9.2860 
   12.8947 
   16.4497 
   20.3734 

4.3.6.3 Real plant case study  

In this case study, closed loop identification of a real plant is presented.  The system to be 

identified is a reflux drum of a pilot-scale distillation column where the liquid level is 

controlled by a PI controller with controller gain, Kc=10, and integral time, τI =5min. The 

set point is kept at 200mm. An excitation signal is added just after the controller, as 

shown in the schematic and block diagrams, Figures 4.64 and 4.65 respectively.  

 
Figure 4.64 Reflux drum level control system 
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Figure 4.65 Block diagram of the reflux drum level control system 

In the figure  

 r1= is the external excitation signal 

 r2=set point 

 G(q)= The process model to be identified 

H(q) = disturbance model to be identified 

Gc(q)= controller transfer function (known) 

Gm(q)= Sensor and transmitter transfer function (known) 

e(k)= innovation sequence, to be estimated from the residual  

The external excitation signal introduced for the purpose of identification, the plant input 

u(k) and plant output y(k) are shown in Figure 4.66. 
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Figure 4.66 Closed loop data used for identification of the reflux drum liquid level control 

system 
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GOBF-ARX model 

A preliminary study shows that the OBF-ARX gives more accurate models than the other 

two. Therefore, the OBF-ARX model is reported in this section.  

Selection of OBF- pole and number of parameters 

The number of OBF- parameters and the OBF pole are selected so that the model attains 

minimum PPE. 

 Table 4.16 PPE for various poles and number of OBF parameters for nA =  4 for 

the reflux drum liquid level control system 

 Number of OBF parameters 

pole 4 5 6 7 

0.1 0.6410 - 0.6405 - 

0.2 0.6355 0.6446 0.6403 0.6403 

0.3 0.6430 0.6379 0.6444 0.6391 

0.4 - 0.6421 - 0.6421 

 

Based on the above analysis, it is found that the OBF pole and the number of OBF 

parameters that give the minimum PPE and are 0.2 and 4, respectively.  

OBF-ARX model 

The OBF-ARX model is defined by four Laguerre filters with pole equal to 0.2. The OBF 

parameters are estimated   

l = [0.0442   -0.0368    0.0042   -0.0125] 

The estimate of the denominator polynomial A(q) is 
43 1274.0 −− + qq21 0666.0185.09852.01)( −− +−−= qqqA  

The noise model is  

 43 1274.0 −− + qq21 0298.06660.01850.09852.01
1)(ˆ

−− +−−
=

qq
qH  (4.109) 

The four poles of the noise model are 0.9629, 0.6513 -0.3145 ± 0.3228i, obviously, there 

is no pole outside the unit circle and the system is open loop stable.  
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Model Validation 

The one-step-ahead prediction by the OBF-ARX model compared to the output of the 

system, i.e., the liquid level in the reflux drum is shown in Figure 4.67 and the 

corresponding PPE is 0.6355.  
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Figure 4.67 One-step ahead prediction of the OBF-ARX model compared to the output of 

the closed loop system for the validation data points 

Residual Analysis 

The mean and standard deviations of the residuals of the OBF-ARX model are -0.0026 

and 0.2160, respectively. The distribution of the residuals is shown in Figure 4.68. It is 

observed that the residuals are close to normal distribution with mean zero. 
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Figure 4.68 Distribution of the residuals for the reflux drum level control system 
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The correlation among the residuals for the first ten instants are given by   

R̂ =10-3[ -0.1239 -0.5639 -0.2348 0.4281 0.1199 -0.0474 -0.2713 0.2021 0.0988 -0.1089] 

It is noted that the values of the correlation among the residuals is close to zero indicating 

that there is no significant correlation among the residuals. The distribution of the 

residuals together with the values of the correlation among the residuals indicates that the 

residuals can be assumed white noise. Therefore, the accuracy of the OBF-ARX model is 

acceptable. 

In this section, closed loop identification using OBF based prediction models is presented. 

Novel schemes that are based on both direct and indirect identification are proposed. The 

indirect identification method is based on using a simulated input rather than the plant 

input that is correlated with the noise.  The direct identification method is based on OBF-

ARX and OBF-ARMAX model structures. Open-loop stable processes can be identified 

from closed loop data using any of the proposed methods. The appropriate method for a 

given problem can be chosen by comparing the percentage prediction errors of the 

validation data points. Open-loop unstable processes that are stabilized by feedback 

controllers can be identified using OBF-ARX and OBF-ARMAX models. However, the 

decorrelation method cannot be used in such cases.   

4.8 Summary 

Conventional OBF models are simulation models and they do not provide explicit noise 

models. However, in several control system design and implementations the noise model 

plays very critical role. In addition, the prediction capacity of OBF model can be 

improved significantly by including noise model as integral part of the OBF-models.  In 

this chapter, this major problem is addressed for control relevant system identification 

both from open-loop and closed loop test data.  

Open-loop identifications using OBF plus noise models are successfully carried out using 

OBF-AR and OBF-ARMA models. These model structures inherit all the advantages of 

the OBF model structures and the model parameters can be easily estimated without 

involving nonlinear optimization. Both SISO and MIMO systems can be easily handled.  

The OBF-ARMA model is more parsimonious than the OBF-AR model. 
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Closed loop identification schemes that are based on OBF plus noise model are also 

proposed. The schemes address the two major problems of closed loop identification, 

namely closed loop identification of open loop stable processes and open loop unstable 

process that are stabilized by feedback controllers. Methods based on the two commonly 

known approaches were proposed for handling open-loop stable processes. The direct 

identification approach uses the OBF-ARX or OBF-ARMAX models while the indirect 

approach uses the OBF-ARMA model based on the decorrelation method. Open-loop 

unstable processes that are stabilized by feedback controller are easily and directly 

handled by OBF-ARX or OBF-ARMAX models. 

The schemes for estimating the parameters and the i-step-ahead prediction, for all the 

proposed structures, are formulated. Each major section is demonstrated by relevant 

simulation studies and a real plant case study. The real plant case study considers a 

MIMO system identification of a pilot scale distillation column which involves, 

experiment design, test for identification, modeling and validation. All identification case 

studies include residual analysis for testing the accuracy of the models. From the 

simulation and real plant case studies it is observed that when the identification test is 

properly conducted, the methods can provide both plant and noise models that have 

acceptable accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 5  

RESULTS AND DISCUSSIONS 

5.5 Introduction 

OBF models have several characteristics that make them very promising for control 

relevant system identification compared to most classical linear models. They are 

parsimonious in their parameters, the parameters can be easily calculated using linear 

least square method, their models are consistent in parameters and time delays can be 

easily estimated and incorporated into the model. However, there are several problems 

that were not yet addressed which this research attempted to address. Some of the most 

outstanding problems addressed in this research are:  

• How to develop parsimonious OBF models when the dominant poles of the 

system are not known? 

• How to make a better estimate of time delay for second or higher order systems? 

• How to include an explicit noise model in the framework of OBF model 

structures, estimate the parameters and compute multi-step-ahead predictions? 

• How to address closed-loop identification problems in this new OBF plus noise 

model frame work? 

The first and second problems were addressed in Chapter 3 while the third and fourth 

problems were addressed in Chapter 4. In this chapter, the results of the works that 

address these issues are presented and discussed. 

5.6 Development of Parsimonious OBF model using Iterative Method 

It is already noted, in the literature review, that OBF models can capture the dynamics of 

linear systems with a fewer number of parameters if appropriate filter type and pole(s) are 

used to build the model [8, 48, 92]. If, for example, Laguerre filters are used for modeling 

weakly damped systems, the OBF model needs larger number of parameters to obtain 

models with acceptable accuracy. On the other hand, even if the appropriate filter type is 

used, still a more parsimonious model can be developed if the pole used in the OBF 

model is close to the dominant pole of the system [8, 48, 92]. Therefore, it is necessary to 

find a way to know whether the system is well or weakly damped and to estimate the 

dominant pole(s) of the system from the identification data.  
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In section 3.2.2, estimation of GOBF poles was discussed. It was noted that Van den 

Hof et al. [92] proposed (3.13) for estimating the poles that gives the most parsimonious 

model. However, this formula cannot be directly used in real system identification 

problems, because the poles of the system in actual problems are not known. However, 

the implication of that formula is very important, namely, the poles estimated using (3.13) 

closely match the dominant pole(s) of the system. 

Sometimes, the dominant pole is estimated from simple step tests. However, this may 

lead to a very inaccurate result for systems involving significant unmeasured 

disturbances. In addition, when an appropriate identification test is to be carried out for 

modeling the system, there is no need to use a less accurate step test for estimating the 

dominant pole.  In this research, this problem is addressed by developing an iterative 

scheme in which one or two of the dominant poles of the system are estimated and used 

to develop a parsimonious OBF model that has acceptable accuracy. The results are 

presented and discussed in the following sections.  

5.6.1 Estimation of time delay and dominant time constants 

The method proposed in section 3.3 for estimating one dominant pole and time delay of a 

system was based on developing a first order plus time delay model from the noise-free 

OBF model. In this approach, first an OBF model was developed using arbitrarily chosen 

poles and generalized orthonormal basis filters. Then, a FOPTD model is developed from 

the step response of the noise-free OBF model. This is the key step which makes the 

proposed method efficient. Instead of making a step test on the plant and estimate the 

pole, a step test can be conducted on the noise free OBF model. This has two major 

advantages. First, since the OBF model can effectively separate the deterministic 

component from the stochastic, the presence of unmeasured disturbances will not affect 

the estimation. Second, the step test can be conducted as many times as necessary without 

incurring any significant cost on the identification process.  This becomes especially 

useful in determining the optimum number of OBF parameters as illustrated in the case 

studies. 

Three different methods of estimating the FOPTD parameters were discussed. These 

methods are: the moment method, the tangent method and the interpolation method. From 

extensive simulation studies it is observed that the interpolation method results in more 

accurate result than the other two. This may be due to the unique nature of the step 
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response of OBF models. As it was shown in Figure 3.1, the step response of OBF 

models has inverse type response. This is the case even if the system to be identified does 

not have a non-minimum phase zero.  The reason is the fact that the orthonormal basis 

filters themselves, have non-minimum phase zero in their structure. This can be easily 

observed from the Laguerre, Kautz and GOBF filters in (3.8), (3.10) and (3.11), 

respectively. When the moment method is used, the oscillation due to these non minimum 

phase zeros results in wrong estimation of the moment, which is latter reflected in the 

estimation of the parameters of the FOPTD model. On the other hand, the tangent method 

results in less accurate estimation than the interpolation method because the tangent 

method relies on the value at one point only, i.e., inflection point, while the interpolation 

method uses average values. It should be noted that in the interpolation method, unlike 

the moment method, the oscillatory part of the step response is not involved in the 

estimation and it does not affect the accuracy of the estimation. 

According to the proposed interpolation method, the time delay was obtained by drawing 

a tangent at the inflection point of the normalized step response of the OBF model and 

taking the intersection of the tangent to the time axis as estimate of the time delay, as 

shown in Figure 5.1. This is the same time delay estimation method suggested by 

Patwardhan and Shah [8]. The time constant is estimated by finding the time, in terms of 

the time constant, τ, to reach certain level of the normalized step response and estimating 

the mean time constant using (3.35)   
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where tαi is the time that the normalized step response takes to reach a level in α time 

constants plus the time delay. For example, the normalized response reaches a level of 

0.632 in one time constant plus the time delay.  For this case α = 1, tαi is obtained by 

finding the time, the normalized response takes to reach 0.632 and the time delay, τd,  is 

estimated by the tangent method. 
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Figure 5.1 Time delay estimation by the tangent method 

The simulation study in section 3.3.3 clearly demonstrated the effectiveness of estimating 

the dominant pole of the system in the presence of significant unmeasured disturbances. It 

is clear from the value of the signal to noise ratio, SNR=7.7356, that there is a significant 

disturbance in the system. This can be observed, clearly, from Figure 3.3 also. The 

dominant time constant of the system was 16, while the estimated value by the proposed 

method is 16.8. The accuracy of the estimation should not be surprising when it is 

observed how close the step response of the OBF model was to the step response of the 

system without disturbance, as shown in Figure 3.4.  The FOPTD method, however, is 

useful for system identification problems involving well damped systems that can be 

modeled by Laguerre filters only. For weakly damped systems, the Kautz filters are the 

most appropriate choice and they need estimates of a conjugate complex pair of poles. If 

GOBF is the intended type of filter to be used, the FOPTD based method is not the 

appropriate choice to estimate the dominant poles.  

The second order plus time delay (SOPTD) based method enables obtaining the 

estimation of two dominant poles and the time delay with a better accuracy than the 

tangent method. A novel method, for estimating the SOPTD parameters from the step 

response of OBF models, was developed which is more effective and more accurate than 

the methods suggested by Smith [37] and Rangaiah and Krishnaswamy [35, 36], 

especially for obtaining the parameters from the step response of OBF models.  
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The damping coefficient, natural frequency and the time delay can be easily 

determined from the step response of the OBF model using Algorithm 3.1.   The relevant 

equations are given by (3.44), (3.47), (3.56), (3.58) and (3.65). The coefficient m1 and m2 

are determined using Figures 3.7 and 3.10, respectively. 
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Once, the response at the inflection point is obtained a very good estimate of the damping 

coefficient, ζ, is found from the empirical relation 
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 (3.48) 

= ±ζζ  (3.49) where  

This will enable using the false position root finding method to get more accurate 

estimates using (3.44) and (3.47).  One of the major advantages of this method compared 

to the Smith [37] method is , to use the Smith method, the apparent time delay should be 

separately estimated and subtracted from the response time. Therefore, the accuracy of 

the estimated parameters highly depends on the accuracy of the estimate of the apparent 

time delay. The newly proposed method does not depend on the apparent time delay since 

the time delay is eliminated when (tn-tm) is used as in (3.56) and (3.58). In addition, the 

proposed method enables accurate estimation of the apparent time delay itself. The main 

advantage of the proposed method to the Rangaiah [35, 36] methods is that the oscillatory 

part of the step response which is caused by the non-minimum phase zero is not involved 

in the estimation process in the proposed method. The Rangaiah [35, 36] method will 

involve this part of the response and if the oscillation is large it will lead to erroneous 

results. In addition, it is reported [7], that the accuracy of the Rangaiah method is good 

enough only in limited range of the damping coefficient.   
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From the damping coefficient and natural frequency the estimates of the two 

dominant poles of the system can be estimated directly. The poles are real if the system is 

well damped and complex conjugate if the system is weakly damped. Therefore, the 

SOPTD based method can also be used to identify the appropriate type of filter to be 

used, by checking the damping coefficient. 

The time delay estimation method which was proposed by Patwardhan and Shah [8] is 

accurate enough for systems with first order plus time delay dynamics. However, for 

second and higher order systems it is less accurate. The time delay estimation method 

proposed in this research gives more accurate estimates than that proposed by Patwardhan 

and Shah.  Nevertheless, one may wonder if the error introduced by the tail of the 

sigmoidal curve, τdc, on the time delay estimated by the tangent method is really 

significant. The answer is, it depends on the values of the damping coefficient and the 

natural frequency. From (3.56) and (3.65) it can be seen that this contributed time delay is 

directly proportional to the natural frequency. From Figure 3.10 and (3.65) it was 

observed that the smaller the value of the damping coefficient the larger is the value of 

the contributed time delay. Table 5.1 shows the values of the contributed time delay for 

various values ζ for τ =1 for a second order process.  

 Table 5.1 The contributed time delay for various ζ and τ = 1 

ζ 2 1.5 1 0.5 0.1 

τdc  0.1845 0.2236 0.2817 0.3787 0.5187 

Since the contributed time delay is directly proportional to the natural frequency, if the 

natural frequency is 10 for a given second order system, the contributed time delay will 

be ten times that shown in Table 5.1.  

 The effectiveness of the SOPTD based method was demonstrated by relevant simulation 

studies for both well damped and weakly damped cases. The simulation studies are 

designed with the intention to reflect the application of the proposed method. Hence, both 

systems (3.68) and (3.69) include colored noise that might represent significant 

unmeasured disturbances in the system, since that is expected in normal identification 

applications.  



 

 

166
In case study 1, section 3.4.3, the system is well damped and has two dominant poles.  

In the estimation, an OBF model with 12 GOBF parameters and two alternating poles of 

0.7165 and 0.9672 corresponding to time constants of 3 and 30 were used. Note that these 

time constants are far away from the true dominant time constants 6 and 16. In addition, 

the system is a fourth order system to be estimated by SOPTD model. From Figure 3.12, 

it was observed that even though the OBF poles are far away from the true dominant 

poles of the system the step response of the OBF model is close to the step response of 

the system. This is possible because relatively large number of parameters, 12, was used.  

It was observed from the final SOPTD estimate given by (3.68) that the estimate of the 

dominant time constants is very close to the true time constant.   

Case study 2 in Section 3.4.4, in addition to showing that the proposed method is 

effective for weakly damped systems, attempts to answer a very important question. The 

questions can be described as follows. It is normally very difficult to identify whether a 

system is weakly damped or well damped from the identification data. In such cases, how 

is it possible to select the appropriate filter type to develop the first OBF model? This 

case study attempts to answer this question. The system is weakly damped and the true 

dominant poles of the system are complex conjugates with poles -0.1000 ± 0.1732i 

corresponding to the discrete poles 0.8913 ± 0.1559i with sampling interval of 1 time 

unit. However, the OBF model is developed from the two real poles -1/3 and -1/30 with 

12 GOBF parameters. The closeness of the OBF model to the system can be observed 

from the step response of the model and the system shown in Figure 3.15. The SOPTD 

estimate of the system is given by (3.70) and the corresponding estimates of the poles are 

0.8925 ± 0.1514i. These estimated poles of the SOPTD model are very close to the 

dominant poles of the system. This case study, therefore, made it clear that even though 

the system is weakly damped if the number of parameters is large enough a very good 

estimate can be obtained regardless of the filter type used and the initial poles used for the 

OBF model. The only problem this OBF model is that it is not parsimonious, which is one 

of the major promises of OBF models. 

It was confirmed from the logical development of the methods and the case studies that it 

is possible to get a good estimate of one or two of the dominant poles of a system and the 

time delays using the proposed methods. 
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5.6.2 Development of parsimonious OBF models 

The next question is, how is this information used to develop parsimonious OBF models? 

There are two logical approaches to answer this question 

(i) Develop OBF models, first with relatively larger number of parameters and 

estimate the dominant pole of the system. Then develop a parsimonious OBF 

model using these estimated dominant poles. The minimum number of parameters 

with acceptable accuracy can be chosen by comparing the PPEs.  

(ii) Fix the number of OBF parameters to the desired parsimonious value and develop 

OBF model from arbitrarily chosen poles. Improve the accuracy of the OBF 

model by estimating the dominant pole and using it to develop improved OBF 

model iteratively.  

The first approach does not need any more explanation since it was illustrated that the 

dominant poles can be successfully estimated using the proposed method. If the dominant 

poles are used in OBF model development, it is already an established fact that the 

resulting OBF models converge quickly [8, 20, 48, 92] showing that the OBF models can 

describe the system with a fewer number of parameters with acceptable accuracy. 

The second approach was illustrated by the flow diagram shown in Figure 3.17 and three 

relevant case studies. In all the three case studies, the unmeasured disturbance was 

intentionally made white noise because, at this level, the issue of noise models is not yet 

addressed and it will be impossible to test the accuracy of the model if the noise is 

colored. However, noise models were treated in Chapter 4 and relevant simulation case 

studies with colored noise were provided.   

In Case study 3 in Section 3.6.1, the identification of a well damped system that had one 

dominant pole with an additive white noise using the iterative method was demonstrated. 

The convergence criteria used was the minimum PPE. This convergence criterion is very 

practical because it will enable choosing the model structure that will result in the more 

accurate prediction, which is the intended use of models in many control relevant 

implementations. It was observed in Table 3.1 that the PPE was very large at the first 

iteration with around 30% for 6 OBF parameters and around 15% for 12 OBF parameters. 

The reason is that at the first iteration the OBF pole used was far away from the dominant 

pole of the system and the model needs large number of parameters to capture the system 
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dynamics accurately. However, at the second iteration the accuracy with each number 

of parameters has improved. At the third iteration, the minimum PPE was attained. The 

difference between the values of the PPE at this iteration is very small. It is, obviously, 

advantageous to choose the most parsimonious model that has six OBF parameters.  

Model validation was carried out by using the developed parsimonious OBF model for 

simulation with a separate validation data that was not used in identification.  

Figure 3.25 shows the prediction by the developed parsimonious OBF model compared to 

the noisy output data of the system. It was noted from the figure that the prediction is very 

good. However, the next figure, Figure 3.27 gives more insight into the accuracy of the 

OBF model. It was noted in this figure that except at the first few instants the prediction is 

very good.   

The large deviation in the first few instants is due to the initial conditions of the 

simulation. OBF models are infinite impulse response type of models. As it was observed 

from (3.2), for simulation with infinite responses, all previous values back to minus 

infinity are theoretically required. However, the validation data is taken from 3001 to 

4000.   

  (3.2) 

The response is assumed zero for all instants before 3001. This causes deterioration in the 

simulation performance of the model. However, for stable models, the initial conditions 

die out exponentially with time and the simulation becomes reasonably accurate for k > 

3τ/TS, where τ  is the dominant time constant and TS is the sampling time [2]. In this 

particular case study, the dominant time constant is 18 and the sampling interval is 1, 

therefore the simulation becomes reasonably accurate for k > 54. 

Figure 3.21 shows the step response of the parsimonious OBF model compared to the 

noise-free step response of the system. It was observed that the OBF model approximates 

the system reasonably accurately. It was also noted that the OBF model approximates the 

time delay by non-minimum phase zeros that appears as inverse response in the step 

response.  

The residual analysis is a good way of testing the accuracy of models. A model is 

considered the best if it can predict all the output except the white noise, because white 
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noise is random and it cannot be predicted [1, 2]. Therefore, in residual analysis the 

objective is to check whether the residual is close to white noise. If the residual is close to 

white noise the accuracy of the model is acceptable. In case of simulation studies, the 

white noise added to the system is known. Therefore it can be further checked whether 

the white noise is close to the white noise added to the system. The qq-plot of the 

residuals with respect to the white noise added to the system, the distribution of the 

residuals and the correlation among the residuals are good indicators for the whiteness of 

the residuals. If the residual is white noise, all the points in the qq-plot will lie on a 

straight line. If the residuals have the same distribution as the white noise that is added to 

the system the qq-plot will be a straight line with slope equal to 1 and passes through the 

origin. The distribution of the residuals become close to normal distribution with mean 

zero if they are close to white noise. If the residual is white the correlation among the 

residuals will be close to zero, indicating that the there is no correlation among the 

residuals. In this particular case study, all the whiteness tests indicate that the noise is 

close to the white noise added to the system. Therefore, the accuracy of the parsimonious 

models is acceptable. 

Case study 4 demonstrates the use of the SOPTD-based iterative method for developing 

parsimonious OBF models for a well damped system given by (3.72). The system has two 

dominant real poles. The output was corrupted with additive white noise with SNR of 

8.5225. In the OBF model development, the iteration was started with poles far from the 

dominant poles of the system. It was observed from Table 3.2 that at the first iteration the 

PPE is very high and it gets smaller as the number of OBF parameters increases. It is also 

observed that convergence is attained after different number of iterations for the models 

with different number of OBF parameters. However, after all models come to 

convergence the difference between the PPE for different number of parameters is 

insignificant and obviously, the best choice will be the one with the smallest number of 

parameters, OBF-6.  The residual analysis also confirms that the accuracy of this model is 

acceptable.  

Case study 5 in Section 3.6.3, considers identification of weakly damped system using the 

proposed SOPTD-based method. In this case study also, the initial pole is real and far 

from the dominant poles of the system which are complex conjugates. However, the 

iteration scheme converges to a parsimonious OBF model that has acceptable accuracy in 
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four iterations.  Both model validation and residual analysis show that the 

parsimonious OBF model has acceptable accuracy. It is also noted that in all the three 

case studies the time delay estimation is better than that estimated by the tangent method. 

In summary, the results in this section confirm that parsimonious OBF models that have 

acceptable accuracy can be developed starting from an arbitrarily selected poles using the 

proposed iterative method.  

5.7 OBF based prediction models 

Conventional OBF models are simulation models and they do not include explicit noise 

model in their structure. However, in many control system designs and implementations 

the noise model plays a very important role. In this research, BJ type structures obtained 

by combining OBF model and conventional time series models, and modified OBF 

structures are proposed. Models with these structures inherit all the benefits of OBF 

models and they include explicit noise model. Algorithms for estimating the model 

parameters and the multi-step ahead prediction are developed and relevant simulation and 

real plant case studies are presented in Chapter 4. 

Both open-loop and closed-loop identifications were considered and the appropriate 

identification scheme based on OBF plus noise model were proposed. Open-loop 

identifications were carried out using OBF-AR or OBF-ARMA models while  

closed-loop identifications were carried out using direct identification with OBF-ARX or 

OBF-ARMAX model or with indirect identification method using OBF-ARMA model. 

Results and discussions on these issues are presented in the following sections. 

5.7.1 Open-loop Identification Using OBF-AR and OBF-ARMA models 

OBF-AR models have an OBF deterministic component and AR noise model. The model 

is given by  
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The models parameters are easily estimated using linear least square method using 

Algorithm 4.1. However, the order of the noise model should be large enough to capture 

the dynamics of the system accurately.  

OBF-ARMA models are more flexible, have the BJ-type structure and result in 

parsimonious OBF and noise models. The model parameters can be estimated using the 
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extended least square method or two-step method as described in Algorithm 4.2. It 

was already shown in the case studies that the two-step method, when properly applied, 

leads to models that are nearly as accurate as the extended least square method. The 

GOBF-ARMA models are given by (4.3) 

 )(
)(
)()()()( ke

qD
qCkuqGky OBF +=  (4.3) 

In section 4.2.5, three different case studies were presented that address the various issues 

related to OBF plus noise model in open-loop identification. The first two case studies 

were intended to show the effectiveness of the proposed identification scheme for both 

weakly-damped and well-damped systems in the presence of unmeasured disturbances. 

Unlike the previous case studies, in these case studies the disturbance is not white noise, 

the accuracies of the plant, the noise and the overall models were evaluated. The third 

case study is a comprehensive identification case study of a real plant with multiple-input 

multiple-output (MIMO) system.  The case study includes all phases of identification 

from design of experiment to validation of the plant model. 

In Case study 4.1, a well damped system with unmeasured disturbance is identified. The 

SNR is 6.6323, which shows that there is significant unmeasured disturbance in the 

system. The iterative method, developed in Chapter 3 which was also discussed in the 

previous section in this chapter, was used to determine the poles and the minimum 

number of OBF parameters that result in parsimonious OBF model with acceptable 

accuracy.  In the first part of the OBF-AR model development, the method for selecting 

the order of the AR noise model was presented.  

In all simulation studies, in section 4.2.5, the accuracy of the noise models was presented 

by comparing the noise spectrum of the system and the model. Ljung [1] discusses, in 

detail, the estimation of the noise spectrum. The comparison of the spectrum of the noise 

models and the noise transfer function of the system in Figure 4.4 shows that the order of 

the noise model should be large enough to capture the dynamics of the noise transfer 

function. However, it should also be noted that using too large order of noise model 

causes the variance error to increase and the overall quality of the model to degrade [2]. 

In the given case study nD =7 gives the minimum PPE which is less than 1%. Whether 

this 1% prediction error is large or small is determined from the residual analysis.  
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In validation of the models in all identification case studies, the simulation output was 

included. This is because the long term (steps-ahead) prediction capability of the overall 

model of the system highly depends on the accuracy of the simulation models. The next 

logical question is, when is the accuracy of the simulation model acceptable? If the noise 

model and the overall prediction models are checked to be accurate enough then the 

simulation model is accurate because it is just the difference of the two.  In the case study 

considered here, both the noise model and the overall prediction of the validation data is 

reasonably accurate. In addition, all the results of the residual analysis show that the 

distribution of the residual is close to the distribution of the white noise added to the 

system. The qq-plot, Figure 4.7, is linear with slope equal to 1 and passing through the 

origin, the plot of the distribution of the residuals, Figure 4.8, is close to the white noise 

and the correlation among the residuals is close to zero. Therefore, the accuracy of the 

model is acceptable and the method is shown to be effective. 

The case study shows also that the OBF-ARMA model has some better qualities than the 

OBF-AR model. First, the noise model is more parsimonious than the AR model. The 

order of the numerator and denominator polynomial that give the minimum PPE is two. 

Which means only four parameters should be estimated compared to 7 parameters in the 

OBF-AR case. In addition, comparing Figures 4.6, 4.11 and 4.15, it is observed that the 

accuracy of the noise model of the OBF-ARMA model developed using both methods is 

better than that of the OBF-AR model. Finally, it is also observed that for the case studies 

under consideration the accuracy of the OBF-ARMA model using the two-step method is 

very close to that obtained by the iteration method. However, the iterative method gives 

the possibility of selecting the prediction model with the minimum possible PPE. 

Therefore when the computational burden is the most important issue the two-step 

method can be used, otherwise the iteration method is the most effective. 

Case study 4.2 is similar to case study 4.1, except the fact that in case study 4.2 the 

system is weakly damped. The analysis in this case study also leads to the same 

conclusion as before. From the validation and residual analysis it is observed that the 

proposed identification schemes with OBF-AR and OBF-ARMA models are reliable for 

identification of weakly damped systems also.  

Case study 4.3 considers identification of a pilot scale distillation column used for 

separating Isopropyl Alcohol (IPA) and acetone. The distillation column is a part of a 
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reaction-separation system where the output from the reactor is the feed for the 

distillation column. It is already established that while both OBF-AR and OBF-ARMA 

models are effective in capturing the dynamics of linear systems,  

OBF-ARMA models are more accurate and more parsimonious. Because of this in case 

study 4.3, the distillation column was identified using OBF-ARMA model. 

Using the iterative method the dominant poles (4.54) of the four transfer functions were 

identified. 

   (4.54) ⎥
⎤

⎢
⎡

=
9702.08805.0
4112.09515.0

p

Then four OBF models, each with six Laguerre filters and one dominant pole given by 

(4.54), were developed. The estimated OBF model parameters are 

L11 = [0.0298    0.0037    0.0035    0.0018   -0.0005    0.0050] 

L12 = [0.0214    0.1017    0.0497   -0.0949    0.1252   -0.0112] 

   L21 = [0.0137    0.0326    0.0028    0.0348   -0.0128    0.0375] 

L22 = [-0.8330    0.2001   -0.2893    0.0377   -0.1374    0.0870] 

The time delay estimates in number of sampling intervals are  

τd =  ⎥
⎤

⎢
⎡ 50

The orders of noise model that give the most parsimonious model with reasonable 

accuracy were chosen. Accordingly, the order of the noise models chosen are  

nD = nC = 2. The two ARMA noise models are given by (4.55) and (4.56), respectively.  

 211 9082.09077.11 −− +−
=

qq
H

21 1225.08415.01 −− −− qq
 (4.55) 

 212 7607.07575.11 −− +−
=

qq
H

21 64265.02176.01 −− −− qq
 (4.56) 

The validation and residual analysis show that the model has acceptable accuracy. It is 

observed from Figure 4.35 that the simulation model also had good accuracy. The 

percentage prediction errors of the OBF model for the top and bottom temperatures, 

respectively, are 11.5293 and 18.7596. This ensures that the multi-step-ahead predictions 

will also have acceptable accuracy. Most of the remaining predictions are taken care of by 
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the noise model. This is observed from Figure 4.36 (a) and (b) where the one-step-

ahead prediction is compared to the system outputs using the validation data points. The 

PPE values of the OBF-ARMA model for the validation data points for the top and 

bottom temperatures are 0.4345 and 0.6562, respectively. The distributions of the 

residuals of the one-step-ahead prediction of the OBF-ARMA are shown in Figures 4.37 

(a) and (b). From both figures it is observed that the distributions of the residual are 

normal like distribution with mean close to zero. This together with the very small 

correlations among the residuals confirms that the residuals are close to white noise. 

Therefore, the 2×2 OBF-ARMA model of the distillation column had acceptable 

accuracy. The correlation among the residuals for the first 10 instants for the bottom and 

to temperatures are given by 

10-3×[0.5481 0.2218 0.0660 -0.0458 -0.0928 -0.1238 -0.1077 -0.0762 -0.0539      0.0405] 

10-3×[0.9227 0.9406 -0.4896 -0.4175 -0.7111 -0.5041 -0.1605 -0.1698 -0.0329                      

-0.0043] 

5.7.2 Closed loop Identification 

When system identification test is carried out in closed loop, the input sequence is 

correlated to the noise sequence and conventional OBF model development procedures 

fail to provide consistent model parameters. In this research three different methods that 

address the issue of closed loop identification were proposed. The methods are designed 

so that they address the two distinct aspects of the problem, namely, model development 

from closed loop data when the system is open-loop stable and when the system is open-

loop unstable. In all cases, both the system and noise model are considered important.  

Closed-loop identification of open-loop stable processes can be handled by any of the 

three proposed methods. Case study 4.4 clearly demonstrates that all the three approaches 

can be effectively used to develop OBF based prediction models from closed loop data of 

open-loop stable systems. The validation and the residual analysis also confirm this fact. 

However, the selection of the best structure for a given problem can be made based on 

comparison of the PPE. When, the difference between the PPE is small the OBF-ARMA 

model is preferable because the simulation model is simple and stable.  This is observed 

from the structure of the three model types given by (4.3) (4.71) and (4.76). 
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Note that the simulation model of the GOBF-ARMA model (4.3) is just the OBF model, 

and OBF model by design is stable. However, the simulation model of (4.71) and (4.76) 

is GOBF (q) / A(q) and it’s stability is not ensured because of the denominator A(q).  

For conducting closed-loop identification of open-loop unstable systems the structures 

OBF-ARX and OBF-ARMAX were proposed. The scheme for estimating the parameters 

of the models and the multi-step ahead prediction are developed in sections 4.3.3-4.3.5.  

Case study 4.5 demonstrates closed-loop identification of open-loop unstable processes 

that are stabilized by feedback controller. In such identification problems, the objective is 

to develop a predictor that is stable. It should be noted that the simulation and noise 

models, separately, are unstable. As it is shown in section 4.3.5 the unstable poles do not 

appear in the predictor, therefore the predictor is stable. In this case study, the model 

validation and the residual analysis confirm the effectiveness of the proposed closed-loop 

identification schemes.   

The last case study in Chapter 4, Case study 4.6, presents closed-loop identification of a 

level control system of the reflux drum of the distillation column discussed in  

Case study 4.3. As it is observed from the identification data shown in Figure 4.66 the 

noise level is of the output is low.  A preliminary study with all the model types show that 

the OBF –ARX model give slightly better prediction than GOBF-ARX. GOBF-ARMA 

model develops good prediction model when the correlation of the input and the noise is 

ignored and the GOBF-ARMA model is directly developed. This is probably due to the 

low level of the noise in the system. Therefore, in the case study the OBF-ARX model is 

developed using the closed-loop identification data. The PPE for the one-step-ahead 

compared to the output using the validation data is 0.6355 and as it is also observed in 

Figure 4.67 it is very small. The distribution of the residuals, shown in Figure 4.68, and 

the low level of the correlation among the residuals indicate that the residuals are close to 

white noise. Therefore the model has acceptable accuracy. 
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5.8 Summary 

In this chapter the results of the present research were presented and discussed. The 

results give solution to the research problems. An iterative scheme was developed that 

enables developing parsimonious OBF models that have acceptable accuracy starting 

from an arbitrarily selected poles. A method for estimating the time delay more accurately 

than the tangent method was developed. A unified scheme that will provide OBF plus 

noise models both from open-loop and closed loop data was developed. The methods for 

estimating the model parameters and the multi-step ahead predictions were formulated. 

The proposed methods were demonstrated with extensive simulation studies and real 

plant case studies and the result shows that they are effective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS 

6.7 Introduction 

One of the most important factors in selecting model structures is the computational 

burden in estimating the model parameters. Auto Regressive with Exogenous Input 

(ARX) and Finite Impulse Response (FIR) models have been popular because of the 

computational simplicity with which the model parameters are estimated. In both cases, 

linear least square method can be used. Output error (OE) and Box Jenkins (BJ) structure 

are very rarely used for complex problems, like MIMO, because of the heavy 

computation burden related to their parameter estimation. Parameter estimations in both 

OE and BJ involve nonlinear optimization. In addition, BJ models parameter estimations 

involve additional burden due to the large number of parameters, related to the four 

polynomials in its structure.  Due to these problems, BJ models are rarely used in MIMO 

system identification problems, even though they are believed to be the most flexible of 

the linear structures. 

Another important factor which is related to the quality of the models is consistency of 

the parameters. Structures suffering from inconsistency in their parameters will result in 

biased estimates of the parameters and the bias will not be eliminated even if the number 

of data points is increased to infinity. ARX and ARMAX models suffer from 

inconsistency in most open-loop identification problems.  This is because of the common 

denominator dynamics of the deterministic and stochastic components, represented by 

A(q), that the structure requires and which many practical open-loop problems do not 

satisfy.  

The number of parameters required to capture the dynamics of a system with acceptable 

accuracy is still another important issue in linear system identifications. This will affect 

both the identification and implementation phases of the model. It is known that, no 

matter what the linear structure is, when the number of parameters increases the variance 

error in parameters estimation increase[2]. Nelles [2] noted that for infinite data points, 

the variance error is directly proportional to the number of parameters to be estimated. 

This shows that models which need large number of parameters to capture the dynamics

 of a system will face the problem of increased variance error in the estimation of their 

parameters. On the other hand, during implementation like in MPC, an optimization 



 

 

178
problem is solved using the models to obtain the control output at each move. When 

the complexity of the model increases, obviously, the computational burden on the 

optimization at each control moves increases. Therefore, it is very advantageous both at 

identification and implementation stage to get models that are parsimonious in their 

parameters. Finite Impulse Response (FIR) models suffer heavily from this problem. 

They generally require large number of parameters to describe linear systems with 

acceptable accuracy.     

Estimation of time delay is another critical issue in linear model development. All 

classical linear model structures, except FIR, need the time delay of the system to be 

separately estimated and included in the model development process. The accuracy of the 

time delay estimation affects both the model parameter estimation and implementation in 

control systems. 

OBF models have several characteristics that make them very promising for control 

relevant system identification compared to most classical linear models. Their parameters 

can be easily calculated using linear least square method. They are consistent in their 

parameters for most practical open-loop identification problems. Parsimonious OBF 

models can be developed when the dominant pole(s) of the system is (are) known. Time 

delays can be easily estimated and incorporated into the model. However, there are 

several problems that were not yet addressed which this research attempted to address. 

Some of the most outstanding problems are addressed in this research. They are: 

(i) How to develop parsimonious OBF models when the dominant poles of the 

system are not known 

(ii) How to obtain a better estimate of time delay for second or higher order 

systems 

(iii) How to include an explicit noise model in the framework of OBF model 

structures and determine the parameters and multi-step ahead predictions 

(iv) How to address closed-loop identification problems in this new OBF plus 

noise model frame work 

6.8 Development of Parsimonious OBF model  

The first problem was addressed by developing a method in which the dominant pole(s) 

of the system are estimated and used to develop a parsimonious OBF model. The two 

approaches proposed in this research are:  
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(i) Develop OBF models with relatively larger number of parameters and 

estimate the dominant pole of the system. Then, develop a parsimonious OBF 

model using these estimated dominant poles. The minimum number of 

parameters with acceptable accuracy can be chosen by comparing the PPEs.  

(ii) Fix the number of OBF parameters to the desired parsimonious value and 

develop OBF model from arbitrarily chosen poles. Improve the accuracy of 

the OBF model by estimating the dominant pole and using it to develop 

improved OBF model iteratively.  

It was shown in Chapter 3, by appropriate mathematical derivations and extensive 

simulation studies that one or two of the dominant pole(s) of a linear system can be 

estimated with reasonable accuracy using the proposed FOPTD based or SOPTD based 

methods, respectively. Three different methods: the tangent, the moment and 

interpolation methods, of estimating the FOPTD parameters were compared and the 

interpolation method were found to be the simplest and most accurate method.  A novel 

method for estimating the SOPTD parameters was developed. The validity of the method 

was shown both by rigorous mathematical derivation and by relevant simulation studies. 

The proposed novel method can be used to estimate the SOPTD parameter from any noise 

free step response of a system. However, it is uniquely effective in estimations of the 

stated parameters from the step response of OBF models.  

6.9 Better Estimate of Time Delay  

The SOPTD method addresses the second problem also. It was shown in Chapter 3 and 

discussed in Chapter 5 that the proposed SOPTD based method gives a better estimate of 

the time delay than the tangent method which was used by Patwardhan and Shah [8]. It 

described in Chapter 5 that the deviation of the estimate of the time delay by the tangent 

method from the true value depends on the damping coefficient and natural period of 

oscillation of the estimated SOPTD model of the system.  The smaller the damping 

coefficient the larger is the deviation and it is directly proportional to the natural period of 

oscillation.  Therefore, based on the magnitude of the damping coefficient and the natural 

period the deviation has the potential to be significantly high. The proposed SOPTD 

based method removes this deviation by appropriately determining and subtracting it 

from the time delay estimate by the tangent method. 
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6.10 Open-loop identification Using OBF based prediction models  

Conventional OBF models are simulation models and they do not include explicit noise 

model in their structure. However, in many control system designs and implementations 

the noise model plays a very important role. In this research, BJ type models obtained by 

combining OBF model and conventional time series models are proposed. Models with 

these structures inherit all the benefits of OBF models and they provide explicit noise 

model.  

The OBF-AR model structure has an OBF deterministic and AR stochastic components. 

The model parameters are easily determined using the least square method. The step-by-

step procedure is given by Algorithm 4.1. The OBF-ARMA model structure has an OBF 

deterministic component and an ARMA stochastic component.  The parameters in OBF-

ARMA model are estimated using the iterative extended least square method or the two 

step method as given by Algorithm 4.2.  The multi-step-ahead prediction schemes for 

both model types were developed in Chapter 4.  

The effectiveness of the proposed structures and methods was demonstrated in Chapter 4 

using simulation and real plant case studies. The accuracies of the models both in the 

simulation and real plant case studies were validated by using the developed model to 

predict a separate validation data that is not used in identification and by residual 

analysis. All case studies confirmed the effectiveness of the proposed methods for open-

loop identifications. In addition, the accuracy of the noise models were validated by 

comparing the spectrum of the estimated noise models to the noise transfer function of the 

system. The comparisons showed that the spectrums of estimated noise models closely 

matched the spectrums of the noise transfer functions of the system.  

6.11 Closed-loop identification Using OBF based prediction models 

The input and noise sequences in closed-loop identification are correlated and 

conventional OBF model development procedures fail to provide consistent model 

parameters in such cases. In this research, three different methods that address the issue of 

closed loop identification using OBF plus noise models are proposed. Two of the methods 

are based on the direct identification approach with OBF-ARX and OBF-ARMAX 

models.  The third method is an indirect identification method using OBF-ARMA model 

with simulated input of the plant, which is not correlated to noise, in stead of the actual 
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input of the plant, which is correlated to the noise. The parameters of the OBF-ARX 

models are estimated using the least square method and the parameters of the OBF-

ARMAX models are estimated using the extended least square method as explained in 

Chapter 4. In addition, the multi-step-ahead prediction schemes were presented in 

Chapter 4. 

The proposed methods are designed so that they address the two distinct aspects of 

closed-loop identification problems, namely, model development from closed loop data 

when the system is open-loop stable and when the system is open-loop unstable.  

It was shown, by appropriate mathematical derivation and simulation studies in Chapter 

4, that closed-loop identification of open-loop stable processes can be handled by any of 

the three proposed methods. However, the selection of the best structure for a given 

problem can be made by comparing the PPEs. When, the difference between the PPEs is 

small the OBF-ARMA model is preferable, because the simulation model is simple and 

stable.  Closed-loop identifications of open-loop unstable processes can be handled using 

OBF-ARX and OBF-ARMAX models. 

All the proposed closed-identification structures and methods were demonstrated using 

simulation case studies and one real plant case study. Model validation was conducted in 

each case study using separate validation data and residual analysis. The case studies 

confirmed that all the three proposed methods are effective when they are appropriately 

used for identification problems they are designed for.  

6.12 Recommendations 

In this research, most of the outstanding problems related to linear OBF model 

development are addressed. Further research can be conducted in OBF based non-linear 

system identification and implementation of the results of the current research. The 

various nonlinear identification frame works can be used with orthonormal basis filters 

and the research can be extended in this direction also. Development of dynamic local 

linear neuron-fuzzy models with linear OBF models is one of the potentially attractive 

research areas in this respect.  Implementation is another area where further research can 

be carried out with potential benefit in the chemical and petrochemical industry. Research 

related to the implementations of OBF models in Model Predictive Control (MPC) 

systems and fault tolerant control are recommended for further research. 
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