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Abstract 

This thesis discusses the empirical modeling using system identification technique and 

the implementation of a linear model predictive control with focus on interacting series 

processes. In general, a structure involving a series of systems occurs often in process 

plants that include processing sequences such as feed heat exchanger, chemical reactor, 

product cooling, and product separation. The study is carried out by experimental works 

using the gaseous pilot plant as the process. The gaseous pilot plant exhibits the typical 

dynamic of an interacting series process, where the strong interaction between upstream 

and downstream properties occurs in both ways. 

The subspace system identification method is used to estimate the linear model 

parameters. The developed model is designed to be robust against plant nonlinearities. 

The plant dynamics is first derived from mass and momentum balances of an ideal gas. 

To provide good estimations, two kinds of input signals are considered, and three 

methods are taken into account to determine the model order. Two model structures are 

examined. The model validation is conducted in open-loop and in closed-loop control 

system. 

Real-time implementation of a linear model predictive control is also studied. Rapid 

prototyping of such controller is developed using the available equipments and software 

tools. The study includes the tuning of the controller in a heuristic way and the strategy to 

combine two kinds of control algorithm in the control system. 

A simple set of guidelines for tuning the model predictive controller is proposed. Several 

important issues in the identification process and real-time implementation of model 

predictive control algorithm are also discussed. The proposed method has been 

successfully demonstrated on a pilot plant and a number of key results obtained in the 

development process are presented. 
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Abstrak 

Thesis ini membahas tentang pemodelan empirikal menggunakan teknik identifikasi 

sistem dan implementasi satu model predictive control yang linier dengan fokus pada 

proses-proses yang berinteraksi secara bersiri. Secara umum, struktur yang melibatkan 

rangkaian sistem secara bersiri banyak dijumpai di proses plant yang mempunyai urutan 

pemprosesan, seperti pada input penukar haba, reaktor kimia, pendinginan produk, dan 

pemisahan produk. Kajian ini dilakukan dengan eksperimen menggunakan satu gaseous 

pilot plant sebagai proses yang dimodelkan dan dikendalikan. Gaseous pilot plant 

tersebut menunjukkan satu dinamik yang tipikal bagi satu proses yang berinteraksi secara 

bersiri, di mana berlaku interaksi dominan antara variabel downstream dan variabel 

upstream.    

Kaedah identifikasi sistem subspace digunakan untuk meramalkan parameter-parameter 

linier dari model. Model yang diusahakan diharapkan dapat mengatasi masalah tidak 

linear yang ada pada plant. Dinamik plant mula-mula diturunkan dari persamaan jisim 

dan momentum satu gas ideal. Untuk mendapatkan ramalan yang tepat, dua jenis signal 

input ditinjau dalam uji plant, dan tiga kaedah dipertimbangkan untuk menentukan model 

order. Dua jenis struktur model juga diuji dalam pemodelan. Pengesahan model 

dilakukan secara open-loop dan juga pada sistem pengendalian closed-loop.  

Implementasi secara real-time satu model predictive control yang linier juga dipelajari di 

thesis ini. Rapid prototyping pengendali tersebut dibuat menggunakan peralatan dan 

perisian komputer yang telah tersedia. Kajian ini melibatkan penalaan (tuning) pengendali 

secara heuristik dan strategi untuk menggabungkan dua jenis algoritma kontrol dalam 

satu sistem kontrol. 

Satu panduan sederhana untuk melakukan penalaan model predictive control diusulkan 

dalam thesis ini. Beberapa masalah penting berhubung proses identifikasi dan 

implementasi satu model predictive control secara real-time juga dibincangkan. Kaedah 

yang diusulkan telah berhasil dibuktikan pada satu pilot plant dan beberapa penemuan 

penting yang didapati pada proses pengembangan turut dibicarakan. 
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Chapter 1 

Introduction 

1.1 Motivation and Focus of Present Work 

As process technology grows rapidly, the degree of competition in all branches of the 

process industry increases. This situation puts pressure on each single site and plant to 

stay competitive. Even within a company there is an internal competition of being the 

most productive and effective, and delivering the best quality products [1]. Optimal 

economic operation of processes is one of the most important aspects to achieve or 

maintain the competitive advantages in process industry [2]. Plant operation depends on 

its control structure and plantwide control related to that design for complete process 

plants [3]. 

To increase the efficiency in process plants, their processing units tend to become more 

tightly integrated or interconnected, e.g., the raw materials are recycled and the hot 

process steams are heat exchanged with the cold process steams, so that the resources can 

be used more economically [4]. However, tight integration may make the plants more 

difficult to operate and control. Morud [4] points out that as integration become tighter, 

the behavior of the plant is modified, and may become very different from what could be 

expected by looking at the individual processing units. Furthermore, in some cases, 

integration may lead to instability, poor controllability, introducing new steady-states, 

limit cycles, or even chaotic behavior [4]. 

The advances of computer-based control system have brought an incredible revolution in 

process industries, especially in their control system strategy. Without any doubt, model 

predictive control (MPC) has attracted notable attention in process industries and become 

the most popular advanced process control (APC) strategy over past few years [5-13]. 

MPC consists of step-by-step optimization technique and offers the possibility to handle 

constraints on input and output signals during the design and implementation of the 

controller [14]. From the control engineering viewpoint, MPC promises a great benefit to 

maintain the optimal economic operation of plant and preserve the lifetime of 

equipments. One of the main drawbacks of MPC is the difficulty to incorporate model 
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uncertainties of plant explicitly, and for this reason, increasing attention has been placed 

on robust MPC problems [13-17]. 

In practice, the implementation procedure of MPC can be divided into two stages. The 

first is on developing the plant model, and the second is on developing the controller. 

Mostly, the system identification techniques are preferred to perform the plant modeling. 

Deriving the plant model based only on the physical laws for control purposes have rarely 

been attempted in practice. For a plant which consisting of interconnection structure, the 

problems of developing the plant model using the system identification techniques needs 

to be addressed. In particular, a number of issues regarding this problem arise such as 

how to perform the plant testing [18, 19] and what type of model structure should be 

considered [18-22]. A number of issues also arise in the real-time implementation of 

model predictive controller, ranging from how to design the hardware for the real-time 

implementation of MPC [23-25], to what extend do the model uncertainties effect the 

controller robustness [13-17], how to tune the controller [26-29], and how to design and 

evaluate a nonlinear MPC [30-34].   

These issues, followed by the eager for a better understanding of the theoretical insight as 

well as actual practice of MPC, are motivated this work in which the aim is to continue 

the investigation on the practical design and implementation of model predictive 

controller. 

1.2 Research Objectives 

The objectives of this research are stated as follows: 

a. To study and investigate the empirical modeling of an interacting series process using 

system identification techniques. 

b. To study and perform the real-time implementation of MPC algorithm for controlling 

an interacting series process. 

The scope of this research is limited to the following: 

a. The investigation of the interacting series process being modeled and controlled is 

performed using the gaseous pilot plant as a case study. 

b. Only linear time-invariant (LTI) models and linear controllers are considered. 
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1.3 Thesis Contributions 

The main contributions of this thesis are: 

a. The idea of using multiple-input single-output (MISO) structures in the system 

identification processes and the formulation to construct a multiple-input 

multiple-output (MIMO) state-space model for developing the empirical model of an 

interacting series process. 

With the development of subspace system identification method, which is designed to 

be able to perform MIMO identification, several researchers see that the identification 

of multivariable processes using MISO structures is not efficient, in view that there 

are common or correlated parameters among models for different output variables 

and/or correlated noise [18, 20]. However, it is found in this research that the LTI 

models obtained from MIMO identification are not robust against the plant 

nonlinearities. The robustness is shown when the LTI model constructed from MISO 

identification is used. The formulation to construct a MIMO state-space model from 

several MISO models is also presented in this thesis. 

b. A simple set of guidelines for tuning MPC controller. 

Based on the results of heuristic approach for tuning a linear model predictive control 

in real-time conditions, a simple set of guidelines for tuning MPC controller is 

proposed in this thesis. The guidelines consist of simple rules to adjust the parameters 

used to tune the MPC controller.   

The gaseous pilot plant is one of the available equipments for research purposes in 

Process Instrumentation and Control Laboratory, Department of Electrical and 

Electronics Engineering, Universiti Teknologi PETRONAS (UTP) Malaysia. Currently, 

there are several undergraduate and postgraduate students doing their research or project 

based on this plant. Therefore, the outcomes of the researches related with this plant 

would be beneficial for the current and future researches in the area of Process 

Instrumentation and Control. The contributions of this thesis associated with such 

purposes include the following: 
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a. The dynamics of the gaseous pilot plant based on the mass and momentum balances 

of an ideal gas. 

Before determining the structure and estimating the parameters of the plant model, the 

dynamics of the gaseous pilot plant is first derived based on the mass and momentum 

balances of an ideal gas. This derivation employs several linearizations. Should there 

be no retrofitting of the gaseous pilot plant, the result may also be used in further 

analysis and design of control and monitoring system in such a plant. 

b. The comparison of MIMO identification using step signals with sequential excitation 

and pseudo-random binary sequence (PRBS) signals with simultaneous excitation. 

Several researchers, for example Li and Georgakis [35] and Micchi and Pannochia 

[36], point out that for MIMO identification, the identified system can be perturbed 

simultaneously using PRBS signal. However, based on this research, that setting may 

not work well for certain plants. In some cases, the sequential excitation may be 

preferred. Such a comparison is presented in this thesis, and it is expected that the 

finding may serve as an insight for further investigation in the empirical modeling of 

the gaseous pilot plant using system identification techniques, especially in the design 

of the input signals. 

c. Rapid prototyping of an embedded model predictive controller using off-the-shelf 

components. 

The MPC algorithm presented in this thesis is carried out in real-time using available 

equipments, components, and software. Several available features have also been 

tested, and it is found that the gaseous pilot plant can indeed be controlled using such 

a prototyping environment. Hence, it is also plausible to perform further investigation 

in the implementation of MPC algorithm without necessarily have to write the low-

level code or design a compatible data acquisition card. 

d. Steady-state bumpless transfer of MPC using external feedback of manipulated 

variables. 

Bemporad et al. [37] present a method to make a smooth transition when the MPC 

controller is switched from manual to automatic mode. In this thesis, such a method is 

demonstrated in the real-time control of the gaseous pilot plant to produce the smooth 

transition (bumpless transfer) of actuators when the controller is switched from 
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proportional-integral-derivative (PID) to MPC in the steady-state condition. Hence, 

should there be a further investigation of the implementation of MPC in the gaseous 

pilot plant, the use of the external feedback of manipulated variables to make a 

steady-state bumpless transfer may also worthwhile to be considered. 

1.4 Thesis Organization 

This thesis is composed of six chapters with a joint bibliography. This chapter (Chapter 1) 

presents the motivation for the research, objective, and scope of study. The contributions 

of this thesis are also highlighted. 

Chapter 2 reviews some of the research work as the background of present research. The 

chapter starts with a discussion on the modeling of the dynamic systems including the 

classification of models used in most applications. The review is continued with outlines 

of the mass relationship of fluid, the dynamic behavior of series processes, and the idea of 

multivariable control system. A brief overview of system identification and model 

predictive control including their advantages and challenges are also presented. 

Chapter 3 presents the development of the empirical model of an interacting series 

process using system identification technique. The review of the related works is first 

presented in the introduction section. The methodology of the model development and 

analysis is presented in the subsequent section. Then, details of the identification 

processes are reported. Several important issues in the development of the empirical 

model of the interacting series processes are also discussed. A summary is given in the 

last section of this chapter. 

Chapter 4 presents the implementation of MPC algorithm in real-time control system. In 

the introduction, several related researches are presented. The methodology of the 

research for this particular part is presented in the subsequent section. The formulation of 

model predictive control algorithm is outlined in the second section. Details of the work 

are reported in the next three sections, started from design and configuration of a real-

time MPC controller, real-time implementation of model predictive control including 

analyses of model mismatch and controller tuning, and also the study of an alternative 

approach to combine PID and MPC algorithms in the controller. A summary is also given 

in the last section of this chapter. 
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Finally, Chapter 5 gives the conclusions of this thesis and proposes future research 

directions relevant to system identification and model predictive control especially for the 

interacting series processes. 

 



 7

Chapter 2 

Background to Modeling and Control of Interacting Series 

Process 

This chapter presents the review of the recent literatures and researches related to the 

present work. The review includes the overview of the dynamic system modeling and 

model classification, the basic theory of the mass relationship of fluid, the dynamic 

behavior of series processes, and the idea of multivariable control system. In the last two 

sections of this chapter, several advantages and current challenges in the system 

identification and model predictive control are outlined. 

2.1 Dynamic Systems Modeling 

Modeling is a procedure to formulate the dynamics effects of a system that will be 

considered into mathematical equations. The dynamic behavior can be characterized by 

the dynamic responses of the system to the inputs and disturbances, taking into account 

the initial conditions of the system. The different applications of models and the different 

modeling goals have lead to many different model structures. The model should be 

presented in a usable form, so that it should not be too complex, nevertheless it should 

give a sufficiently accurate description of the system. According to Roffel and Betlem, 

the model can be classified as follows [38]: 

a. White box versus black box models. 

White box models are based on physical and chemical laws of conservation, such as 

mass balance, component balance, momentum balance, and energy balance. The 

models give physical insight into the process and explain the process behavior in 

terms of state variables and measured variables. The state variable of the model is the 

variable whose rate of change is described by the conservation balance. These models 

can already be developed when the process does not yet exist. White box modeling is 

also known as physical modeling. 

Black box models or empirical models do not describe the physical phenomena of the 

process. They are based on input-output data and only describe the relationship 

between the measured input and output data of the process. These models are useful 
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when limited time is available for model development and/or when there is 

insufficient physical understanding of the process. 

It could be that much physical insight is available, but that certain information or 

understanding is lacking. In those cases, physical models could be combined with 

black box models. The resulting models are called gray box or hybrid models. 

b. Parametric versus non-parametric models. 

Parametric models consist of a set of equation that express a set of quantities as 

explicit functions of several independent variables, known as “parameters”. 

Parametric model need exact information about the inner structure and have a limited 

number of parameters. 

c. Linear versus non-linear models. 

Linear models have a property that is called superposition. That is, if for a given 

input, , the response is 1( )u t 1( )y t , and for an input, , the response is 2 ( )u t 2 ( )y t , then 

for an input 1 1 2( ) ( ) ( )u t u t t2u    the response is 1 1( ) ( ) 2 2 ( )y t y t y t   . The 

response of a linear model is also proportional to the input. That is, if for a given 

input, , the response is ( )u t ( )y t , then for an input ( )u t  the response is ( )y t , 

  . 

Linear dynamic models, such as time series models, are often used as an 

approximation of the true relationship between the process input and process output. 

Linear models often provide an accurate description of reality provided the operating 

range is limited. In that case, a first-order Taylor series approximation is appropriate, 

where the first-order derivative is used to describe the behavior around the operating 

point. Linear models are much easier to handle mathematically and easier to interpret 

as the relationship between input and output is explicit. 

It is generally not easy to solve non-linear models analytically, but sophisticated 

numerical methods embedded in commercial software packages are available to deal 

with several classes of non-linear models. Developing a non-linear model requires 

much insight and understanding of the developer as to what mechanism underlies the 

observed data. 
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d. Static versus dynamic models. 

In static model, the most recent output or dependent variables depend on the most 

recent values of the input or independent variables. In dynamic models, the state 

variables describe the change in dependent variable as a function of independent 

variables and time, the response is called the system transient. 

In process engineering, static model are, among others, used in optimization and 

process design, whereas dynamic models find their application in process control and 

prediction of the values of future process variables. 

e. Distributed versus lumped parameter models. 

In some cases, the independent and dependent process variables can vary along a 

spatial coordinate. For instance in a tubular reactor, temperatures, concentrations, and 

other process variables vary with the axial coordinate of the reactor. In the absence of 

micro-mixing, the system variables vary with the radial coordinate of the reactor. 

Spatial variations of process variables lead to complex models and consequently the 

solution of the model is difficult. Models that account for spatial variations are called 

distributed parameter models. A widely used method that approximates the behavior 

of distributed parameter systems is the division of the spatial coordinate into small 

sections, within each section the system properties are assumed to be constant. Each 

section can then be considered as an ideally mixed section and the entire process is 

approximated by a series of ideally mixed sub-systems. Such a system approximation 

is called a lumped parameter system. 

The advantage of a lumped parameter model over a distributed parameter model is 

that the lumped parameter model is much easier to solve. However, it needs to be 

ensured that the lumped parameter representation is an adequate approximation of the 

true process behavior. So that, some adequacy criteria of the model will be very 

useful. 

f. Time domain versus frequency domain models. 

For basic process control purpose, the goal is to eliminate or to compensate 

disturbances. The influence of these disturbances is determined by the amplitude and 

the frequency of the changes. Therefore, control engineers also like to describe 

systems in the frequency or Laplace domain. 
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The frequency domain offers the possibility to compose in an easy way the overall 

input-output relation of a complex system consisting of several interconnected 

subsystems, from the separate transfer functions.  

g. Continuous versus discrete models. 

In a continuous model, a variable has a value at any given instant of time. In a discrete 

model, a variable has only values at discrete instances in time, for example, every 

second. 

Discrete time models describe the state of the system at given time intervals and are 

therefore useful for efficient computation. When using computers for calculation of 

the model output, continuous models need to be discretized, since numerical solution 

methods require discrete models. Discretization of model equations refers to the 

approximation of (usually) the first and higher order derivatives in the model. There 

are several difference approximations that can be made, a forward difference 

approximation, a backward and a central difference approximation. 

h. Time-invariant versus time-varying models 

A time-invariant model does not change its parameters over time. For time-varying 

models, their parameters depend on time. It can be the functions of time, or perhaps 

some random variables in certain ranges. 

2.2 Mass Relationship of Fluids 

The model is used for a variety of applications, such as study of the dynamic behavior, 

process design, model-based control, optimization, controllability study, operator 

training, and prediction. Some modeling steps might require the knowledge of physical 

fundamentals, such as conservation balances. In this section the conservation balances for 

mass and momentum of fluids, in this case it is narrowed down to liquid and gas, are 

introduced. 

2.2.1 Mass balance 

For a liquid and gas buffer as shown in Figure 2.1 and Figure 2.2, the mass balance holds 

[38].  
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The following equation relates the rate of change in mass, m, to the difference between 

inlet mass flow, , and outlet mass flow, :  ,m inF F ,m out

, ,m in m out

dm
F F

dt
  . 

(2.1)

In case there are N inlet and M outlet flows, this equation may be written as: 

, , , ,
1 1

N M

m in i m out j
i j

dm
F F

dt  

   . (2.2)

Often the volumetric flow is used instead of the mass flow, which is: 

, ,m i i v iF F . (2.3)

 

 

Figure 2.1: Mass balance in a liquid tank with variable volume and fixed pressure.  

 

 

Figure 2.2: Mass balance in a pressure chamber with variable pressure and fixed volume. 

 

The relation in (2.3) only useful if the density, i , and volumetric flow, , are 

measured variables and if the densities of the flows are similar. Usually, the outlet flows 

,v iF
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all have the same composition, similar to the composition inside the buffer. The mass 

balance in (2.2) can then be written as: 

, , , , ,
1 1

N M

i v in i out j v out j
i j

dm
F F

dt
 

 

   . (2.4)

The density   in (2.4) is defined as the mass per unit volume at certain pressure, 

temperature, and composition: 

0 0 0, ,P T x

m

V
    

 
. (2.5)

This relationship holds at every instant in time. Therefore the rate of change in the mass 

of a system can be described by: 

dm dV d
V

dt dt dt

  . (2.6)

Substituting (2.6) to (2.2) results in: 

, , , ,
1 1

N M

m in i m out j
i j

dV d
V F F

dt dt


 

    . (2.7)

The density depends on the state variables: the pressure P, temperature T, and 

composition x. In the operating point , T , 0P 0 0x  it holds that:  

0 0 0( , , )0f P T x  . (2.8)

For changes in the state at operating point, the specific mass will change. For example, if 

the pressure rises, the density will increase. If the change in independent variables is 

small, in this case the pressure, the change in the dependent variable will depend linearly 

on the change in independent variable. 

If the pressure or temperature changes, the change in relative density for a pure 

component can be calculated from the following equation: 

   
0 0 0 0 0 0

0
0

, , , ,0 0 0

1 1

P T x P T x

P P T T
P T

   
  
              

0 . 
 

(2.9)
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The partial derivatives are constant in the operating point:  

  0
0 0

0

1
P P T T   

 


    . (2.10)

The constants in (2.10) are   and  , they are valid for the operating point , , 0P 0T 0x .   

is the isothermal bulk modulus (the inverse of the compressibility): 

0 0 0

0

, ,P T x

P 


 
   

, or 

0 0 0

0
, ,P T x

P
V

V
      

, 
 

(2.11)

and   is the thermal expansion coefficient, which describes the relationship in the change 

of volume with the change of temperature: 

0 0 0, ,0

1

P T x

V

V T
     

, or 

0 0 0, ,0

1

P T x

P

T



     

. 
 

(2.12)

Hence for changes in the state variables P and T at constant composition, the changes in 

density can be described by: 

1dP dT dP dT

t P dt T dt dt dt

    


   
        

. (2.13)

2.2.1.1 Liquid accumulation 

For the accumulation of liquid in a vessel, as shown in Figure 2.1, the mass balance is 

described in (2.2). If there is only one inlet flow and one outlet flow, this equation can be 

written as: 

, ,m in m out

dV d
V F F

dt dt

    , (2.14)

with the density   is a function of pressure and temperature, as described in (2.9). 

The parameter  , which is defined in (2.11), can be used if the pressure change is 

gradual, such that the heat produced during this change can also be removed, ensuring 

that the temperature remains constant. Usually this is hard to realize, and a correction has 

to be applied. If the pressure change is fast, such that all heat remains in the system, the 

adiabatic bulk modulus should be used: 

p
ab

v

c

c
  , 

 
(2.15)
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in which  is the specific heat at constant pressure and  is the specific heat at constant 

volume. This modulus also accounts for the temperature effect. For liquids, the ratio 

 is slightly larger than 1. The expansion coefficient 

pc vc

/pc cv   for most liquids is of the 

order of 10-3 K-1. Exceptions are water vapor, ethylene oxide, and mercury. 

If the temperature and pressure effects can be neglected, (2.14) can be reduced to: 

, ,m in m out

dV
F F

dt
   . 

 
(2.16)

 

If the inlet density is same with the outlet density, (2.16) becomes: 

, ,v in v out

dV
F F

dt
  . 

 
(2.17)

2.2.1.2 Gas accumulation 

For an ideal gas, it holds that [38]: 

nM PM

V RT
   , 

 
(2.18)

in which: 

n 

M 

V 

P 

R 

T 

number of moles 

molecular weight, kg/mole 

volume, m3 

absolute pressure, N/m2 

gas constant, N.m/mole.K 

absolute temperature, K. 

For an accumulation gas tank with fixed volume, as shown in Figure 2.2, with one inlet 

flow and one outlet flow, the mass balance is described in (2.14). As the gas buffer has a 

fixed volume,  = 0, hence: /dV dt

, ,m in m out

d
V F F

dt


  . 

 
(2.19)

From (2.18), the ideal gas law at constant temperature follows that: 

d M d

dt RT dt

P
 . 

 
(2.20)
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Substitution of (2.20) into (2.19) results in: 

, ,m in m out

MV dP
F F

RT dt
  . 

 
(2.21)

In (2.21), the ratio /MV RT  represents the mass capacity, , of the gas at constant 

temperature in a fixed volume, hence: 

,m gasCap

, ,m gas m in m out

dP
Cap F F

dt
  , . 

 
(2.22)

A similar equation can also be derived for the volumetric flow. At varying pressure but 

constant temperature and composition, it follows (2.13) that: 

d d dP dP

dt dP dt dt

  


  . 
 

(2.23)

Substitution (2.23) into (2.19) and (2.3) results in: 

, ,in v in v out

V dP
F F

dt

  


  . 
 

(2.24)

If the densities are the same, (2.24) becomes: 

, ,v in v out

V dP
F F

dt
  . 

 
(2.25)

In (2.25), /V   represents the compression capacity of the gas, , at a certain 

temperature and fixed volume. This equation is only valid in a certain operating range. 

,v gasCap

2.2.2 Fluid momentum balance 

Flow induction is often called inertia, since this phenomenon is a result of liquid inertia. 

For the reference volume in Figure 2.3, the momentum balance holds: 

external

dmv dv dm
F m

dt dt dt
   v

A

, (2.26)

with the external forces are: 

1 1 2 2externalF P A P  . (2.27)
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Figure 2.3: Reference volume in a fluid pipe [38]. 

In case the pipe cross-sectional areas 1 2A A A

P

, (2.27) can be simplified to: 

1 2( )externalF A P P A    . (2.28)

Since the mass of the reference volume is constant, combination of (2.26) and (2.28) 

results in: 

dv
A P m

dt
  . 

 
(2.29)

Substitution of the equations for the mass m lA  and the velocity  results in: /vv F A

/vdF Adv
m lA

dt dt
 . 

(2.30)

Thus for a pipe with length l, it follows: 

vdFl
P

A dt


  . 

(2.31)

2.2.3 Flow-through valves 

The flow-through valves are often described by the following relationship [38]: 

( )
. .

v
v v

P
F C f u

s g


 . 

 
(2.32)

where: 

vF  = volumetric flow, 

vC  = valve coefficient, 

u  = fraction of valve opening, 

vP  = pressure drop across the valve, 
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. .s g  = specific gravity of the fluid, 

( )f u  = fraction of the total flow area of the valve (varies from 0 to 1, as a function 

of u). 

Three common valve characteristics are: linear, equal-percentage, and quick-opening. For 

a linear valve, the fraction of the total flow area of the valve ( f ( )u

u

) as the function of the 

fraction of valve opening ( ) is given as 

( )f u u , (2.33)

while for an equal-percentage valve 

1( ) uf u   , (2.34)

with  is constant, and for a quick-opening valve 

( )f u u . (2.35)

2.3 Dynamic Behavior of Series Processes 

The overall dynamics of process plants with some interconnections or integrations can be 

very different from the dynamics of the individual units. For instance, material recycle 

and heat integration may dramatically alter the time constants of the plant, and may give 

rise to instability or oscillatory behavior (limit cycles), even when the individual units are 

stable by themselves. Moreover, plant interconnections may introduce fundamental 

limitations in the achievable performance of any control system [39]. 

One of the interconnection systems that commonly found in the plant is class of series 

processes. This section presents the dynamic behavior of series processes, which can be 

divided into two major categories: noninteracting series and interacting series. 

2.3.1 Noninteracting series process 

An example of a noninteracting series process is chemical reaction process performed in 

several steps (tanks), as shown in Figure 2.4. The block diagram in Laplace domain of 

such a process is shown in Figure 2.5, where X  represents the inlet concentration ( ), 

 represents the outlet concentration of the first tank ( ),  represents the outlet 

concentration of the second tank ( ), and so on.  represents the individual transfer 

function of the i

0C

1Y 1C 2Y

2C ( )iG s

th-tank. 
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Figure 2.4: A pH neutralization process with noninteracting series structure. 

 

 

Figure 2.5: The transfer function of noninteracting series process. 

 

Marlin [40] and Faanes & Skogestad [41] point out the important features of the system 

with noninteracting series structure as follows: 

a. The properties in one unit influence the properties in downstream units, but not the 

other way round. For example, in the process shown in Figure 2.4, the concentration 

in tank 2 does not affect the concentration in tank 1 but does affect tank 3. 

b. The model for the general noninteracting series of first-order systems can be 

developed by taking the Laplace transform of each unit and combining them into one 

input-output expression. For a series of systems shown in Figure 2.4, each represented 

by a transfer function ( )iG s  in Figure 2.5, so the overall transfer function is: 

1

1 1
0

( )
( ) ( ) ( ) ( )

( )

n
n

n n n i
i

Y s
G s G s G s G s

X s



 


  . 
(2.36)

For n first-order systems in series, this gives: 

1

0
1

0

( )

( )
( 1

n

n i
n i

n

n i
i

K
Y s

X s
s












)




, 

(2.37)
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with  and n iK  n i   are the gain and the time constant for individual units respectively. 

Thus, the model of noniteracting systems can be determined directly from the 

individual models. 

c. If each system is stable (i.e., 0i   for all i), the series system is stable. This follows 

from the important observation that the poles (roots of the characteristic polynomial) 

of the noniteracting series system are the poles of the individual systems. 

2.3.2 Interacting series process 

The second major category of series processes is interacting processes. The example of an 

interacting process is the level-flow process shown in Figure 2.6. 

 

 

Figure 2.6: A process with interacting series structure. 

 

Marlin points out some important features of the interacting series processes as follows: 

a. The interactions between upstream and downstream happen in both ways round. 

Therefore, the downstream properties also affect the upstream properties, for 

example, for the process shown in Figure 2.6, the exhaust pressure ( 3P ) influences 

both levels L1 and L2. 

b. The model for the general interacting series process of first-order systems can be 

developed by deriving the transfer functions of each individual units and combining 

them into one input-output expression. However, it results in poles of the interacting 

systems that are different from the poles of the individual systems. So that, even if 

each individual units is stable, there is no guarantee that the overall process is also 

stable. 
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Since series structures are commonly found in process plants, there is a need to construct 

such systems in a suitable model that can be used in various applications, such as for 

model-based control. The procedure for deriving the model of noninteracting series 

processes that can be used for model-based control applications can be found in [41], 

however, the procedures for interacting series processes, has not been reported. 

2.4 Multivariable Control System 

The aim of control system is to force a given set of process variables to behave in some 

desired and prescribed way by either fulfilling some requirements of the time or 

frequency domain or achieving the best performances as expressed by an optimization 

index. The process engineer design the process according to the best of their knowledge 

in the field by assuming some operating conditions. Later on, the process will run under 

some other conditions that support external disturbances usually not well known or 

determined. Also the characteristic of the process will change with time and/or the load. It 

is the role of the control system to cope with these changes, also providing a suitable 

behavior. The scope of control task varies widely. The main goal is to keep the process 

running around the nominal conditions. In other cases, the control purpose will be to 

transfer the plant from one operating point to another or to track a given reference signal. 

In some other cases, the interest lies in obtaining the best features of the plant achieving, 

for instance, the maximum production, minimum energy consumption or pollution, or 

minimum time in performing a given task [42]. 

The process to be controlled is an entity of which the complexity can vary from simple to 

a very complex system. Independently of its design, carried out taking into account 

control requirements or not, control design assumes that the equipment modules are given 

and are already interconnected according to the guidelines of process experts. Sometimes, 

analysis of expected performance with a particular control system may advise changes in 

the process or instrumentations (sensors and actuators). 

In order to control the process, some manipulated variables should be available, allowing 

introduction of control actions in the process to force it towards evolving in the desired 

way. In the kind of multivariable process, more than one manipulated variable is always 

available, providing more richness and options in controlling the process. These 

manipulated variables will act on the process through the corresponding actuators. To get 
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information about the process, some internal variables should be measured, being 

considered as output variables. Again, in the multivariable process, more than one output 

variable will be considered. The controlled variable could be these variables themselves 

or some other directly related to them. 

The input variables or signals acting on the process but not being manipulated to achieve 

the control goals should be considered as disturbances. These disturbance can be 

predictable (deterministic) or not. Also, the disturbance can be measurable or not. 

To study the behavior of a process is to analyze the various variables and their 

relationship. These variables can be [42]:  

a. External or inputs, being determined by other processes or the environment, acting on 

the process, and considered as: 

i. Manipulated variables, if they are used to influence the dynamics of the process. 

Actuators will amplify the control commands to suitable power levels to modify 

plant’s behaviors. 

ii. Disturbances, if they are uncontrollable outputs of other subsystems, or non-

manipulated inputs. 

b. Internal, being dependent on the process inputs, system structure, and parameters. 

They can be classified as: 

i. Outputs or measured variables, if they are sensed and provide information about 

the process evolution. 

ii. Controlled variables, if the control goals are based on them. They can be outputs 

or not, depending on the sensor’s availability and placement. 

iii. State variables, which are can be simply said as a minimum set of internal 

variables allowing the computation of any other internal variable if the inputs are 

known. 

If the process is physically available and some experiments can be carried out, the 

dynamic behavior of the process can be captured and (partially) represented by a model 

using identification and parameter estimation techniques. However, it is not easy (or may 

be not plausible) to make a model that really represents the whole dynamics of the 
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system. To simplify the study, it is necessary to make some basic assumptions. Several 

priori assumptions are necessary to be made, especially in this work, such as: linearities, 

lumped parameters, and time invariance. 

Multivariable control occurs in nearly all processes, because production rate, inventory, 

process environment, and product quality are normally controlled simultaneously. Some 

modifications to the PID feedback algorithm have been done to accommodate the 

requirements of multivariable control system. The wide applications of PID in feedback, 

cascade, and combined feedforward/feedback have indicated that the adoption of PID as 

the standard algorithm in 1940s was an appropriate choice. Perhaps the most remarkable 

feature of the PID is the success of this single algorithm in so many different applications. 

However, the development of the PID lacked a fundamental structure from which the 

algorithm could be derived, limitations could be identified, and enhancements could be 

developed. 

The developments of advanced multivariable control, such as MPC, give a great insight 

into the roles of both the control algorithm and the process in the behavior of feedback 

systems. These developments also provide a method for tailoring the feedback control 

algorithm to each specific application. Because a model of the process is an integral part 

of the control algorithm, the controller equation structure depends on the process model, 

in contrast to the PID controller, which has only one equation structure [40]. 

2.5 System Identification 

As mentioned in section 2.1, the system can be modeled based on physical and chemical 

laws of conservation, or based on input-output data and only describe the relationship 

between the measured input and output data of the process. System identification 

provides the techniques to construct an empirical model from input and output data. This 

section presents the introduction of system identification with special attention to the 

class of state-space models. 

2.5.1 Overview 

The schematic diagram of a dynamic system with input u, output y, and disturbance v is 

shown Figure 2.7. The input u and the output y can be observed, but not the disturbance v. 

The input u can be directly manipulated, but not the output y. Even if the inside structure 
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of the system is unknown, the measured input and output data provide useful information 

about the system behavior. Thus, it can be used to construct a mathematical model that 

describes dynamics of the system [43]. 

 

 

Figure 2.7: A system with input, output, and disturbance. 

 

System identification is a methodology developed mainly in the area of automatic control, 

by which the best model(s) can be chosen from a given model set based on the observed 

input-output data from the system. Hence, the problem of system identification is 

specified by three elements [43, 44]: 

a. A data set D  obtained by input-output measurements. 

The input-output data D  are collected through experiment. In this case, the 

experiment has to be well designed, which requires the ability to determine the input 

or test signals, output signals to be measured, the sampling interval, etc., thereby 

systems characteristics are well reflected in the observed data. Thus, to obtain useful 

data for system identification, it is necessary to have some priori information or 

physical knowledge about the system. 

b. A model set M , or a model structure, containing candidate models. 

A choice of model set  is a difficult issue in system identification, but usually 

several classes of discrete linear time-invariant (LTI) systems is used. Since these 

models do not necessarily reflect the knowledge about the structure of the system, 

they are referred to as black box models. One of the most difficult problems is to find 

a good model structure, or to fix orders of the models, based on the given input-output 

data. 

M
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c. A criterion NV  to select the best model(s), or a rule to evaluate candidate models, 

based on the N number of data. 

To find a model in the model set M , a criterion to measure the distance between a 

model and a real system is needed. In terms of the input u, the output of a real system 

y, and the model output ŷ , the criterion is usually defined as: 

1

0

ˆ( ( ), ( ), ( ))
N

N
k

V l y k y k u k




  , 
 

(2.38)

where  is a nonnegative loss function, and N the number of data. If the model set 

is parametrized as 

( )l 

{ , }  M M  ,   is a set of model parameters, then the 

identification in narrow sense reduces to an optimization problem minimizing the 

criterion  with respect to NV  . 

Given three basic elements in system identification, the best model  can be found 

theoretically if the following are satisfied: 

*M M

a. A condition for the existence of a model that minimizes the criterion. 

b. An algorithm of computing models. 

c. A method of model validation. 

Model validation is used to determine whether or not an identified model should be 

accepted as a suitable description that explains the dynamics of a system. Thus, model 

validation is based on the way in which the model is used, such as the fitness of the model 

to real data. 

A flow diagram of system identification is shown in Figure 2.8. It can be seen that the 

system identification procedure has an iterative or feedback structure. 

Models obtained by system identification are valid under some prescribed conditions. For 

instance, the models are valid for a certain neighborhood of working point. The models 

obtained by system identification also do not provide a physical insight into the system 

because parameters in the model have no physical meaning. As shown in Figure 2.8, a 

desired model cannot be obtained unless the identified models are iteratively evaluated on 

several model structures, model orders, etc. [43]. 
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Figure 2.8: A flow diagram of system identification [43, 44]. 

 

2.5.2 System identification for state-space models 

There are two main approaches for constructing state-space model, as it is shown in 

Figure 2.9, where the left-hand side is the subspace method, and the right-hand side is the 

classical optimization-based method. In the classical methods, such as prediction error 

method (PEM), a transfer function model is first identified, and then a state-space model 

is obtained using some realization technique. From the state-space model, the state 

vectors or the Kalman filter state vectors then can be computed. In subspace methods, 

however, the state estimates are first constructed from given input-output data by using 

simple procedure based on tools of numerical linear algebra, and a state-space model is 

obtained by solving a least-squares problem. If necessary, the transfer matrix then can be 

computed easily. 

Overschee and De Moor [45] point out that an important achievement of the research in 

subspace identification is to demonstrate how the Kalman filter states can be obtained 

from input-output data using linear algebra tools, i.e., QR decomposition and singular 

value decomposition. An important consequence is that, once these states are known, the 

identification problem becomes a linear least square problem in the unknown system 

matrices. This implies that one possible interpretation of subspace identification 

algorithms is that they conditionally linearized the problem, which, when written in the 

form of PEM, is a highly nonlinear optimization problem. Yet another point of view is 

that subspace identification algorithms do not identify input-output models, but they 

identify input-state-output models. 
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Figure 2.9: Subspace and classical methods of state-space system identification [43, 45]. 

   

2.5.3 Advantages and challenges 

Fassois and Rivera [46] point out that practical interest in system identification is driven 

by difficulties associated with deriving models from physical principles. Even when a 

model structure is available from physical principles, it is often necessary to apply the 

system identification techniques to estimate parameter values. Unlike physical modeling, 

the system identification develops the empirical models of systems based on excitation 

and response measurements, and therefore, its advantages can be simply addressed to its 

capability to overcome several obstacles in the physical modeling. Bohlin [47] notes that 

beside the time consuming, some well-known obstacles of the physical modeling in 

practice can be outlined as follows: 

a. Unknown relations between some variables. 

Engineers often do not have the complete mathematical knowledge of the object to be 

able to construct the model. 

b. Too many relations for convenience. 

When there is knowledge about the system being modeled, the result is often too 

complex to be possible to simulate with the ease required for parameter fitting. Many 

physical phenomena are describable only by partial differential equations. Simulation 

would then require high computational capability. 
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c. Unknown complexity. 

It depends solely on the designer to determine how much of the relations to include in 

the model. 

d. Model validation. 

It is also difficult to validate the physical model with the measurements data, 

especially when the model parameters are determined based on the literature or from 

separate experiments. 

From engineering viewpoint, the complexities and difficulties in the physical modeling 

mentioned above are often too involved to be really useful [45]. For engineers, the exact 

model of a system is not really of interest. The attention is commonly more in the 

potential engineering applications of models. The system identification techniques offer 

the methods that eliminate such difficulties. The quality of a model is dictated by the 

ultimate goal it serves. Model uncertainty is allowed as long as the robustness of overall 

system is ensured. Overschee and De Moor [45] point out that the system identification 

techniques trade-off model complexity versus accuracy.  

System identification is characterized by a strongly interdisciplinary nature that draws 

from systems theory, signal processing, optimization, and statistics [46]. The system 

being modeled and the applications of models also vary widely. Therefore, the challenges 

associated with applying system identification in practice cannot be limited in a single 

monolithic task. Focused on its applications for monitoring and control purposes of 

process plants, the challenges in system identification can be clustered into several major 

problems. Jørgensen and Lee [18] present the recent challenges in the applications of 

system identification techniques in process plants, which are addressed as the gap 

between research and practice, as follows: 

a. Plant testing. 

Commonly, industrial plant testing use simple input signals, like step or PRBS 

signals. In addition, it is almost always limited to perturbing one input at a time, 

mostly out of the concern for unpredictable effects on process behavior. Many 

literatures present the optimal test signal design methods including those that attempt 

to incorporate specific control requirements and process characteristics into design in 
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an iterative manner. However, such tailored and iterative designs have rarely been 

attempted in practice, if ever.  

b. Model structure. 

In practice, the popular structures are finite impulse response (FIR) models and Auto 

Regressive with eXogenous (ARX) models, both of which lead to linear regression 

problems. Other structures, like Auto Regressive Moving Average with eXogenous 

(ARMAX) models, Output Error (OE) models, and Box-Jenkins models, which 

require non-convex optimization, are less common but are used in some occasions.  

In some cases, multiple-input single-output (MISO) structures are used, in which a 

separately parameterized model is fitted for each output. According to Jørgensen and 

Lee [18], this practice is inefficient compare to the use of multiple-input multiple-

output (MIMO) structures, in view that the fact most industrial process outputs exhibit 

significant levels of cross-correlation. However, several researches [19, 21] also note 

that, for certain cases, MISO identification remains relevant. Hence, the preference of 

model structure remains in deliberation. 

c. Model estimation. 

So far, the most dominant method for estimating model parameters is by using PEM. 

Perhaps, this is owing to its flexibility and sound theoretical basis as well as the ready 

availability of software tools. However, with multivariable structures, PEM requires 

special parameterizations and non-convex optimization, a fact that perhaps explain the 

industry’s proclivity toward use of MISO structures. The subspace approach is 

designed to obviate these problems but requires relatively large data sets. 

The statistical methods such as the maximum likelihood estimation or Bayesian 

estimation have not found much use. This is probably because of the lack of 

probability information or the fact that these complex methods often reduce to the 

same least squares calculation as PEM under commonly made probability 

assumptions. Similarly, the use of nonparametric methods such as the frequency-

domain empirical transfer function estimation seems rare, probably due to the lack of 

sufficiently large data sets.   
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d. The use of estimated model. 

The PEM approaches with many structures such as ARX or ARMAX, as well as the 

subspace approach, yield a combined deterministic-stochastic system model. 

However, the noise part of the model is seldom used in control system design. This 

may be due to the belief that disturbances experienced during an identification 

experiment are not representative of those encountered during real operation. 

However, this practice bears some danger as the two model parts are identified to 

work together as a single predictor. Also, many process monitoring and soft-sensing 

schemes require precisely information on how variables are correlated to one another 

in time due to unknown inputs and noises. Hence, the noise part of a multivariable 

model, when fitted with appropriate data, can serve a very useful function. In 

addition, some control applications, such as those involving inferential estimation, 

should clearly benefit from availability of an accurate noise model. 

e. Model validation. 

The standard tests such as residual analysis and cross validation are widely used in the 

industrial practice. However, model uncertainties are seldom captured in a form that 

can be used for robust controller design. 

f. Closed-loop testing and iterative improvement. 

Many industrial processes have already in place one or more loops that cannot be 

removed for safety and/or economic reasons. Hence, it is suspected that closed-loop 

testing has already been practiced to some extent. However, it is not clear whether 

practitioners are always aware of potential problems that can arise with usage of 

feedback correlated data. The idea of continually improving the closed-loop 

performance by using data collected from a working loop is also very attractive from 

a practical viewpoint. It may connect well with the industry’s growing concern over 

maintaining performance of advanced controllers. 

g. Nonlinear identification. 

Several systematic methods for identifying first engineering principle models are 

available. Some implementations of nonlinear model predictive control have also 

been reported. The most common industrial approach to deal with process 

nonlinearities is by use of multiple models. Switching rules among different models 
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are ad hoc and seldom systematically designed. Some applications of artificial neural 

networks are reported but their effectiveness as causal models, e.g., as optimization 

and control would use them, is questionable at best. Despite the vigorous research in 

this area during past decade, the field still lacks a basic framework and a unifying 

theoretical foundation.  

2.6 Model Predictive Control 

Model predictive control refers to a class of algorithms that compute a sequence of 

manipulated variable adjustments in order to optimize the future behavior of a plant. MPC 

was originally developed to meet the specialized control needs of petroleum refineries. 

Nowadays, it has been used in a wide variety of application areas including chemicals, 

food processing, automotive, aerospace, metallurgy, and power plant [48].  

Model predictive control has been known to be one of the leading advanced control 

algorithms in industrial practice. One of its advantages includes the ability to explicitly 

handle constraints in inputs, states and outputs. An explicit internal model is used for the 

online optimal control calculation at each sampling time while considering the process 

behavior over a future, finite time horizon [49-52].  

An MPC results in a linear control law which is easy to implement once the controller 

parameters are known. The derivation of the MPC parameters requires, however, some 

mathematical complexities. Although this is not a problem for people in the research 

control community where mathematical packages are normally available, it may be 

discouraging for those practitioners used to much simpler ways of implementing and 

tuning controllers [53]. 

Model predictive control has influenced process control practice significantly during the 

past 20 years. Surveys by Qin and Badgwell describe MPC products has been available 

since past 10 years [51]. These surveys summarize product features that relate to 

important issues in process control practice. Even the theoretical insight into MPC 

increased rapidly, but actual practice evolved more slowly [52-55]. 

2.6.1 Historical perspective 

According to Froisy [54] and the survey by Qin and Badgwell [51], the history of 

industrial MPC can be outlined as follows: 
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The earliest efforts on industrial MPC could be dated back to Cutler and Ramaker [56] 

and Richalet et al. [57]. The initial work was probably being done at about the time of 

Chemical Process Control (CPC) 1 in 1976 [54]. A long sequence of MPC-oriented 

papers have appeared at every CPC since then, including one on Model Algorithmic 

Control (MAC) at CPC 2 in 1981 published by Mehra et al. [58]. Five years later, at CPC 

3 in 1986, a session was devoted to MPC with focus on industrial applications. Although 

rather simple by current standards, the applications were clearly economically significant. 

Two papers from Froisy and Richalet [59] and Garcia and Prett [60] foretold of new 

directions for Identification and Command (IDCOM) and Dynamic Matrix Control 

(DMC), the notable early MPC variants [54]. An important theme was the need to address 

a wide range of real-world issues such as multiobjective and economic optimization, 

dealing with hard and soft constraints, and robustness to modeling errors. 

There were two sessions on MPC at CPC 4 in 1991, attesting to its growing popularity. 

Some papers described industrial applications, while others from the academic 

community addressed theoretical issues such as stability of constrained MPC. The papers 

from Morari and Lee [61] and Ricker [62] dissected industrial MPC approaches, 

essentially reverse-engineering them in terms of traditional control engineering theory. 

The analysis comparing theory and practice, notably with practice as the first priority, 

was an important step. It exposes deficiencies both in practice and theory, thereby helping 

set new research directions. MPC was interpreted in a state-space framework, an 

important step needed to mold MPC with established theory such as linear quadratic 

control. However, MPC practice was largely formulated as a constrained optimization 

problem meaning that significant gaps still existed between theory and practice. 

By the time of CPC 5 in 1996, the MPC session had a “recent advances” paper and one 

on nonlinear MPC. Also notable was a survey and overview of industrial MPC by Qin 

and Badgwell [63] describing various commercially available MPC products. These 

products which had largely evolved during the previous 10 years tended to be 

descendents of IDCOM and DMC. A few such as Shell Multivariable Optimizing 

Controller (SMOC) and Robust Multivariable Predictive Control Technology (RMPCT) 

were not direct descendants. 

SMOC has the distinction of using state-space models and feedback via a Kalman filter, 

unlike the other cited products. More recent products, such as one from ABB, also use a 
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state-space formulation. The existence of several products confirmed the commercial 

significance and maturity of MPC technology. A detailed look at the survey exposes the 

fact that these products had ad hoc features needed to deal with inherent limitations, such 

as those noted by the academic community. Lack of an explicit disturbance model, 

special parameters for models with integrators and various parameters to deal with the 

finite model dynamic move plan calculation are examples. 

A notable paper was published between CPC 4 and CPC 5 in 1993 by Muske and 

Rawlings [64]. It provides a framework for infinite horizon, constrained MPC that 

matched real-world needs fairly well. For example, a structure for disturbance models that 

meets important requirements and demonstrates nominal stability for constrained control 

was described. Another important CPC 5 paper by Wright [65] shows how to formulate a 

general (linear) MPC optimization problem for efficient computation. 

There were no specific MPC sessions at CPC 6, but related papers appeared among other 

sessions. Eastman Chemical Company documented its experience with infinite horizon 

state-space MPC, presented by Vogel and Downs [66]. Their implementation was based 

on the Muske and Rawlings paper in 1993. Several papers addressed MPC with nonlinear 

models, including one that describes development of the nonlinear model predictive 

control (NLMPC) algorithm at ExxonMobil Chemical Company in conjunction with 

university and private collaborators by Young et al. [67]. 

2.6.2 Advantages and challenges 

There are extensive literatures presenting the advantages of MPC technology over other 

methods, amongst which that stands out are [49, 50, 52, 68, 69]. Based on these 

literatures, the advantages of MPC can be briefly summarized as follows: 

a. Because the concepts are very intuitive and at the same time the tuning are relatively 

easy, MPC is particularly attractive to staff with only a limited knowledge of control. 

b. MPC can be used to control a great variety of processes, from those with relatively 

simple dynamics to other more complex ones, including systems with long delay 

times or of non-minimum phase or unstable ones. 

c. The multivariable case can easily be dealt with MPC. 
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d. MPC intrinsically has compensation for dead times. 

e. MPC introduces feedforward control in a natural way to compensate for measurable 

disturbances. 

f. MPC has the extension to the treatment of constraints which is conceptually simple 

and can be systematically included during the design process. 

g. MPC can take account of actuator limitations. 

h. MPC is very useful when future references (such as robotics or batch processes 

applications) are known. 

i. MPC is totally open methodology based on certain basic principles which allow for 

future extensions. 

Despite its advantages and popularity, a number of issues in the MPC applications 

remain. Many recent researches have extensively explored the robustness of MPC to 

uncertainty in the process model and disturbance [13-17, 70], actuator limitations [49, 

71], and computational complexity [72, 73], while other researches have focused on its 

real-time applications [23, 48, 52, 53, 55, 74]. 

Notably, there are quite substantial literatures on system identification approach to 

develop an empirical model of a system and quite well developed literatures on 

implementing a model predictive control algorithm in process plant. However, few 

explore the issues on interacting series problem adopted to sytem identification and model 

predictive control implementation. Considering the defining benefits of modeling, 

analysis, and controller design of this type of process, the motivation to embark on this 

work is based on the potential for extending and scaling the research in the interacting 

series process using the methodology to be presented in the subsequent chapters.  
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Chapter 3 

System Identification of Interacting Series Process with 

Nonlinear Dynamics 

This chapter presents the empirical modeling of the gaseous pilot plant which is a kind of 

interacting series process with presence of nonlinearities. In this study, the discrete-time 

identification approach based on subspace method with N4SID (Numerical algorithm for 

Subspace State-space System Identification) algorithm is applied to construct the state-

space model around a given operating point. During plant testing, the system is probed in 

open-loop with variation of input signals. Three practical approaches are used and their 

performances are compared to obtain the most suitable approach for modeling of such a 

system. Performance comparison of three practical approaches are conducted using a 

fresh data set, which has not been used in the identification processes, to obtain the 

MIMO state-space model of such a system which is expected to be robust against the 

nonlinearities in the plant. Some important issues in the identification process and the 

construction of the linear MIMO state-space model of an interacting series process from 

input-output data using a linear system identification technique are also presented. 

3.1 Introduction 

In many instances, a dynamic system analysis and design requires a suitable mathematical 

model. Basically, there are two options to construct a mathematical model of a dynamic 

system. Scientist will be interested in models (physical laws) that carefully explain the 

underlying essential mechanisms of observed phenomena and that are not falsified by the 

available experiments. The necessary mathematical equipment is that of nonlinear partial 

differential equations. This is an analytical approach, which rigorously develops the 

model from first principles. For engineers however, especially in the industrial 

community, this framework is often much too involved to be really useful. The reason is 

that engineers are not really interested in the exact model as such, but more in the 

potential engineering applications of models. In this perspective, a mathematical model is 

only one step in the global design of a system. The quality of a model is dictated by the 

ultimate goal it serves. Model uncertainty is allowed as long as the robustness of the 
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overall system is ensured. Engineers, in contrast with scientist, are prepared to trade-off 

model complexity versus accuracy [45]. 

Nowadays, there are several mathematical modeling approaches being used in research 

communities as well as in practical applications. One of the most widely used is a class of 

state-space models. Based on the experiences, many industrial processes can be described 

very accurately by this type of models. Moreover, by now, the number of control system 

design tool that are available to build a controller based on this type of models, is almost 

without bound. For multiple-inputs multiple-outputs (MIMO) systems, the state-space 

representation seems as the only model that is conveniently to work with computer-aided 

control system design (CACSD). Most optimal controllers can be effectively computed in 

terms of the state-space model, while for other system representations, such as transfer 

function or polynomial, the calculations are not so elegant [45]. System identifications is 

a subclass of state-space modeling approach and basically it deals with the problem of 

obtaining “approximate” models of dynamic system from measured input-output data. 

This issue is of interest in a variety of applications, ranging from chemical process 

simulation and control to identification of vibration modes in flexible structures. Two of 

the methodologies in which dynamic systems have been modeled using the system 

identification are the prediction error method and subspace method. The prediction error 

method (PEM) is one of the most traditional system identification techniques. The PEM 

has excellent statistical properties provided the “true” PEM estimate can be found [75]. 

Subspace methods have their origin in state-space realization. Subspace identification 

method is a technique that has been developed since the late 80’s. It has attracted much 

attention, owing to its computational simplicity and effectiveness in identifying dynamic 

state-space linear multivariable systems. These algorithm are numerically robust and do 

not involve nonlinear optimization techniques [75]. However, there is no well-established 

rule tied to this approach for determining the structural parameter [76]. One of the most 

popular subspace identification methods is the N4SID developed by Overschee and  Moor 

[45]. 

A discussion on the open-loop responses of the systems with series structures is given by 

Marlin [40] which specified them into two categories: noninteracting and interacting 

series. The main difference between these categories is about how the downstream 

properties influence the upstream properties. For noninteracting series systems, the states 
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in one process unit influence the states in the downstream unit, but not the other way 

round. One example of such a system is pH neutralization performed in several tanks in 

series [77]. Morud and Skogestad [39] note the poles and zeros of the transfer function of 

a noninteracting series process are the poles and zeros of the transfer functions of the 

individual units. Thus, the overall responses may be predicted directly from the individual 

units. This also implies that if each system is stable, the series system is stable. 

In contrast with noninteracting systems, the downstream properties in interacting series 

processes influences upstream properties. Marlin [40] outlines the procedure for deriving 

overall transfer function of an interacting series system which is somewhat more complex 

than for a noninteracting system. Interestingly, the poles of the interacting system are 

different from the poles of the individual systems. The dynamic behavior of the 

interacting process has to be determined from the analysis of the overall transfer function, 

not the individual units. 

The use of system identification to develop the empirical linear model of processes with 

series structures have been reported by several researches. In their paper, Gatzke et al. 

[78] perform the parametric identification process of a quadruple tank using subspace 

system identification method. Such a system has series structure with recycles. As the 

input signals, the pseudo-random binary sequence (PRBS) is used. The identification 

process is carried out without taking into account the prior knowledge of the process, and 

no assumption are made about the state relationships or number of process states. Only 

the number of the states used in the resulting process model was determined. The 

developed model is then used for model-based control using Internal Model Control 

(IMC). Modeling is also performed using step tests and Aspen software for use with 

Dynamic Matrix Control (DMC). Weyer [79] presents the empirical modeling of water 

level in an irrigation channel using system identification technique taking into account the 

prior physical information of the system. The model structure is derived from mass and 

momentum balances that employed nonlinear equations. The identified process is a kind 

of interacting series process, however, the model only has a single output variable which 

is the water level in the downstream of irrigation channel. The developed model has a 

multiple-inputs single-output (MISO) structure. Sotomayor et al. [75] present the 

multivariable identification of an activated sludge process benchmark, which can be 

categorized as a system that has series structure with recycle, using subspace-based 
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algorithms. Six subspace algorithms are used and their performances are compared to 

obtain the best model. A discrete-time identification approach based on subspace methods 

is applied to estimate a nominal MIMO state-space model. The interesting result is that 

the selected state-space model is a very low-order one and it described the complex 

dynamics of process well. However, a drawback of the methods used is that the physical 

insight of the process in the models is lost, a characteristic of black box model. 

This work aims at identifying a LTI with lumped parameters state-space model of 

gaseous pilot plant that has a typical structure of an interacting series process where there 

exist strong influences between upstream and downstream variables. The process is also 

showing some nonlinearities either in the overall responses, such as the shiftiness of 

output variables, or in the responses of individual units from the respective inputs. The 

limited available measurements presence another challenge since the internal states of the 

system such as inlet, outlet, and internal flowrates are unknown. This work is an 

extension of the study on the practical approaches for constructing a MIMO state-space 

model from input-output data using a linear system identification technique that has 

appeared in [80]. In the paper [80], the authors have pointed out that the subspace 

identification method using N4SID algorithm was a more suitable method for gaseous 

pilot plant rather than PEM method, indicated by smaller identification and validation 

errors. In this work, the focus has been addressed to develop the proper procedure and 

method for constructing an empirical model of the interacting series processes from input-

output data using system identification technique. 

This chapter is organized as follows. Section 3.2 presents the methodology used in this 

work to develop the empirical model of an interacting series process using system 

identification technique. Section 3.3 introduces the subspace method of system 

identification. Section 3.4 presents the overview of an interacting series plant used in this 

study, i.e., the gaseous pilot plant. Some analyses of the plant dynamics and its possible 

model structures are also given in this section. Section 3.5 discusses the experimental 

designs, model structures and variable selections, order estimations, model validations, 

and the technique to merge several MISO models into a single MIMO state-space model. 

The analysis and evaluation of the developed models are given in section 3.6. Finally the 

summary is given in section 3.7. 
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3.2 The Methodology of Modeling and System Identification 

The flow diagram of the methodology used in the model development that would be 

evolved in this investigation is given in Figure 3.1. For the purpose of the study, a lab-

scale pilot plant that has the typical characteristics of the interacting series processes, i.e., 

the gaseous pilot plant, would be used.  

 

Figure 3.1: The flow diagram of plant modeling and system identification. 
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As illustrated in Figure 3.1, this research would begin with the study of subspace method 

of system identification using N4SID algorithm that would be used to estimate the model 

parameters of the plant. The work would be continued with the examination of the plant 

behaviors and followed by the physical analysis of the plant dynamics. This includes the 

study of the plant responses from the external available inputs. From the analysis of plant 

dynamics, two kinds of model structure would be proposed. The first model structure 

would be treated with two different kinds of input signals, while another model structure 

would only be perturbed with one kind of input: step signal, resulted in three different 

state space models. The open-loop validations would then be performed using a fresh data 

set which has not been used in the identification procedures. The model which gives the 

best performance in open-loop validation would be expected as the most suitable model 

of such a plant, and more importantly, expected to be robust against the plant 

nonlinearities when it goes to the real-time implementation of the model-based control 

system. 

Details of the model development and analysis of interacting series process described 

above are presented in these subsequent sections. 

3.3 Subspace Method of System Identification 

In discrete-time domain, a linear time-invariant system can be formed as 

( 1) ( ) ( ) (

     ( ) ( ) ( ) ( )

k k k

k k k k

   
  

x Ax Bu Λw

y Cx Du v

)k
; 

(3.1) 

where y  is the output vector, u  the input vector,  the state vector, w  and  are the 

innovation vectors, commonly refer to the plant noise and the measurement noise 

respectively, with zero mean and covariance matrix , and A, B, C, D, and  are 

the coefficient matrices of appropriate dimensions. The unknown parameters in the state-

space model are contained in these system matrices and covariance matrix R of the 

innovation process. 

x v

0R Λ

Subspace identification methods are based on the following idea. Suppose that estimates 

of a sequence of state vectors of the state-space model of (3.1) are somehow constructed 

from the input-output data. Then for the prediction error ε  its 

relation can written as 

( ),  0,1, , 1,k k N 
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where  is the estimate of state vector,  the input vector, ˆ xnx  unu  yny   the output 

vector, while η  and  are residuals. Since all the variables are given, υ (3.2) is a regression 

model for system parameters . Thus the least-squares 

estimate of Θ  is given by 
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This class of approaches are called the direct N4SID methods. This estimate uniquely 

exist if the rank condition 
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is satisfied. The covariance matrices of residuals are given by 
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Related to (3.1), it is assumed that the system is asymptotically stable, the pair (A, C) is 

observable and the pair of (A, B) is controllable [43, 45, 75]. 

The N4SID method is geometric in their approach, and involve the subspaces spanned by 

the rows and/or columns of matrices constructed from the input-output data. The general 

algorithm of the subspace methods involves three major steps [81, 82]: 

a. Unlike the more ‘classical’ estimation methods, such as prediction error method, 

based on a curve-fitting to derive polynomial models, the N4SID technique relies on 

subspace fitting strategies for the approximation of the extended observability matrix, 

iΓ , and/or the state sequence, iX , which are defined by 
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 1 2i i i i i j 1  X x x x x  . (3.7)

b. Secondly, a singular value decomposition of the previously estimated matrix is 

computed to estimate the order n of the state-space model. 

c. The final step is computing the matrices A, B, C, and D by solving over-determined 

sets of linear equations owing to least-squares or total least-squares computation 

techniques. 

3.4 The Gaseous Pilot Plant as an Interacting Series Process  

3.4.1 Plant overview 

To investigate the empirical modeling of an interacting series process, a lab-scale pilot 

plant that able to demonstrate the dynamics of gas inside the vessel and pipeline is used. 

This plant has a continuous air as feed, which is generated from a centralized compressor, 

and the pressure is maintained at 7 barg. There will be some pressure drop when the gas 

passes the inlet control valve (PCV202) and when enters the buffer tank (VL-202). The 

pressure will drop slightly further when the gas passes through the middle control valve 

(FCV211) and when it enters the primary tank (VL-212). These pressure balances are also 

affected by the opening of outlet control valve (PCV212). The pressure inside the buffer 

tank, which is also called the upstream pressure, is indicated by pressure transmitter 

PT202, while the pressure inside the primary tank, which is also called the downstream 

pressure, is indicated by pressure transmitter PT212. The schematic diagram of the 

gaseous pilot plant is shown in Figure 3.2. 

The control objective is to maintain pressure balance inside the primary tank as well as 

the buffer tank by manipulating the control valves. This requires the construction of a 

suitable mathematical model that able to describe its dynamics. The state-space model is 

chosen, since the control system that will be used is a class of model-based control that 

much involves the state-space system and matrices manipulations. 

During normal operating conditions, the operating range of pressure inside the buffer tank 

is from 4 to 6.5 barg while the pressure inside the primary tank will varies from 3.5 to 6 

barg. Figure 3.3 shows a photograph of the gaseous pilot plant being used in this research. 

 



 42

 

Figure 3.2: Schematic diagram of the gaseous pilot plant. 

 

Some difficulties for constructing a physical model and controlling such a plant can be 

addressed as follow: 

a. The engineering data of the gaseous pilot plant that records the size and thickness of 

vessels and pipes are no more available. 

b. The plant is supplied by a centralized compressor, which is also used to supply the 

compressed air to the other units. Hence, it will be some fluctuations occur during the 

normal operation. Furthermore, the measurement of inlet pressure is not available in 

the local control station. 

c. The volume of the buffer tank (VL-202) is about five times smaller than the volume 

of primary tank (VL-212). 

d. The measurements of inlet and outlet flowrates are not available.  

Considering these conditions, the empirical modeling of is preferred instead of physical 

modeling. 
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Figure 3.3: Photograph of the gaseous pilot plant. 

 

3.4.2 Analysis of plant dynamics 

Before the empirical modeling of the gaseous pilot plant using system identification 

technique is performed, the analysis of plant dynamics needs to be conducted. This 

analysis is aimed to get a priori knowledge about the interactions of variables inside the 

plant and employs some linearizations. 
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It is assumed that the density of the gas, in this case compressed air, is constant, so that 

the equation (2.25) can be used. Let  is the inlet volumetric flowrate,  is the 

volumetric flowrate from upstream vessel to downstream vessel, and  is the outlet 

volumetric flowrate. The mass balance in the upstream vessel can then be written as: 

1F F

F

2

3

1 1
1 2

V dP
F F

dt
  . (3.8)

It is also assumed that the isothermal bulk modulus   is constant, so that 1 /V   remains 

constant.  

The pressure in the source sP  is maintained to be constant at 7 barg, even though in the 

real application there will be some fluctuations. So, the volumetric flowrate F  can be 

written as: 
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with  is the valve opening of the input control valve (PCV202). 1u

It is assumed that the linear valves are used in the plant. The function of flowrate is 

linearized with the pressure difference. Marlin [40] points out that for the linearized 

system, the relation between flowrate and pressure difference in (3.9) can be rewritten as 

1 1 1 1( )sF K u P P  , (3.10)

with  is a constant coefficient that obtained from the valve coefficient, square-root of 

specific gravity of compressed air, and the linearization coefficient. 

1K

Hence, for , the relation becomes 2F

2 2 2 1 2( )F K u P P  , (3.11)

with  is the valve opening of the middle control valve (FCV211), and for : 2u 3F

3 3 3 2( )ambF K u P P  . (3.12)

with  and  are constant coefficients, which are obtained from the valve coefficient, 

square-root of specific gravity of compressed air, and the linearization coefficient.  is 

the ambient pressure of environment, and  is the valve opening of the outlet control 

valve (PCV212). 
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Then the dynamics of upstream vessel can be written as 
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Taking the Laplace transform, it becomes: 
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Again, the further assumption will be made. It is assumed that the dynamics of pressure 

balance can be approached using 1st-order transfer functions from the respective inputs, 

with time-invariant parameters. 

The opening valves , , and  have the following range (in percentage opening): 1u 2u 3u

1,2,30 100u  . (3.15)

To obtain the time-invariant parameters of 1st-order transfer function, it is assumed that 

the valves only vary at small range of their operating conditions. So that the following 

assumption is made: 
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Then the 1st-order transfer function of pressure dynamics in upstream vessel can be 

written as 
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For downstream vessel, its dynamics can be written as 

2 2
2 2 1 2 3 3 2

2 2 1 2 2 3 3 2 3 3

( ) ( )

          ( ) .

amb

amb

V dP
K u P P K u P P

dt

K u P K u K u P K u P


   

   
 

(3.18)
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Taking the Laplace transform, it becomes: 

 

 

2
2 1

2
2 2 3 3

3
3

2
2 2 3 3

( ) ( ) ( )

( ) ( )

          ( ) .

( ) ( )

amb

K
P s P s u s

V
s K u s K u s

K P
u s

V
s K u s K u s






 

  
 


 

  
 

2

  

(3.19)

Again, the further assumption will be made. It is assumed that the dynamics of pressure 

balance can be approached using 1st-order transfer functions from the respective inputs, 

with time-invariant parameters. 

The same assumption is made from the downstream pressure, which is 

2, ,
2 2 3 3

1
constant

( ) ( ) v ssK
K u s K u s

 


. (3.20)

Then the 1st-order transfer function of pressure dynamics in downstream vessel can be 

written as 

2, , 2 2, , 2
2 1 2

2, , 2 2, , 2

( ) ( ) ( ) ( )

1 1

v ss v ss amb

v ss v ss

K K K K P
P s P s u s u s

K V K V
s s

 

 
   

    
   

3 . (3.21)

The pressures inside the vessels will be in a steady-state if 

1 0
dP

dt
 , 

 
(3.22)

2 0
dP

dt
 . 

 
(3.23)

Assuming that the valves are linear, the volumetric flowrate of the gas passes through the 

ith control valve can be written as: 

,i ss i iF K u P  , (3.24)

with , , / .ss i v iK C s g .  and  is the of valve opening for linear valves, and . 

The steady-state pressure in the upstream and downstream vessel can be obtained by 

solving the following equations: 

iu 1, 2, 3i 

,1 1 1 ,2 2 1 2ss s ssK u P P K u P P   , (3.25)
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,2 2 1 2 ,3 3 2ss ssK u P P K u P P   amb

1

. (3.26)

From (3.17) until (3.26) it can be implied that 

1 1 2 3 2( ) ( , , , , )P t f u u u P t , and (3.27)

2 1 2 3( ) ( , , , , )P t f u u u P t . (3.28)

 

3.4.3 Analysis of plant responses 

The plant dynamics as the responses from the three external inputs: inlet control valve 

(PCV202), middle control valve (FCV211), and outlet control valve (PCV212) are 

partially analyzed as follows: 

3.4.3.1 The responses from changes in the inlet control valve 
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Figure 3.4: The step changes in inlet control valve (top), the upstream response (left-
bottom), and the downstream response (right-bottom) of the gaseous pilot plant, while the 

two others control valve are kept to be constant at 50% of valve openings. 
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Figure 3.4 shows the upstream and the downstream responses from step changes in the 

inlet control valve (PCV202), while the two others control valve (FCV211 and PCV212) 

are kept to be constant at 50% of valve openings. It can be analyzed from the figure that 

the response of PT202 in this condition has faster time constant compare to the response 

of PT212. When the inlet control valve is increased from 50% to 70%, the responses of 

both measurements, the PT202 and PT212, exhibit a first order system that quickly 

reached their steady-state condition. The upstream response reaches its steady-state 

condition at 6.5 barg from the initial condition: 6 barg, and the downstream response 

reached its steady-state condition at 5.7 barg from the initial condition: 5.1 barg. 

However, when the inlet control valve is reduced from 70% to 30%, both outputs 

continuously ramp down but do not reach their steady-state. Based on the definition of a 

linearity given in section 2.1, a linear system has to satisfy the following: 

Theorem 3.1: 

The response of a linear model is proportional to the input. That is, if for a given input, 

, the response is ( )u t ( )y t , then for an input ( )u t  the response is ( )y t ,   . 

Let all the input and output variables are normalized to their initial conditions. Let , , 

and  represent the valve opening of PCV202, FCV211, and PCV212 respectively, after 

being normalized to their initial conditions, which are 50% of valve openings. Let 

1u

1

2u

3u

y  and 

2y  represent the upstream and downstream pressures (PT202 and PT212) respectively, 

after being normalized to their initial conditions, which are 6 barg for PT202 and 5.1 barg 

for PT212. Let the plant inputs, u t , is defined as ( )

( )t

1 2 3( ) ( ) ( ) ( )u t u t u t u t   . (3.29)

Since FCV211 and PCV212 are kept to be consant at their initial conditions, then  

and u  in 

2 ( )u t

3 (3.29) are equal to zero. Let   equal to -1 and the upstream and downstream 

responses are analyzed separately. 

For , t  1y  reach its steady state condition at 0.5 barg (after normalization) when 

of valve opening. If the linearity satisfied, based on Theorem 3.1, 1( )u t ( )u t 20% 1y  

should reach its steady state condition at -0.5 barg (after normalization) when the input is 

1) u( (u t )t 20%    of valve opening. However, according to the response data in 
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Figure 3.4, this condition is not satisfied. The similar thing happens for 2y . Hence, it can 

be said that the upstream and downstream responses of the gaseous pilot plant are 

nonlinear from changes in the inlet control valve (PCV202). 

Suppose that the linear condition is expected, the steady-state plant gains from the inlet 

control valve are: 0.025 (barg/(% valve opening)) for upstream, and 0.03 (barg/(% valve 

opening)) for downstream. Even if the linearity responses can be obtained, this condition 

gives small linearity ranges compare to the desired operating ranges. So that, considering 

the desired operating ranges, it can be said that the nonlinearities of plant responses from 

the inlet control valve (PCV202) cannot be avoided. 

3.4.3.2 The responses from changes in the middle control valve 
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Figure 3.5: The step changes in middle control valve (top), the upstream response (left-
bottom), and the downstream response (right-bottom) of the gaseous pilot plant, while the 

two others control valve are kept to be constant at 50% of valve openings. 
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The upstream and the downstream responses of the gaseous pilot plant from step changes 

in the middle control valve (FCV211) are shown in Figure 3.5. The responses of the 

upstream pressure shows the inverse responses, which means the step responses changes 

initially in the opposite direction from the final steady-state [40]. Unlike the upstream 

response, the pressure in the downstream shows a similar response with the response from 

step changes in PCV202, but having a different gain and time constant. For both the 

upstream and downstream pressures, the responses from step changes in the middle 

control valve FCV211 exhibit nonlinearity. However, the steady-state gains of the plant 

from the changes in FCV211 are very small, especially for upstream response. This also 

implies that the middle control valve may give a poor controllability when it is used as the 

manipulated variable to control the upstream or the downstream pressures [83]. 

3.4.3.3 The responses from changes in the outlet control valve 
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Figure 3.6: The step changes in outlet control valve (top), the upstream response (left-
bottom), and the downstream response (right-bottom) of the gaseous pilot plant, while the 

two others control valve are kept to be constant at 50% of valve openings. 
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The responses from step changes in the outlet control valve (PCV212) for the upstream 

and the downstream pressures are shown in Figure 3.6. From the figure, it seems that both 

responses show the almost linear responses. Both plant outputs return to their initial 

conditions after the input variable (opening valve of PCV212) is brought back to its initial 

condition (50% of valve opening). In this condition, the output variables are also self-

regulated, which means the output variables tend to settle to steady-state after the input 

variable has reached a constant value. Either upstream or downstream pressure also has 

almost the same steady-state gain when the control valve PCV212 moves up or down. 

The upstream and the downstream responses also show a big steady-state plant gain, 

which denotes that the outlet control valve may produce a good controllability when it is 

used as the manipulated variable. 

3.4.4 Models structures 

From the analyses of plant dynamics and their responses of the changes on each control 

valve, and considering the interaction from one to another output variable, the dynamics 

of the gaseous pilot plant is then illustrated as in Figure 3.7, with  represents the 

transfer function of i

ijG

th-input to jth-output while y ijG   represents the transfer function of ith-

output to jth-output. 

 

Figure 3.7: The dynamics of gaseous pilot plant. 
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According to the representation given in Figure 3.7, the dynamics of the plant can be 

written as 

1 11 1 21 2 31 3 21 2yy G u G u G u G y        , (3.30)

and 

2 12 1 22 2 32 3 12 1yy G u G u G u G y        . (3.31)

There are two ways to develop the linear model from input-output data which have the 

relation as given above. These ways can be explained as follows: 

a. The first is by using a MIMO structure which represents the complete relation in 

(3.30) and (3.31). In more compact form, (3.30) can be rewritten as 

 
1

1 11 21 31 2 21

3

y

u

2y G G G u G y

u


 
   
  



1

, 
(3.32)

and (3.31) can be rewritten as 

 
1

2 12 22 32 2 12

3

y

u

y G G G u G y

u


 
   
  

 . 
(3.33)

By substituting (3.32) into (3.33), the following will be obtained: 

   
1 1

1 11 21 31 2 21 12 22 32 2 12 1

3 3

y y

u u

y G G G u G G G G u G y

u u
 

    
            
        

; 

 
 

(3.34)

   
1

21 12 1 11 21 31 21 12 22 32 2

3

(1 )y y y

u

G G y G G G G G G G u

u
  

 
       
  



 2

; 

 
 

(3.35)

   
1

1
1 21 12 11 21 31 21 12 22 32

3

(1 )y y y

u

y G G G G G G G G G u

u


  

 
      
  

. 

 
 

(3.36)

In the same way, (3.33) can be rewritten as 

   
1

1
2 21 12 12 22 32 12 11 21 31

3

(1 )y y y

u

 2y G G G G G G G G G u

u


  

 
      
  

. 

 
 

(3.37)
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(3.36) and (3.37) can be combined into a matrix notation, so that it becomes 

    
    

1 1
21 12 11 21 31 21 12 22 321

21
2 21 12 12 22 32 12 11 21 31

3

(1 )

(1 )

y y y

y y y

uG G G G G G G G Gy
u

y G G G G G G G G G u


  


  

                    

. 
(3.38)

b. The model structure in (3.38) implies that suppose the linear parameters ijG  and y ijG   

are obtained, then the variable 1y  and 2y  can be estimated or predicted from a given 

set of values: 1u , 2u , and 3u .  

Suppose that 1y  is to be predicted and there are no changes in , and , then 2u 3u 1y  is 

linearly depended on the . Nevertheless, the response of 1u 1y  from the changes in  

(PCV202), as shown in 

1u

Figure 3.4, is nonlinear. But, it also can be implied from the 

responses plot in Figure 3.4 that the upstream pressure, 1y , and the downstream 

pressure, 2y , have a good correlation. Hence, if the downstream pressure, 2y , is taken 

as one of the measured inputs, 1y  can seemly be approached as the linear combination 

of the function of the external inputs (u ) and 2y .  

Considering that involving the measurement of 2y  can be much useful for estimating 

1y  from the model, the relation in (3.30) can also be reformed as 

1

2
1 11 21 31 21

3

2

y

u

u
y G G G G

u

y



 
 
      
 
 

. (3.39)

And for 2y , it becomes 

1

2
2 12 22 32 12

3

1

y

u

u
y G G G G

u

y



 
 
      
 
 

. (3.40)

Unlike (3.38), the two model structures in (3.39) and (3.40) cannot be simply 

combined in a single matrix notation, since one output becomes the input of another 

model. Since having a variable as the input and at the same time as the output is not 
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allowed in system identification procedures, then the model parameters in (3.39) and 

(3.40) have to be estimated separately. 

Suppose all the linear model parameters  and ijG y ijG   in (3.38), (3.39), and (3.40) are 

successfully obtained using system identification technique, predicting 1y  using model 

structure in (3.38) only requires the measurement data of u , , and , while when 

model structure in 

1 2u 3u

(3.39) is used, predicting 1y  also requires the measurement data of 2y , 

and vice versa for the prediction of 2y . 

3.5 System Identification of Gaseous Pilot Plant 

In this section, three different approaches are used to perform the empirical modeling of 

the gaseous pilot plant using subspace system identification methods. Theses approaches 

can be briefly explained as follows: 

a. The first approach is using (3.38) as the model structure. The input signals are step 

signals, which will be applied to the three control valve sequentially. The resulted 

model is named Model 1. 

b. The second approach still using (3.38) as the model structure, while the pseudo-

random binary sequence (PRBS) signals are selected the input signal. The design of 

three PRBS signals is carried out independently and will be applied to the three 

control valves simultaneously. For this purpose, the approximate first-order plus delay 

time (FOPDT) transfer functions of the plant are considered and the information of 

the signal and noise statistics are analyzed. This model is named Model 2. 

c. The third approach is by using (3.39) and (3.40) as the models structure. The step 

signals are chosen as the input signals, and the identification processes are performed 

as two separate MISO identifications. The MISO models are further combined to a 

single MIMO state-space model. The resulted model is named Model 3. 

The experimental setup that would be used to perform system identification processes of 

the gaseous pilot plant in this research includes the following: 
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a. Hardware packages 

To design the plant testing and data acquisition configurations, a general purpose 

personal computer (PC) named host PC would be used. As the real-time processor, a 

kind of Pentium-based industrial computer called xPC TargetBox would be 

employed. A Diamond-MM-32-AT analog-to-digital (A/D) and digital-to-analog 

(D/A) converter would be used as the data acquisition module. This module includes 

16-bit A/D converter as the analog input module and 12-bit D/A converter as the 

analog output module. 

b. Software packages 

MATLAB and Simulink softwares would be used to design the plant testing and data 

acquisition applications. To build the real-time application, Real-Time Workshop 

(RTW) and xPC Target would be employed. A MATLAB script would be created to 

monitors and logs the data in every one second and then automatically stores the 

logged data into a spreadsheet file when the application finished. 

To estimate the model parameters, the System Identification Toolbox from MATLAB 

would be used in this work. This toolbox provides a subspace system identification 

tool using N4SID algorithm that can be called using n4sid syntax. 

3.5.1 Model 1 

3.5.1.1 Plant testing 

Considering the operating conditions of the plant, the step input signal is designed to have 

the amplitude range from 30% to 70% of valve opening. The sampling time used in the 

experiment is one second, and the total recorded data is 4500. The identification process 

would be carried out off-line using the first half of the data set (2250), whereas the 

remaining data would be used for model validation.  

Figure 3.8 shows the input-output data used in the development of Model 1. Initially, the 

three control valves are maintained at 50% of valve opening until both outputs are 

considerably in steady-state conditions. The step signal is then applied to the inlet control 

valve, while the other two control valves are maintained to be constants. The same 

procedure is then applied to the middle control valve and the outlet control valve. The 
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step signals which are transmitted to these three control valves have the same length and 

amplitude. 
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Figure 3.8: Input signals and plant responses for the development of Model 1. 

 

It may be noted that the open-loop identification procedure would be conducted and the 

purely deterministic case would be considered. 

3.5.1.2 Model structure and variable selection 

Since (3.38) is used as the model structure, the state-space model that will be constructed 

in this sub-section has three inputs and two outputs. The first output is represented by the 

pressure inside buffer tank (upstream pressure) that is indicated by the pressure 

transmitter PT202, while the second output is represented by the pressure inside primary 

tank (downstream pressure) which is indicated by the pressure transmitter PT212. The 

plant inputs are represented by the opening of the three control valves: PCV202, FCV211, 

and PCV212, respectively. This model structure is illustrated in Figure 3.9. 
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Figure 3.9: The schematic diagram of the first model structure. 

 

3.5.1.3 Order estimation 

There is an extensive literature on order estimation algorithms for linear, dynamical, 

state-space systems that includes [84-86]. Nevertheless, Sotomayor et al. [75] point out 

that there exist only few references dealing with the estimation of the order in the context 

of subspace identification methods. In this research, three approaches are used for 

estimating the order of state-space model, i.e., by examining the singular value 

decompositions of N4SID algorithm, the Hankel singular values, and the simulation 

errors. 

 

Figure 3.10: Model singular values plot with the suggested model order (red) given by 
N4SID algorithm. 

 

As outlined in the section 4.2, the N4SID algorithm performs the singular value 

decomposition to estimate the order n of the state-space model. The first consideration to 
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determine the model order in this work is by examining the results of such 

decomposition. Figure 3.10 shows the results of singular value decomposition performed 

by N4SID algorithm, which suggests the system order is n = 4. 

 
Figure 3.11: Hankel singular values plot. 

 

The second approach to determine the model order in this work is by examining the 

Hankel singular values that define the “energy” of each state in the system. This method 

is adopted from model reduction techniques [87, 88] with a priori assumption that greater 

model order gives better estimation. The idea is to observe the states that much influence 

the overall system, since keeping larger energy states of the system preserves most of its 

characteristics in terms of stability, frequency, and time responses [87, 88].  

For given a stable state-space system, with A, B, C, and D are its coefficient matrices, the 

Hankel singular values, H , are defined as [87-90] 

( )H i  PQ , (3.41)

where ( )i PQ  denotes the i-th eigenvalue of PQ, and P, Q are controllability and 

observability grammians determined by the discrete-time Lyapunov equations 

0T T  APA P BB , (3.42)
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0T T  A QA Q C C . (3.43)

With an assumption that a greater model order may give a better estimation result, then 

the 20th-order state-space model is first constructed from input-output data using N4SID 

algorithm. The obtained coefficient matrices of this model (A, B, C, and D) are used to 

calculated the Hankel singular values of its states, hence the contribution of each state to 

overall system characteristics could be analyzed. The plot of the Hankel singular values 

of such a system is given in Figure 3.11. As shown in the figure, the first four orders of 

the system store the most its characteristics. However, the greater orders such as 5 or 6 

are also possible choices.  

 

Figure 3.12: Relative square error (RSE) plot of Model 1. 

 

The third approach is by choosing the order n that minimize the simulation errors. 

According to Bastogne et al. [81] and Sotomayor et al. [75], a more practical procedure 

for order estimation is to choose the value n that minimize simulation errors. Figure 3.12 

shows relative square errors of the system generated using N4SID algorithm, from order 

to 20. Among the 20 variations of the model order, it is found that the 41 n  th-order 

system gives the minimum simulation errors. 
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Considering the suggested order by N4SID algorithm from the singular value 

decomposition, the inspection of the Hankel singular values, and the observation of the 

relative estimation errors indexes, the state-space model of gaseous pilot plant for Model 

1 is chosen to be of 4th-order. 

3.5.1.4 Identification result and model validation 

To obtain the parameters of Model 1, in this case the elements of its coefficient matrices, 

the input-output data shown in Figure 3.8 are first divided into two sets of data. The first 

set of data, which are contain the input signals and the plant responses during the first 

2250 sampling time, are used to estimate the model parameters using N4SID algorithm. 

The pre-treatment of the input-output data such as noise filtering and outlier removal are 

not conducted, since the data seem to have a big signal-to-noise ratio (S/N ratio) and no 

outliers are detected. 

From the results of parameter identification and estimation using N4SID method, the 

Model 1 has state coefficient matrices for the discrete linear time-invariant with one 

second sampling time as shown in (3.44) until (3.47). The poles of plant model (the 

eigenvalues of A matrix), which are shown in Figure 3.13, are inside the unit circle 

denote that the system is stable. The poles closer to the unit circle are related to the slower 

system dynamics. The poles close to 1, shown that the data set seems to contain a 

phenomenon known as “co-integration” in econometrics [75]. Based on this observation, 

it is possible to obtain models which produce a one-step-ahead prediction error much 

smaller [75]. 

0.9959 0.0031 0.0069 0.0017

0.0021 0.9847 0.0250 0.0246

0.0017 0.0216 0.9374 0.0463

0.0095 0.0040 0.0157 0.9572

  
  
 
    

A ; (3.44)

0.00003 0.00001 0.00002

0.00018 0.00020 0.00006

0.00039 0.00041 0.00006

0.00018 0.00012 0.00001

  
   
 
  

B ; (3.45)

28.405 12.521 0.110 0.096
;

34.682 5.394 0.011 0.013

   
   

C  (3.46)

0 0 0

0 0 0

 
  
 

D . (3.47)
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The comparison of the outputs generated by Model 1 and the real outputs of the plant 

used as the validation data (the input signals and the plant responses during the last 2250 

sampling time) are shown in Figure 3.14. The solid line represents the real measured 

outputs of the plant, while the dotted line represents the simulation output produced by 

Model 1. The simulation starts initially with an estimated state. 

To examine the goodness of fit of the model, the percentage of the output that the model 

reproduces, to be called the best fit criterion, is used. For N number data, The best fit 

criterion of a model is calculated as [91]: 

Best Fit = 1

1

ˆ| |
1 100%

| |

N

i i
i
N

i
i

y y

y y





  
  
  
 




, (3.48)

with y  is the mean of measured output. The best fit criterion of Model 1 for identification 

and validation data are shown in Table 3.1. 

 

Figure 3.13: Location of the poles of Model 1. 
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Figure 3.14: The comparison of real output and simulated output generated by Model 1 
for upstream pressure (top) and downstream pressure (bottom). 

 

Table 3.1: The Performance of Model 1. 

Best fit criterion (%) 
Plant output 

Identification data Validation data 

PT202 (upstream pressure) 35.78 66.41 

PT212 (downstream pressure) 55.40 74.78 

 

3.5.2 Model 2 

Another way to model the dynamic characteristics of a process is by using frequency 

domain representation. Frequency response of an input-output data set,  and ( )u t ( )y t , is 

given by 

( )
( )

( )

y i
g i

u i




 , 
 

(3.49)
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where ( )y i  and ( )u i  are the Fourier transforms of the output and input sequence 

respectively. This equation implies that to characterize the behavior of a process over a 

given frequency range, the input signal must be rich (contain sufficient power or strength) 

in that frequency range. If ( )u i  is small, then the corresponding excitation in ( )y i  is 

also small. Hence, the small errors in y or u will cause large errors in the model at that 

frequency. This insight will be used in designing input signals for identification tests. 

One of the commonly employed input signals is the pseudo-random binary sequence 

(PRBS) signal. A PRBS consists of a series of up and down step changes in the input 

variable. It is a deterministic, two-state binary sequence.  

The PRBS signal has the following characteristics: 

a. A PRBS perturbs the system around a steady-state and does not result in significant 

deviations from this value. Since the test can last over a significant period, this is very 

important in preventing significant upsets to the production schedule during the tests. 

b. The frequency content of the PRBS can be adjusted relatively easily to meet the 

desired specifications on the desired frequency range. 

c. To increase accuracy of estimates, the PRBS signal can be repeated many times. 

According to Brosilow and Joseph [92], detail of PRBS including its properties can be 

explained as follows: 

a. It is a periodic sequence with amplitude a  and period P. The value of the sequence 

changes at discrete times ( ck T ) where k is integer and cT  is called clock tick time. 

b. In every period of length P there are T clock ticks ( / cT P T ). There are / 2T  

intervals over which the signal is of length 1 (one clock tick), / 4T  intervals over 

which the signal is of length 2, / 8T  intervals over which the signal is of length 3, and 

so on. This distribution effectively perturbs the plant over a wide variety of frequency 

ranges. T is given by 2 1,nT    with n is the number of shift registers used to 

generate the PRBS signal.  
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c. The power spectrum of a PRBS is given by 

22 sin( / 2)( 1)
( ) ,

/ 2

2
,  1, 2, , , , .

c
uu

c

c

TT

T T

k
k T etc

TT






 
   

 

   
 

(3.50)

The value of   will be explained further. 

3.5.2.1 Preliminary test 

The objective of the preliminary test is to get an overview about the nature of the system 

being modeled. During the pre-testing phase, it is assumed that there are no faulty and 

out-of-calibration instruments, sensors, and/or improperly sized or installed valves [92]. 

The preliminary study of the plant responses is expected to give an estimate of the 

responses time (order of magnitude estimates) and the process gains. The data also can be 

used to compute the statistics of noise. This includes the standard deviation of the noise as 

well as a rough idea of the frequency content of the noise [92]. 

If it is available, the first-order plus delay time (FOPDT) transfer function of the plant can 

also be considered as the prior information of the plant, and be further used to design the 

input signals [92]. However, since there are nonlinearities in the gaseous pilot plant, it is 

not plausible to obtain the true FOPDT transfer functions of the plant outputs from the 

respective plant inputs (control valves). In this work, the prior information of plant are 

chosen as the FOPDT transfer functions that best fit to the step responses data which is 

used in the development of Model 1.  

The empirical estimations to determine the process gains, time constants, and delay times 

of the gaseous pilot plant from the respective inputs are conducted in batches form for 

each plant outputs using the prediction error method [91]. The data of plant outputs are 

also used to determine the statistical properties of signals and noises, in this case their 

standard deviations, which be further used to calculate the signal-to-noise (S/N) ratio. 

Based on the empirical estimation results, the first-order plus delay time transfer 

functions of upstream and downstream plant outputs, PT202 and PT212 respectively, are 

shown in Table 3.2. The statistical properties of signals and noises of both plant outputs 

are shown in Table 3.3. 
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Table 3.2: The FOPDT transfer functions of plant outputs from the respective inputs 

Plant inputs Plant output 
PCV202 FCV211 PCV212 

PT202 
0.054

38 1s 
 0.029

2 1

se

s




 
0.06

102 1s




 

PT212 
120.046

61 1

se

s




 

0.068

140 1s 
 

0.109

74 1s




 

 

Table 3.3: The standard statistical properties of signals and noises 

Standard deviation Plant output 
Signal Noise 

Signal-to-noise 
(S/N) ratio 

PT202 0.5990 0.0068 7760 

PT212 0.7812 0.0065 14444 

 

3.5.2.2 Input signals design 

The key information that is needed to design a PRBS signal is the specification of the 

frequency range of interest. Suppose that the process has an open-loop dominant time 

constant equals to , the suitable frequency range of interest in the control will be 

1 
 

  . 
 

(3.51)

As suggested in [92, 93] the values are 3 for   and 2 for  . This assumes that a control 

system will be designed so that the plant would respond at least twice as fast in the 

closed-loop as the open-loop responses time. 

The PRBS signal has low frequency power spectral amplitude given by  

2 ( 1
( )uu

T

T

 )
  , 

 
(3.52)

and is reduced to half of this value at 2.8 / cT  . 
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The lowest frequency perturbed is given by k = 1 in (3.50), which is 

2
low

cTT

  . 
(3.53)

So that, for practical purpose, the PRBS perturbs the system over 

2 2
PRBS

c cTT T

.8   . 
 

(3.54)

Although there would be some perturbation outside this range, but it decays rapidly with 

frequency. 

From (3.51) and (3.54), it can be concluded that 

2.8 2
,  and 2 .

2.8cT T
  


    (3.55)

Thus the clock tick time is determined by the highest frequency of excitation desired, and 

the period of the PRBS is determined by the lowest frequency. 

The number of shift registers used to generate the PRBS signal, n, commonly is chosen so 

that it is closest to  2 1T   .n

Since the signal will be sampled, the sampling rate also has to be considered. According 

to the sampling theorem, the signal should be sampled at sampling rate that is  

s
high

T



 , 

 
(3.56)

where high  (rad/sec) is the highest frequency present in the signal. Then from (3.54) and 

(3.56), the following is implied 

2.8s cT T


 . 
 

(3.57)

In practice, it is recommended to use a sampling time at least 10 times smaller than the 

clock tick time [92]. 

The amplitude of PRBS is selected based on the range over which the controlled variable 

is allowed to change using the knowledge about the process gain. Normally, the higher 
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amplitude will produce the higher signal-to-noise ratio (S/N ratio). The signal to noise 

ratio is estimated from 

2

2
/  s

N

S N ratio



 , 
 

(3.58)

where s  is the standard deviation of signal, and N  is the standard deviation of noise. A 

signal to noise ratio of at least 6 is recommended by practitioners [92]. 

The information about PRBS signals will be used to design the input signals for system 

identification of the plant. The input signals, which will be transmitted to the three control 

valves (PCV202, FCV211, and PCV212), are designed independently. The design is 

based on the step responses data and the FOPDT transfer functions that have been 

obtained during preliminary test. Considering that there are two outputs of plant, which 

each of them has different plant dynamics for the respective input, then the plant response 

that has the longest time constant will be considered for designing the PRBS signal. Table 

3.4 shows the parameters used in the design of the PBRS signals in this regard. 

Table 3.4: PRBS signals design of the three plant inputs 

Plant input 
PRBS parameter PCV202 FCV211 PCV212 

max  0.0328 rad/sec 0.0143 rad/sec 0.0196 rad/sec 

min  0.0055 rad/sec 0.0024 rad/sec 0.0033 rad/sec 

cT  86 sec 196 sec 143 sec 

n  4 4 4 

T 15 15 15 

 

During a preliminary test, a 20% of input signal amplitude was applied. This setting 

results a large signal-to-noise ratio. Examining the gain of the plant and noise statistics, 

then a 10% of input signal amplitude, a, is considered to obtain an adequate signal to 

noise ratio. Since the lowest clock tick time is 86 seconds, the recommended time 

sampling is at least 8.6 seconds. In this work, the sampling time chosen is one second. 
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3.5.2.3 Identification process 

During testing, the three different PRBS signals are transmitted to the respective control 

valves simultaneously, and the pressure changes in the upstream and downstream are 

recorded as plant outputs. This input-output data is shown in Figure 3.15. The total 

recorded data is 4500, which is then divided into two parts: one part for identification, 

and the other part for validation purpose. 

Similar with the development of Model 1, the model structure of the identified system in 

this particular case remains using the structure in (3.38). Hence, the input and output 

vectors of the resulted model are equal to the input and output vectors of Model 1. 
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Figure 3.15: PRBS signals and plant responses for the development of Model 2. 

 

The suggested order by the N4SID algorithm, in this particular case, is n = 4. From the 

Hankel singular values inspection, it is illustrated that the first four order states store the 

most of “energy” in the system. The relative estimation indexes also indicate that the 
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minimum simulation errors are also given by the order n = 4. Hence, the state-space 

model of gaseous pilot plant for Model 2 is then chosen to be of 4th-order. 

3.5.2.4 Identification result and model validation 

To obtain the parameters of Model 2 the input-output data shown in Figure 3.15 are yet 

divided into two sets of data. The first data set would be used as the identification data of 

N4SID algorithm to determine the element of coefficient matrices of Model 2. 

Considering the signal-to-noise ratio (S/N ratio) of the identification data, and since there 

is no outlier detected in the observation, the pre-treatment of the input-output data such as 

noise filtering and outlier removal are not conducted. 

From MIMO identification process using N4SID algorithm, the coefficient matrices of 

Model 2 are obtained. The model is in discrete-time form with the sampling time equals 

to one second. These coefficient matrices are shown in (3.59) until (3.62): 

0.9940 0.0012 0.0071 0.0021

0.0217 0.9716 0.0398 0.0288

0.0126 0.0031 0.9702 0.0114

0.0222 0.0129 0.0404 0.9589

  
  
  
  

A ; (3.59)

0.000038 0.000008 0.000025

0.000244 0.000134 0.000041

0.000100 0.000050 0.000054

0.000222 0.000100 0.000065

  
  
  
  

B ; (3.60)

37.126 13.183 0.279 0.147

38.803 5.462 0.114 0.029

  
  
 

C ; (3.61)

0 0 0

0 0 0

 
  
 

D . (3.62)

The poles of this particular plant model (the eigenvalues of A matrix of Model 2), which 

are shown in Figure 3.16, are inside the unit circle denote that the system is stable. 

Figure 3.17 shows the comparisons of the real outputs of plant (solid line) and the 

simulation outputs which are generated by Model 2 (dotted line) for the validation data. 

The simulation starts initially with an estimated state. The best fit criterion of Model 2 for 

identification and validation data are shown in Table 3.5. 

 



 70

 

Figure 3.16: Location of the poles of Model 2. 

 

0 200 400 600 800 1000 1200 1400
2

3

4

5

6

7

8

9
Upstream Pressure (PT202) Real Plant Output and Simulated

Time (sec)

P
re

ss
ur

e 
(b

ar
g)

 

 

Real output

Simulated output of model 2

0 200 400 600 800 1000 1200 1400
1

2

3

4

5

6

7

8
Downstream Pressure (PT212) Real Plant Output and Simulated

Time (sec)

P
re

ss
ur

e 
(b

ar
g)

 

 

Real output

Simulated output of model 2

 

Figure 3.17: The comparison of real output and simulated output generated by Model 2 
for upstream pressure (top) and downstream pressure (bottom). 
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Table 3.5: The performance of Model 2. 

Best fit criterion (%) 
Plant output 

Identification data Validation data 

PT202 (upstream pressure) 73.52 46.25 

PT212 (downstream pressure) 67.13 60.49 

 

3.5.3 Model 3 

As briefly mentioned before, the third approach for developing the empirical model of the 

gaseous pilot plant is by using (3.39) and (3.40) as the model structures of the identified 

system. Since a variable cannot be the input and output of identification at the same time, 

then the empirical modeling of such a plant, in this particular case, is considered as 

constructing two MISO models, which each model has four inputs. The input variables of 

the first MISO model are: PCV202, FCV211, PCV212, and PT212 respectively, while its 

output is PT202. For the second MISO model, the input variables are: PCV202, FCV211, 

PCV212, and PT202 respectively, while the output variable is PT212. The structures of 

these two MISO models with their respective variables are illustrated in Figure 3.18. 

 

     

 

Figure 3.18: The schematic diagram of the second model structure which consists of two 
MISO models. 

 

3.5.3.1 MISO state-space system identification 

For identification purpose, a similar procedure to the plant testing in sub-section 3.5.1.1 

using step input signals is conducted. The period of step input signals are prolonged, since 

it is expected that the interactions between the upstream and the downstream pressures 

can be well reflected in the input-output data. The total of recorded data is 9300 with one 

second sampling time. The length of each step signal is 600 seconds, or three times the 
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length of step signals which are used in the development of Model 1. The input-output 

data used in the development of Model 3 are illustrated in Figure 3.19. 

The total recorded data is then divided into two: the first half is used for identification 

purpose, and the rest is used for model validation. 

The identification processes of the two MISO models are performed independently. From 

the singular value decompositions, the N4SID algorithm suggests that the appropriate 

orders of the both MISO models are n = 2. From the Hankel singular values inspections, 

the most of “energy” of the both models are stored in their first two states. The relative 

estimation indexes also indicate that the minimum simulation errors of the both systems 

are obtained when each of the models is having the order n = 2. Hence, both of the MISO 

state-space models are then chosen to be of 2nd-order. 
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Figure 3.19: Input signals and plant responses for the development of Model 3. 
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3.5.3.2 Combination of MISO models 

The two MISO models that have been obtained are necessary to be reconstructed into a 

single MIMO model, so that it can be used in the implementation of a multivariable 

control system. For that purpose, the following procedure is proposed in this work. 

Let the two obtained MISO models are named Model 3a and Model 3b. Model 3a, which 

is used to simulate the upstream pressure, has structure as follow: 

1 1 1 1( 1) ( ) (k k  x A x B u1 )k

k

 

1 1 1 1 1( ) ( ) ( )k k y C x D u . (3.63)

From the order estimation, both of Model 3a and Model 3b are selected as 2nd-order 

systems. Hence, Model 3a can be written in detail as 

1 11 1 12 1 13 1 141 1 1 11 1 12 1 1

1 21 1 22 1 23 1 241 2 1 21 1 22 1 2

PCV202( )

( 1) ( ) FCV211( )

( 1) ( ) PCV212( )

PT212( )

k

b b b bx k a a x k k

b b b bx k a a x k k

k

      

      

 
                           
 
 

; 

 

(3.64)

   1 1
1 1 11 1 12 1 11 1 12 1 13 1 14

1 2

PCV202( )

( ) FCV211( )
( )

( ) PCV212( )

PT212( )

k

x k k
y k c c d d d d

x k k

k


     



 
         
 
 

, 

 

(3.65)

with , , 1 ija  1 ijb  1 ijc  , and  represent the element of i1 ijd 
th-row and jth-column of the 

respective coefficient matrices, and 1 ix   represents the ith-element of the state vectors, 

which are obtained from the subspace system identification algorithm. 1y  represents the 

output of the Model 3a, which is the upstream pressure (PT202). 

In the same way, Model 3b can be written as 

2 2 2 2( 1) ( ) (k k  x A x B u2 )k

k

 

2 2 2 2 2( ) ( ) ( )k k y C x D u , (3.66)
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or in detail as 

2 1 2 11 2 12 2 1

2 2 2 21 2 22 2 2

2 11 2 12 2 13 2 14

2 21 2 22 2 23 2 24

( 1) ( )

( 1) ( )

PCV202( )

FCV211( )
                       ;

PCV212( )

PT202( )

x k a a x k

x k a a x k

k

b b b b k

b b b b k

k

   

   

   

   

     
          

 
         
 
 

 

 
 
 
 
 

(3.67)
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x k k
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x k k
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

 
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 
 

 

 
 

(3.68)

with , , , and  represent the element of i2 ija  2 ijb  2 ijc  2 ijd 
th-row and jth-column of the 

respective coefficient matrices, and 2 ix   represents the ith-element of the state vectors, 

which are obtained from the subspace system identification algorithm. 2y  represents the 

output of the Model 3b, which is the downstream pressure (PT212). 

The method to combine Model 3a and Model 3b into a single MIMO model can be 

explained in these three following steps: 

Step 1: Constructing the new input, state, and output vectors. 

Model 3a has four inputs, where three of them are also used as the inputs for 

Model 3b, i.e., the inlet control valve (PCV202), the middle control valve 

(FCV211), and the outlet control valve (PCV212). Since these inputs are used by 

both of MISO models, they are called the common inputs. In the matrix notation, 

the common inputs of both models can be written as 

 PCV202 FCV211 PCV212
T

c u . (3.69)

The input which is used only by one model is called the individual input. For 

Model 3a, its individual input is 

1 [PT212]ind u , (3.70)

and for Model 3b, its individual input is 

2 [PT202]ind u . (3.71)
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The new input vector is defined as 

1 2

  [PCV202 FCV211 PCV212 PT212 PT202] .

TT
c ind ind

T

    


u u u u
 

 
 

(3.72)

The new state vector is obtained by combining the state vector of Model 3a, , 

and the state vector of Model 3b, , as follow: 

1x

2x

1 2 1 1 1 2 2 1 2 2

T TT T x x x x      x x x  . (3.73)

And the new output vector consist of the output of both models, which are 

arranged in the matrix notation as 

 1 2

Ty y y . (3.74)

Step 2: Splitting the input and feedthrough coefficients matrices (B and D). 

In the state-space model, there are two coefficient matrices which coupled with 

the input vector. These two coefficient matrices are the B matrix, also called the 

input coefficient matrix, and the D matrix, also called the feedthrough coefficient 

matrix.  

Like the input vector, each of the input and feedthrough coefficient matrices is 

also necessary to be divided into two new matrices. The first new matrix contains 

the elements which are coupled with the common inputs, , and the second one 

contains the elements which are coupled with the individual input, . 

cu

indu

For Model 3a in (3.64), the common inputs are located in the first three rows and 

the individual input is located in the last row. So that the input and feedthrough 

coefficient matrices of Model 3a,  and , can be simply divided by taking the 

first three columns as the coefficient matrices which are coupled with the common 

inputs,  and , and the last column as the coefficient matrices which are 

coupled with the individual input,  and . In detail, it can be expressed as 

1B

12B

1D

12D

11B 11D

 1 11 1B B B 2
1 11 1 12 1 13

11
1 21 1 22 1 23

b b b

b b b
  

  

; 
 

  
 

B ; 1 14
12

1 24

b

b




 
  
 

B , 
(3.75)
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and 

 1 11 1D D D 2 ;  11 1 11 1 12 1 13d d d  D ;  12 1 14d D . (3.76)

Inline with Model 3a, since the common inputs of Model 3b are also located in the 

first three rows and the individual input is located in the last row in (3.67), the 

input and feedthrough coefficient matrices of Model 3b,  and , can be 

simply split as 

2B 2D

 2 21 2B B B 2
2 11 2 12 2 13

21
2 21 2 22 2 23

b b b

b b b
  

  

; 
 

  
 

B ; 2 14
22

2 24

b

b




 
  
 

B , 
 

(3.77)

and 

 2 21 2D D D 2 ;  21 2 11 2 12 2 13d d d  D ;  22 2 14d D . (3.78)

Step 3: Constructing the new coefficient matrices. 

The new state coefficient matrix, A, is obtained by locating the state coefficient 

matrices of Model 3a and Model 3b in the pseudo-diagonal formation as 

1 11 1 12

1 1 21 1 22

2 2 1

2 21 2 22

0 0

0 0

0 0

0 0

a a

a a

a a

a a

 

 

 

 

1 2 12

 
         
 
 

A 0
A

0 A
. 

(3.79)

In the same way, the new output coefficient matrix, C, is obtained: 

1 1 11 1 12

2 2 11

0 0

0 0

c c

c c
 

 

  
   
  

C 0
C

0 C 2 12





. 
(3.80)

Since the input and feedthrough coefficient matrices consist of the coefficient of 

the common inputs and individual inputs, then the new input and feedthrough 

coefficient matrices, B and D, are obtained in a different way. Since the common 

inputs in (3.72) are located in the first three columns of u vector and the rest are 

occupied by individual inputs, then the elements which are coupled with the 

common inputs have to be located in the first three columns of B and D matrices, 

and the rest are occupied with the elements which are coupled with the individual 

inputs, arranged in pseudo-diagonal formation, as follow: 
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1 11 1 12 1 13 1 14

1 21 1 22 1 23 1 2411 12

2 11 2 12 2 13 2 1421 22

2 21 2 22 2 23 2 24

0

0

0

0

b b b b

b b b b

b b b b

b b b b

   

   

   

   

 
         
 
 

B B 0
B

B 0 B
, 

 

 
(3.81)

and 

1 11 1 12 1 13 1 1411 12

2 11 2 12 2 13 2 2421 22

0

0

d d d d

d d d d
   

   

  
    
   

D D 0
D

D 0 D
. (3.82)

From three steps mentioned above, the all elements of the MIMO state-space model are 

obtained. So that, the final model of Model 3 can now be constructed in a MIMO state-

space notation as 

( 1) ( ) (

( ) ( ) ( ) .

k k

k k k

  
 

x Ax Bu

y Cx Du

)k
 

 
(3.83)

In the complete form, Model 3 can be written as 

1 1 1 11 1 12 1 1

1 2 1 21 1 22 1 2

2 1 2 11 2 12 2 1

2 2 2 21 2 22 2 2

1 11 1 12 1 13 1 14

1 21 1

( 1) 0 0 ( )

( 1) 0 0 ( )

( 1) 0 0 ( )

( 1) 0 0 ( )

0

                      

x k a a x k

x k a a x k

x k a a x k

x k a a x k

b b b b

b b

   

   

   

   

   



     
          
     
          

 22 1 23 1 24

2 11 2 12 2 13 2 14

2 21 2 22 2 23 2 24

PCV202( )

FCV211( )
0

;PCV212( )
0

PT212( )
0

PT202( )

k

k
b b

k
b b b b

k
b b b b

k

  

   

   

 
   
   
   
   
   
    

 

 

(3.84)

1 1

1 1 11 1 12 1 2

2 2 11 2 12 2 1

2 2

1 11 1 12 1 13 1 14

2 11 2 12 2 13 2 14

( )

( ) 0 0 ( )

( ) 0 0 ( )

( )

PCV202( )

FCV211( )
0

               PCV212( )
0

PT212( )

PT202( )

x k

y k c c x k

y k c c x k

x k

k

k
d d d d

k
d d d d

k

k



  

  



   

   

 
              
 
 



 
  
 



.







 
 

 

 

(3.85)
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The state-space model in (3.84) and (3.85) can be expanded in the six following 

equations: 

1 1 11 1 1 1 12 1 2 1 11 1 12

1 13 1 14

( ) ( ) ( ) PCV202( ) FCV211( )

            PCV212( ) PT212( ) ,

y k c x k c x k d k d k

d k d k
     

 

   
 

  
(3.86)

1 1 1 11 1 1 1 12 1 2 1 11 1 12

1 13 1 14

( 1) ( ) ( ) PCV202( ) FCV211( )

                   PCV212( ) PT212( ) ,

x k a x k a x k b k b

b k b k
      

 

    
 

k   
(3.87)

1 2 1 21 1 1 1 22 1 2 1 21 1 22

1 23 1 24

( 1) ( ) ( ) PCV202( ) FCV211( )

                   PCV212( ) PT212( ) ,

x k a x k a x k b k b

b k b k
      

 

    
 

k   
(3.88)

and 

2 2 11 2 1 2 12 2 2 2 11 2 12

2 13 2 14

( ) ( ) ( ) PCV202( ) FCV211( )

            PCV212( ) PT202( ) ,

y k c x k c x k d k d k

d k d k
     

 

   
 

  
(3.89)

2 1 2 11 2 1 2 12 2 2 2 11 2 12

2 13 2 14

( 1) ( ) ( ) PCV202( ) FCV211( )

                   PCV212( ) PT202( ) ,

x k a x k a x k b k b k

b k b k
      

 

    
 

  
(3.90)

2 2 2 21 2 1 2 22 2 2 2 21 2 22

2 23 2 24

( 1) ( ) ( ) PCV202( ) FCV211( )

                   PCV212( ) PT202( ) .

x k a x k a x k b k b k

b k b k
      

 

    
 

  
(3.91)

It may be noted that the equations (3.86) to (3.91) returns the value of MISO models in 

(3.64) and (3.67) which are given by the N4SID subspace system identification algorithm. 

It proves that even though Model 3a and Model 3b may be estimated in the different state 

bases, this technique remains relevant.  

Additionally, it is also possible to combine more than two MISO models into a single 

MIMO model using this proposed technique. Suppose that l MISO state-space models are 

developed, which each model has the input vector: 
TT T

m c ind m   u u u , with m is the 

index of the MISO model ( m ), consist of c common inputs which are used in 

all MISO model: 

1, 2, , l 

 1 2c c cu u  T

c cu u  , and h individual inputs, 

 1 2ind m ind m ind mu u  u
T

ind m hu   , which are only used in the mth-model. Each 

MISO model may have different number of h. Let the mth-model has state coefficient 

matrices with their respective dimensions as follows:  

:m xn nxA ; ; : ( )m xn c h B :1m xnC ; :1 ( )m c h D , (3.92)
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with xn  is the size of state vector, c is the number of the common inputs, and h is the 

number of the individual inputs in the respective MISO model. The different MISO 

models may also have the different values of xn  and h. 

In order to combine l MISO models into a MIMO model, the new input, state, and output 

vectors are necessarily to be constructed as follows: 

1 2

TT T T T
c ind ind ind l     u u u u u ; (3.93)

1 2

TT T T
l   x x x x ; (3.94)

 1 2

T

ly y y y . (3.95)

Then, the input and the feedthrough coefficient matrices of each MISO model,  and 

, should be split become two matrices with the same principle. The first matrix is for 

the elements which are coupled with the common inputs while the second matrix is for 

the elements which are coupled to the individual input, which can be written as 

mB

mD

 1 2m m mB B B ;  1 2m m mD D D , (3.96)

with 

1

(1,1) (1, )

( ,1) ( , )

m m

m

m x m m

c

n n

 
   
  

B B

B

B B


 

 c
2

(1, 1) (1, )

( , 1) ( , )

m m

m

m x m x

c c

n c n c h

 
; 

h 
   
   

B B

B

B B





 ; 

(3.97)

and 

 1 (1,1) (1, )m m m cD D D ;  2 (1, 1) (1, )m m mD c c  D D h . (3.98)

Then the new state coefficient matrices of (A, B, C, and D) are necessary to be formed as 

shown in (3.99) until (3.102): 

1

2

m

 
 
 
 
 
 

A 0 0

0 A
A

0

0 0 A


 

  


; (3.99)
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11 12

21 22

1 2m m

 
 
 
 
 
 

B B 0 0

B 0 B
B

0

B 0 0 B


 

   


; (3.100)

1

2

m

 
 
 
 
 
 

C 0 0

0 C
C

0

0 0 C


 

  


; (3.101)

11 12

21 22

1 2m m

 
 
 
 
 
 

D D 0 0

D 0 D
D

0

D 0 0 D


 

   


. (3.102)

So, it is also possible to use this proposed technique to develop a MIMO model of the 

interacting series processes which are constructed from more than two MISO models. 

3.5.3.3 Identification result and model validation 

From the identification processes using N4SID algorithm, two MISO models named 

Model 3a and Model 3b are obtained. The models are presented in the discrete-time 

domain with one second of sampling time, and having the linear time-invariant variables.  

Model 3a has the coefficient matrices as shown in (3.103) to (3.106): 

1

0.9953 0.0287

0.0123 0.8978

 
   

A ; 
(3.103)

1

0.000179 0.000228 0.000107 0.003940

0.000644 0.000802 0.000358 0.013803

 
   

B ; 
(3.104)

 1 21.64 0.10 C ; (3.105)

 1 0 0 0 0D , (3.106)

with the input and the output vectors are: 

  1 PCV202 FCV211 PCV212 PT212
Tu ; (3.107)

 1 PT202y . (3.108)
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The coefficient matrices for Model 3b are given in (3.109) to (3.112): 

(3.109)
2

0.9892 0.0097

0.0028 0.9897

 
  

A ; 
 

2

0.000012 0.000032 0.000045 0.000339

0.000006 0.000015 0.000026 0.000134

 
   

B ; 
(3.110)

 2 28.07 0.10 C ; (3.111)

 2 0 0 0 0D , 

with the input and the output vectors for Model 3b are: 

(3.112)

  T202
T

2 PCV202 FCV211 PCV212 Pu ; (3.113)

 2 PT212y . 

Using the technique explained in 3.5.3.2, Model 3a and Model 3b are then combin

a single MIMO state-space model, named as Model 3. The input vector of Model 3 is 

(3.114)

ed into 

 PCV202 FCV211 PCV212 PT212 PT202
Tu , (3.115)

while its output vector is 

 PT202 PT212
Ty . (3.116)

Presented in discrete-time domain with one second of sampling time, the coefficient 

matrices of Model 3 are given in (3.117) to (3.120): 




; (3.117)

; (3.118)

; (3.119)

0.9953 0.0287 0


0

0.0123 0.8978 0 0

0 0 0.9892 0.0097

0 0 0.0028 0.9897

 
 
  

A

0.000179 0.000228 0.000107 0.003940 0

0.000644 0.000802 0.000358 0.013803 0

0.000012 0.000032 0.000045 0 0.000339

0.000006 0.000015 0.000026 0 0.000134

 
  
 
  

B

21.64 0.10 0 0

0 0 28.07 0.10

 
   

C

0 0 0 0 0

0 0 0 0 0

 
  
 

D . (3.120)
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The poles of Model 3 (the eigenvalues of A matrix), which are shown in Figure 3.20, are 

inside the unit circle denote that the system is stable. Yet, the poles close to 1, sho

ion starts initially with 

t criterion (%) 

wn that 

the data set seems to contain a “co-integration” phenomenon [75]. 

Figure 3.21 shows the comparisons of the real outputs of plant in the validation data and 

the simulated outputs which is generated by Model 3. The simulat

an estimated state. Similar to the previous developed models, the best fit criterion is used 

to measure the performanace of Model 3. The best fit criterions of Model 3 for 

identification and validation data are shown in Table 3.6. 

Table 3.6: The performance of Model 3 

Best fi
Plant output 

Identification data Validation data 

PT202 (upstream pre 57.91 ssure) 75.12 

PT212 ( essure) downstream pr 83.98 83.24 

 

 

Figure 3.20: Location of the poles of Model 3. 
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Figure 3.21: The comparison of real measured and simulated outputs generated by Model 
3 for upstream pressure (top) and downstream pressure (bottom). 

 

3.6 Analysis 

Table 3.1, Table 3.5, and Table 3.6 show the best fit criterion of the constructed models. 

Model 3 has the highest best fit criterion in term of identification data. In term of 

validation data, the highest best fit criterion for downstream output data is also given by 

Model 3. The fitness of Model 1 for upstream identification data is quite poor. The entire 

model validations are conducted based on their own category: the models from step 

response are validated using step response data while the model from PRBS response is 

validated using PRBS response data. So far, the comparison is conducted only within the 

respective best fit criterions. To make a fair comparison of how good the models can 

reproduce the system behaviors and to examine the robustness against the plant 

nonlinearities, another kind of input signal which is not used earlier in the models 

development is worthwhile to be considered. In this work, the APRBS (Amplitude-

modulation Pseudo-Random Binary Sequence) signal is selected. Beside the randomness 

 



 84

of its frequency, the amplitude of the APRBS signal is also modulated randomly. The 

three APRSB signals shown in Figure 3.22 are transmitted to the three control valves 

simultaneously as the plant inputs. The upstream and downstream responses are recorded 

with one second sampling time. The total of recorded data is 1200. 
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Figure 3.22: APRBS input of the three control valves for model validation. 

 

The comparison of simulated outputs generated by the three models versus real outputs of 

plant from the APRBS response data for the upstream pressure is shown in Figure 3.23, 

while for the downstream pressure the comparison is shown in Figure 3.24. An estimated 

initial state of the respective model is assigned at the beginning of the simulation. 

As can be observed in Figure 3.23, the best simulation outputs are given by Model 3. This 

model is able to reproduce the main dynamic characteristics of the plant at the given 

operating points and time horizons. For Model 1, the constant errors of prediction 

(offsets) start to occur after certain time horizons for both the upstream and downstream 

data. The simulated outputs of Model 1 return to the initial conditions when the input 

signals return to their initial conditions and remain constant. On the contrary, the 

validation data using APRBS input signals that were applied are not showing such 

linearities. Hence, it can be implied that Model 1 is not robust enough to cover the 

nonlinearities of the plant. 

On another observation of the simulated outputs, the simulations of Model 3 exhibit the 

trend of the real measured outputs (validation data). By taking into account the 

measurement of the upstream output as one of the inputs to predict the downstream 

 



 85

output, and vice versa, the shiftiness of plant outputs, due to the nonlinearities, can be 

well approached by Model 3. 
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Figure 3.23: The comparison of the real output from APRBS response data and the 
simulated outputs generated by Model 1, Model 2, and Model 3 for the upstream 

pressure. 
 

Model 2 has the worse results compares to the other two models: bigger prediction errors 

and the occurrence of offset. Although the simulated outputs remain constant when the 

input signals are constantly return to their initial conditions, the simulated output for 

upstream and downstream pressures do not returned to their initial condition. 

Inappropriately, the simulated outputs of Model 2 shift to the opposite directions of the 

real outputs. 

Table 3.7 shows the best fit criterions of the models using APRBS response data. In line 

with the plots in Figure 3.23 and Figure 3.24, the highest best fit criterions are given by 

Model 3. The small best fit criterions of Model 1 are caused by the constant errors of 

prediction, hence the sum of absolute prediction error are increasing over time. The 

definition of the best fit criterion in (3.48) allows this value to be negative. As can be 
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seen, Model 2 has negative value of the best fit criterion for both upstream and 

downstream simulated outputs. The negative value of the best fit criterion means that the 

sum of prediction error is bigger than the deviation of measured output from its average 

value. One of the reasons is the validation data set was not preprocessed in the same way 

as the estimation data set [91], which in this case the input signals of identification data 

are different from the input signals of validation data. 
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Figure 3.24: The comparison of the real output from APRBS response data and the 
simulated outputs generated by Model 1, Model 2, and Model 3 for the downstream 

pressure. 
 

Table 3.7: Performance comparison of Model 1, Model 2, and Model 3 

Best fit criterion (%) 
Simulated output 

Model 1 Model 2 Model 3 

PT202 (upstream pressure) 9.15 -241.38 68.48 

PT212 (downstream pressure) 8.30 -171.47 75.07 
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The performance of Model 2 implies that the open-loop identification using PRBS input 

signals with simultaneous excitation for MIMO system is not a guaranteed to obtain a 

good model, especially when the interactions between the outputs or the internal variables 

in the plant are much more dominant or having the greater plant gains and the longer time 

constants rather than the responses from the input variables. In this case, the rapid 

frequency changes may have deteriorated some significant information about the plant 

dynamics. 

Analyzing the performances of the three state-space models which are obtained using 

subspace system identification techniques with different approaches, it is found that the 

best open-loop performance is given by Model 3. It can be implied from the simulation 

plots and the best fit performance criterion that among the three obtained models, Model 

3 is the most robust against the nonlinearities in the gaseous pilot plant.  

There is also limitation in the development of an empirical model from input-output data 

using system identification techniques. As can be observed in Figure 3.23, all the 

developed models ever exceed 7 barg, while the actual maximum output of the gaseous 

pilot plant is 7 barg. However, it is difficult to avoid this error, since there is no model 

constraint considered in the construction of an empirical model using linear system 

identification techniques.     

In the nature of interacting series processes, the interaction between the upstream and the 

downstream variables happen in both ways round. When the plant is strongly linear with 

some disturbances that can be approached with white noise signals, the empirical 

modeling using the model structure that taking into account of only the external inputs as 

the model inputs, such as what shown in (3.38), which can also be extended for any p 

inputs and m outputs, may an appropriate choice. However, it should be noted that such a 

model structure considers the interactions between upstream and downstream variables 

only as the additional linear combinations of the input variables. Suppose there is 

nonlinearity or un-periodic disturbance occurs in the upstream, it will results the 

simulation errors not only in the simulation of upstream output(s) but also in the 

simulation of downstream output(s), since in the plant the upstream variables will affect 

the downstream variables directly, and vice versa. When (3.40) is used as the model 

structure to predict the output of downstream variable, such nonlinearities in the upstream 

will be detected by the upstream sensor or transmitter, and then will be used as one of the 
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model inputs. In the same way, when (3.39) is used to predict the upstream variable, such 

nonlinearities will affect first to the downstream variable, then be detected by 

downstream sensor or transmitter, and further be used as one of the model inputs. 

Although it may resulting a small delays, the experiment results prove that this method 

can give the effective prediction and the robustness over an interacting series process, in 

this case the gaseous pilot plant, especially when the nonlinearities occur. 

3.7 Summary 

In this chapter, three practical approaches to construct a linear state-space model of an 

interacting series process, i.e the gaseous pilot plant, were presented. Three criterions 

were used to estimate the respective model order, while their performances were 

measured using the best fit criterion. The APRBS response data were used to perform the 

global comparison among the three models, and has shown that the model constructed 

from two MISO models gave the best performance. The technique to combine several 

MISO models into a single MIMO state-space model was also presented.   

One of the important outcomes here is the approach that allows a designer to develop a 

state-space model of an interacting series process from input-output data using a linear 

system identification technique, with grey-box model structure which is constructed from 

several MISO models.  

The work presented here improves the procedures required for developing a linear state-

space model of an interacting series process. Its effectiveness and robustness were 

demonstrated in the open-loop validation using APRBS responses data. 

Further important investigation of the proposed method is to evaluate its performance in 

real-time. In the subsequent chapter, its application as the internal model of a real-time 

model predictive control (MPC) would be presented. 
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Chapter 4 

Real-Time Model Predictive Control of Interacting Series 

Process with Nonlinear Dynamics 

A real-time implementation of a linear model predictive control (MPC) for controlling an 

interacting series process is presented in this chapter. An embedded model predictive 

controller consisting of the off-the-shelf components is implemented on a gaseous pilot 

plant that is used as the controlled process. The linear state-space model is used as the 

internal model of MPC, while the control actions are derived from the constrained 

optimization method, i.e, quadratic programming. Three linear models are tested and their 

effects to the controller’s robustness are analyzed. To improve the controller’s 

performances, four tuning parameters are investigated. A simple set of guidelines for 

tuning MPC controller is proposed in this work. The possibility to combine MPC and PID 

in the control system is also studied. Several issues in the real-time implementation of 

MPC controller are presented and discussed.  

4.1 Introduction 

It is known that MPC is one of the most popular multivariable controls implemented in 

the process industries, and, promises several advantages, such as its algorithm can deal 

with multivariable case, provides the systematic way to the treatments of constraints and 

taking into account of actuator limitations, introduces feedforward control in a natural 

way to compensate the measurable disturbances. However, the computational algorithm 

of MPC is somehow more complex than the classical PID control. The controller output 

of MPC is also based on the prediction of process output generated by the internal model, 

which commonly is a kind of LTI models, even though it is well known that most of the 

real systems of interest are nonlinear, time-varying, may contain delays, and some 

variables or signals of central importance may not able to be measured directly. 

Moreover, MPC is a kind of discrete control systems, which produces the control signals 

in every sampling time. These conditions may presence some challenges in the practical 

implementation of MPC. 

When it goes to real-time implementation, the hardware embedded MPC would be more 

appropriate to be used. Even though some applications are still prefer to use a dedicated 
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personal computer (PC) for implementing MPC, however, it seems to be less appropriate 

due to the possibility of user intervention. It is well known that in the practical process 

control, the control algorithms are commonly embedded in the control modules which are 

separated from the data recording and monitoring purposes. Hence, the embedded MPC is 

expected to function without user intervention, although it may require user interaction. 

A class of series processes, as mentioned in the previous chapter, plays important roles in 

process industries since such types of interconnections are commonly found in their 

processing units. It was also mentioned that the interconnections of plant units may give 

rise to instability or oscillatory behavior, even when the individual processing units are 

stable. Moreover, due to the interactions between upstream and downstream units, series 

interconnections may introduce fundamental limitations in the achievable performance of 

control systems. Hence, it is necessary to study the possibility of the real-time 

implementation of multivariable controller, such as MPC, in the process plants that 

consist of series structures. 

Many researches have extensively reported the implementation of various MPC in 

process plants [41, 55, 94-100], in which some of them contain the series structures [41, 

94, 96, 98-100]. One of the remarkable papers of MPC implementation in the class of 

series processes is by Faanes and Skogestad [41] which present their study on the 

implementation of MPC for controlling noninteracting series processes with simulation 

study: pH neutralization performed in several steps (tanks). The model structure for 

noninteracting series processes has been developed in state-space form, and the study of 

control structures involves local control, where inputs to a unit are used to control outputs 

of the same unit, feedforward elements, and input resetting. One of the important results 

is that the multivariable controller for noninteracting series processes, in this case the 

original  MPC controller used in the study, may rely strongly on feedforward control 

and thus be sensitive to model errors, including at steady-state conditions. Several options 

has been pointed out to improve the controller performance, such as examining the 

possibility of lacking integral action in the feedback part of the controller or perhaps 

modifying the process model. 

3 3

Unlike the classical PID controller which basically has only three tuning parameters, i.e., 

proportional gain, integral time, and derivative time, MPC which has a more complex 

algorithm presents a more challenging options tuning strategy. MPC has a set of tuning 
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parameters, which can be used to fine-tune the closed-loop response for good 

performance and stability. Al-Ghazzawi et al. [27] point out that basically these 

parameters are adjusted via a trial and error procedure, which is a cumbersome task due to 

their overlapping effect and due to non-linearity brought by input constraints. However 

this procedure can be more systematic since there are several general tuning guidelines 

available in the literature. Shridhar and Cooper [26] has developed a novel tuning strategy 

for multivariable MPC, however, their approach is limited to unconstrained MPC, and it 

also requires representing the process by a first-order plus delay time (FOPDT) model, 

which may not work well for higher order and/or unstable process. Al-Ghazzawi et al. 

[27] presents the on-line tuning strategy for linear MPC algorithms based on the linear 

approximation between the closed-loop predicted output and the MPC tuning parameters. 

It is presented that by direct utilization of the sensitivity expressions for closed-loop 

response with respect to the MPC tuning parameters, new values of the tuning parameters 

can be found to steer the MPC feedback response inside predefined time-domain 

performance specifications. Trierweiler and Farina [28] present a novel tuning strategy 

for MIMO MPC. The proposed MPC tuning procedure is based on robust performance 

number (RPN), which can measure the difficulties of control problem. The authors, in 

agree with Wojsznis et al. [29], note that these tuning strategies have generally 

concentrated on distinct aspects, such as tuning for one of the criterion, e.g., controller 

robustness or performance, however, applying them in MPC implementation and 

operation has required sophisticated analysis tools and advanced knowledge of control 

approach. Wojsznis et al. [29] present a practical tuning approach, which features simple 

calculation of controller design parameters. Yet this calculation of tuning parameters 

seems to be suitable only for certain conditions. The experimental formula to define a 

penalty on move factor requires the presence of dead time in MPC scans, otherwise the 

calculation will results the same value of penalty on move factor for all kind of process. 

The authors also note that all tuning strategies mentioned above [26-29] are validated 

with simulations, which may produce different results when it goes to real-time 

applications. 

Since the MPC computation algorithms are strongly rely on the internal model, which is 

well known that the linearized models are only valid for certain neighborhood of 

operating points, the use of MPC is also only appropriate for certain ranges. Although 

MPC promises several advantages, in the real process control system its presence cannot 
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simply eliminate PID. In practice, decentralized control structures, such as PID, are 

preferred in certain cases, in examples for ease of start-up [101, 102], bumpless 

automatic/manual transfer [102, 103], and fault tolerance in the event of actuator or 

sensor failures [102, 104, 105]. Hence, it is necessary to study the possibility of 

combining PID and MPC in the control system, so that they can be switched for their 

respective purposes. 

This chapter presents a real-time implementation of an embedded MPC in an interacting 

series process, i.e., the gaseous pilot plant, where nonlinearities occur during plant 

operation. The study of tuning the model predictive controller is also presented in this 

chapter. The investigation of MPC tuning strategy in this work is carried out in real-time, 

instead of in simulation. Since there are several tuning guidelines of MPC available in the 

literature, which are validated using simulation studies, the purpose of tuning of the MPC 

in real-time would be to cover some aspects that perhaps cannot be seen in ideal 

environment (simulation). However, the objective of this study is not on finding 

a formula that produce exact values of the best tuning parameters, but to illustrate the 

effects of tuning several available parameters to the closed-loop responses of MPC in 

real-time conditions. Yet, since there is no “true” system that can really be captured by a 

model, it is believed that, in the practical applications, the best tuning strategy remains 

intuitive and iterative, so that it is the engineering skills and deep insights into the 

systems, including the control systems and the real systems of interest, that help to find 

the best tuning strategy. Since a linear model is commonly used as the internal model of 

MPC controller, and furthermore, the computational method of MPC is quite complex, 

the advantages of MPC are automatically followed by the number of disadvantages, so 

that, in certain purposes, the user may also prefer to use a more classical control system 

such as PID. In this chapter, the possiblibilty to combine MPC and PID in a control 

system is also demonstrated, which may be able to bring it closer to the real applications 

where several purposes, such as safety or fault tolerance, are preferred to be handled by 

the more conventional controllers such as PID. 

This chapter is organized as follows. Section 4.2 gives the methodology of real-time 

implementation of the model predictive controller presented in this chapter. Section 4.3 

introduces the theories of model predictive control algorithm. Section 4.4 presents the 

overview of rapid prototyping of the embedded MPC used in this work. Section 4.5 
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discusses the real-time implementation of model predictive control in the gaseous pilot 

plant. This section begins with the analysis of model mismatch in MPC, using the three 

models that have been obtained in previous chapter, and continues with fine-tuning the 

closed-loop responses of MPC. The discussion of MPC and PID control system alongside 

the possibility of their combination is given in section 4.6. Some discussions are 

presented in the last part of this section. Finally the summary of this chapter is given in 

section 4.7. 

4.2 The Methodology of Real-Time Implementation of MPC 

The flow diagram of the methodology used in the real-time implementation of model 

predictive control in an interacting series process, the gaseous pilot plant, that would be 

evolved in this research is given in Figure 4.1. As can be observed, it contains some 

iterative procedures.  

The investigation would be begun with the study of the model predictive control 

algorithm, which is one of the most popular model-based controls in recent applications. 

MPC with constrained quadratic objective function would be considered in this work. To 

implement such an algorithm, experimental equipment would be designed, consisting of 

the off-the-shelf components and software tools. The next step would be to perform the 

closed-loop validation of the developed models in the previous chapter by using them as 

the internal model of the real-time model predictive controller for a given operating 

condition. The necessary condition is that the selected model has to be able to produce 

zero steady-state errors, which imply that such a model is robust against the plant’s 

nonlinearities in the closed-loop control system. When the proper model is obtained, the 

study would then be followed by tuning the controller, so that the plant responses can 

shape as what it is desired. The tuning of MPC controller would be carried out in a 

heuristic way, since the standard tuning rules of MPC have not been reported in any 

literatures. This study would further be continued by examining the performance of PID 

and MPC in the gaseous pilot plant for a given operating point, and the possibility of 

MPC to work side-by-side with PID. As one of common issues in switching control 

systems, a bumpless transfer strategy in MPC would be examined, so that the controller 

would able to produce a smooth transition when it is switched from PID to MPC.  
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Details of the real-time implementation of model predictive control of an interacting 

series process which have been described above are presented in these subsequent 

sections. 

 

 

Figure 4.1: The flow diagram of real-time model predictive control implementation. 
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4.3 Model Predictive Control Theory 

This section outlines the formulation of model predictive control algorithm. In general the 

MPC algorithm posseses three main elements, which are [68]: 

a. Prediction model. 

b. Objective function. 

c. Control law. 

Different options can be chosen for each one of these elements giving rise to different 

algorithms. The descriptions of MPC algorithm in this section would be limited to the 

type of state-space plant model and the standard quadratic objective function. The 

derivation of MPC’s control law is divided into unconstrained MPC problem and 

constrained MPC problem. 

4.3.1 Principle of model predictive control 

 

Figure 4.2: Model predictive control illustration. 

 

The basic concept of MPC is the utilization of long-range prediction from process output 

to minimize one or more objective functions, to produce an optimal control law. The 

prediction of process output for several steps ahead is derived using mathematical 
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equations that represent the model of controlled process. By using control law, the 

controller will compute the set of control actions for prediction of process output to reach 

the set of value that has been stated before. The output of control computation will be 

assigned to the process. The set of value that wanted to be reached by prediction of 

process output is called the reference trajectory [68, 74]. An illustration of the model 

predictive control algorithm is shown in Figure 4.2. 

The MPC’s control law is derived from minimizing one or more objective functions that 

generally can be written in the form below [50, 68]: 

1
2 2

0

ˆmin ( ( | ) ( | )) ( ( | ))
p m

i n l

k i k k i k k l k


 

     J Q r y R Δu , (4.1)

subject to: 

min max Δu Δu Δu  (4.2)

min max u u u  (4.3)

min maxˆ ˆ ˆ y y y  (4.4)

with , r ŷ , and  represent reference trajectory,  predicted output, and the changes in 

the control signals, while n, p, and m represent the length of minimum horizon, prediction 

horizon, and control horizon, consecutively. Q and R are weighting matrices that set 

relative degrees of penalty on the deviations of the predicted plant outputs from the 

reference trajectory and the changes in the future control inputs. Q and R are symmetric, 

positive semi-definite, and usually diagonal, which have the dimension  and 

 respectively.  

Δu

yn n y

uun n

The inequalities in (4.2) and (4.3) are constraints on the magnitude of and change in the 

control inputs, which may come from physical limitation of actuators. (4.4) is constraints 

on the magnitude of plant outputs, which may be dictated by certain economical 

objectives or requirements on the dynamic response of the plant. If a linear model is used 

and the inequalities in (4.2) until (4.4) are linear, obtaining the solution of (4.1) that 

subject to (4.2) until (4.4) can be addressed as solving a quadratic programming (QP) 

problem. If the Hessian matrix of the objective function is positive semi-definite, it is a 

convex QP problem which has a global minimum. If the Hessian matrix is positive 

definite, it will have a unique global minimum [106].  
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The internal model used in MPC can be: 

a. A step response model or finite impulse response model. 

b. A discrete transfer function. 

c. A state-space model. 

In general, these three forms of model is convertible to each other. In this research, the 

state-space model is used. The general state-space model of discrete linear time invariant 

system can be formed in the following equation [82]: 

( 1) ( ) ( )

     ( ) ( ) ( ) ,

k k

k k

  
 

x Ax Bu

y Cx Du

k

k
 (4.5)

A, B, C, and D are the state coefficient matrices, the dimension of which are x xn n , 

x un n , , and  respectively. yn n x u

)u

yn n

The reference trajectory can be a step shape signal, ramp, or exponential curve defined by 

the user. When there is a change in the setpoint or deviates from the setpoint due to some 

disturbance, it may be necessary to bring the output back to the setpoint as quickly as 

possible. However, in some cases the quick response may cause too large control actions 

and oscillations in the output. Therefore the reference trajectory can be modified so that 

the controller response to the setpoint change or the disturbance is less aggressive. 

4.3.2 State estimation 

Besides the information about plant inputs and outputs, using a state-space plant model in 

(4.5) for prediction requires the information about the state at the current time k, . 

However, it is often not practical to directly measure all the state variables of the system. 

In addition, it is common in state-space modeling that the state does not necessarily has a 

direct physical interpretation but they have a conceptual relevance [45, 106]. Therefore, 

the state estimator (observer) should be used to obtain the estimated state, , from 

the plant inputs and measurements of plant outputs.  

( )kx

)ˆ ( |k kx

The state estimation of plant is obtained using the following equations [107]: 

ˆ ˆ ˆ( | ) ( | 1) [ ( ) ( | 1)]k k k k k k k    x x K y y ; (4.6)

ˆ ˆ( 1| ) ( | ) (k k k k k  x Ax B ; (4.7)

ˆ ˆ( | 1) ( | 1) ( )k k k k k   y Cx Du , (4.8)

with is estimated state and K is estimator gain. x̂
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The estimator gain K can determined by pole placement techniques, but for MIMO 

systems, K will be a matrix, which is more easily and practically determined by the 

optimal estimation method. The optimal estimator is also known as Kalman filter [37, 69, 

106]. 

In the optimal estimation, it is assumed that the system is subject to the plant noise  

and measurement noise , with  is the coefficient matrix for plant noise, and 

mathematically can be expressed as 

( )kw

( )kv Λ

)k( 1) ( ) ( ) (

     ( ) ( ) ( ) ( ).

k k k

k k k k

   
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x Ax Bu Λw

y Cx Du v
 (4.9)

Both  and  are assumed to be white noise with zero mean and impulse 

autocorrelation, that is, 
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( )kw  and  are uncorrelated.  and  are covariances reflecting the noise level, 

and for a MIMO system,  and  are in matrix forms. 

( )kv wR

vR

vR

wR

The steady-state optimal estimator gain can be found from (4.13), and P is the solution of 

the algebraic Ricatti equation in (4.14), which are 

1( )T T
v

 K PC CPC R , (4.13)

1( )T T T
v w

   P APA APC CPC R CPA ΛR ΛT . (4.14)

Different K can be found based on the knowledge of the noise levels  and  [106]. wR vR
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4.3.3 Prediction of process output 

Using the state-space model in (4.5), the prediction equation from the process can be 

stated as the function from future and current inputs with the estimated state variable, , 

which can be formulated in the matrices equation as shown below [68]: 
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The set of for ˆ ( |k p ky 0,1, ,p p   can be rewritten as 

ˆ  y GΔu f , (4.19)

with  represents the free responses of the system. ˆ( | ) ( | 1)x uk k k k f F x F u 

4.3.4 Unconstrained MPC 

If there are no constraints on the control inputs and plant outputs, the solution of (4.1) can 

be simply found at the global minimum of objective function. 

The reference trajectory and the diagonal weighting matrices can be formulated as 

 ( 1| ) ( 2 | ) ( | )
T

k k k k k p k   r r r r , (4.20)
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The objective function in (4.1) can be reformed in the matrices equation as 
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(4.23)

or simply 

( ) ( )

ˆ ˆ  ,

T T

T T

     

 

J r GΔu f Q r GΔu f Δu RΔu

ε Qε Δu RΔu
 

(4.24)

with ˆ ˆ    ε r y r GΔu f  represents closed-loop prediction error based on future and 

current control actions. 

When the first derivative of a function is equal to zero, then at that value, the respective 

function will on its local minimum, local maximum, or turning point. Mathematically, it 

can be expressed as 

0


 


J
g

Δu
. 

 
(4.25)

The second derivative should be examined to check whether a function on its local 

minimum, local maximum, or turning point when its first derivative is equal to zero. If the 

second derivative is positive, then for 0g , a function will be on its local minimum. 
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In addition, the local minimum of the function will be global minimum when its second 

derivative is positive definite, which is 

2

2
' 0


 


J
g

Δu
. 

 
(4.26)

The matrix H is said to be positive definite if satisfy [108]: 

0T a Ha , (4.27)

for all nonzero complex vector a. 

The first derivative of objective function in (4.24) is 

2 (( ) ) 2

            2(( ) ( )) .

T T

T T


     


  

J
g G Q r f GΔu RΔu

Δu

G QG Δu G Q r f

 
(4.28)

While the second derivative of that objective function is 

2

2
' 2( T
  


J
)g G QG R

Δu
. (4.29)

It can be seen that the second derivative of the objective function in (4.29) is not depend 

on . Since Q and R are symmetric and positive semi-definite, while all elements of G 

is real, then 

Δu

'g  is positive definite. 

The global minimum of objective function in (4.24) can be obtained by equating the first 

derivative in (4.28) to zero as 

2(( ) ( )) 0T T  G QG Δu G Q r f . (4.30)

The set of the changes in the control signals that minimizes MPC’s objective function for 

unconstrained case is given in the following equation: 

1( ) (T T Δu G QG G Q r f ) . (4.31)

And the relation between  and u u  can be expressed as 

( | ) ( | ) ( 1| )k i k k i k k i k     u Δu u . (4.32)
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4.3.5 Constrained MPC 

In the real practical applications, there are always some constraints put on the control 

input and/or plant output. The constraints can be categorized in terms of the source. An 

actuator has certain limit-to-limit travel time that restricts the change in the actuator 

position to a limited rate. This restriction is then reflected by a constraint on the changes 

in the control inputs of MPC. For instance, if a control valve has a travel time of 

10 seconds from fully open to fully close and MPC has a control interval of 1 second, 

then the maximal change in its control inputs will be 10% of the full range. Another 

constraint on the actuator is its maximum and minimum limit. For instance, a control 

valve may have a range of 0% - 100% of opening. However, due to some reasons, e.g., 

process safety, it may not be allowed the control valve to be fully open or fully closed. 

The constraints on the plant outputs can serve two purposes. One is to affect the transient 

behavior of the output. If the lower and upper bounds upon the plant outputs are put all 

over the prediction horizon, MPC will generate the control inputs to restrict the overshoot 

and undershoot of the output within the bounds. However, the actual control quality is 

affected by the accuracy of the internal model. The model mismatch may cause the actual 

overshoot or undershoot beyond the limits set in MPC. The other purpose of the output 

constraints is to control the steady-state output of plant. In some cases, a tight control on 

the plant outputs is unnecessary or unrealistic, so it is acceptable or more practical to 

control the output within the range. Using MPC, such non-tight control strategy can be 

implemented in a straightforward way. The weighting element of plant outputs Q can be 

set to a small number, which tells the MPC controller that the plant outputs deviations 

will not be seriously penalized, on the other hand, the upper and lower limits of the plant 

outputs should be set in the constraint, which instructs the MPC to generate control inputs 

to consider the limits of plant outputs. Controllers in the real applications must be capable 

of handling constraints in some way. Conventional control strategy uses ad hoc 

controllers to deal with different constraints, while MPC is able to handle constraints 

explicitly [106]. 

The constraints can also be divided into hard and soft constraints. A hard constraint 

cannot be violated when solving the optimization problem, while violations of a soft 

constraint can be allowed but are penalized in the objective function. In MPC, the hard 

constraints may come from the physical limitations of a system which cannot be 

compromised, such as the maximal pressure inside the vessel, the maximum and 
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minimum of opening valve, or the largest change in the control valve in one control 

interval. Violations of such hard constraints can degrade the performance of an MPC 

controller because the controller is not aware that the control input is unrealistic [106]. 

The soft constraints are adopted to maintain feasibility of an optimization. Soft 

constraints are obtained by softening hard constraints. To soften the constraints, slack 

variables could be added to the upper and lower bounds of the hard constraints, which 

relax the bounds. Furthermore, the objective function should be modified so that it 

includes a term to penalize the magnitude of slack variables. With the use of slack 

variables, violations of the original hard constraints are allowed but penalized [106]. 

However, in this study, only hard constraints of MPC will be examined.  

It is necessary to reform all the constraints in (4.2) until (4.4) in terms of either  or u. 

Furthermore, in order to be solved by the optimization algorithm, the constraints are 

necessary to be formulated in the matrices form. This formulation is shown in 

Δu

(4.33) until 

(4.48). 

Let u is chosen as the output of optimization, then the relation between  and u can be 

written as 

Δu

1 Δu Ξu f , (4.33)

with 
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First, the constraint of the change in control signal is formulated. Suppose that  and 

 are the constraint of , then by substituting 

minΔu

maxΔu Δu (4.33) into (4.2) the inequality 

becomes 

min 1 max 1   Δu f Ξu Δu f , (4.38)

which implies that 

max 1 Ξu Δu f  and max 1( )   Ξu Δu f , (4.39)

or in the matrix from, it can be expressed as 

max 1

min 1( )

  
        

Δu fΞ
u

Δu f-Ξ
. 

(4.40)

The constraint of the magnitude of control signal expressed in (4.3) can be reformed as 

max

min

  
   

   

uI
u

-u-I
, 

(4.41)

with I is the identity matrix. 

The prediction of plant output can be reformed by substituting (4.33) to (4.19) as 

2ˆ  y Fu f , (4.42)

with 

F GΞ  and 2 1 f f Gf . (4.43)

Using (4.42), the constraint of plant output in (4.4) can be written as 

min 2 maxˆ ˆ  y Fu f y . (4.44)
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The inequality in (4.44) implies 

min 2 max 2ˆ ˆ( ) and      Fu y f Fu y f , (4.45)

or in the matrix form become 

max 2

min 2

ˆ

ˆ( )

  
        

y fF
u

y f-F
. 

(4.46)

By combining (4.40), (4.41), and (4.46) all the constraints can be expressed as 

max 1

min 1

max

min

max 2

min 2

( )

ˆ
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Δu fΞ

Δu f-Ξ

uI
u

u-I

y fF

y f-F

, (4.47)

or simply 

Ψu ψ . (4.48)

4.3.6 Quadratic programming problem 

Unlike the unconstrained quadratic optimization problem, a convex QP problem generally 

has no closed-form solution. For unconstrained MPC problem, the solution can be simply 

obtained by equating its first derivative to zero as in (4.31), while for constrained 

problem, the presence of constraints variable make it impossible to find the solution in 

such way. A numerical method has to be employed to find the solution in an iterative 

way. There are many algorithms for solving a convex QP problem which includes 

pivoting algorithms, reduced gradient algorithms, active set methods, and interior point 

methods [106]. This study uses the QP solver – qpdantz in MATLAB® Model Predictive 

Control Toolbox, which adopts a Dantzig-Wolfe’s active set method. The concept can be 

briefly outlined as below [109]: 

The general form of a convex QP problem for is 

1
minimize    subject to   ,    .

2
T T T  

θ
θ Φθ ξ θ Ω θ χ θ 0  (4.49)

Introducing multipliers  for the constraints λ T Ω θ χ  and  for the bounds  gives 

the Lagrangian function: 

π θ 0
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1

2
( , , ) ( )  T T T T T    θ λ π θ Φθ ξ θ λ Ω θ χ π θ . (4.50)

For a convex QP problem, the necessary and sufficient conditions for x being the optimal 

are Kuhn-Tucker (KT) conditions [106, 109]. Defining slack variables κ ΩT θ χ , the 

KT conditions for (4.50) are 

  π Ωθ Ωλ ξ  ; (4.51)

T  κ Ω θ χ  ; (4.52)

, , , π κ θ λ 0  ; (4.53)

T π θ 0  ; (4.54)

T κ λ 0  . (4.55)

The method assumes that Φ  is positive definite: which is a sufficient condition that there 

is any solution for (4.51) until (4.55) to solve (4.49). The Dantzig-Wolfe method solves 

(4.51) until (4.55) in the iterative way to find π, , , and λ that minimize the objective 

function in 

κ θ

1)

(4.49). 

4.3.7 Quadratic programming as a control law for constrained MPC 

To obtain MPC’s optimal control actions using QP, the objective function in (4.24) 

subject to the constraints in (4.47) has to be formed into the general notation of QP as in 

(4.49). 

By substituting (4.42) and (4.33) into (4.24), the MPC’s objective function in (4.1) can be 

written as 

2 2 1

2 1

2 2 1 1

( ) ( ) ( ) ( ) (

       ( ) 2 ( )

          ( ) ( )  .

T T

T T T T T

T T

       

      
   

J u Fu f r Q Fu f r Ξu f R Ξu f

u F QF Ξ RΞ u f r QF f RΞ u

f r Q f r f Rf

  
 

(4.56)

Using (4.56), the objective function in (4.1) can be reformed into the general notation of 

QP as follow: 

1
minimize

2
T T

c 
u

u Hu c u f , 
(4.57)

subject to inequality constraints Ψu ψ  and , with 0u
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2( )T T H F QF Ξ RΞ , (4.58)

2 12 ( )T T    c f r QF f RΞT

1f

, (4.59)

2 2 1( ) ( )T T
c    f f r Q f r f R . (4.60)

The matrix H is a symmetric matrix which is indicated by TH H , and also a positive 

definite matrix which satisfy the condition in (4.27). These conditions imply that the 

optimization problem can be solved using QP method, and the solution of the 

optimization variable u can be used as the optimal control actions produced by the MPC 

controller.  

 

 

Figure 4.3: Geometric of 2-dimensions quadratic programming illustration. 
 

The quadratic programming notation in (4.57) has a nice geometric interpretation in the 

u-space. For example, let  ( | ) ( 1| )u k k u k ku   u u u, min max  , and R  is the 

square plane 
const

   2
min max,u u  min max,u u . The following equation 

1 T T

2
0c  u Hu c u f

c

 (4.61)

defines ellipsoids in  centered at  which is the optimal solutions for 

unconstrained optimization problem (u ). Then the optimization problem in 

2 1 u H

opt
uc (4.57) with 

these conditions can be regarded as the problem of finding the smallest ellipsoid that 
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intersects , and  as the solution is the point of intersection [110]. This geometric 

is illustrated in 

constR optu

Figure 4.3. 

4.4 Real-Time Controller 

The planning of control system commonly requires a series of steps which, depending on 

the complexity of the process, begin with modeling the dynamic system to be controlled, 

followed by identification of parameters associated with the process, analysis and 

validation of the model and the parameters obtained, definition and the type of controller, 

and finally with the real-time implementation of the control system as a whole. In 

particular, accounting for some of the implementation details such as the resolution of a 

fixed-point microprocessor that will be used may affect the originally designed controller 

model and require it to be modified [23, 111, 112]. 

A rapid prototype is a quick way to validate the controller code by executing it with the 

actual plant, sensors and actuators, the plant model, or any combination of these 

components [111, 112]. In scientific research and education, where a system is rarely 

taken into production, rapid prototyping serves an important purpose. In industry, rapid 

prototyping allows testing of a partial design before expending the effort to include 

robustness measures and optimizing the design [112]. 

A significant advance came with the commercialization and distribution of certain 

simulation tools which markedly simplified the whole set of tasks associated with the 

simulation phase for planning controllers. One of the commercially available systems that 

widely used in the dynamic system analysis, simulation, and control area is 

MATLAB/Simulink by The Math Works, Inc., which recently has released a toolbox 

called xPC Target. The xPC Target provides the tools for the automatic generation of 

real-time code from Simulink models, without the user having to write low-level code and 

allows the user access to input/output (I/O) data directly from a compatible data 

acquisition card [112-115].   

This section presents the rapid prototyping of a linear MPC based on MATLAB/Simulink 

environment. The MPC algorithm is carried out using the MPC Toolbox [37], which have 

been used by many researchers to implement the model predictive control algorithm, such 

as [107, 116-121]. Some developments and features that may beneficial in its further 

applications are also reported. 
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4.4.1 System description 

The overall host-target real-time control system architecture is shown in Figure 4.4. The 

host PC is a general-purpose PC which is used to design the control configurations in the 

offline mode. The host PC also supervises and monitors the xPC TargetBox in real-time 

application. The xPC TargetBox is a hardware which is used for prototyping the control 

systems. It is a combination of xPC Target software and a Pentium-based computer in a 

rugged enclosure that is suitable for industrial environments. The microprocessor can be 

augmented with a number of I/O configurations that are commonly required for control 

applications, such as timers, counters, analog-to-digital (A/D) and digital-to-analog (D/A) 

converters, pulse-width modulation (PWM), digital I/O, and controller area network 

(CAN) bus. The xPC TargetBox systems can achieve sample rates approaching 60 kHz, 

however, it depends on the complexity of the program. 

 

Figure 4.4: The real-time control system architecture. 

 

On the host PC (which runs MATLAB, Simulink, Real-Time Workshop, MPC Toolbox, 

and xPC Target), xPC Target works with the code generated from the Simulink 

application and a C-compiler to build the real-time target application. The target 

application can run in real-time on a xPC TargetBox once it is downloaded from the host 

PC.  

The target hardware is booted from a real-time kernel in xPC Target. However, the xPC 

Target kernel needs the PC basic input/output system (BIOS) because when the target PC 

boots and the BIOS is loaded, the BIOS prepares the target PC environment for running 

and then starts the kernel. 
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The kernel initiates the communication of host-target, activates the application loader, 

and waits for the target application to be downloaded from the host PC. The 

communication of host-target occurs through TCP/IP communication protocols using 

Ethernet. Once the target application has been downloaded to the xPC TargetBox, it can 

be monitored and supervised from the host PC. 

 

Figure 4.5: Photograph of the xPC TargetBox with the I/O module (left) and the host PC 
(right). 

 

Voltage-to-current and current-to-voltage converters are used, so that the I/O module of 

xPC TargetBox, which has the range of 0 – 5 Volt, able to communicate with the plant 

instrumentations which have 4 – 20 mA industrial standard signal. 

Figure 4.5 shows the photographs of the xPC TargetBox with its I/O module which are 

used to perform the real-time control, and the host PC which is used to design and 

simulate the controller in offline mode, and also to monitor and supervise the controller in 

real-time.  

4.4.2 Generating embedded code and application execution 

Basically, there are two steps to build a real-time controller using MATLAB, Simulink, 

and xPC Target. The first is to design and evaluate the control algorithm in offline mode 

and the second is to implement the designed controller into a device which able to 

perform the real-time control tasks. Brief overviews of these steps are outlined as follows:  
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4.4.2.1 Simulink simulation steps 

A typical Simulink block consists of inputs, states, and outputs. The outputs are a 

function of the sample time, the inputs, and the block states. During simulation, the model 

execution follows a series of steps as shown in Figure 4.6 [112]. 

 

Figure 4.6: Steps in a Simulink simulation. 

 

 

Figure 4.7: Simulink diagram for offline simulation of MPC. 
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The simulation begins with the initialization of the model, which includes: incorporates 

library blocks into the model, propagation of signal widths, data types, and sample times; 

evaluates block parameters; determines block execution order; and allocates memory. 

Simulink then enters a simulation loop. Each pass through the loop is referred to as a 

simulation step. During each simulation step, Simulink executes each of the model blocks 

in the order determined during initialization. For each block, Simulink invokes functions 

that compute the values of the block states, the derivatives, and the outputs for the current 

sample time. The simulation is then incremented to the next step. This process continues 

until the simulation is stopped. 

The model predictive control algorithm is first simulated in Simulink using MPC 

Toolbox. The Simulink diagram of this simulation is shown in Figure 4.7. The purpose of 

this simulation is to investigate the controller behaviors in offline mode. The plant model 

used to simulate the behavior of gaseous pilot plant is equal with the internal model of 

controller, resulting that the controller able to bring and maintain the process variables on 

the given set-points. the simulation of the model predictive control algorithm using MPC 

Toolbox has been reported by authors in [122]. 

4.4.2.2 Real-time execution 

Real-Time Workshop takes the Simulink model and generates the application or 

algorithm code that contains the system of equations derived from the model as well as 

the block parameters and the code to perform initialization. Real-Time Workshop also 

provides a run-time interface that allows the model code to be built into a complete, 

stand-alone program that can be compiled and executed. The model code contains 

functions that correspond to the applicable simulation steps outlined in Figure 4.7, i.e., 

compute the model outputs, update the discrete states, integrate the continuous state (if 

applicable), and update time. 

xPC Target generates its own main program. This program interacts with the execution 

driver for the model code, which in turn calls the functions in model code. The functions 

then write their calculated data to real-time model. At each sample interval, the main 

program passes control to the model execution function, which executes one step through 

the model. This step reads inputs from the external hardware, calculates the model 

outputs, writes outputs to external hardware, and then updates the states. Figure 4.8 gives 

the illustration about real-time execution of the model code [112]. 
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If these computations require the plant output of the previous sample time, they must be 

performed in one sample interval. This implies synchronization between the execution of 

the logical program by the controller and the dynamic behavior of the plant in real-time. 

The sample rate is determined by control law analysis and depends on the time constants 

of the plant. The faster the plant time constants, the higher the required sample rate. 

To make the Simulink model designed in simulation step can be used for real-time 

application, the input and output port have to be appropriately configured for the existing 

I/O module. 

 

Figure 4.8: Real-time execution of the model code. 
 

In this work, a Diamond-MM-32-AT analog-to-digital (A/D) and digital-to-analog (D/A) 

converter is used. This module uses a 16-bit A/D converter. This means that the analog 

input voltage can be measured to the precision of a 16-bit binary number. Since the 

maximum value of a 16-bit binary number is 216 – 1, or 65535, so the full range of 

numerical values that could be obtained from a Diamond-MM-32-AT analog input 

channel is 0 – 65535. The smallest change in input voltage that can be detected using this 

device is 1/216 of the full-scale input range. This smallest change results in an increase or 

decrease of 1 in the A/D code, and so this change is referred to as one least significant bit 

(1 LSB). Therefore, the resolution of the analog input (1 LSB) for measuring unipolar 

(positive only) analog voltages that have 0 – 5 Volt full-scale range, as used in this work, 

is 76 V.  

For the analog output, Diamond-MM-32-AT uses a 12-bit D/A converter which able to 

generate output voltages with precision of a 12-bit binary number. So the full range of 
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numerical values that can be written to the analog outputs on Diamond-MM-32-AT is 

0 to 4095. For a 12-bit D/A converter, the resolution is 1/212 of the full-scale output 

range. Since the full-scale range of analog output used this work is 0 – 5 Volt, so the 

resolution of analog output (1 LSB) is 1.22 mV.  

The model predictive control algorithm is then prepared to be carried out for the real-time 

application. Figure 4.9 shows the Simulink diagram which is used to build a model code 

of MPC controller and then downloaded to xPC TargetBox. As it can be seen, the input of 

controller is connected to analog input module, and the output of controller is connected 

to analog output module, which have been configured to receive and transmit 0 – 5 Volt 

analog signal in every sampling time (1 second). 

 

 
Figure 4.9: Simulink diagram that ready to be downloaded into xPC TargetBox for real-

time MPC. 
 

4.4.3 Changing the parameters 

While the application is running, xPC Target support the modification of certain 

parameters in the Simulink blocks, such as set-points values and controller switches. The 

parameter changes are immediately reflected in the real time application. 
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Several parameters require re-initialization of the model. In this case, the parameters 

cannot be changed in real-time mode. The new model code has to be built and the real-

time application has to be stopped, so that the xPC Target can replace the existing model 

code with the new one. Such parameters commonly influences the algorithms, and cannot 

be categorized as the input or output block of Simulink. 

4.4.4 Data logging and online monitoring 

The plant is typically instrumented with sensors, so that the control action can be well 

calculated by the embedded control system and transmitted to the actuators. However, for 

several purposes, the data need to be stored in a persistent form or made visible in real 

time. 

xPC Target supports several monitoring and data logging methods, including xPC Target 

scopes, outport blocks in the Simulink model of target application, and also provide the 

requested data from MATLAB environment. 

xPC Target scopes are data display options, which can be associated with any signal in 

the target application. In order to be displayed on the monitor, the data that is sent to the 

scope can be stored in RAM or on the xPC Target file system and transferred to the host 

when the execution of the target application stops. 

Outport blocks in the Simulink model of the target application can be used to log data to 

an object in the MATLAB workspace once the execution of the target application is 

terminated. After stored in the workspace, the data can be manipulated as regular 

workspace variables, saved into a file, and/or displayed in a MATLAB plot. Time and the 

model state can be logged in the same way in which this data can be written to the 

MATLAB workspace during operation of the target application. 

The tight interaction between MATLAB, Simulink, Real-Time Workshop, and xPC 

Target makes it possible to write a script that monitors the signal outputs. In this work, 

the script is created to monitors and logs the data in every sampling time (1 second), and 

then stores the logged data into a spreadsheet file when the application finished. Using 

this script, the real-time monitoring seems more flexible rather than using xPC Target 

scopes, since the sampling time can be easily adjusted and the value of signals can be 
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clearly displayed. Also, when the data need to be examined, it is not necessary to stop the 

application like when the outport block is used as data logger. 

4.5 Real-Time Implementation of MPC 

In previous chapter, the empirical models of gaseous pilot plant have been obtained. The 

rapid prototyping of an embedded MPC controller has also been presented in previous 

section. As continuation of the work, the real-time implementation of MPC using the 

internal models and the experimental environment designed before is presented in this 

section. This section begins with the analysis of model mismatch, and followed by the 

real-time tuning of model predictive controller. At the end of this section some 

discussions are presented. 

4.5.1 Setpoint tracking: Analysis of MPC under model mismatch 

 

Figure 4.10: The schematic diagram of the closed-loop MPC control system. 

 

There are 3 models of gaseous pilot plant have been obtained using subspace 

identification technique with variation in input signals and model structures, which are 

named Model 1, Model 2, and Model 3. The first two models have three inputs, i.e., the 

three control valves, and two outputs, i.e., the upstream and downstream pressures, while 

Model 3, which is constructed from two MISO models, has five inputs and two outputs. 

The global comparison of the models has been performed using APRBS response as the 

validation data, while the best fit criterion is used to measure the performance. From the 

open-loop validation, it is observed that Model 3 produces the best performance. In this 

 



 117

sub-section, those three models are employed as the internal model of MPC controller. 

The controllers will be tested for setpoints changing in real-time condition, and their 

performances will be analyzed. 

The schematic diagram of the closed-loop system used in this experiment is shown in 

Figure 4.10. The block of plant model in Figure 4.10 uses the state space plant model as 

given in (4.5). Using MPC Toolbox, the plant model should be specified in discrete LTI 

form without including the plant noise and the measurement noise when defining the 

model predictive controller. If there are any non-manipulated variables contained in the 

input vector, such variables should be defined as measured disturbances. The state 

estimator block in the figure represents the observer given in (4.6) to (4.8). In MPC 

Toolbox, the default parameter for the estimator gain in (4.6) is designed using Kalman 

filtering techniques by using kalman syntax in the MATLAB Control System Toolbox. 

Using the plant model, the information of current plant inputs, and the estimated state of 

the plant obtained by the observer, the prediction of plant output for several steps ahead 

can be calculated using the equations in (4.15) to (4.19). The optimization function block 

in Figure 4.10 is responsible for solving the control law of MPC problem using QP 

method. Since MPC Toolbox is used in this research, the constrained MPC problem in 

(4.56) to (4.60) is solved using QP solver which is available in the toolbox. The 

MATLAB MPC Toolbox uses Dantzig-Wolfe’s algorithm to solve the convex quadratic 

programming problem. This algorithm can be called using qpdantz syntax. The block of 

plant in Figure 4.10 represents the gaseous pilot plant. 

The plant model would be varied from Model 1, Model 2, and then Model 3. All the three 

controller variations are set to have the same parameters as follows: 

a. Prediction horizon: 40. 

b. Control horizon: 10. 

c. Rate weights (R):  ; Output weights (Q):  . 







10

01








1000

0100

d. Manipulated variables constraint: 0 MV 100  . 

e. Process variables constraint: 0 PV 7   barg. 

f. Sampling time: 1 second. 
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The setting of the controller horizons and the weigths of optimization function given 

above are based on a heuristic approach conducted during this research which implies that 

such parameters give the best controller responses in the real-time implementation of 

MPC for controlling the gaseous pilot plant. 
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Figure 4.11: Upstream responses of MPC control system with variation of the internal 
model. 

 

The controllers are implemented in the plant and given the initial setpoints. The initial 

setpoint for upstream pressure is 5 barg, while the initial setpoint for downstream pressure 

is 4 barg. When the process variables are apparently reaching their steady-state 

conditions, the setpoints are changed. The setpoint of upstream pressure is increased from 

5 to 6 barg, while the setpoint of downstream pressure is increased from 4 to 5 barg. The 

total recorded data is 400 for each process variable, with one second sampling time. The 

data recording begins from 100 seconds before and 300 seconds after the changing of 

setpoints. 

 



 119

Figure 4.11 shows the closed-loop responses of upstream pressure (PT202) controlled by 

MPC using Model 1, Model 2, and Model 3 as the internal model, while for downstream 

pressure (PT212) the closed-loop responses is shown in Figure 4.12. Several controller 

performance parameters of this experiment are given in Table 4.1. The settling time 

parameter used in this experiment is the time at which the controlled variables have 

entered and remained in the steady-state conditions within 5% error band. The maximum 

overshoot and steady-state error parameters are presented in scaled value, which are 

normalized with the difference between the initial and final setpoints. 
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Figure 4.12: Downstream responses of MPC control system with variation of the internal 
model. 

 

Analyzing the responses of upstream control system given in Figure 4.11 and the 

controller performance parameters in Table 4.1, the MPC controller using Model 1 and 

Model 2 give better results in the transient conditions, indicated by zero overshoot and 

smaller settling time. However, more details in the steady-state conditions, the plant 

responses of both controllers tend to have offset (steady-state errors). As it can be seen in 

Table 4.1, MPC using Model 1 produces of 4.5% steady-state error, while MPC using 
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Model 2, even worse, produces the steady-state error of 6.7%. For MPC using Model 3, 

an overshoot occurs in the transient condition. The settling time given by MPC using 

Model 3 in upstream control system is also larger rather than when Model 1 and Model 2 

are used. However, the major breakthrough given by Model 3 is that there are no more 

steady-state errors, neither in initial steady-state nor in the final steady-state conditions. 

Table 4.1: MPC controllers performance parameters with variation of internal model 

Max. overshoot 
in scaled value (%) 

Settling time  
(second) 

Steady-state error 
in scaled value (%) The internal model 

used in MPC PT202 PT212 PT202 PT212 PT202 PT212 

Model 1 -* -* 75 140 4.5 5.7 

Model 2 -* -* 75 200 6.7 15.9 

Model 3 28.1 20.5 125 120 0 0 

-*: within 5% error band. 

 

For the response of downstream control system, MPC controllers using Model 1 and 

Model 2 as the internal model produce the worse response compares to the response of 

upstream control system, as indicated by greater steady-state errors. Inline with the 

upstream control system, the steady-state errors, either in the initial or in the final steady-

state condition, disappear when Model 3 is used as the internal model of MPC controller. 

Even better, the settling time of downstream control system using Model 3 as the internal 

model of MPC is smaller compares to when Model 1 and Model 2 are used. Yet, MPC 

using Model 3 produces unacceptable overshoot in the transient condition. 

Since there are some undesired conditions occuring, such as the overshoot of controlled 

variables in the transient conditions, it is necessary to fine-tune the MPC controller. The 

techniques to eliminate the overshoot and fine-tune the MPC controller will be presented 

in the following sub-section.  

4.5.2 MPC parameters tuning 

In this sub-section, four tuning parameters will be examined in the real-time 

implementation of MPC in the gaseous pilot plant. The MPC controller uses Model 3 as 

the internal model, since it has shown some advantages, especially that it can produce 

zero steady-state errors for upstream and downstream control system, as described in sub-
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section 4.5.1. These tuning parameters are: controller sensitivities, prediction and control 

horizons, state estimation gain, and reference trajectories. 

4.5.2.1 Controller sensitivities 

The sensitivity of MPC is mainly affected by tuning the weights of optimization function 

[29]. The effect of these weights can be briefly explained as follow: 

a. Rate weight, or also called penalty on move factor [29]. This weight penalizes 

changes in the manipulated variables. The plausible values for rate weight are: 

i. Zero, means that there is no penalty. MV can move anywhere between its upper 

and lower limits. However, this setting might allow the excessive movements. 

ii. Positive, means that increasing the weight makes the controller tend to reduce the 

movement in manipulated variables. 

b. Output weight, or also called penalty on error factor [29]. This weight penalizes 

deviation of output from its setpoint or reference trajectory. Used as follows: 

i. Zero, means that there is no penalty. Used when the output does not has a setpoint. 

ii. Positive, increasing this weight makes the controller tend to keep the output nearer 

its setpoint. 

In this experiment, the diagonal matrices of rate weight and output weight are used: 

, and 
0

0 Q


 
 

Q
Q 


R 0

0 R


 
 

R

100

0


 Q

1 0

0 1




 










. The output weight, Q, is varied between: , 

, and , while the output weight matrix is kept to be 

constant: . So that, it can be said that the approach used in this experiment is 

by varying the ratio between Q and R.  

1 0

0 1

 
  
 

Q

10 0

0 10


 
 

Q

R

0

100 




The other controller parameters in this experiment are set as follows: 

a. Horizons 

The short horizons are first considered in this experiment. The prediction horizon of 

the MPC controller is selected to be10 and the control horizon is selected to be 5. The 

effects of longer horizons would be further examined. 
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b. State estimation gain 

The default parameter for the state estimation gain designed using Kalman filtering 

techniques which is available in MPC Toolbox is used in this experiment. Without 

specified the noise level of plant, the suggested estimator gain (K) for MPC controller 

using Model 3 is: 

0.0001 0.0004 0 0 0.6171 0

0 0 0 0 0 0.6180

T
 

  
 

K . (4.62)

c. Reference trajectories 

There are no reference trajectories filter formulation used in this experiment. The 

MPC controller would be driven by step-shaped setpoints.  

Figure 4.13 shows the comparison of upstream responses controlled using MPC with 

variation in the output weight, while the rate weight is kept to be constant. Several control 

performance parameters, including condition of process variable in steady-state 

conditions of upstream control system, are given in Table 4.2. The term ‘NA’ stands for 

not available, which means that the required information cannot be obtained from the 

logged data, due to the bad performance of control system. For instance, when the 

controller has the output weight equals to the rate weight, the system is not in steady-state 

condition yet at 300 seconds after the changing of setpoint. Hence, the settling time of 

system in this condition cannot be determined. The term ‘SS’ stands for steady-state 

conditions. So that, the term ‘Initial SS’ refers to the condition of process variable in the 

initial steady-state condition (before the changing of setpoint) and the term ‘Final SS’ 

refers to the condition of process variable in the final steady-state condition (after the 

changing of setpoint). As it can be observed, when Q and R are set at the same value, 

which is 1, the response of controller is very slow and has not in the steady-state yet at 

300 seconds after the changing of setpoint. When output weight is increased become 10, 

the response of controller is faster, however, the amplitude of oscillation in the final 

steady-state condition remains big. The oscillation in the final steady-state condition is 

much reduced, or even removed, when the output weight is increased become 100. 

The comparison of downstream responses controlled using MPC with variation in output 

weight is illustrated in Figure 4.14, and the controller performance parameters are given 

in Table 4.3. Inline with the response in upstream, when the rate weight and the output 
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weight are set to have value of 1, the response is very slow. This implies that the output 

weight has to be increased. When the output weight is set to be 10, the controller response 

is much faster, however, there is oscillation remains in the final steady-state condition. 

A better response is shown when the output weight is increased become 100. The 

response is fast enough and the oscillation in final steady-state condition is much reduced. 
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Figure 4.13: Upstream responses of MPC control system with variation of the weights of 
objective function. 

 

Table 4.2: MPC controllers performance parameters with variation of the weights of 
objective function for the upstream responses  

Amplitude of 
oscillations (%) 

Period of oscillations 
(second) 

The weight of  
MPC’s optimization 

function Initial SS Final SS Initial SS Final SS 

Max. 
overshoot 

(%) 

Settling 
time 

(second) 

R=1; Q=1 -* NA† -* NA† NA† NA† 

R=1; Q=10 7 10 74.5 95.7 26.1 NA† 

R=1; Q=100 7.1 -* 19 -* 31.9 160 

-*    : within 5% error band. 
NA†: have not entered and remained in steady-state within 5% error band during 500 seconds. 
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Figure 4.14: Downstream responses of MPC control system with variation of the weights 
of objective function. 

 

Table 4.3: MPC controllers performance parameters with variation of the weights of 
objective function for the downstream responses 

Amplitude of 
oscillations (%) 

Period of oscillations 
(second) 

The weight of  
MPC’s optimization 

function Initial SS Final SS Initial SS Final SS 

Max. 
overshoot 

(%) 

Settling 
time 

(second) 

R=1; Q=1 -* NA† -* NA† NA† NA† 

R=1; Q=10 3.8 4.4 100 120 17.9 350 

R=1; Q=100 -* -* -* -* 20.5 130 

-*    : within 5% error band. 
NA†: have not entered and remained in steady-state within 5% error band during 500 seconds. 
 

There are also drawbacks of increasing the output weight. As can be observed in Table 

4.2 and Table 4.3, increasing the output weight may produce the bigger overshoots. 

However, in this case, the overshoot increases seem nothing compare to the improvement 

of control system such as the faster settling time. 
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Another drawback of increasing the output weight is it may also increase the frequency of 

oscillation in the initial steady-state conditions. Analyzing the physical aspect of the 

plant, maintaining the upstream pressure at 5 barg is somehow more difficult rather than 

at 6 barg, due to the small size of upstream vessel and the fluctuation of air feed. 

4.5.2.2 Horizons 

Wojsznis et al. [29] point out that from an implementation stand point, prediction horizon 

and control horizon are not convenient to be used as tuning parameters. Al-Ghazzawi 

et al. [27] propose an online tuning method which is found that the proposed method is 

not to be very sensitive to the closed-loop prediction horizon. However, since both papers 

present only the simulation works, there is a possibility that perhaps some real-time 

conditions have not been covered. 

The setting of prediction and control horizons contributes a lot in the computational load 

of controller. From the derivation of MPC algorithm in section 4.3, the size or dimension 

of the optimization problem that has to be solved by the controller in every sampling time 

is mainly affected by the length of prediction and control horizons. The computational 

load of MPC controller can be simply said as the function of the sum total of prediction 

horizon and control horizon, even though other variables also have some contributions. 

Therefore, it is necessary to examine the effect of prediction horizon and control horizon 

in the closed-loop responses of MPC. 

In this experiment, three variations of prediction and control horizons in real-time model 

predictive control will be examined. First, the prediction horizon will be set to have the 

value of 10, while the control horizon will be set to have the value of 5. In the second 

variation, the prediction horizon is lengthen become 40, while the control horizon is set to 

have the value of 10. This setting is rather intuitive since the value of 5 of control horizon 

seems to be very small when the prediction horizon is 40. The last variation is by setting 

the control horizon of 20, while the prediction horizon remains 40.  

The other controller parameters in this experiment are set as follows: 

a. Controller sensitivities 

The rate weight of MPC optimization function in this experiment is chosen to be 1 

and its output weight is chosen to be 100. This setting based on the results given in 
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Table 4.2 and Table 4.3, where among the three variations the best controller 

performances are obtained when R equals to 1 and Q equals to 100. 

b. State estimation gain 

The default parameter for the state estimation gain given in (4.62) remains used. 

c. Reference trajectories 

In this experiment, no reference trajectories filter formulation are used. The  

step-shaped setpoints would be directly given to the MPC controller. 
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Figure 4.15: Upstream responses of MPC control system with variation of prediction and 
control horizons. 

 

Figure 4.15 shows the comparisons of upstream response controlled using MPC with 

variation in prediction horizon (p) and control horizon (m), while for downstream 

response is shown in Figure 4.16. The controller performance parameters for the upstream 
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control system using MPC with variation in prediction and control horizons are given in 

Table 4.4, and for the downstream control system it is given in Table 4.5. 
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Figure 4.16: Downstream responses of MPC control system with variation of prediction 
and control horizons. 

 

Table 4.4: MPC controllers performance parameters with variation of prediction and 
control horizons for the upstream responses 

Amplitude of 
oscillations (%) 

Period of oscillations 
(second) The horizons of 

MPC Initial SS Final SS Initial SS Final SS 

Max. 
overshoot 

(%) 

Settling 
time 

(second) 

p = 10; m = 5 6.3 -* 19 -* 30.5 150 

p = 40; m = 10 8.4 -* 23 -* 25.3 110 

p = 40; m = 20 7.9 -* 27 -* 16.8 140 

-*: within 5% error band. 
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Analyzing the upstream and downstream responses, it can be said that setting a longer 

prediction horizon improves the performance of control system. A clearer illustration is 

given by the downstream responses, since the upstream responses are more fluctuating 

and oscillatory. From the downstream responses, it is observed that by increasing the 

prediction horizon from 10 to 40, the overshoot can be reduced. When the control horizon 

is increased from 10 to 20, the bigger overshoot is produced. So that, setting the control 

horizon closer to prediction horizon may reduce the performance of control system, since 

the free response of system can be less considered. 

 

Table 4.5: MPC controllers performance parameters with variation of prediction and 
control horizons for the downstream responses  

Amplitude of 
oscillations (%) 

Period of oscillations 
(second) The horizons of 

MPC Initial SS Final SS Initial SS Final SS 

Max. 
overshoot 

(%) 

Settling 
time 

(second) 

p = 10; m = 5 -* -* -* -* 42.9 160 

p = 40; m = 10 -* -* -* -* 20.2 100 

p = 40; m = 20 -* -* -* -* 28.6 140 

-*: within 5% error band. 

 

During the experiment, it is found that the maximum computational size which can be 

handled by the prototyping environment in every sampling time is when p equals to 40 

and m equals to 20. Hence the investigation on the performance of MPC controller with 

prediction horizon more than 40 steps is not conducted in this research. 

4.5.2.3 State estimation gain 

Wojsznis et al. [29] also note that model mismatch could produce chattering of the 

controller output. Significant chattering of the output can be eliminated after the 

application of model filter with a certain time constant relative to MPC scans. 

In this work, due to the noisy environment and the possibility of model mismatch, the 

chattering and oscillation of controlled output are also the important aspects that need to 

be considered when fine-tune the MPC controller. However, using state-space MPC, there 

is a filter embedded inside the controller, which is in the state estimation part. Using 

Kalman filter as the state estimator, the chattering and oscillation of controlled output due 
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to possibility of model mismatch and noisy measurement can be reduced by decreasing 

the Kalman gain in the state estimator. 

In the early experiments, the MPC controller uses the default state estimation gain (K) as 

given in (4.62). This value of K is obtained using Kalman filtering techniques based on 

the assumption that the noise on each measured output, manipulated variables, and 

measured disturbances are white noise with zero mean and unit covariance. However, this 

setting produces the sustain oscillation especially in the initial steady-state condition of 

upstream pressure control. This implies that the controller is too sensitive with the noisy 

condition and, therefore, the state estimator gain has to be reduced. Figure 4.17 and 

Figure 4.18 show the comparison of upstream and downstream responses controlled using 

MPC with state estimator gain equals to K in (4.62) and when it is reduced to become:  

0.00003 0.00010 0 0 0.24680 0
0.4

0 0 0 0 0 0.24720

T
 

    
 

K K . (4.63)

The reducing factor, 0.4, in (4.63) is heuristically chosen to reduce controller sensitivity 

to the mismatch of measured and predicted outputs, especially due to measurement 

noises. There is no optimal design conducted in this work to determine such a reducing 

factor. The setups of other controller parameters in this experiment are given as follows: 

a. Controller sensitivities 

Based on the results given in Table 4.2 and Table 4.3, the rate weight of MPC 

optimization function in this experiment is chosen to be 1 and its output weight is 

chosen to be 100. 

b. Horizons 

The settings of controller horizons are based on the results given in Table 4.4 and 

Table 4.5. Considering the maximum overshoots and settling times of both upstream 

and downstream responses, the prediction horizon in this experiment is set to be 40 

while the control horizon is set to be 10. 

c. Reference trajectories 

The step-shaped setpoints would be directly given to the MPC controller, hence, no 

reference trajectories filter formulation are used in this experiment. 
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Figure 4.17: Upstream responses of MPC control system with variation of the state 
estimation gain. 

 

The controller performance parameters of MPC using state estimation gain K and  for 

the upstream control system are shown in 

K

Table 4.6, while for the downstream control 

system the controller performances are shown in Table 4.7. 

Table 4.6: MPC controllers performance parameters with variation of the state estimation 
gain for the upstream responses 

Amplitude of 
oscillations (%) 

Period of oscillations 
(second) The state estimation 

gain of MPC 
observer Initial SS Final SS Initial SS Final SS 

Max. 
overshoot 

(%) 

Settling 
time 

(second) 

K 9.5 -* 25 -* 23.8 125 

K  -* -* -* -* 17 90 

-*: within 5% error band. 
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Figure 4.18: Downstream responses of MPC control system with variation of the state 
estimation gain. 

 

Table 4.7: MPC controllers performance parameters with variation of the state estimation 
gain for the downstream responses 

Amplitude of 
oscillations (%) 

Period of oscillations 
(second) The state estimation 

gain of MPC 
observer Initial SS Final SS Initial SS Final SS 

Max. 
overshoot 

(%) 

Settling 
time 

(second) 

K -* -* -* -* 21.1 100 

K  -* -* -* -* 21.1 100 

-*: within 5% error band. 
 

A clearer illustration of the effect of setting the state estimation gain in MPC is given by 

upstream control system responses. As can be observed, reducing the state estimator gain 

removes the sustain oscillation, especially in the initial steady-state condition, and 

reduces the overshoot in the transient condition. For the downstream responses, however, 
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the difference of controller performance with the variation of state estimator gain is not 

significant. 

Based on the experiment results, it can be deduced that the state estimator gain plays an 

important role when the controller has to deal with the noisy environment, while for more 

stable condition it does not significantly affect the controller performances. 

4.5.2.4 Reference trajectories 

Qin and Badgwell [123] point out that almost all of the industrial MPC controllers 

provide the option to drive the process variable to a fixed setpoint, which makes the 

objective function penalizes deviations of output on both sides. In practice this type of 

controller setting is very aggressive and may lead to very large input adjustments, unless 

the controller is detuned in some manner. This is particularly important when the internal 

model significantly differs from the process. 

Several industrial MPC algorithms provide a process variable reference trajectory option 

[123]. The reference trajectory idea is to bring the process variable up to the setpoint 

more slowly, which makes the system able to avoid overshoot. A first order curve is 

drawn from the current process variable value to the setpoint, with the speed of response 

is determined by reference trajectory’s time constant. Future process variable deviations 

from the reference trajectory are penalized. 

In this experiment, the idea of reference trajectories filter formulation to remove the 

overshoots in upstream and downstream responses would be examined. During the 

experiment, other MPC controller parameters are set as follows: 

a. Controller sensitivities 

Based on the experiment results in 4.5.2.1, the rate weight and the output weight of 

MPC optimization function in this experiment is chosen to be 1 and 100 respectively. 

b. Horizons 

The prediction horizon in this experiment is set to be 40 while the control horizon is 

set to be 10. The settings are based on the experimental results in 4.5.2.2. 
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c. State estimation gain 

Based on the controller performance parameters given in Table 4.6 and Table 4.7, the 

state estimation gain in this experiment is set to have the value of  as given in K

(4.63). 
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Figure 4.19: Upstream responses of MPC control system with and without applying the 
reference trajectory filter. 

 

Figure 4.19 and Figure 4.20 show the comparisons of upstream and downstream 

responses without and with applying the reference trajectory with the filter time constant 

τ = 30 seconds. The controller performance parameters of this comparison are given in 

Table 4.8. As it can be observed, the overshoots in the transient conditions can be 

eliminated by applying the reference trajectories filter. More interestingly, in this case, 

the settling time of upstream and downstream control system are also faster when the 

reference trajectories filter are applied in MPC. 
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Figure 4.20: Downstream responses of MPC control system with and without applying 
the reference trajectory filter. 

 

Table 4.8: MPC controllers performance parameters with and without applying the 
reference trajectories filter 

Without ref. trajectory With ref. trajectory (τ = 30 s) 
 

Plant outputs 

Overshoot (%) Settling time (s) Overshoot (%) Settling time (s) 

Upstream (PT202) 28.1 125 -* 95 

Downstream (PT202) 20.5 120 -* 100 

-*: within 5% error band. 
 

The disadvantage of reference trajectory formulation is that it penalizes the output when it 

happen to drift too quickly towards the setpoint, as might happen in response to an 

unmeasured disturbance. So that, it is also important to properly tune the time constant of 

reference trajectories.  
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Wojsznis et al. [29] also point out that modifying the setpoint reference trajectory is the 

primary and intuitive method of online MPC tuning. As the reference trajectory time 

constant increases, the controller will able to tolerate larger model mismatch and it also 

increases overall controller robustness. 

In this experiment, three variations of the reference trajectory time constant are examined. 

For upstream control system, the time constant is varied from 15, 20, to 30 seconds, while 

for downstream control system, the time constant is varied from 25, 30, to 40 seconds. 

Figure 4.21 and Figure 4.22 show the effect of different time constant of reference 

trajectories in the upstream and downstream responses, and the controller performance 

parameters of this variation are given in Table 4.9. Based on this experiment results, it 

can be implied that setting the proper time constant of reference trajectory requires the 

knowledge about the system, so that the closed-loop response can have the shape as it is 

desired. 
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Figure 4.21: Upstream responses of MPC control system with variation of the reference 
trajectory filter. 
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Figure 4.22: Downstream responses of MPC control system with variation of the 
reference trajectory filter. 

 

Table 4.9: MPC controllers performance parameters with different time constant of the 
reference trajectories  

Upstream pressure (PT202) Downstream pressure (PT212) Performance 
parameters τ = 15 s τ = 20 s τ = 30 s τ = 25 s τ = 30 s τ = 40 s 

Overshoot (%) 5 -* -* 3 -* -* 

Settling time (s) 70 90 95 95 100 120 

-*: within 5% error band. 
 

4.5.3 Discussion 

Following the development and open-loop validation of the models, which has been 

presented in Chapter 4, the implementation of a linear MPC using the developed state-

space models to examine their performances in a real-time closed-loop control system is 

presented in the first part of this section. As the main result, MPC controller using 
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Model 3 is able to produce zero steady-state errors. The steady-state errors happen since 

there are some differences between the prediction and the actual plant outputs. These 

differences are caused by the presence of nonlinearities in the plant that cannot be 

covered by the internal model of controller. When Model 3 is used as the internal model 

of MPC, the steady-state errors either in upstream or downstream responses disappear. 

This implies that during the steady-state conditions, the prediction of plant outputs 

produced by Model 3 is equal with the actual outputs of plant. It proves that taking into 

account of the measurement of the upstream output as one of the inputs to predict the 

downstream output, and vice versa, gives the effective prediction and control over an 

interacting series process, in this case the gaseous pilot plant. 

In the practical process control, zero steady-state error commonly is one of the necessary 

conditions for control system design. The results show that Model 3 is robust against the 

nonlinearities in the gaseous pilot plant, indicated by zero steady-state errors during the 

real-time implementation of a linear model predictive control. Based on the results, it can 

be concluded that among the three approaches, the technique used to construct Model 3 is 

the most suitable approach for producing the linear model of an interacting series process 

which is robust against the plant nonlinearities. 

In the second part of this section, four parameters have been examined to illustrate the 

effect of tuning these parameters to the closed-loop responses of MPC in real-time 

conditions. The tuning study is started by examining the controller sensitivities. For a 

linear MPC with diagonal matrices of weights, the controller sensitivities are mainly 

affected by the ratio of output weight to rate weight. Increasing the ratio of output weight 

to rate weight increases the controller sensitivity, and on the other hand, decreasing the 

ratio of output weight to rate weight decreases the controller sensitivity. 

The second step of tuning the MPC controller is on the effect of the MPC’s horizons. As 

the objective of MPC is to minimize the error over a finite-time prediction based on the 

predicted output and produce a set of optimal control action. Therefore, a different setting 

of prediction horizon and control horizon can results a different control action. Based on 

the experiment results, the longer prediction horizon produces the better control action, 

since the controller will consider a longer future behavior of process output. The control 

horizon has to be less or equal than the prediction horizon. However, a closer control 

horizon to the prediction horizon reduces the controller computation to consider the free 

 



 138

response of the system, and it can reduce the performance of control system. Setting a 

very short control horizon may also cause the controller output less optimal. 

Both the prediction horizon and control horizon have a big contribution in the 

computational load of controller, hence it is also necessary to allocate the task of 

controller computation. It is suggested to set a long enough prediction horizon, so that 

further increment has no significant effect on the control performance, and control 

horizon is someway chosen so that the free response of the system can be well 

considered. 

The third tuning parameter examined in this work is state estimation gain. The necessity 

to investigate such a tuning parameter arise due to the presence of significant chattering 

or rapid oscillations in the upstream response when the plant is controlled using MPC, 

which does not occur in the downstream response. Recalling some information from the 

previous chapter, the signal-to-noise ratio of upstream pressure measurement is about a 

half of the signal-to-noise ratio of downstream pressure measurement. Furthermore, in the 

open-loop model validation, the best fit criterion for upstream data is slightly lower rather 

than for the downstream data. These conditions can be considered as the cause of the 

chattering and oscillations in the upstream response. However, it implies that the 

controller is too sensitive with such noisy condition and model error. Reducing the state 

estimation gain of the controller proves to solve such a problem. From another 

investigation of plant responses, it is also found that such an approach gives no significant 

effect on the controller performance for more stable and less noisy system, in this case the 

downstream response. 

Tuning the horizons, the controller sensitivity, and the state estimation gain of MPC 

controller give significant improvements to the controller performances in the transient as 

well as the steady-state conditions. However, the tolerable overshoots remain occur in the 

upstream and downstream responses when the setpoints are changed. To eliminate the 

overshoots, the adjustment of the reference trajectories is investigated, resulting that the 

implementation of the proper reference trajectories can eliminate such an overshoot. The 

necessity to properly tune the time constants of the reference trajectories is also addressed 

in this work, since the reference trajectory formulation penalizes the output when it 

happen to drift too quickly towards the setpoint, which may makes the responses have the 

undesired shapes. 
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Based on the results obtained from varying the MPC tuning parameters, the important 

features to be considered when tuning a MPC controller have been presented in this work. 

A set of guidelines for tuning an MPC controller as a result during this study is proposed 

as follows: 

a. If the responses of MPC controller are very slow, or the oscillation of process 

variables in steady-state conditions are presences with high amplitudes and low 

frequencies, it is necessary to increase the controller sensitivities by increasing the 

output weight, or in other hand, reducing the input weight of optimization function. 

b. It is necessary to set a long enough prediction horizon, so that further increment has 

no significant effect on control performance. The control horizon is someway chosen 

so that the free response of the system can be well considered. The computational 

capability of the controller in every sampling time has also to be considered when 

determining the prediction and control horizons. 

c. Should there a rapid oscillation or chattering of controller outputs in steady-state 

conditions, it is necessary to reduce the gain of state estimator. 

d. If the undesired overshoots remain occur, the reference trajectories adjustment are 

worthwhile to be considered. 

4.6 MPC and PID 

Since the use of PID control in 1910, which extensively addressed in Elmer Sperry’s ship 

autopilot, the popularity of PID control has grown tremendously [101, 102]. The 

simplicity, clear functionality, and applicability of PID control system have brought it to 

the top rank of industrial control system algorithm. Nowadays, more than 90% of 

industrial control systems are still implemented based around PID algorithms [101, 102, 

124], and interestingly, most controllers only use the proportional and integral actions 

[102]. 

Despite its popularity, a number of limitations in PID control system remain. With 

advances in digital and computational technology, especially in the industrial 

applications, the science of automatic control offers varieties of control schemes, such as 

the kind of centralized optimal control system, which is largely addressed in the 

application of MPC. Based on its structure and computation algorithm, MPC offers a 
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number of advantages that no more can be simply handled by PID, such as taking into 

account of multivariable interactions, actuator limitations, and process constraints 

explicitly. However, the decentralized control structure of PID and the simplicity of its 

algorithm yet present some advantages, so that it is remain preferred for certain cases 

[101-105]. 

An alternative approach is to combine PID and MPC in the control system. The problem 

of combining two controllers into a single control system may arise when the controller 

has to be switched from one to another. Without proper design, sudden movement of 

manipulated variables with big amplitude commonly will occur. For PID control, many 

ways have been addressed to overcome this problem, commonly known as anti-windup or 

bumpless transfer strategy [125-129]. For model-based control system, the bumpless 

transfer method is commonly addressed based on the type of controller and how the 

control actions are derived [130-132]. 

This section presents the study of combining PID and MPC in the control system. The 

study begins with the tuning of PID controllers parameters using one of the most popular 

PID tuning methods: Ziegler-Nichols closed-loop tuning method. The controller 

performances comparison is further performed by examining the process variables and 

the manipulated variables in the transient and steady-state conditions. Following the 

work, a simple method to make a bumpless transfer in MPC is demonstrated. In the last 

part of this section, some discussions are presented.  

4.6.1 Tuning of PID 

There are many available methods that can be used to determine the tuning constant 

values of PID controller. In this work, the Ziegler-Nichols closed-loop tuning method is 

used. Using such a method it is necessary to find the ultimate gain, , which is the 

value of gain at which the loop is at the limit of stability with a proportional-only 

feedback controller [133]. The period of resulting oscillation is called the ultimate period, 

. The controller parameters are then calculated as the function of  and  based on 

the formulas given in 

uK

uuP K uP

Table 4.10 for the three types of controllers [40, 133].  

The digital PID controller used in this work has one second sampling time, which is equal 

to the sampling time used in MPC controller. There are two controllers used, one is for 

controlling the pressure in upstream, another one is for downstream pressure. The 
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manipulated variable for upstream pressure is assigned to the inlet control valve 

(PCV202), while the outlet control valve (PCV212) is selected as the actuator for 

downstream control system.   

Table 4.10: Ziegler-Nichols closed-loop tuning correlations  

Controller parameters P-only PI PID 

cK  / 2uK  / 2.2uK  /1.7uK  

IT    /1.2uP  / 2.0uP  

dT  0 0 / 8uP  

 

Considering that the process is a kind of fast process, the type of controllers is chosen as 

proportional and integral only (PI). The derivative mode is selected to be zero, since it 

provides rapid correction based on the rate of change of the controlled variable, and can 

cause undesirable high-frequency variation in the manipulated variable [40]. 
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Figure 4.23: Sustain oscillation of the upstream process variable (PT202). 

 

The tuning of controllers is done sequentially. The first step is finding  and  

parameters for upstream control system. The upstream control system (PIC202) is set in 

closed-loop proportional-only feedback control, while the downstream control system 

(PIC212) is in manual mode with constant opening of control valves. From this 

experiment, the value of controller gain at which the loop is at the limit of stability, , 

is 20. 

cK IT

uK

Figure 4.23 shows the sustain oscillation of process variable at this condition. The 
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period of oscillation, , is 15 seconds. Based on these values,  and T  parameters for 

upstream control system are then determined. 
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Figure 4.24: Sustain oscillation of the downstream process variable (PT212). 

 

The second step is finding the PI parameters for downstream pressure. The downstream 

control system (PIC212) is set in closed-loop proportional-only feedback control, while 

the upstream control system (PIC202) is in manual mode with constant opening of control 

valves. From the experiment, the controller is at the limit of stability when its 

proportional gain is 50, and producing the sustain oscillation of process variable with the 

period is 14 seconds. This sustain oscillation of process variable is shown in Figure 4.24. 

The parameters of  and T  downstream control system are then calculated based on 

these values. 

c I

Table 4.11 presents the results of obtaining PID parameters using the 

Ziegler-Nichols closed-loop tuning method which further be used in this experiment. 

 

Table 4.11: Controllers tuning parameters based on the Ziegler-Nichols closed-loop 
tuning method  

Sustain oscillations Controllers parameters 
 

Controlled variables 

Ku Pu Kc TI Td 

Upstream pressure (PT202) 20 15 s 9 12.5 s 0 

Downstream pressure (PT202) 50 14 s 22.7 11.7 s 0 
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4.6.2 Control performances 

The PID controller’s tuning parameters obtained using Ziegler-Nichols method are then 

implemented in the gaseous pilot plant, and the results are compared with the 

performance given by MPC controller. Figure 4.25 shows the plant responses in the 

upstream when the plant is controlled using PID and MPC controllers, while for 

downstream, the responses are presented in Figure 4.26. The controller performances 

parameters of PID and MPC in these conditions are given in Table 4.12. 
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Figure 4.25: The comparison of MPC and PID in the upstream control system as the 
response of setpoint change. 

 

Table 4.12: Controllers performance parameters of PID and MPC controllers 

Max. overshoot 
in scaled value (%) 

Settling time  
(second) 

Steady-state error 
in scaled value (%) The type of controllers 

PT202 PT212 PT202 PT212 PT202 PT212 

PID 26.7 -* 40 25 8.9 0 

MPC -* -* 95 100 0 0 

-*: within 5% error band. 
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Figure 4.26: The comparison of MPC and PID in the downstream control system as their 
responses to setpoint change. 

 

Analyzing the response of upstream pressure, the PID controller responds rapidly to the 

changing in setpoint. The overshoot occurs in the transient response, but the controller 

quickly bring the process variable back to the setpoint. However, there is a steady-state 

error occur in the first initial condition. Using MPC controller, there is no steady-state 

errors in the initial and final steady-state conditions, however, the response of the 

controller is slightly slower.   

In the downstream, the PID controller shows better response compares to the upstream. 

The steady-state errors and the overshoot are eliminated. Like in the upstream, the MPC 

controller is showing slower response compares to the PID controller. 

Besides analyzing the responses of process variables, the movements of manipulated 

variables are also examined. The movement of manipulated variable assigned to the inlet 

control valve is shown in Figure 4.27, while the manipulated variable assigned to the 
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outlet control is shown in Figure 4.28. The setpoints of the controllers is changed when 

the time is equal to 100 seconds. As can be seen, the PID controllers produce fast actions 

to eliminate these errors, while MPC seems to prevent the rapid movements of 

manipulated variables.   
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Figure 4.27: The comparison of manipulated variable movements in the upstream control 
system using PID and MPC. 
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Figure 4.28: The comparison of manipulated variable movements in the upstream control 
system using PID and MPC. 

 

The manipulated variables in the steady-state conditions given by PID and MPC 

controllers are also examined. For further analysis, these signals are presented in the 

frequency domain representation. Figure 4.29 presents the spectrums of manipulated 

variable for the upstream control system in the steady-state condition given by PID and 

MPC controllers. The signals are taken into account after the settling time, or when the 

process variable has reached the steady state condition, and normalized to the mean of 

their steady state value. As can be seen from the spectrum plot, the oscillation of 

manipulated variable given by PID controller remains presence in high frequencies. In 
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contrary, the oscillation of manipulated variable given by MPC controller exists only for 

the low frequencies.  

 

Figure 4.29: The spectrum of manipulated variable in steady-state condition given by 
PID and MPC controllers for the upstream control system. 

 

For the downstream control system, the spectrums of the manipulated variable given by 

PID and MPC controllers are shown in Figure 4.30. Inline with the spectrums plots of the 

upstream control system, the movements of manipulated variables produced by PID 

controllers are still presence in the high frequencies. Furthermore, the oscillation of the 

manipulated variable given by PID controller indicates the big amplitude. Yet, when 

MPC controller is used, the movements of manipulated variable are only presence in the 

very low frequencies.  

Since it is not plausible to obtain exactly the true model of the plant which able to capture 

the whole plant dynamics including plant noises and disturbances, also due to the noisy 

measurements of the system being controlled, the oscillations of the manipulated 

variables in the low frequencies cannot be avoided as the controller has to keep the 
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process variables remain in their setpoints. However, since the manipulated variables will 

be assigned to the control valves as the actuators, the rapid movements and the high 

frequency variations commonly suppose to be minimized. Because of their continuous 

motion, actuators usually undergo wear and aging. 

 

Figure 4.30: The spectrum of manipulated variable in steady-state condition given by 
PID and MPC controllers for the downstream control system. 

 

There are several ways to improve the performance of the PID controller and many 

guidelines are available [40], however, it will not be investigated in this research. 

Nevertheless, a fair benchmark or comparison between two controllers requires a deep 

study of both controllers and plant’s behaviors. 

4.6.3 Switching control and bumpless transfer 

From results of the experiment, it is noted that both PID and MPC has their own 

advantages. It depends on the users to select the controller based on the kind of 

performance to achieve. However, there is also an option to use both controllers, PID and 
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MPC, and switch them in their respective convenient ranges. In that case, the problem of 

seamless real-time switching between controllers in the closed-loop control applications, 

referred to as bumpless transfer [129], will arise. 

To make a bumpless transfer when the controller is switched to MPC, the external 

feedback of manipulated variables is used in this work. The use of the external feedback 

of manipulated variables to make a bumpless transfer has been introduced by Bemporad 

et al. [37], and the feature is currently available in the MPC Toolbox from The 

Mathworks, Inc. This method is relatively simple and easy to be implemented. 

Figure 4.31 shows the schematic diagram of PID and MPC controllers that are used side 

by side, provided by a selector switch which enables the user to switch from one 

controller to another in real-time. The ‘true’ manipulated variables which will be 

transmitted to the actuators are connected back to the PID and MPC control system. 

These signals are further used by anti-reset windup, or also known as anti-windup, 

algorithm of PID controller [125-129], and also be used by the state estimation algorithm 

of MPC controller to prevent the windup phenomena and make the bumpless transfers 

during the switching control system [37]. 

 

Figure 4.31: The schematic diagram of PID and MPC in the control system. 
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To produce the future control actions, the MPC controller needs to predict the future 

behaviors of the plant based on the internal model of the controller and the estimated 

current states of the plant. To estimate the current states, the state estimation equations in 

(4.6) to (4.8) are used. This requires the information about the past actions of plant inputs 

(manipulated variables) and plant outputs (process variables). Without any external 

feedback of manipulated variables, the only information about past actions of plant inputs 

is the signals that have been produced by MPC controller. The MPC controller assumes 

that the signals assigned to the actuators are equal with the outputs of MPC. Therefore, 

there will be error in the estimated states, and consequently the predictions of plant 

outputs for several steps ahead are no more valid. When the external feedback of 

manipulated variables is provided, the MPC controller will update the information about 

past actions of plant inputs, which are no longer equals to the past outputs of MPC 

controller. Hence, the estimation of the current states of plant remains valid. 

Figure 4.32 shows the comparison of the manipulated variable and the process variable of 

upstream control system during switching time in the steady-state condition, from PID to 

MPC, with and without the external feedback of manipulated variables. As it can be seen, 

when the external feedback of manipulated variable is not provided, there is a sudden 

moves of manipulated variable just after the controller is switched from PID to MPC 

mode. As a consequence, during the transition time, the windup phenomenon will occur 

and the process variable will deviate from its setpoint. When the external feedback of 

manipulated variable is provided, the controller will make a smooth transition and the 

deviation of process variable from its setpoint (windup) disappears. 

The comparison of the manipulated variable and the process variable of downstream 

control system during switching time in the steady-state condition, from PID to MPC, 

with and without the external feedback of manipulated variables, are shown in Figure 

4.33. Inline with the response in upstream control system, the external feedback of 

manipulated variable provides the important information for the MPC controller to handle 

the transition during the switching time, thus provides the bumpless transfer of 

manipulated variable, and eliminates the deviation of process variable from its setpoint 

(windup). 
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Figure 4.32: The manipulated variable (top) and the process variable (bottom) of 
upstream control system during the switching time. 

 

 

Figure 4.33: The manipulated variable (top) and the process variable (bottom) of 
downstream control system during the switching time. 
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4.6.4 Discussion 

As a continuation to the work on real-time implementation of model predictive control 

algorithm for an interacting series process, the study is extended to combining PID and 

MPC in the controller. The PID parameters are first determined using the Ziegler-Nichols 

closed-loop tuning method. The performances of PID controllers are then compared with 

the performance of MPC controller by examining their process variables and manipulated 

variables in the transient and steady-state conditions. It is found that the plant responses 

given by the MPC controller are slightly slower rather than the plant responses given by 

the PID controllers. However, the movements of manipulated variables of the PID 

controllers seem to give rapid correction of the errors, hence the extreme deviations of 

manipulated variables in the transient conditions occur. Furthermore, the manipulated 

variables of PID controllers are still presence in high frequencies during the steady-state 

conditions. In the real applications it may reduces the lifetime of the actuators. Since the 

objective of this study is not to do any comparisons to the performance of PID and MPC 

controllers, hence further investigation to improve the performance of PID control system 

in the gaseous pilot plant is not conducted. 

This study is then narrowed down to the implementation of a simple method that able to 

make a smooth transition of manipulated variables during the switching from PID to 

MPC. The experiment results imply that the use of the external feedback of manipulated 

variables able to provide better estimation of the plant states and gives effective outcomes 

to make a bumpless transfer. 

Based on the results, it can be concluded that it is possible to combine PID and MPC in 

the control system. The decentralized structure and the simplicity of PID will be needed 

when the process is in unusual conditions, such as for ease of start-up, automatic/manual 

transfer, and fault tolerance in the event of actuator or sensor failures. The multivariable 

control algorithm of MPC based on the minimization of its objective function may 

contribute a lot to achieve the economic and process benefits during the normal operating 

conditions. 

4.7 Summary 

In this chapter, real-time implementation of model predictive control algorithm for 

controlling an interacting series process was presented. A real-time embedded control 
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system consisting of off-the-shelf components, such as standard PC and I/O modules, and 

software tools: MATLAB, Simulink, xPC Target, and RTW was implemented. Following 

the development and validation of the models discussed in the previous chapter, the 

developed models were tested as the internal model of MPC to examine their 

performances in real-time closed-loop control system. As the result, Model 3 showed to 

be robust against plant nonlinearities as indicated by zero steady-state errors. To improve 

its performances, the MPC controller was tuned by investigating the effect of four tuning 

parameters. As the outcomes, a simple set of guidelines to tune MPC was proposed. 

Considering several advantages of PID control system, a study of combining PID and 

MPC in the control system was performed. Detail analysis of the experiment results, it is 

possible to combine PID and MPC as a control system and there is a flexibility to switch 

them for their respective purposes. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

This thesis has discussed the empirical modeling using system identification technique 

and the implementation of the linear state-space model predictive control based on 

quadratic programming optimization method, with a focus on the interacting series 

processes. In general, a structure involving a series of systems occurs often in process 

control, and may also be combined with other structures, such as recycle structure or 

staged structure. The study has been carried out experimentally using a gaseous pilot 

plant as the process. The consideration was that the dynamic of the gaseous pilot plant 

exhibits the typical dynamic of an interacting series process, where the strong interaction 

between upstream and downstream properties occurs in both ways. 

The empirical modeling was employed in the subspace system identification, which has 

been mentioned in many literatures to provide excellent technique for MIMO 

identification. To provide good estimations, two kinds of input signals, i.e., step and 

PRBS, were used, and three methods were taken into account for determining the model 

order. The challenge came when the nonlinearity occurs, while the identified model was 

expected to be robust against it. The main contribution is on to the modification of the 

model structure and performing MISO identifications, instead of MIMO identification. To 

assemble the models obtained using MISO identifications, the general formulation in 

state-space was derived. The open-loop model validation using a fresh data set, the 

APRBS response data, were performed during the first assessment of the identified 

models. Based on its structure, the model obtained from MISO identifications gave the 

best open-loop performance in term of the best fit criterions. Further model validation 

was carried out in real-time by utilizing the identified models as the internal model of a 

linear MPC controller. Yet, the state-space model obtained from MISO identifications 

showed its robustness, indicated by zero steady-state errors in the real-time 

implementation. Based on the results, taking into account the measurement of the 

upstream output as one of the inputs to predict the downstream output and vice versa, the 

structure of the model estimated using MISO identifications provides an effective 

prediction and control over the interacting series processes. Hence, the linear empirical 
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modeling of the interacting series process gives good robustness against plant 

nonlinearities. 

The rapid prototyping of an embedded MPC controller has also been successfully 

developed using the available equipments, such as standard PC and I/O modules, and 

software package: MATLAB, Simulink, xPC Target, and Real-Time Workshop. Such 

experimental equipment was used to study the control of an interacting series process, the 

gaseous pilot, in real-time condition using MPC algorithm. The experiment results has 

demonstrated the applicability of the presented prototyping environment to implement the 

model predictive control algorithm in real-time. Moreover, there is no requirement on low 

level language programming. 

The standard tuning rules of MPC have not been reported in any literatures, therefore, in 

this work the tuning of MPC controller was carried out in a heuristic way. Four 

parameters that could be used to adjust the performance of the MPC controller were 

examined. The four parameters are: the weights of MPC’s optimization function, the 

prediction and control horizons, the state estimation gain, and the reference trajectories 

filters. As a result, the MPC controller was able to meet the desired performances: 

considerably fast to track the setpoints, no significant chattering or oscillation in steady-

state conditions, and no overshoots. Based on the experiment results, a simple set of 

guidelines for tuning MPC controller has been proposed. 

Considering several advantages of the decentralized control structure such as PID, and the 

fact that the linearized model is valid for certain neighborhood of operating points, the 

possibility of combining PID and MPC in the control system has also been studied. The 

applicability of the feedback of manipulated variables to make a bumpless transfer during 

the switching control from PID to MPC in steady-state condition has been illustrated.  

5.2 Directions for Future Works 

 Input design for plant testing 

The PRBS input signals used in this thesis was designed on the assumption that the 

plant being modeled could linearly be approached with the first-order plus delay time 

transfer functions of each output from their respective inputs. The plant also perturbed 

simultaneously with three different PRBS signals without any further design. The fact 
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that this setting gave poor estimation for MIMO identification may give an insight for 

further investigation on how the PBRS signals should be designed and as an 

alternative on the open-loop perturbation. 

 Further alternatives on the use of the estimated model 

Further applications of the estimated model, such as for soft sensing or dynamic data 

reconciliation applications could be beneficial to be considered, examined, and 

experimentally tested. 

 Computational capacity of the rapid prototyping environment 

The long prediction horizon of MPC controller may serve better control actions. 

However, increasing the horizons of MPC increases the computational load of the 

controller. The excessive setting of the horizons may cause the optimization function 

unable to be solved by the controller during every sampling time. The investigation on 

the computational capacity of the rapid prototyping environment being used may 

necessarily to be conducted so that the memory and the processing tasks of the 

controller in every sampling time can be allocated properly. 

 Further advances in system identification and model predictive control 

The further advances in system identification such as closed-loop identification or 

nonlinear identification could be very interesting to be investigated. The use of MPC 

algorithm as a dynamic optimizer of the plant to make a good coordination between 

low-level control loops may also worthwhile to be examined. 

The work presented in this thesis has contributed to an improved understanding of the 

procedure for modeling, analysis, system identification, and model predictive control 

development of an interacting series process. Even though the approach presented here 

offers some promising insights, much work remains to be done to improve the technique 

under different types of systems to demonstrate the generality of the approach. Several 

directions of future work presented above might serve an insight on the further 

investigations related to this work. 
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