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ABSTRACT 

The increased incidence of colorectal cancer (CRC) and its mortality rate have 

attracted interest in the use of artificial intelligence (AI) based computer-aided 

diagnosis (CAD) tools to detect polyps at an early stage. Although these CAD tools 

have thus far achieved a good accuracy level to detect polyps, they still have room to 

improve further (e.g., sensitivity). Besides, the physicians need to manually detect and 

segment the poylps during the endoscopic screening. This process is affected by 

physicans’ subjectivity, i.e., attention and practical experience, and it is time 

consuming. Moreover, there is the chances of polyps miss-detected due to the 

inexperience or junior physicians.Therefore, in this thesis, we propose a novel 

approach to distinguish colonic polyps by integrating several techniques, including a 

modified deep residual network, principal component analysis, and AdaBoost 

ensemble learning. A powerful deep residual network architecture, ResNet-50, was 

investigated to reduce the computational time by altering its architecture. To keep the 

interference to a minimum, median filter, image thresholding, contrast enhancement, 

and normalisation techniques were exploited on the endoscopic images to train the 

classification model. Three publicly available datasets, i.e., Kvasir, ETIS-

LaribPolypDB, and CVC-ClinicDB, were merged to train the model, including images 

with and without polyps. The proposed approach achieved Matthews Correlation 

Coefficient of 0.9819 with accuracy, sensitivity, precision, and specificity of 99.10%, 

98.82%, 99.37%, and 99.38%, respectively. However, most AI models are 

implemented on the software platforms. Along with the demands of embedded 

devices, the hardware implementation can fulfill the demands of real-time applications 

with high accuracy and low-power comsumption. To determine the feasibility for the 

convolutional neural network (CNN) to be implanted in an embedded device, we thus 

propose a 4-layers model to be implanted in the microprocessor. The essential 

functions in the CNN (i.e., padding, convolution, ReLU, max-pooling, fully-

connected, and softmax) have been implemented in the microprocessor.  
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ABSTRAK 

Peningkatan insiden kanser kolorektal dan kadar kematiannya telah menarik minat 

dalam penggunaan alat CAD (Computer-Aided Diagnosis) melalui AI (Artificial 

Intelligence) untuk mengesan polip pada peringkat awal. Walaupun alat CAD ini 

setakat ini telah mencapai tahap ketepatan yang baik untuk mengesan polip, ia masih 

mempunyai ruang untuk penambahbaikan (cth., sensitiviti). Selain itu, doktor perlu 

mengesan dan segmen polip secara manual semasa pemeriksaan endoskopik. Proses 

ini dipengaruhi oleh subjektiviti doktor, iaitu, perhatian dan pengalaman praktikal, dan 

ia memakan masa. Tambahan pula, terdapat kemungkinan polip tidak dapat dikesan 

kerana kurang pengalaman atau doktor muda. Oleh itu, dalam tesis ini, kami 

mencadangkan pendekatan baru untuk membezakan polip kolon dengan 

menyepadukan beberapa teknik, termasuk rangkaian sisa dalam yang diubah suai, 

analisis komponen utama, dan AdaBoost pembelajaran ensemble. Senibina rangkaian 

sisa dalaman yang berkuasa, ResNet-50, telah disiasat untuk mengurangkan masa 

pengiraan dengan mengubah senibinanya. Untuk memastikan interferansi pada tahap 

minimum, penapis median, ambang imej, peningkatan kontras dan teknik penormalan 

telah dieksploitasi pada imej endoskopik untuk melatih model klasifikasi. Tiga set data 

yang tersedia secara terbuka, iaitu, Kvasir, ETIS-LaribPolypDB dan CVC-ClinicDB, 

telah digabungkan untuk melatih model, termasuk imej dengan dan tanpa polip. 

Pendekatan yang dicadangkan mencapai MCC sebanyak 0.9819 dengan 99.10%, 

98.82%, 99.37%, dan 99.38% bagi ketepatan, kepekaan, ketepatan dan kekhususan. 

Walau bagaimanapun, kebanyakan model AI dilaksanakan pada platform perisian. 

Bersama dengan permintaan peranti terbenam, pelaksanaan perkakasan boleh 

memenuhi permintaan aplikasi masa nyata dengan ketepatan tinggi dan penggunaan 

kuasa rendah. Untuk menentukan kebolehlaksanaan CNN untuk ditanam dalam peranti 

terbenam, kami mencadangkan model 4 lapisan untuk ditanam pada mikropemproses. 

Fungsi utama dalam CNN (cth., padding, konvolusi, ReLU, max-pooling, fully-

connected, dan softmax) telah dilaksanakan pada mikropemproses.  
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CHAPTER 1 

INTRODUCTION

This chapter introduces colorectal cancer (CRC) with an overview of the state of case 

and mortality rate of this disease worldwide. Besides, it discusses the existing 

computer-aided diagnosis (CAD) and medical capsule robots in assisting the physician 

to carry out the diagnostic. This chapter also reviews the current issues that cause the 

increasing cases and its mortality rate, which leads to several hypothesis and research 

questions in solving this matter before coming up with the research objectives to fill 

those research gaps. At the end of the chapter, scope of study is presented.  

1.1 Research Background 

CRC is the third most common malignancy and the fourth leading cause of cancer 

death in the world [1]. An analysis from the American Cancer Society showed that 

both the number of new CRC cases and the mortality rate have been increasing [1]. 

CRC begins in the form of glandular tissue, known as a polyp, on the inner lining of 

the colon or rectum [2-4]. Untreated neoplastic polyps may turn into CRC. Therefore, 

detecting polyps and removing them early can greatly reduce the incidence of CRC 

and its mortality rate [6-8]. 

Computer-aided diagnosis (CAD) has been one of the most reliable and widely 

used methods in screening, medical diagnosis, and therapeutic systems for various 

cancer diseases, including CRC, over the past decade. These CAD systems help 

physicians to focus on smaller sub-volumes instead of on the entire volume, which 

significantly helps physicians make accurate decisions regarding the removal of polyps 

at an early stage, which, in turn, is beneficial for curative interventions [9-11]. 

Recently, the use of artificial intelligence (AI) techniques, such as deep learning (DL) 

and machine learning (ML), have opened the door for the use of CAD in the 
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interpretation of medical images, helping physicians provide a diagnosis by acting as 

a second reader in detecting cancer diseases. In this case, the AI-based models can 

assist physicians in performing detection and characterizing lesions seamlessly while 

manipulating an endoscope and efficiently interpreting the endoscopic images [12]. 

Usually, an image classification model is divided into three parts: image pre-

processing, feature extraction, and classification. Due to the quality of the images, all 

images need to undergo pre-processing to reduce noise and degradation. Most of the 

previous computer-assisted polyp classification systems were based on handcrafted 

feature extraction methods to train a primary classifier [3]. The ML algorithms can 

learn the classification part; however, the feature extraction part still requires expert 

engineering support from a human being [13]. DL has shown remarkable results for 

image classification in computer vision, with extraordinary accuracy [14-17]. In DL, 

the convolutional neural network (CNN) is a very powerful ML technique and part of 

deep neural networks. DL can also easily extract higher level and more abstract 

features [18,19], unlike the early, conventional handcrafted methods; CNN features 

outperformed handcrafted features in the 2015 Endoscopic Vision Challenge [20]. 

Hereby, CNNs can automatically learn rich feature representations from many diverse 

images to carry out the classification task [4]. Over the years, the performance of the 

CNN has been significantly improved by employing depth and other structural 

modifications, such as the block architectures [19]. These blocks are the auxiliary 

learners that allow boosting CNN performance by making problem-aware learning 

[19].  

Classification is a type of supervised ML technique that is used to predict a discrete 

class where the classes are predefined for each event [21]. In ML, the ensemble method 

is mainly utilised to enhance a classifier’s efficiency [21], and it combines various 

learning algorithms/classifiers to categorise new samples to obtain better predictive 

accuracy [22]. The most common types of ensemble methods include bagging, 

boosting, stacking, and voting. In previous studies [23-25], some basic ML algorithms 

such as support vector machine (SVM), decision tree, and Naïve Bayes were utilised 

for disease classification, but the ensemble techniques, such as bagging and boosting, 
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can improve the accuracy of classification significantly by combining multiple weak 

classifiers. 

Nevertheless, most CNN models are trained and implemented on the software 

platforms [26]. It is a considerable challenge to implant the CNN architectures, which 

consists of many neurons, into embedded devices with a battery supplied. In the wake 

of demands of embedded devices, the hardware implementation of CNNs can fulfill 

the demands of real-time applications with high accuracy and low power consumption. 

In particular, the hardware implementations can be used as an embedded device to 

perform some specific biomedical disease tasks such as stress detection, seizure 

detection, stroke detection, etc. For colon polyp detection, medical capsule robot could 

be the embedded device to capture the images of the GI tract. The development of 

medical capsule robots has emerged from the science fiction notion of robots travelling 

inside the gastrointestinal (GI) tract to perform diagnosis and treatment [27]. Today, 

varieties of capsule robots are available in the market with diagnostic features, such as 

in vivo body temperature and pH monitoring [27], and yet these are not the main 

function for a capsule robot during polyp detection. In this case, a capsule robot with 

the feature of automatically detect and localise polyp would be more important. 

Therefore, a CNN-based solution in the smart capsule robots that will detect polyps 

automatically can assist physicians in performing detection more precisely and 

effectively. 

1.2 Problem Statement  

Endoscopy/colonoscopy is a practical way to discover and detect colonic polyps. 

Nonetheless, the common issues faced in this research are listed as follows: 

a) On the conventional colonoscopy, the physicans need to manually detect and 

segment the polyps. The procedure is affected by physicians’ subjectivity, such 

as attention and practical experience, which caused time consuming [28]. 

b) Many existing CADs have achieved good results in classifying colon polyps, 

but they still have room to improve further, especially when high sensitivity is 
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an important concern. That is because the cost of false negatives (i.e., missed 

polyps) is much higher than false positives [29]. 

c) Due to the subjectivity of physicians, it was reported the miss-rate for polyp 

detection is about 22% during the endoscopy/colonoscopy screening [5]. 

1.3 Research Questions 

To solve the problems and achieve the hypothesis, the research questions come out: 

a) Could the application of AI be developed into the CAD tool to perform an 

automated detection and classification of colonic polyp ?  

b) Could the performance of CAD tool be further improved by using a new 

combination of modified deep residual convolutional neural network, feature 

dimension reduction and AdaBoost techniques?  

c) Could the CNN-based algorithm be implemented on the microprocessor to 

achieve the idea of integrating system on chip (SoC) on the camera of medical 

capsule robot?  

1.4 Research Hypothesis 

The mainstream in this study is to develop a competitive and robust method in 

detecting the colonic polyps to reduce the cases of CRC and its mortality rate. It is 

hypothesized that the research gaps can be filled accordingly: 

a) CAD tool with AI-based helps the physician in performing detection and 

characterizing lesions seamlessly, which acts like a second reader in detecting 

polyps.  

b) The ability to further enhance the performance of existing CAD tools allows 

the physicians to provide a more accurate and is with high sensitivity diagnosis 

to the patients. 



 

23 

c) Smart medical capsule robot aids in automatically detect and classify the 

polyps when travelling inside the GI tract. 

1.5 Research Objectives 

The overall aim of the research is to help the physicians by proposing an automatic 

method in analyzing endoscopic images. It can be accomplished with the following 

objectives: 

a) To develop an automatic method to detect and classify colonic polyps using 

the combination of image processing and AI, such as DL and ML.  

b) To improve the performance of existing CAD tool for colonic polyps detection 

in terms of MCC, accuracy, sensitivity, specificity, and etc.  

c) To determine the feasibility for the CNN to be implanted in an embedded 

device, which is the medical capsule robot with the feature of automatically 

detect and classifiy colonic polyps.  

1.6 Scope of Research 

The focus of this study is to i) delovop a novel approach that able to detect the presence 

of abnormalities from endoscopic images, ii) improve the current CAD tools, and iii) 

develop a smart medical capsule robot through DL technique. The study divides into 

two phases to comply with the research objectives, where phase I subject for the 

abnormality detection and performance improvement, while phase II for the 

implementation of embedded device. A MATLAB computing tool was used to develop 

the algorithm for phase I. For phase II, an integrated development environment (IDE), 

Code Composer Studio (CCS) was utilized to develop the algorithm into the 

microprocessor. 

Three online publicy datasets (i.e., Kvasir, ETIS-LaribPolypDB, and CVC-

ClinicDB) experiment on both phases. The final results for both phases were evaluated 
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based on its Matthews Correlation Coefficient (MCC), accuracy, sensitivity, precision, 

specificity, and area under the curve (AUC). The aforementioned datasets consist of 

two classes of images (polyps and normal colon), they were merged to obtain a larger 

database to train and develop a competitive CAD system and a smart medical capsule 

robot. 

1.7 Thesis Organization 

The thesis is organized into five chapters starting from introduction, followed by 

related works, methodology, results and discussion, and lastly, wrapped with 

conclusion. The description of the remaining chapters is presented as the following: 

Chapter 2 discussed the previous works done on DL for colonic polyp detection 

and classification. Besides, the previous works on the hardware implementation of 

CNN for various detection tasks were reviewed. Several methods used for each 

operation have been discussed with their performance, advantage, and limitation. 

Lastly, a critical review was discussed based on the literature review. 

Chapter 3 presented the algorithm used in each process,including the explanation 

and discussion on the chosen technique adapted for both phases. This chapter begins 

with a brief description of the chosen datasets, followed by the explanations on the 

proposed method for the CAD tool, mathematical assessments for the performance 

evaluation, and lastly, the discussion on the proposed method for the hardware 

implementation. 

Chapter 4 explained obtained results from the proposed method introduced in the 

preceding chapter. Furthermore, the performance comparison between the obtained 

result.s and previous related works was provided in this chapter. In addition, the results 

for  hardware implementation of CNN were presented at the end of this chapter. 

Chapter 5 concluded the performance of the proposed method with descriptions of 

the contribution of the research work. Besides, the limitation and recommendation 

work for future were discussed at the end of the chapter.
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CHAPTER 2 

RELATED WORK

A brief implementation of DL and ML in previous CAD systems for detection and 

classification of colonic polyp was overviewed to clasp the idea of the application. 

Besides, the liteture reviews have been done on the previous works on the hardware 

implementation of CNN for different detection and classification tasks. In addition, 

the advantages and limitations of differenct techniques applicable to the CAD systems 

and the hardware implementation were discussed.  

2.1 Existing CAD Systems for Colonic Polyp Detection 

The promising performance of DL and its influence have driven the field of 

histological image analysis for the early diagnosis of CRC. Zhang et al. [30] used the 

transfer learning (TFL) approach to transfer the low-level features learned from a 

source domain (non-medical) to a target domain (endoscopic images). The extracted 

features were then fed into a SVM for the classification of colorectal polyps, resulting 

in an accuracy of 85.90% with a recall and precision of 87.60% and 87.30%, 

respectively. Additionally, Liu et al. [31] trained a deep CNN, 

faster_rcnn_inception_resnet_v2 model, for polyp and adenoma classification, which 

contained four main blocks to process the images for the prediction. First, the inception 

block was employed to extract the feature map and sent for the first round of rough 

prediction. Simultaneously, it was sent to another block to extract the features for the 

second stage of prediction, where the second prediction was a quadratic regression, as 

was the case in the first rough prediction. They obtained a mean average precision of 

90.65% when the intersection over union was set to 0.5.  

In a previous study [32], Bour et al. utilised a TFL approach based on ResNet-50 

by changing the classifiers while keeping the same convolutional base. The ResNet-
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50 model performed the best with their data, with an accuracy, recall, precision, F1-

score, and specificity of 87.10%, 87.10%, 87.10%, 87.10%, and 93.00%, respectively, 

as compared to other models, such as ResNet-101, Xception, VGG-19, and 

Inception_V3. Furthermore, Patino-Barrientos et al. [3] proposed a DL model based 

on Kudo’s classification scheme using a fine-tuned VGG network. The fine-tuned 

VGG model resulted in better performance, with an accuracy, recall, precision, and 

F1-score of 83%, 86%, 81%, and 83%, respectively, as compared to the models that 

trained with and without using the original VGG base model as a feature extractor. In 

a different study [33], Park et al. proposed a CNN model that consisted of 43 

convolutions with one fully-connected layer for the classification of colonoscopy 

images. Their proposed network had fewer parameters, which made the network less 

complex; meanwhile, it achieved an accuracy of 94.39% in the test result, which is 

higher than VGG-19, ResNet, and DenseNet when trained on their dataset. 

Ozawa et al. [34] used a deep CNN architecture, namely the Single Shot MultiBox 

Detector, to detect and classify colorectal polyps through endoscopic images; their 

trained CNN achieved a sensitivity of 92% and a positive predictive value of 86%. 

Patel et al. [4] compared the performance of six CNN models (VGG-19 with and 

without batch normalisation, ResNet-50, DenseNet, SENet, and MnasNet) for polyp 

detection. However, in that study, the more advanced models, like ResNet-50, 

DenseNet, SENet, and MnasNet, did not perform well; VGG-19 achieved the best 

result. Moreover, Wittenberg et al. [35] exploited the Mask R-CNN architecture with 

ResNet-101 to extract the image features. Due to the small size of datasets, they also 

used the TFL approach to train a complex network architecture and achieved a 

sensitivity of 87% and F1-score of 83.33%. Wang et al. [36] combined the classical 

CNN models, VGG and ResNet, with global average pooling. All these models 

obtained an accuracy of above 98%, and the true negative rate and true positive rate 

were above 98% and 96%, respectively. The experimental results showed that their 

proposed approach not only achieved high classification accuracies, but also reduced 

the network’s parameters, making the model lightweight. 

Liu et al. [37] have proposed a single-shot detector (SSD) framework with 

InceptionV3 as a feature extractor, in which the SSD uses a feed-forward CNN to 
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create a fixed-size boundary box for each object on different feature maps. The SSD 

model has obtained sensitivity and F1-score of 80.30% and 76.80%, respectively. 

Moreover, Zhou et al. [38] developed a dense convolutional network, CRCNet, for the 

optical diagnosis for CRC. In CRCNet, the network connects in a feed-forward 

manner, which improves the flow of information and feature exploration. Vani and 

Mahendra [39] conducted an analysis to compare the performance of different DL 

techniques. In their research, VGG-19 achieved the best with an accuracy, F1-score, 

and sensitivity of 94.45%, 93%, and 94%, respectively. Lee et al. [29] utilised 

YOLOv2 for polyp detection, and they applied median filtering to reduce the number 

of false positives during the video analysis. The algorithm was validated with four 

independent datasets and achieved a sensitivity above 87%. 

In a previous study [40], Nadimi et al. used an optimized ZF-Net algorithm with 

stochastic gradient descent with momentum (SGDM), which combines data 

augmentation, pre-processing, and TFL techniques for their colorectal polyp detection. 

Their algorithm achieved an accuracy, sensitivity, and specificity of 98%, 98.10%, and 

96.30%, respectively. Wei et al. [41] exploited ResNet with weight initialisation to 

classify colorectal polyps on histopathologic slides. For the internal evaluation, their 

model had a mean accuracy of 93.50%; this was 87% for the external evaluation. In 

another study [42], Meng et al. used Mask R-CNN architecture with a modified version 

of ResNet (Res2Net) as backbone for the detection and segmentation of colorectal 

polyps. In this way, the bottleneck structure of ResNet was improved. Thus, their 

proposed framework achieved a mean average precision of 89.50%. 

2.2 Hardware Implementation of CNN 

CNNs have been well-implemented on many software platforms [26]. However, due 

to the large computation and complex structure of CNN and frequent memory access, 

it is difficult to implement on the embedded platform [43]. Heller et al. [44] used a 

low-power microcontroller MSP430FR series for seizure detection. On a dataset of 22 

patients, using 56% of available runtime and 10% of available memory, they obtained 

a median sensitivity of 100%, false-positive rate (FPR) of 20.7fp/h, and a shorter 

detection delay of 2.7s as compared to Hügle et al. [45], which it is suitable for the 
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application in an implantable closed-loop device. The CPU runtime was minimized 

and the power consumption was reduced to 802 µW, by efficiently utilisating the 

available hardware modules. However, the runtime of the microcontroller is a poor 

criterion for the estimation of power conscumption, a highly dynamic power 

consumption is expected. 

Hügle et al. [45] presented a CNN for the early seizure detection on a low-power 

microcontroller MSP430FR. Their proposed method achieved a median sensitivity of 

0.96, FPR of 10.1fp/h, and a median detection delay of 3.7s. Their research compared 

with Kiral-Kornek et al. [46], which used IBM TrueNorth chip, they computed a power 

consumption of 850µW, which is 5 to 8.8 times lower for the preprocessing and 

forward pass of SeizureNet. Nevertheless, the detection of electroencephalographic 

seizure patterns occurs at the cost of higher FPR, which causes increases the chances 

of wrongly classify artefacts as ictal patterns. Odagawa et al. [47] proposed a CNN 

and machine learning with Tensilica® Xtensa Vision P6 digital signal processor (DSP) 

on Protium S1Field Programmable Gate Array (FPGA) for the colorectal tumor 

detection. To optimize the preprocessing of input images, the DSP is utilised as it has 

specific vector instructions and libraries for efficient load and sore to memories. Their 

prototyped system is able to classify the existence of cancer in the lesion and obtain a 

real-time image processing on 30fps at 200MHz. 

Khatwani et al. [48] deployed their energy-efficient CNN on the Artix-7 FPGA for 

electroencephalography artifact detection. In their research, the reason for the chosen 

FPGA is that its on-chip memories are sufficient to store the CNN model and the 

intermediate data. Besides, 4 number of processing engines (PEs) at 11.1MHz is the 

optimal configuration to meet the lowest energy and power consumption. Their FPGA 

with 4-PE implementation outperformed the low power configuration of TX2 by 65× 

and 2× in terms of power efficiency and energy efficiency, respectively. Compared 

with Jafari et al. [49], their FPGA implementation outperformed the Independent 

Component Analysis (ICA) method by 11 in terms of energy efficiency on the same 

dataset. However, on their CNN-based model implementation, they show that the 

increasing number of PEs leads to an increase of power consumption and a decrease 

in processing latency. Naresh Gowda and Rasheed [50] proposed a hybrid classifier 
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on the Zync SoC FPGA platform to detect cancer cells. Their proposed system 

obtained a high performance and achieved an efficient classification technique to 

detect the cancer cell with low power consumption of 1.815W and low hardware 

utilization. Furthermore, Chen et al. [51] implemented a customized CNN accelerator 

based on the Xilinx FPGA for pulse waveform classification. In the experiment, their 

self-designed CNN achieved a high accuracy with fewer parameters, and the 

accelerator obtained a latency of 0.827ms and took only 0.714W at the working 

frequency of 100MHz. The optimized CNN model and the custom register-transfer-

level design help improve the clock speed and reduce the latency and power 

consumption.  

2.3 Critical Review 

a) The complex CNNs such as Inception ResNet-V2, ResNet-101, and VGG-19 

have a promising classification performances. However, they consist of deeper 

and more complex neural networks, resulting high computational cost. A good 

network should has a high degree of accuracy, as well as with a fast 

computational time.   

b) The CNNs with deeper layers has a drawbacks of overfitting and huge 

processing time. Therefore, those deep CNNs may have a poor performance. 

However,  it is still depending on the applications as different structures of the 

network are suitable for different tasks, resulting in different outcomes.  

c) FPGA performs well as it is an efficient platform for prototyping and 

performance exploration due to its multiple multiply-accumulate units. 

Nevertheless, FPGA has a higher power consumption as compared to 

microcontroller. Besides, FPGA suffers from a small internal memory. 

2.4 Summary  

In essence, DL and ML play an important role in medical image analysis as they help 

in prediction of a positive or negative test for a specify disease. As for this research 
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work, several techniques were combined for the phase I algorithm to develop a 

competitive assisting CAD tool to detect the colonic polyp. A TFL was adopted 

through using CNN as feature extractor to improve the performance and the learned 

features were shared to the classifier for cell discrimination (normal and abnormal). 

Additionally, for the phase II, a novel approach was proposed to implant the CNN into 

a closed-loop device for the detection of colonic polyp. This approach could achieves 

a smart medical capsule robot that travels in the GI tract to detect the abnormabilities.
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CHAPTER 3 

METHODOLOGY

In this chapter, the present study highlights the classification of abnormalities, that is, 

the occurrence of polyps in endoscopy images, using a new combination of modified 

deep residual CNN with the ensemble classification technique, AdaBoost. To improve 

the performance of CNN, we also investigated the effects of distinct structure 

outcomes for DL by changing the architecture of ResNet-50. The modified ResNet-50 

was exploited as a feature extractor for training an AdaBoost ensemble classifier. 

However, AdaBoost has some limitations as it is based on empirical evidence and is 

particularly vulnerable to uniform noise; the weak classifiers being too weak can lead 

to overfitting [52]. Thus, principal component analysis (PCA) was applied to reduce 

the dimension of the features before feeding into the classifier. Finally, the results were 

assessed based on several evaluation criteria: Matthews Correlation Coefficient 

(MCC), accuracy, sensitivity, precision, specificity, and area under the receiver 

operating characteristic (AUROC) curve. Hardware implementation for medical 

capsule robot that can classify lesions in real-time is the second phase of the study. To 

prove this idea, 4-layers CNN is introduced, all the essential functions in CNN, such 

as padding, convolution, ReLU, max-pooling, softmax, and fully-connected, are 

investigated and implemented on a microprocessor. 

3.1 Proposed Methodology 

The suggested methodology consists of i) an autonomous CAD system that highly 

competitive in detecting the presence of anomalies in the endoscopic images, and ii) a 

smart medical capsule robot that capable in detecting the abnormalities in the GI tract. 

A general overview of  the research was illustrated in Figure 3.1. The process flow of 

the proposed algorithm for both phases were outlined as in Figure 3.2 and Figure 3.3. 
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Figure 3.1: Overview of the research  
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Figure 3.2: Process Flow of Phase I Algorithm 
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Figure 3.3: Process Flow of Phase II Algorithm 

3.2 Database and Tool 

Three endoscopic datasets with various features were merged to train the model. As 

shown in Figure 3.4, they have different visual quality and histological patterns. The 

details and information of each dataset were described in Table 3.1. Dataset 1 (Kvasir) 

was obtained from a separate study [53,54]. The Kvasir dataset was obtained through 

the endoscopy departments of four hospitals at Vestre Viken Health Trust (VV) in 

Norway. All the images were annotated by medical experts from VV and the Cancer 

Registry of Norway [54]. This dataset consists of eight classes of GI colour images 

with dimensions of 720 × 576, but only two classes (polyps and normal colon) were 

selected to conduct the study. This is because the rest of the classes included 

esophagitis, Z- line, pylorus, caecum, rectum, and dyed landmarks, which are not  
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(a) 

 

(b) 

Figure 3.4: Sample endoscopy images (a) with polyps (polyp is labelled with a green 

circle) and (b) without polyps 

 

Table 3.1: Selected datasets used in the study. P - polyp, NP - non-polyp  

Description 

Database 

Kvasir (Dataset 1) ETIS-

LaribPolypDB 

(Dataset 2) 

CVC-ClinicDB 

(Dataset 3) 

Type of data Colour image Colour image Colour image 

Type of format .jpg .tif .tif 

Data dimensions 720 x 576 1225 x 966 384 x 288 

Number of data P: 375; NP: 742 P:100 P: 300 
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related to this research. Hence, in total, 1117 images (375 and 742 images with and 

without polyps, respectively) were selected from Dataset 1 and used in this research. 

Datasets 2 and 3 (ETIS-LaribPolypDB and CVC-ClinicDB) are images of polyps 

that were extracted from colonoscopy videos [55,56]. There are two different types of 

images in both datasets, including original images (colour images) and polyp masks 

(ground truth). However, the ground truth images were not used in this research 

because polyp segmentation was not the goal of our work. The images from Dataset 2 

are the property of Lariboisière Hospital-APHP, France, and ETIS laboratory, ENSEA, 

University of Cergy-Pontoise, France; Dataset 3 is the property of Hospital Clinic, 

Barcelona, Spain. The datasets were composed of 100 and 300 colour images, where 

the data dimensions were 1225 × 966 and 384 × 288, respectively. Therefore, a total 

of 1517 colour images, including images with and without polyps from Datasets 1, 2, 

and 3, were merged to train, validate, and test the classification model on a Windows 

10 64-bit operating system with an Intel ® Core i7-2600 CPU at 3.40 GHz with 16GB 

RAM and an AMD Radeon HD 6450 GPU. Of these, 768 were used to train the model, 

329 for validation, and the remaining 420 to test the model. These tremendous 

diversities of images thus allowed the model to learn various types of features. 

3.3 Images Pre-Processing 

The lack of ambient light and the camera’s optical properties mean that images 

captured during endoscopic screening have some noise, such as artefacts [57], 

vignettes [57], and illuminations [58]. Pre-processing is an important preliminary 

phase in the building an AI computer vision model that aims to improve the image 

features by suppressing these unwanted distortions and noises. In this study, we used 

a median filter to filter out the unnecessary information/noise from the images. The 

median filter [59] replaces all the image pixels simultaneously with the pre-defined (3 

× 3) neighbourhood median of image pixels. Equation (3.1) below represents a 

generalised function for any neighbourhood:  

 𝑓′(𝑚, 𝑛) = 𝑚𝑒𝑑 | (−𝑘 ≤ 𝑢, 𝑣 ≤ 𝑘){𝐹(𝑚 + 𝑢, 𝑛 + 𝑣)}, (3.1) 
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where k=1, u and v are the filter coefficient, and the median is computed over a 3 × 3 

filter, leading to less noise in the image.  

Furthermore, we applied image thresholding to partition an object into a 

foreground and background [60]. The thresholding method will automatically specify 

a threshold value (T), where the pixel values below T are considered the foreground 

and those above T are considered the background. In this work, we employed true 

colour images, which consist of three channels: red (R), green (G), and blue (B). To 

determine and find out the T for the background for each channel, an analysis was 

performed on the datasets, the T of the R and G channels that are below 50 and 15, 

respectively could be considered as background. Therefore, the T of the R and G 

channels were scaled to 0 if T were below 50 and 15, respectively. On the other hand, 

the B channel was not utilised for thresholding because the polyp and background pixel 

values were almost the same. In addition, the contrast of the image was enhanced by 

manipulating the values of colour space on lightness (L*), red/green (a*), and 

blue/yellow (b*) channels. To fine-tune the lightness and darkness of the images 

without changing the colour coordination, the contrast adjustment was done on the L* 

only by scaling the values to the range of 0 to 2 to preserve the original colors while 

keeping the a* and b* channels unchanged. 

In short, the purpose of pre-processing the images is to improve the image features 

by suppressing these unwanted distortion and noises. After the pre-processing steps 

(median filter, thresholding, and contrast enhancement), image normalisation is an 

important step, where the dimensions of the images were scaled to 224 × 224 as input 

to the CNN model during training and evaluation of the model. The reason of 

normalising images to 224 × 224 is because it is the input dimension of ResNet-50. 

The input images are pre-processed to a standard normalisation, as follows: 

𝑥′ = 
𝑥 −  𝑥̅

𝜎
 , 

(3.2) 

where x is the original feature vector, 𝑥̅ is the mean of the feature vector, and 𝜎 is its 

standard deviation. The images in Figure 3.5 underwent the pre-processing and 

normalisation processes. 



 

38 

  

 

 

 

  

 

 

 

 

Figure 3.5: Example of images that underwent the pre-processing and normalisation 

operations 

3.4 Ablations in the Proposed Network Architecture 

The original ResNet-50 architecture had 50 deep layers. A different structure of a 

network results in different outcomes. In this work, we applied variants on the ResNet-

50. First, to reduce the size and computational cost, the number of bottleneck residual 

blocks for res_block1_x, res_block2_x, res_block3_x, and res_block4_x was reduced 

to two, three, three, and two, respectively, and the ReLU activation between each 

residual_block was removed. Unlike batch normalisation, the ReLU activations 

disturb the data that passes through the identity connections [61]. Other than that, a 

new max-pooling layer was added before the bottleneck of every conv_block to keep 

the output size of each layer similar. These max-pooling layers have the same 

parameters (i.e., 3 x 3 pool size, stride 2, and padding). Besides, to keep all information 

without alterations, concatenations of tensors were exploited in each of the conv_block 

before the addition layer. Similar to InceptionNets and DenseNet, the next layer can 

choose to work on either the feature maps from the immediate earlier layer or the 

feature maps of the convolution operation before the immediate earlier layer. In Figure 

3.6, the changes in ResNet-50 are shown at the image branch. The following Table 3.2 

compares our modified ResNet-50 with the pre-trained networks and some of their 

properties. Compared to the original ResNet-50, the modified ResNet-50 has fewer 

filters, which means it has fewer parameters with lower complexity. Pruning of  
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Figure 3.6: Modified ResNet-50 architecture 

 

ResNet-50 speeds up the training and inference. Simultaneously, it retains the original 

performance as much as possible. 

       The availability of large datasets is always a major problem when building a DL 

model. In this case, TFL is an efficient and practical solution to overcome such 

problems, especially in the medical research field [62]. The employment of TFL can 

improve the accuracy while reducing the training time [63]. The CNNs are rebuilt by 

replacing the final three layers with new features specific to the image dataset of 

interest, with minor modifications of the original network architecture. In this 

research,we used some existing pre-trained networks for the TFL approach. Table 3.3 

lists the properties and the performance of our proposed ResNet-50, with minor 

modification, and compares it with the pre-trained networks. Different structures of 

the network are suitable for different tasks, resulting in variable performance. Network 

accuracy, speed/computational time, and size are the most important characteristics 

when it comes to the design of a network. A good network has a high degree of 

accuracy with a fast computational time. After training, Inception ResNet-V2 had the 

highest accuracy, followed by the modified ResNet-50 and the original ResNet-50. 

This study showed that the modified ResNet-50 with a smaller size achieved slightly  
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Table 3.2: Architecture of the original and modified ResNet-50 

Layer name 
Output 

size 
Original ResNet-50 Modified ResNet-50 

conv_1 112 x 112 7 x 7, 64-d, stride 2 Same  

conv_block_1 56 x 56 [

1 x 1, 64-d,stride 1
3 x 3, 64-d, stride 1
1 x 1, 256-d, stride 1
1 x 1, 256-d, stride 1

] 

[
 
 
 
 
1 x 1, 64-d,stride 1
3 x 3, 64-d, stride 1
1 x 1, 256-d, stride 1
1 x 1, 256-d, stride 1
1 x 1, 64-d, stride 1 ]

 
 
 
 

 

res_block_x 56 x 56 [
1 x 1, 64-d, stride 1
3 x 3, 64-d, stride 1
1 x 1, 256-d, stride 1

]  x 2 [
1 x 1, 64-d, stride 1
3 x 3, 64-d, stride 1
1 x 1, 64-d, stride 1

]  x 2 

conv_block_2 28 x28 [

1 x 1, 128-d,stride 2
3 x 3, 128-d, stride 1
1 x 1, 512-d, stride 1
1 x 1, 512-d, stride 2

] 

[
 
 
 
 
1 x 1, 128-d, stride 1
3 x 3, 128-d, stride 1
1 x 1, 512-d, stride 1
1 x 1, 512-d, stride 1
1 x 1, 64-d, stride 1 ]

 
 
 
 

 

res_block_2 28 x28 [
1 x 1, 128-d, stride 1
3 x 3, 128-d, stride 1
1 x 1, 512-d, stride 1

]  x 3 [
1 x 1, 128-d, stride 1
3 x 3, 128-d, stride 1
1 x 1, 64-d, stride 1

]  x 3 

conv_block_3 14 x14 [

1 x 1, 256-d, stride 2
3 x 3, 256-d, stride 1
1 x 1, 1024-d, stride 1
1 x 1, 1024-d, stride 2

] 

[
 
 
 
 
1 x 1, 256-d, stride 1
3 x 3, 256-d, stride 1
1 x 1, 1024-d, stride 1
1 x 1, 1024-d, stride 1
1 x 1, 64-d, stride 1 ]

 
 
 
 

 

res_block3_x 14 x14 [
1 x 1, 256-d, stride 1
3 x 3, 256-d, stride 1
1 x 1, 1024-d, stride 1

]  x 5 [
1 x 1, 256-d, stride 1
3 x 3, 256-d, stride 1
1 x 1, 64-d, stride 1

]  x 3 

conv_block_4 7 x 7 [

1 x 1, 512-d, stride 2
3 x 3, 512-d, stride 1
1 x 1, 2048-d, stride 1
1 x 1, 2048-d, stride 2

] 

[
 
 
 
 
1 x 1, 512-d, stride 1
3 x 3, 512-d, stride 1
1 x 1, 2048-d, stride 1
1 x 1, 2048-d, stride 1
1 x 1, 64-d, stride 1 ]

 
 
 
 

 

res_block4_x 7 x 7 [
1 x 1, 512-d, stride 1
3 x 3, 512-d, stride 1
1 x 1, 2048-d, stride 1

]  x 2 [
1 x 1, 512-d, stride 1
3 x 3, 512-d, stride 1
1 x 1, 64-d, stride 1

]  x 2 

conv_2 7 x 7 - 1 x 1, 2048-d, stride 1 

avg_pool 1 x 1 2048-d 2048-d 

fc 1 x 1 1000-d 2-d 

softmax 1 x 1 1000-d 2-d 
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Table 3.3: Comparison of the proposed ResNet-50 with pre-trained networks [66,67] 

Network 
Number 

of layers 

Size 

(MB) 

Parameters 

(millions) 

Training 

accuracy 

(%) 

Computatio

nal time 

(min) 

Modified 

ResNet-50 

(proposed) 

164 21 5.7 96.96 161 

GoogLeNet 144 27 7.0 94.68 67 

ResNet-50 177 96 25.6 96.94 209 

ResNet-101 347 167 44.6 96.73 288 

Inception 

ResNet-V2 

824 209 55.9 97.50 953 

AlexNet 25 227 61.0 51.37 22 

VGG-19 47 535 144.0 96.28 492 

 

better performance than the original ResNet-50. However, in terms of computation 

time, a deep and complex network, such as Inception ResNet-V2, requires both a 

longer processing time and a longer training time [64], yet the computation time 

depends on the size of the neural network [65] and the amount of data. In this work, 

the modified ResNet-50 was utilised since we took into consideration the high 

computational complexity of deeper and more complex neural networks (i.e., ResNet-

101, VGG-19, and Inception ResNet-V2) that need to be developed in the hardware in 

future work. 

3.5 Feature Extraction and Dimension Reduction 

In ML and Image processing, feature extraction interprets the relevant information 

in an image so that the latter classification task is made easy by a formal procedure 

[68]. Based on the content of the object in the image, the derived values (features) are 

built for every image. In this work, an effective DL-based feature extraction was used. 
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As shown in Figure 3.7, the input data flow into the CNN contains couples of 

convolutional layers with pooling layers. Furthermore, using a deeper layer for feature 

extraction improves the classification performance compared to the shallower layers 

because deeper layers contain higher-level features built using the lower-level features 

of earlier layers. These higher-level features contain of histologic features and 

morphologic features. The histologic features include tubular, villous, and 

tubulovillous; while morphology features consist of colour, shape, texture, sessile, 

pedunculated, and flat. 

       A huge collection of different images can be trained using CNNs since CNNs have 

the ability to learn rich feature representations for a vast number of images [4]. These 

feature representations often transcend the conventional handcrafted features [20,69]. 

Mathematically, convolution is an efficient feature extraction approach [70], in which 

CNNs operate in parallel computing, allowing for the matrix operation to be sped up. 

The calculation of the output of the neural network is done using the following:  

𝑦 = 𝜎(𝜔𝐿⋯𝜎(𝜔2𝜎(𝜔1𝑥 + 𝑏1) + 𝑏2)⋯+ 𝑏𝐿), (3.3) 

where x is the input, 𝜔 is one set of network parameters, b is the bias, 𝜎 is the activation 

function, and y is the output neuron. The activation function plays an important role in 

DL to perform a multiple combination transformation. For example, the Rectified 

Linear Unit (ReLU) nonlinear activation function is defined as follows: 

𝑓(𝑥) = max(0, 𝑥), (3.4) 

 

Figure 3.7: An illustration of the proposed ResNet-50 structure  
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Other than that, the Softmax function on the fully connected layer turns the logit 

scores into probabilities that equal 1. The equation is as follows: 

𝑆(𝑦𝑖) =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑘𝐾
𝑘=1

 , 𝑓𝑜𝑟 𝑖 = 1,⋯ ,𝐾, (3.5) 

 where y is the input logit that takes the 𝑖𝑡ℎ vector value and K is the amount of real 

numbers for the probability distribution. 

These extracted high-dimensionality features from CNN may cause the model 

overfitted because the model corresponds too closely to a particular set of data and 

does not generalize well. Hence, a dimensionality reduction technique is required to 

overcome the curse of dimensionality and avoid overfitting. Besides, different 

dimension reduction technique has different computational complexity and different 

implementation [71]. In order to find the most appropriate dimension reduction 

technique for our application, we tested our model with three different common 

dimension reduction techniques, PCA, t-Stochastic Neighbourhood Embedding (t-

SNE), and Uniform Manifold Approximation and Projection (UMAP). In addition, 

PCA is faster than t-SNE and UMAP in terms of speed [72]. The results are shown in 

Table 3.4. In the experiment, it was shown that the PCA is more suitable in our 

application, with the best performance, followed by t-SNE, and UMAP. Therefore, 

PCA was adopted to reduce the dimensions of features extracted by CNN in our model. 

 

Table 3.4: Performance comparison of the proposed model with different 

dimensionality reduction techniques 

Techniques for 

dimensionality 

reduction  

Performance Evaluation Criteria 

M
C

C
 

A
C

C
 (

%
) 

S
E

N
 (

%
) 

P
R

E
 (

%
) 

S
P

E
C

 (
%

) 

T
P

R
 

F
P

R
 

A
U

C
 

PCA (proposed) 0.9819 99.10 98.82 99.37 99.38 0.9882 0.0062 0.9995 

t-SNE 0.7457 87.29 85.21 89.44 89.38 0.8521 0.1062 0.9271 

UMAP 0.7278 86.33 83.75 88.67 88.98 0.8375 0.1102 0.9101 
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The feature representations from the training and testing images are obtained 

through the activations at the end of the networks, resulting in 2,048 extracted features 

in total. DL architecture is used to automatically create a feature vector before input to 

a classifier [73]. After the feature extraction by CNN, the feature set contains a higher 

dimension, which will lead to higher computation, and it consists of information 

redundancy [74]. With the feature reduction technique, the redundant features can be 

removed by speeding up the computation speed of the classifier while improving the 

accuracy of the classifier. Therefore, PCA reduces the dimensions of features that 

consist of many variations, while retaining the present variation (eigenvalues) in the 

dataset to the maximum extent before feeding into the classifier [75]. PCA is a 

statistical method that is widely used for data analysis and dimension reduction [76]. 

The idea behind PCA is to reduce the features to a lower-dimensional subspace to 

improve the performance of classifiers [74]. According to the eigenvectors in PCA, 

the original N-dimensional data are transformed to new M-dimensional data [77], in 

which the number of features is typically less than or equal to the number of original 

features; they will never be higher in number than the original ones. In this work, PCA 

explained 90% of the original variance, resulting in 227 features that could be 

described, meaning that the most significant features remain while the computation 

and information redundancy are kept at a minimum. 

3.6 Ensemble Classification 

Supervised learning is an ML technique; the goal of supervised ML is to learn a 

function based on labelled training data and make predictions based on testimony in 

uncertainty. Classifiers play an important role in distinguishing features in 

classification problems. In the past [78-80], various supervised ML algorithms have 

been used for classification tasks, such as SVM, Naïve Bayes, decision tree, nearest 

neighbour, ensemble methods, and so on. However, different classification algorithms 

may have different performances, depending on the application. Thus, a study was 

performed to compare the performance of different classifiers by testing them on our 

datasets. As a result, AdaBoost (M1) had the highest accuracy, followed by SVM 

(linear), K-Nearest Neighbour (5-nearest neighbour), Naïve Bayes (Gaussian) and 
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decision tree (CART). AdaBoost, short for adaptive boosting, is an iterative ensemble 

method that combines multiple poorly performing classifiers into a strong classifier 

for the classification problems instead of just an individual classifier which forms it. 

In general, AdaBoost often outperforms the single classifiers since it can learn non-

linear decision boundaries [81]. Other than that, AdaBoost is amazingly fast since it 

takes less time to attain a similar learning accuracy [82] to other classifiers such as 

SVM. Therefore, AdaBoost was selected to execute the binary classification problem 

by distinguishing the polyp and non-polyp images in this study.  

Adaboost was trained on the deep features extracted from the CNN after dimension 

reduction by PCA [74,83]. During each training iteration, the weight of each sample 

was altered based on the classifier error rate obtained [84], resulting in increasing 

or decreasing the weight of the misclassified data points by learning from 

previous errors. To train the AdaBoost classifier, 768 training data (input 

features) 𝑇 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥768, 𝑦768)} were utilised; 𝑦𝑖  is the output 

label and 𝑦𝑖 ∈ {−1,+1}. The weight distribution of 𝑤𝑘
𝑖  is calculated over the 

training data 200 times (the maximum number of training iterations), as 

follows:  

𝐷𝑘 = (𝑤1
𝑖 , 𝑤2

𝑖 , ⋯ ,𝑤200
𝑖 ), (3.6) 

with initialisation of 𝑤1
𝑖 = 1/𝑛 , where 𝑖 = 1,2, … ,768. After 200 iterations of training 

with weight distribution, 𝐷𝑘 , the weak classifier, 𝑓𝑘(𝑥) , is obtained, and a low 

weighted classification error rate (𝜀𝑘) for weak classifiers is computed relative to 𝑤𝑘
𝑖  

in Equation (3.7). 

𝜀𝑘 = 𝑃(𝑓𝑘(𝑥𝑖) ≠ 𝑦𝑖) =∑𝑤𝑘
𝑖 𝐼(𝑓𝑘(

𝑛

𝑖=1

𝑥𝑖) ≠ 𝑦𝑖), (3.7) 
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For the 200th weak classifier, 𝑓200(𝑥) , the weight coefficient is calculated as 

follows:  

𝛼𝑘 = 0.5 ∗ ln (
1 − 𝜀𝑘
𝜀𝑘

), (3.8) 

where the larger the error rate, 𝜀𝑘, the smaller the corresponding weight coefficient, 

𝛼𝑘, for a weak classifier. By way of explanation, a weak classifier with a small error 

rate has a larger weight coefficient [84]. To update the sample weight, D, the 

coefficient of the sample set is re-weighted, corresponding to the (k + 1)th weak 

classifier: 

𝑤𝑘+1
𝑖 =

𝑤𝑘
𝑖

𝑍𝑘
∗ exp(−𝛼𝑘𝑦𝑖𝑓𝑘(𝑥𝑖)) =

{
 
 

 
 𝑤𝑘

𝑖

𝑍𝑘
∗ 𝑒𝛼𝑘  𝑓𝑜𝑟 𝑓𝑘(𝑥𝑖) ≠ 𝑦𝑖

𝑤𝑘
𝑖

𝑍𝑘
∗ 𝑒−𝛼𝑘  𝑓𝑜𝑟 𝑓𝑘(𝑥𝑖) = 𝑦𝑖

, (3.9) 

𝑍𝑘 =∑𝑤𝑘
𝑖 ∗ exp(−𝛼𝑘𝑦𝑖𝑓𝑘(𝑥𝑖)) ,

200

𝑖=1

 (3.10) 

where 𝑍𝑘 is a normalisation factor and is chosen so that 𝐷𝑘+1 will be a probability 

distribution [82]. For example, the weight of the sample is increased in the (𝑘 + 1)th 

weak classifier if the classification is incorrect. In other words, the weight is decreased 

if the sample is correctly classified. Eventually, the final classifier, Y(x), computes the 

sign of all weighted weak classifiers, as follows: 

𝑌(𝑥) = 𝑠𝑖𝑔𝑛 (∑𝛼𝑘𝑓𝑘(𝑥)

200

𝑘=1

), (3.11) 

where the classifiers in the ensemble are aggregated into the final classifier, and this 

classifier is computed as a weighted majority vote of the weak classifiers (𝑓𝑘). As there 

are more and more 𝑓𝑘 (L increases), 𝑌(𝑥) achieves a smaller and smaller error rate on 

the training data. Figure 3.8 demonstrates that the ensemble combines decisions from 

multiple classifiers into a final classifier 𝑌(𝑥). 
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Figure 3.8: Illustration of the proposed methodology using ensemble learning 

(AdaBoost). The classifiers are trained iteratively based on the error made by 

previous models and the final prediction is based on the weighted majority vote 

among 200 classifiers  

3.7 Performance Measure and Evaluation 

A data analysis protocol (DAP) was adopted to the model to ensure reproducibility and 

prevent overfitting; the DAP following the guidelines derived by the 

MicroArray/Sequencing Quality control (MAQC/SEQC) initiatives led by the U.S. 

Food and Drug Administration [85-88]. The data were split into training and testing 

sets, the model undergoes a stratified 10 x 5-fold cross validation (CV). The 

performance of the model was evaluated in terms of the Matthews Correlation 
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Coefficient (MCC), accuracy, sensitivity, precision, and specificity. The evaluation 

metrics are defined as follows. 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (3.12) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3.13) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑆𝐸𝑁)/ 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑅𝐸) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.15) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑃𝐸𝐶) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3.16) 

where TP, TN, FP, and FN are obtained through a confusion matrix. (TP, true positive: 

a polyp is detected in a frame that contains a polyp; TN, true negative: no polyp is 

detected in a frame without a polyp image; FP, false positive: a polyp is detected in a 

frame without a polyp image; FN, false negative: a polyp is missed in a frame that 

contains a polyp). The MCC is a balanced measure of accuracy and precision, 

especially in binary classification, even when the classes are unbalanced [89]. 

Moreover, the AUROC curve was used to explore and visualise the model’s 

performance. It is a graphical plot of the true positive rate (TPR) versus the false 

positive rate (FPR) at various thresholds. The TPR is also known as sensitivity/recall 

in Equation (3.14), and FPR is defined as follows: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (3.17) 
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3.8 Hardware Implementation  

In the hardware implementation of CNNs, Field Programmable Gate Arrays (FPGAs) 

have been often considered as an efficient platform for prototyping and performance 

exploration [90]. The FPGA exploits the inherent parallelism of CNNs and takes full 

advantage of its multiple multiply-accumulate units [91]. However, the FPGAs do not 

meet the design requirement of low-power consumption [44]. In addition, FPGAs 

suffer from a small internal memory [44].  

A real-time application with low power consumption and high performance are the 

design specification for the hardware implementation of CNN. MSP430FR low-power 

microcontroller is thus used in this second phase of the research. MSP430FR series is 

a mixed-signal microprocessor, and it is designed in a 16-bit CPU with low power 

consumption. The microprocessor has a power consumption of 118µA/MHz in the 

active mode, less than 1µA in standby mode. In terms of intelligent digital peripheral, 

the microprocessor is a 32-bit hardware multiplier (MPY) with 6-channel internal 

direct memory access (DMA). In addition, the microprocessor has a ferroelectric 

random-access memory (FRAM) up to 256KB, which allows it has a fast and ultra-

low-power writing speed at 125ns per word (64KB in 4ms). Apparently, the 32-bit 

hardware multiplier in multiply-and-accumulate (MAC) operation allows the 

convolutional layers to calculate the dot product efficiently. Other than that, the DMA 

feature allows several modules of the controller to direct access to the main system 

memory without computer intervention. Figure 3.9 below shows the MSP430FR5994 

microprocessor on LaunchPad Development Kit. Figure 3.10 demonstrates the idea of 

prototype hardware for colonic polyp detection system which integrated SoC in the 

medical capsule robot, which consists of a battery supplied. Therefore, an ultra-low-

power microprocessor MSP430FR series was utilised as a SoC and the CNN was 

implanted into the microprocessor to perform the colonic polyp detection task. In 

Figure 3.11, the overall bloack diagram is compared between the normal capsule robot 

and the proposed smart capsule robot. Nowadays, medical capsule robot was widely 

used for GI screening [92], and this is the idea that we can integrate the SoC with the 

camera of capsule endoscopy to help the physicians to detect the polyps automatically.  

 



 

50 

 

Figure 3.9: MSP430FR5994 LaunchPad Development Kit structure  

 

 

 

Figure 3.10: Idea-built prototype for the hardware implementation for the colonic 

polyp detection system    

 

Medical capsule robot 

SoC (microprocessor)  
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Figure 3.11: Comparison of block diagram between the normal medical capsule 

robot and proposed medical capsule robot  

3.8.1 Network Design 

Dataset 1,2, and 3 mentioned in Table 3.1 were merged to create training, validating, 

and testing datasets. In MATLAB, all images were normalized to 100 ×100 pixel and 

fed into the customized 4-layers neural  network as shown in Figure 3.12. The designed 

network contains four layers with weights and biases (three convolutional layers and 

one fully-connected layer). The baseline CNN architecture was composed of three 2-

D convolution layers with 8, 16, and 32 filters, respectively, and a filter size of 3 and 

stride of 1 for three layers. Zero padding was applied on the first convolution layer to 

prevent the decimal activation on the latter operations. Furthermore, every 2-D 

convolution layer was followed by ReLU activation function and max-pooling layer 

that performed downsampling with a filter size of 2 and stride of 2. Finally, a fully-

connected layer was applied as a classifier to obtain the predicted class as output, while 

a softmax activation function was utilised by the output layer to convert the output 

from the fully-connected layer into a probability distribution. The model was 

optimised using the binary cross-entropy loss function and the SGDM. 

After training the model with 30 epochs and a mini-batch size of 128, an accuracy 

validation using the validation dataset was performed. As shown in Figure 3.13, the  
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Figure 3.12: Proposed 4-layers neural network   

 

 

 

Figure 3.13: Training process for the 4-layers network model   
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validation accuracy obtained for the proposed 4-layers network was equal to 96.35%. 

In Table 3.5, the 4-layer model was compared with other well-known pre-trained deep 

neural network models. Different number of convolutional layers and the number of 

filters per layer, plus the size of the filters and the type of downsampling operation 

could affect and improve the accuracy. Due to the memory constraint on the 

microprocessor, the 4-layers network is proposed to be implanted on the 

microprocessor, instead of choosing the pre-trained networks, which consist of  more 

deeper layers. 

 



 

 

Table 3.5: Architecture and accuracy of CNN models 

CNN model Number 

of layers 

Number of conv. filters Size of conv. filters Size of 

pool. filters 

Accuracy 

(%) 

AlexNet 8 96-256-384-384-256 11-5-3-3-3 3-3-3 51.37 

GoogLeNet 22 64-64-192-(64-96-128-16-32-32)-(128-

128-192-32-96-64)-(192-96-208-16-48-

64)-(160-112-224-24-64-64)-(128-128-

256-24-64-64)-(112-144-288-32-64-64)-

(256-160-320-32-128-128)-(256-160-320-

32-128-128)-(384-192-384-48-128-128) 

7-1-3-(1-1-3-1-5-1)-(1-1-3-1-

5-1)-(1-1-3-1-5-1)-(1-1-3-1-

5-1)-(1-1-3-1-5-1)-(1-1-3-1-

5-1)-(1-1-3-1-5-1)-(1-1-3-1-

5-1)-(1-1-3-1-5-1) 

3-3-3-3-3-3-

3-3-3-3-3-3-

3 

94.68 

ResNet-50 50 64-(64-64-256-256)-(64-64-256)-(64-64-

256)-(128-128-512-512)-(128-128-512)-

(128-128-512)-(128-128-512)-(256-256-

1024-1024)-(256-256-1024)-(256-256-

1024)-(256-256-1024)-(256-256-1024)-

(256-256-1024)-(512-512-2048-2048)-

(512-512-2048)-(512-512-2048) 

7-(1-3-1-1)-(1-3-1)-(1-3-1)-

(1-3-1-1)-(1-3-1)-(1-3-1)-(1-

3-1)-(1-3-1-1)-(1-3-1)-(1-3-

1)-(1-3-1)-(1-3-1)-(1-3-1)-(1-

3-1-1)-(1-3-1)-(1-3-1) 

3 96.94 

 

5
4

 



 

 

Table 3.5: Architecture and accuracy of CNN models (Cont.) 

CNN model Number 

of layers 

Number of conv. filters Size of conv. filters Size of 

pool. filters 

Accuracy 

(%) 

VGG-19 19 64-64-128-128-256-256-256-256-512-512-

512-512-512-512-512-512 

3-3-3-3-3-3-3-3-3-3-3-3-3-3-

3-3 

2-2-2-2-2 96.28 

Proposed (4-

layers 

network) 

4 8-16-32 3-3-3 2-2-2 94.53 

 5
5
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3.8.2 Development of Basic Funcitions of CNN on microprocessor 

To assess the practicality of the proposed idea, the basic functions of the CNN are 

implemented on the microprocessor to prove the concept of implantation of SoC into 

the medical capsule robot. The basic functions such as padding, convolution, ReLU, 

max-pooling, fully-connected, and softmax were developed and debugged through an 

IDE. The IDE used to develop those CNN’s functions for the embedded processor is 

the CCS version 10 from Texas Instruments. Figure 3.14 shows the user interface of 

the CCS.  

 

 

 

Figure 3.14: User interface of CCS used for the simulation 

3.8.2.1 Zero Padding 

Due to the decimal output after the pooling operation on the odd numbers, the 

padding operation is applied before the convolution operation. In zero padding, a 

border of pixels with zero value was added around the edges of the input. The purpose 

of using this zero padding technique is to preserve and maintain the original 

size/dimensions of input after the convolutional layer. For instance, a colour image has 

C program 

Output from the program Errors and warnings 
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3 colour channels, a random 6 × 6 × 3 input is thus used as an input. As shown in 

Figure 3.15, the output after padding will become 8 × 8 × 3. 

 

 

 

 

Figure 3.15: Output after zero padding operation 

3.8.2.2 Convolution 

In the convolutional layer, the output after zero padding will undergo the sliding 

window operation with the filters by producing new feature maps. During the sliding 

convolutional, the layer convolves the input by moving the filters along the input 

horizontally and vertically by calculating the dot product of the weights and the input 

and lastly adding a bias term. Those filters and bias are network parameters to be 

learned. Besides, the output of the feature maps after convolution operation depends 

on the parameters such as the size of the filter, sliding window step size (stride), and 

the number of filters. In Figure 3.16, the convolutional layer applied sliding 

convolutional filters to the input (8 × 8 × 3), which is the output from padding. The 

parameters of the convolution layer were set as 3 × 3 filter size, stride of 1, and 2 

filters.  

Original input After padding 
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Figure 3.16: New feature maps generated in the convolutional layer 

3.8.2.3 ReLU 

To prevent the vanishing gradient problem, the ReLU activation function improves 

efficient computation by allowing the models to learn faster and perform better. The 

function returns all the negative input values to zero, while the positive values remain 

those values back. Figure 3.17 demonstrates the feature maps that undergo ReLU 

activation.   

 

 

 

Figure 3.17: Output maps after ReLU activation  
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3.8.2.4 Max-pooling 

To reduce the dimensions of the feature maps and summarise the features in a 

region of the feature map produced by a convolutional layer, the max-pooling 

operation is utilized to select the maximum element from the region of the feature map 

covered by the filter. Therefore, the feature map after the max-pooling layer contains 

the most prominent features of the previous feature map. Furthermore, there are some 

parameters for the max-pooling operation (i.e., pool size and stride). Different 

parameters will produce different output. For example, in Figure 3.18, the feature maps 

(6 × 6) after the ReLU function were subsampling into 3 × 3 in the condition of stride 

of 2 and pool size of 2 × 2. 

 

 

 

Figure 3.18: Subsampled feature maps (output) after the max-pooling layer   

3.8.2.5 Fully-connected 

Before the fully-connected layer, the output from the final pooling or convolutional 

layer was flattened into a vector. The flattened vector was connected to a few fully-

connected layers. In the fully-connected layer, the dot product of the weights and 

flattened vector was computed, and lastly, adding a bias term. In our case, we have 

only two classification outputs, which are polyp (abnormal) and non-polyp (normal) 

for the endoscopy images. Therefore, there are only two fully-connected layers. Figure 

3.19 shows the calculation and result for two fully-connected layers. 
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Figure 3.19: Output vectors of the fully-connected layers   

3.8.2.6 Softmax 

In the final layer, the softmax activation function was used to obtain the 

probabilities of the input being in a particular class. The probability values were 

generated to the respective classes after the activation function, for softmax, the sum 

of the probabilities is equal to 1. Based on the probability values of each class, we can 

know that the input (endoscopy image) belongs to polyp or non-polyp. As shown in 

Figure 3.20, it was clear that the input belongs to class 2 (image without polyp).  

 

 

 

Figure 3.20: Probability values generated for each class after the softmax activation 

function 

 

3.9 Summary 

Based on the aforementioned studies and the research assumptions, a comprehensive 

examination of each phase provides the most appropriate method in achieving a 
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reliable diagnosis system. The DL and ML techniques were integrated into the 

proposed CAD system for colonic polyp detection (phase I algorithm). Besides, for 

hardware implementation, the DL technique was utilised into the proposed smart 

medical capsule robot (phase II algorithm).  

In phase I (software implementation), a modified ResNet-50 was used as a feature 

extractor, with PCA and ensemble learning classifier (AdaBoost) to classify the 

colonic polyp images. The architecture of ResNet-50 was altered in order to reduce the 

computational cost, while retain or improve its performance for the application of 

colonic polyp detection. For the network training, in Table 3.3, the modified ResNet-

50 obtained a better accuracy, with a lower computational time. Besides, it has a lower 

network complexity as compared with the original ResNet-50. Thus, the modified 

ResNet-50 was used as a feature extractor to extract the features of images. Next, three 

dimension reduction techniques (PCA, t-SNE, and UMAP) was tested on the model in 

order to find the most appropriate dimension reduction technique for our application. 

In Table 3.4, it was shown that the PCA is the most suitable dimension reduction 

technique for our application. Lastly, the ensemble classifier, AdaBoost, is selected as 

the classifier of the model. This is because a study was performed to compare the 

performance of different classifiers by testing them on our datasets. As a result, 

AdaBoost (M1) had the highest accuracy, followed by SVM (linear), K-Nearest 

Neighbour (5-nearest neighbour), Naïve Bayes (Gaussian) and decision tree (CART). 

Based on the aforementioned studies, the best and appropriate feature extractor, 

dimension reductor, and classifier were chosen and combined as the classification 

model for the software implementation. The proposed model was analysed based on 

six evaluation methods, which are the MCC, accuracy, sensitivity, precision, 

specificity, and FPR. 

The different implementation between phase I and phase II algorithms is the CNN 

network utilised as a feature extractor in phase I; meanwhile, the CNN was used as a 

classifier in phase II. Besides, the CNN network used in phase I is different with the 

CNN used in phase II. This is because the modified ResNet-50 is not able to fit into 

the microprocessor due to its memory constraint. Thus, a 4-layer network was 

proposed in phase II for the hardware implementation of CNN on the medical capsule 

robot.
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CHAPTER 4 

RESULTS  AND DISCUSSION

The results obtained for the proposed method in both phases were discussed in this 

chapter. A thorough analysis was carried out on both phases to validate the 

effectiveness of the suggested approach for the CAD system and hardware 

implementation of CNN on the capsule robot.

4.1 Performance of Computer-Aided Diagnosis (CAD) System 

The performances of the classification models are reported in Table 4.1, showing that 

our proposed method using the modified ResNet-50 with a smaller architecture size 

obtained increasing gains in every metric, except sensitivity, as compared to the 

original ResNet-50. In Table 4.1, the area under the curve (AUC) is a divisibility 

measurement that measures the ability of the model to distinguish between different 

classes. A higher value of AUC indicates better performance of the model. However, 

in our proposed algorithm, the modified version of ResNet-50 had a slightly higher 

AUC than the original ResNet-50. The representative receiver operating characteristic 

(ROC) curves for different approaches are displayed in Figure 4.1, based on Table 4.1. 

This study proposed a new combination of modified deep residual convolutional 

neural networks (ResNet-50) with the PCA and ensemble learning (AdaBoost) 

approach for a colonic polyp classification system. Compared to the original ResNet-

50, the modified ResNet-50-meta architecture achieved state-of-the-art results. 

Concurrently, it had a smaller size with a lower complexity of the architecture. As a 

result, the performance of the model was improved while reducing its computational 

time. Additionally, an adaptive boosting-based ensemble classifier was trained on the 

principal component of feature extraction with the class labels (non-polyp or polyp) 

from the training dataset. In the trial of 1,517 images from a combination of three free,  
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Table 4.1: Performance comparison between the modified ResNet-50 and the 

original ResNet-50 

Method 

Performance Evaluation Criteria 

M
C

C
 

A
C

C
 

(%
) 

S
E

N
 

(%
) 

P
R

E
 

(%
) 

S
P

E
C

 

(%
) 

T
P

R
 

F
P

R
 

A
U

C
 

ResNet-50 0.9270 96.35 96.45 96.26 96.25 0.9645 0.0375 0.9935 

Original 

ResNet-50 

as feature 

extractor 

with PCA 

and 

AdaBoost 

0.9754 98.77 99.41 98.14 98.12 0.9941 0.0188 0.9994 

Modified 

ResNet-50 

as feature 

extractor 

with PCA 

and 

AdaBoost 

0.9819 99.10 98.82 99.37 99.38 0.9882 0.0062 0.9995 

 

publicly accessible databases, the proposed algorithm obtained good results with 

0.9819 MCC. The accuracy, sensitivity, precision, specificity, TPR, FPR, and AUC of 

polyp classification were 99.10%, 98.82%, 99.37%, 99.38%, 0.9882, 0.0062, and 

0.9995, respectively. Hence, these results show that the proposed algorithm is robust 

enough to assist in CAD. 

Additionally, an experiment was done with Table 4.2 using only Dataset 1 (Kvasir) 

with our proposed algorithm (modified ResNet-50 with AdaBoost). This is because  



 

64 

 

Figure 4.1: Receiver operating characteristic (ROC) graph for different architectures 

of ResNet-50 

 

Table 4.2: Performance comparison between the modified ResNet-50 and the 

original ResNet-50 

Database 

Performance Evaluation Criteria 

M
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(%
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A
U

C
 

Dataset 1 0.9586 97.91 96.45 99.35 99.38 0.9645 0.0062 0.9986 

Dataset 2 N/A N/A 20.18 N/A N/A N/A N/A N/A 

Dataset 3 N/A N/A 100 N/A N/A N/A N/A N/A 

Dataset 1, 2, 

and 3 

0.9819 99.10 98.82 99.37 99.38 0.9882 0.0062 0.9995 

 

only Dataset 1 consists of two classes of data. Seventy percent of images were selected 

randomly for training; the remaining 30% were used for testing. Similarly, the same 

model was tested on Datasets 2 and 3 (ETIS-LaribPolypDB and CVC-ClinicDB). Due 

to the unavailability of non-polyp images (normal colon) in both datasets, FP and TN 

were zero. The representative ROC curves for Table 4.2 are displayed in Figure 4.2. 
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 (a)  (b) 

Figure 4.2: Receiver operating characteristic (ROC) graph for (a) Kvasir (Dataset 1) 

database only; (b) a combination of three databases 

 

As we can see, the combination of three datasets helped increase the performance 

of the model instead of just using Dataset 1 to train the CAD model. The purpose of 

using different datasets is because we want to test how robust our model is. Therefore, 

the most accurate model for the CAD system was obtained by combining three 

databases that consist of more features learned from Dataset 2 and 3. For this model, 

the MCC, accuracy, sensitivity, precision, and specificity of the endoscopic image’s 

classification task were 0.9819, 99.10%, 98.82%, 99.37%, and 99.38%, respectively. 

Table 4.3 compares the previous method with our proposed method; our method 

achieved a better performance than all the other methods. For instance, Nadimi et al. 

[40] had the best results among the comparison. As compared with them, our detection 

model was increased in terms of 1.1% accuracy, 0.72% sensitivity, and 3.08% 

specificity. Another comparison was performed against Wittenberg et al. [35]; among 

their datasets are two datasets that are similar to our dataset. In comparison with their 

work, the performance of our model was increased in terms of 11.82% sensitivity. 

Those N/A values for the previous works in Table 4.3 were unable to compute as they 

did not provide the confusion matrix in their research, such as the TP, TN, FP, and FN. 

Some figures of our experimentation result are shown in Table 4.4. 
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Table 4.3: Performance comparison between previous works and our proposed method  

Method Database Technique 

Performance Evaluation Criteria 

MCC ACC SEN SPEC FPR 

Proposed  Dataset 1, 2, and 3  Preprocessing 

 Modified ResNet-50 (FE) 

 PCA 

 Ensemble (AdaBoost) 

0.9819 99.10 98.82 99.38 0.0062 

Wittenberg et al., 

(2019) [35] 

Dataset 2, 3, and 

“Bayreuth”DB 

 Mask R-CNN 

 ResNet-101 (FE) 

 TFL 

N/A N/A 87.00 N/A N/A 

Liu et al., (2019) 

[37] 

Dataset 2, 3, and CVC-

ColonDB 

 Preprocessing 

 SSD framework 

 InceptionV3 (FE) 

N/A N/A 80.30 N/A N/A 

Vani et al., (2019) 

[39] 

CVC-ColonDB, WCE video 

frames and endoscopy images 

from Endoatlas and Shaily 

 Data augmentation 

 DL technique (VGG-19) 

using Keras framework 

N/A 94.45 94.00 N/A N/A 

 

 

 



 

 

6
7

 

 

Table 4.3: Performance comparison between previous works and our proposed methods (Cont.) 

Method Database Technique 

Performance Evaluation Criteria 

MCC ACC SEN SPEC FPR 

Nadimi et al., 

(2020) [40] 

Images captured from colon 

capsule endoscopy 

 Data augmentation 

 CNN TFL (ZF-Net) 

 SGDM 

N/A 98.00 98.10 96.30 N/A 

Patino-Barrientos 

et al., (2020) [3] 

Private dataset from 

University of Deusto 

 Preprocessing 

 4 layers base CNN model 

 VGG-16 (FE) 

N/A 83.00 86.00 N/A N/A 
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Table 4.4: Example of images that classified correctly during the real experiment 

Actual 

Class 

Predicted 

Class 
Images 

Polyp Polyp 

 

Non-

polyp 
Non-polyp 

 

 

Moreover, the performance of the model was estimated through the plot of the 

generalisation error values during the learning process in Figure 4.3. The 

generalisation error and overfitting are closely related since the generalisation error is 

computed to measure the ability of the model to predict the outcome values for the 

formerly unseen data. The smaller the generalisation error, the less overfitting that 

occurred. According to Figure 4.3, the cumulative generalisation error decreased to 

approximately 2% when 150 weak learners composed the ensemble classifier. 

 



 

69 

G
en

er
al

is
at

io
n

 E
rr

o
r 

Number of Learning Cycles 

 

 

 

 

Figure 4.3: Generalisation error versus number of learning cycles 

4.2 Datasets and Misjudgement by the CAD System 

For better performance of the model, three datasets were merged to train and validate 

the model. Nevertheless, within the datasets, there were slightly more images with than 

without a polyp. To prove the proposed method is a stable algorithm as there is no 

subjective bias in polyp recognition with balanced and imbalanced datasets. Therefore, 

an analysis was performed, as shown in Table 4.5, indicating that the model was not 

biased towards the majority class. The two different classes (polyp and non-polyp) 

were separated into three different ratio configurations, where i) the number of images 

with a polyp was equal to those without a polyp; ii) there were 30% more images with 

a polyp than without a polyp, and iii) there were 50% fewer images with a polyp than 

without a polyp, which corresponds to the common distribution in the real world. On 

the balanced dataset, the classification model achieved a MCC of 0.9788, with 

accuracy, sensitivity, precision, and specificity of 98.96%, 98.02%, 98.88%, and 

99.06%, respectively. Meanwhile, on the imbalanced dataset, the model obtained a 

MCC of 0.9103, with accuracy, sensitivity, precision, and specificity of 95.67%, 

97.81%, 96.12%, and 96.83%, respectively, when the number of images with a polyp 

was 30% more than the number without. Contrarily, when the number of images with 

a polyp was 50% less than the number without a polyp, the MCC, accuracy, sensitivity,  
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Table 4.5: Performance of the proposed model, with balanced and imbalanced 

datasets. P - polyp, NP - non-polyp 

Evaluation of 

the model 

Number of images 

Balanced dataset Imbalanced dataset 

P: 532; NP: 532 P: 565; NP: 396 P: 266; NP: 532 

MCC 0.9788 0.9103 0.8549 

ACC (%) 98.96 95.67 92.10 

SEN (%) 98.02 97.81 91.99 

PRE (%) 98.88 96.12 92.33 

SPEC (%) 99.06 96.83 93.09 

 

precision, and specificity of the classification model were 0.8549, 92.10%, 91.99%, 

92.33%, and 93.09%, respectively. 

From the combination of three datasets, various features are acquired in the 

proposed detection model, including the histologic features (i.e., tubular, villous, and 

tubulovillous) and morphologic features (i.e., colour, shape, texture, sessile, 

pedunculated, and flat). The detection model achieved a good performance in detecting 

the polyps by extracting these essential pathological features of colorectal lesions 

[93,94]. However, for radiomic, the features include spatial features and morphologic 

features; those features are computed based on the statistical descriptors [95,96]. For 

spatial features, the features were extracted based on the gray-scale level, which 

consists of first-order statistics features and gray level co-occurrence matrix texture 

features [96]. Not only that, but there are also other feature classes, i.e., gray level 

difference method, gray level size zone matrix, gray level run length matrix, and 

neighbourhood gray-tone difference matrix [97]. For morphologic features, the 

features were detected through the shape and the area of the lesion [96,97]. 

However, the automated colonic polyp classification model still has limitation as 

it suffered from inaccuracy or misclassification of endoscopic images. It was found 

that the problem that led to the misjudgment of images was due to very similar 

characteristics between polyp and non-polyp images, such as the texture, density, 
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colours, and shape information of the colon, causing the system to misjudge irrelevant 

objects that resemble polyps. Hence, it was hard to discriminate the features between 

them. Figure 4.4 shows the images that were misclassified in our polyp classification 

model. In Figure 4.4a, the image was classified as a non-polyp image. In contrast, the 

images in Figure 4.4b-e were misclassified as polyps detected.  

In Figure 4.4a, the polyp was incorrectly detected due to its context. This is because 

the image has a similar colour feature as non-polyp images, and the polyp was 

separated as background during the pre-processing steps. In Figure 4.4b, the non-

polyp image was classified as a polyp image, since the structure of the colon resembles 

polyps. Additionally, the colour of that image is darker, which means it has similar 

colour features as polyp images. In Figure 4.4c, the image is misclassified as a polyp 

because of the natural convex structure of the colon, which made the image have 

features similar to a polyp’s shape. Figure 4.4d was misjudged as a polyp image 

because the colour intensity in the image was identical to that of an inflamed polyp. 

For Figure 4.4e, the image was identified as a polyp image due to the irregular texture 

of the colon that resembling a bulging polyp shape. Moreover, the colour properties 

and density of the images taken by endoscopy also one of the cause that led to the 

misjudgment of images. This limitation can be improved in the future by using more 

advanced pre-processing techniques if it is to be utilised in colonoscopy for real-time  

 

 

 

  

 

 

 

  

Actual class: Polyp Actual class: Non-

polyp 

Actual class: Non-

polyp 

Actual class: Non-

polyp 

Actual class: Non-

polyp 

Predicted class: 

Non-polyp 

Predicted class: 

Polyp 

Predicted class: 

Polyp 

Predicted class: 

Polyp 

Predicted class: 

Polyp 

(a) (b) (c) (d) (e) 

Figure 4.4: Misclassified images. (a) Image misjudged as non-polyp. (b)-(e) Images 

misjudged as polyps 
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detection. Therefore, pre-processing steps are very important to discriminate the 

features of the polyp and non-polyp images. 

In addition, though CNNs have shown promise in the past few years, the reported 

accuracy, sensitivities, and specificities of the CNNs in the literature vary distinctly 

[98]. At present, there are many exaggerated claims that there is a risk for patient safety 

and population health, with the AI algorithms practiced in some cases to millions of 

patients [99]. It is causing the provision of improper care that is not in the best interests 

of the patients. In the future, the proposed CAD system will be evaluated by 

conducting an appraisal of the methods, adherence to reporting standards, risks of bias, 

and claims of DL studies that compare diagnostic AI performance with human 

physicians [99]. For example, we can establish randomised clinical trials by undergoes 

the assessment with or without an AI platform diagnosis. Thus, validation of reported 

results in a large trial is required to enhance the effectiveness of CNN systems 

[98,100]. By doing so, higher quality and more distinctly reported evidence base could 

help to lessen research waste and protect patients. 

4.3 Hardware Implementation of CNN on the Microprocessor 

In the second phase of the research, a CNN-based model was developed on the 

microprocessor (SoC) and integrated into the medical capsule robot. Nevertheless, the 

difficulty with this approach remains the constraint of implementing CNN layers in 

the hardware due to the network’s complexity and the memory required. Therefore, a 

4-layers network is designed and trained through MATLAB using Dataset 1, 2, and 3. 

From the MATLAB, the designed network obtained a training accuracy of 96.35%, 

and during the testing, an accuracy of 92.86% is obtained. All the network’s 

parameters (i.e., weights and biases) are then reproduced to the functions developed in 

CCS for the microprocessor. 

For the hardware implementation, a medical capsule robot with a battery supplied, 

the choice of the best colonic polyp detection model does not only depend on its 

performance, yet the power consumption and memory footprint must be considered. 

Due to the limited FRAM in the microprocessor, the complete 4-layers network is not 
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able to flash to the microprocessor. To reduce the memory usage, some of the local 

variables have been moved to global variables. The variables for the network’s 

parameters have been changed to constants, but there is still the same issue. Therefore, 

in Table 4.6, all the developed functions are combined and tested with small input (6 

× 6 × 3), small filter/pool size (3 × 3/2 × 2 ), and small number of filters to compute 

the cumulative memory (FRAM and SRAM) used in each operation, as well as the 

number of neurons. The FRAM and SRAM refer to Ferroelectric Random-Access 

Memory and Static Random-Access Memory used in the microprocessor. 

Furthermore, in Table 4.7, the memory required in each layer is computed, based 

on the proposed 4-layers network, as well as the floating point operations (FLOPs), to 

determine the computational complexity of the network. For the writing and reading 

speed, it is limited to 8 MHz as the FRAM limits the maximum clock speed of the 

microcontroller. The controller can run higher clock speeds, but the increasing CPU 

clock speed would cause additional wait states that lower the power efficiency of the 

controller. FRAM allows for the continuous ultra-low power data logging, which bring 

cost, energy and efficiency optimization. In this way, the hardware implementation 

that used as an embedded device for real-time applications can achieved a low power 

consumption. 

 

Table 4.6: Number of neurons and memory required over each network layer 

Layer Operation 

Number 

of 

neurons 

Cumulative memory (byte) 

FRAM SRAM 

1 Input (6 × 6 × 3) - - - 

2 Padding (8 × 8 × 3) - 19,370 1,340 

3 2 × Conv2D (3 × 3) 72 20,180 1,604 

4 ReLU - 20,706 1,604 

5 2 × MaxPool2D (2 × 2) 18 22,276 1,716 

6 FC 2 22,582 1,716 

7 Softmax - 27,306 1,716 
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Table 4.7: Memory consumption and floating point operations over each network 

layer 

Layer Memory Usage (MB) FLOPs (×𝟏𝟎𝟔) 

Input 128×100×100×3 = 3.84 - 

Conv1 128×100×100×8 = 10.24 (2×3×32-1) ×100×100×8 = 4.24 

ReLU - - 

MaxPool1 128×50×50×8 = 2.56 - 

Conv2 128×48×48×16 = 4.719 (2×8×32-1) ×48×48×16 = 5.272 

ReLU - - 

MaxPool2 128×24×24×16 = 1.18 - 

Conv3 128×22×22×32 = 1.982 (2×16×32-1) ×22×22×32 = 4.445 

ReLU - - 

MaxPool3 128×11×11×32 = 0.4956 - 

FC 128×1×1×2 = 0.000256 (2×3872-1) ×2 = 0.0155 

Softmax - - 

 

      In this section, the performance of the proposed CNN model is evaluated in order 

to verify that MCC, sensitivity, and specificity constraints are met. The summaries of 

proposed model with trainable parameters, training time, prediction time, memory 

usage, FLOPs, working frequency, power consumption, and performance metrics are 

listed in Table 4.8. Additionally, the performance of proposed model is analysed based 

on the ROC curve as in Figure 4.5. 
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Table 4.8: Summaries of proposed model size, training time, prediction time, 

memory usage, FLOPs, frequency, power consumption, and performance metrics by 

the colonic polyp detection algorithm 

Polyp Detection 

Algorithm 

4-layers network 

Trainable Parameters 13,778 

Training time (s) 148 Prediction time (s) 1.652 

Memory usage (MB) 25.017 FLOPs (×𝟏𝟎𝟔) 13.972 

Frequency (MHz) 8 Power (mW) 2.5488 

TP 198 TN 192 

FP 18 FN 12 

MCC 0.8575 

ACC (%) 92.86 

SEN (%) 94.29 

PRE (%) 91.67 

SPEC (%) 91.43 

TPR 0.9429 

FPR 0.0857 

AUC 0.9870 
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Figure 4.5: Receiver operating characteristic (ROC) graph for the proposed 4-layers 

model 

4.4 Summary 

In this research, there are two different algorithms proposed, which are categorized as 

phase I and phase II work. In the phase I, the proposed approach achieved state-of-the-

art results by utilising the modified ResNet-50, PCA, and AdaBoost as a new 

combination technique to classify the polyps. Based on the preceding results and 

discussion, the outcome demosstrated that the CAD system manages to attain a 

competitive result and outperform the state-of-the-art. Meanwhile, in the phase II, 

finding shows that the feasibility of the CNN (4-layers network) to be implemented on 

the SoC with will integrated in the medical capsule robot. With the smart medical 

capsule robot, it can reduces the diagnosis time required by automatically detect the 

colonic polyp, when travelling throughout the GI tract. Moreover, in hardware 

implementation, the values for MCC, accuracy, sensitivity, specificity, and AUC are 

lowered as compared with the software implementation. This is because there is a 

different approach on the software and hardware implementation. On the software 

implementation (phase I), the modified ResNet-50 was utilised as feature extractor, 

and PCA is applied on the feature set before feed into the AdaBoost classifier. While 
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for hardware implementation (phase II), the 4-layer CNN was designed to perform 

classification task. This is because the memory of microprocessor is taken into 

consideration, the algorithm in the software implementation is not able to develop on 

the hardware platform. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION

This chapter  concludes the research findings  and the contributions of the research 

work. Furthermore, the limitation of the proposed approach was discussed, followed 

by suggestions for future work.

5.1 Conclusion 

Detecting and segmenting polyps become one of the challenges faced by physicians in 

recognizing abnormalities from endoscopic images. A robust algorithm that help to 

distinguish features between normal and abnormal cells might be a solution to this 

matter. Therefore, this study proposed a new combination of modified deep residual 

convolutional neural network with the PCA and ensemble learning approach for a 

colonic polyp classification system (phase I). Compared to the original ResNet-50, the 

modified ResNet-50-meta architecture achieved state-of-the-art results. Concurrently, 

it had a smaller size with lower complexity of the architecture. As a result, the 

performance of the model was improved while reducing its computational time. 

Additionally, an adaptive boosting-based ensemble classifier was trained on the 

principal component of feature extraction with the class labels (non-polyp or polyp) 

from the training dataset. To evaluate our model, we computed the MCC, accuracy, 

sensitivity, precision, and specificity. In the trial of 1,517 images from a combination 

of three free, publicly accessible databases, we obtained good results with 0.9819 

MCC. The accuracy, sensitivity, precision, and specificity of polyp classification were 

99.10%, 98.82%, 99.37%, and 99.38%, respectively. Hence, these results show that 

proposed algorithm is robust enough to assist in CAD it is a stable algorithm as there 

is no subjective bias in polyp recognition with balanced and imbalanced datasets. 
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Besides, the increasing of polyp miss-detected raises the case of CRC and its 

mortality rate, which causes by physicians’ subjectivity. A smart medical capsule robot 

is required to detect the polyps automatically when it travels in the GI tract. However, 

the conventional medical capsule robot does not has the ability to detect the polyps, it 

only takes photos of GI tract. To develop a smart medical capsule robot for colonic 

polyp detection, the 4-layers network was proposed in the hardware implementation 

(phase II). All the essential functions of CNN (i.e., padding, convolution, ReLU, max-

pooling, fully-connected, and softmax) were successfully developed into the 

microprocessor to show the possibility of  integrating SoC into the medical capsule 

robot. The proposed 4-layers model achieved an accuracy of 96.35% for training and 

92.86% for testing. The MCC, sensitivity, specificity, and AUC were 0.8575, 94.29%, 

91.43%, and 0.9870, respectively. In sum, the suggested methods (i.e., phase I and 

phase II) manages to fill the research gaps by assisting the physicians to carry out the 

diagnosis efficiently.  

5.2 Research Contributions 

The research contributions are restated as follows: 

a) Utilisation of AI on the CAD system to carry out the diagnosis accurately by 

acting as a second reader in detecting and segmenting the colonic polyps. 

b) Combination of modified ResNet-50 architecture with the PCA and AdaBoost 

ensemble learning to detect the colonic polyps for the purpose of improving 

the performance of CAD tools. 

c) Feasibility of implanting CNN-based model into the SoC (phase II), where the 

SoC is integrated in the smart medical capsule robot for the purpose of 

detecting the polyps automatically when the capsule robot travelling in the GI 

tract. 
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5.3 Recommendations 

Based on the research findings, several further studies and works can be made to 

improve the performance of the proposed system. In future, these issues can be 

extended: 

a) Phase I 

The proposed CAD system still has limitation as it can misclassify some 

images due to the naturally irregular structure of the colon and the colour 

properties of the images taken by endoscopy/colonoscopy. This matter can be 

improved in the future by using more advanced pre-processing techniques if it 

is to be utilised in colonoscopy for real-time detection. Although the proposed 

algorithm achieved state-of-the-art results, however, the the effectiveness of 

the algorithm need to be tested and compared in assisting physicians in 

detecting polyps. Furthermore, segmentation techniques would be the way to 

improve the CAD system to localize the position of the polyp during real-time 

detection. 

b) Phase II 

The proposed method is promising as an automated screening approach, which 

the smart medical capsule robot will travels in the GI tract and detect the polyp 

automatically. However, the 4-layers CNN algorithm used so far is not as good 

as the performance in the phase I. This is because of the difficulty with this 

approach remains the constraint of implementing CNN layers in the hardware 

due to the network’s complexity and the memory required. Therefore, in the 

future, FPGAs can be used to implement the proposed 4-layers CNN, proposed 

modified ResNet-50, as well as others well-known CNN models, such as 

AlexNet, GoogLeNet, VGG-16, and etc. 

 

 

 



 

81 

LIST OF PUBLICATION 

1. W. S. Liew, T. B. Tang, C.-H. Lin, and C.-K. Lu, “Automatic colonic polyp 

detection using integration of modified deep residual convolutional neural 

network and ensemble learning approaches,” Computer Methods and Programs 

in Biomedicine, vol. 206, p. 106114, Jul. 2021, doi: 10.1016/j.cmpb.2021.106114. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.cmpb.2021.106114


 

82 

REFERENCES 

[1] Sareena, A. Mittal, and M. Kaur, ‘Computer-aided-diagnosis in colorectal cancer: 

A survey of state of the art techniques’, in 2016 International Conference on 

Inventive Computation Technologies (ICICT), Aug. 2016, vol. 1, pp. 1–6. doi: 

10.1109/INVENTIVE.2016.7823260. 

[2] ‘What Is Colorectal Cancer? | How Does Colorectal Cancer Start?’ 

https://www.cancer.org/cancer/colon-rectal-cancer/about/what-is-colorectal-

cancer.html (accessed May. 18, 2020). 

[3] S. Patino-Barrientos, D. Sierra-Sosa, B. Garcia-Zapirain, C. Castillo-Olea, and A. 

Elmaghraby, ‘Kudo’s Classification for Colon Polyps Assessment Using a Deep 

Learning Approach’, Applied Sciences, vol. 10, no. 2, Art. no. 2, Jan. 2020, doi: 

10.3390/app10020501. 

[4] K. Patel et al., ‘A comparative study on polyp classification using convolutional 

neural networks’, PLOS ONE, vol. 15, no. 7, p. e0236452, Jul. 2020, doi: 

10.1371/journal.pone.0236452. 

[5] S. Chandan et al., ‘Adenoma and polyp detection rates during insertion versus 

withdrawal phase of colonoscopy: a systematic review and meta-analysis of 

randomized controlled trials’, Gastrointest Endosc, vol. 93, no. 1, pp. 68-76.e2, 

Jan. 2021, doi: 10.1016/j.gie.2020.06.015. 

[6] Y. Shin, H. A. Qadir, L. Aabakken, J. Bergsland, and I. Balasingham, ‘Automatic 

Colon Polyp Detection Using Region Based Deep CNN and Post Learning 

Approaches’, IEEE Access, vol. 6, pp. 40950–40962, 2018, doi: 

10.1109/ACCESS.2018.2856402. 

[7] D. A. Lieberman, D. G. Weiss, J. H. Bond, D. J. Ahnen, H. Garewal, and G. 

Chejfec, ‘Use of colonoscopy to screen asymptomatic adults for colorectal cancer. 

https://doi.org/10.1109/INVENTIVE.2016.7823260
https://www.cancer.org/cancer/colon-rectal-cancer/about/what-is-colorectal-cancer.html
https://www.cancer.org/cancer/colon-rectal-cancer/about/what-is-colorectal-cancer.html
https://doi.org/10.3390/app10020501
https://doi.org/10.1371/journal.pone.0236452
https://doi.org/10.1016/j.gie.2020.06.015
https://doi.org/10.1109/ACCESS.2018.2856402


 

83 

Veterans Affairs Cooperative Study Group 380’, N Engl J Med, vol. 343, no. 3, 

pp. 162–168, Jul. 2000, doi: 10.1056/NEJM200007203430301. 

[8] A. Nogueira-Rodríguez et al., ‘Deep Neural Networks approaches for detecting 

and classifying colorectal polyps’, Neurocomputing, vol. 423, pp. 721–734, Jan. 

2021, doi: 10.1016/j.neucom.2020.02.123. 

[9] D. S. Paik et al., ‘Surface normal overlap: a computer-aided detection algorithm 

with application to colonic polyps and lung nodules in helical CT’, IEEE Trans 

Med Imaging, vol. 23, no. 6, pp. 661–675, Jun. 2004, doi: 

10.1109/tmi.2004.826362. 

[10] N. Tajbakhsh, C. Chi, S. R. Gurudu, and J. Liang, ‘Automatic polyp detection 

from learned boundaries’, in 2014 IEEE 11th International Symposium on 

Biomedical Imaging (ISBI), Apr. 2014, pp. 97–100. doi: 

10.1109/ISBI.2014.6867818. 

[11] J. Stoitsis, I. Valavanis, S. G. Mougiakakou, S. Golemati, A. Nikita, and K. S. 

Nikita, ‘Computer aided diagnosis based on medical image processing and 

artificial intelligence methods’, Nuclear Instruments and Methods in Physics 

Research Section A: Accelerators, Spectrometers, Detectors and Associated 

Equipment, vol. 569, no. 2, pp. 591–595, Dec. 2006, doi: 

10.1016/j.nima.2006.08.134. 

[12] K. Sumiyama, T. Futakuchi, S. Kamba, H. Matsui, and N. Tamai, ‘Artificial 

intelligence in endoscopy: Present and future perspectives’, Digestive Endoscopy, 

vol. 33, no. 2, pp. 218–230, 2021, doi: 10.1111/den.13837. 

[13] D. G. Lowe, ‘Distinctive Image Features from Scale-Invariant Keypoints’, 

International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004, 

doi: 10.1023/B:VISI.0000029664.99615.94. 

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘ImageNet Classification with 

Deep Convolutional Neural Networks’, in Advances in Neural Information 

https://doi.org/10.1056/NEJM200007203430301
https://doi.org/10.1016/j.neucom.2020.02.123
https://doi.org/10.1109/tmi.2004.826362
https://doi.org/10.1109/ISBI.2014.6867818
https://doi.org/10.1016/j.nima.2006.08.134
https://doi.org/10.1111/den.13837
https://doi.org/10.1023/B:VISI.0000029664.99615.94


 

84 

Processing Systems, 2012, vol. 25. Accessed: Feb. 15, 2021. [Online]. Available: 

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-

Abstract.html. 

[15] C. Szegedy et al., ‘Going Deeper with Convolutions’, arXiv:1409.4842 [cs], 

Sep. 2014, Accessed: Feb. 15, 2021. [Online]. Available: 

http://arxiv.org/abs/1409.4842. 

[16] K. Simonyan and A. Zisserman, ‘Very Deep Convolutional Networks for 

Large-Scale Image Recognition’, arXiv:1409.1556 [cs], Apr. 2015, Accessed: 

Feb. 15, 2021. [Online]. Available: http://arxiv.org/abs/1409.1556. 

[17] K. He, X. Zhang, S. Ren, and J. Sun, ‘Deep Residual Learning for Image 

Recognition’, in 2016 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778. doi: 

10.1109/CVPR.2016.90. 

[18] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, ‘A survey of the recent 

architectures of deep convolutional neural networks’, Artif Intell Rev, vol. 53, no. 

8, pp. 5455–5516, Dec. 2020, doi: 10.1007/s10462-020-09825-6. 

[19] Z. Pan, W. Yu, X. Yi, A. Khan, F. Yuan, and Y. Zheng, ‘Recent Progress on 

Generative Adversarial Networks (GANs): A Survey’, IEEE Access, vol. 7, pp. 

36322–36333, 2019, doi: 10.1109/ACCESS.2019.2905015. 

[20] J. Bernal et al., ‘Comparative Validation of Polyp Detection Methods in Video 

Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge’, 

IEEE Transactions on Medical Imaging, vol. 36, no. 6, pp. 1231–1249, Jun. 2017, 

doi: 10.1109/TMI.2017.2664042. 

[21] H. Sharon, I. Elamvazuthi, C.-K. Lu, S. Parasuraman, and E. Natarajan, 

‘Development of Rheumatoid Arthritis Classification from Electronic Image 

Sensor Using Ensemble Method’, Sensors, vol. 20, no. 1, Art. no. 1, Jan. 2020, doi: 

10.3390/s20010167. 

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1109/ACCESS.2019.2905015
https://doi.org/10.1109/TMI.2017.2664042
https://doi.org/10.3390/s20010167


 

85 

[22] E. Alpaydin, Introduction to Machine Learning, 2nd ed. Cambridge, MA, 

USA: MIT Press, 2009. 

[23] W. Zhang, F. Zeng, X. Wu, X. Zhang, and R. Jiang, ‘A Comparative Study of 

Ensemble Learning Approaches in the Classification of Breast Cancer Metastasis’, 

in 2009 International Joint Conference on Bioinformatics, Systems Biology and 

Intelligent Computing, Aug. 2009, pp. 242–245. doi: 10.1109/IJCBS.2009.23. 

[24] X. D. Zeng, S. Chao, and F. Wong, ‘Ensemble learning on heartbeat type 

classification’, in Proceedings 2011 International Conference on System Science 

and Engineering, Jun. 2011, pp. 320–325. doi: 10.1109/ICSSE.2011.5961921. 

[25] S. Pouriyeh, S. Vahid, G. Sannino, G. De Pietro, H. Arabnia, and J. Gutierrez, 

‘A comprehensive investigation and comparison of Machine Learning Techniques 

in the domain of heart disease’, in 2017 IEEE Symposium on Computers and 

Communications (ISCC), Jul. 2017, pp. 204–207. doi: 

10.1109/ISCC.2017.8024530. 

[26] J. Wang, J. Lin, and Z. Wang, ‘Efficient Hardware Architectures for Deep 

Convolutional Neural Network’, IEEE Transactions on Circuits and Systems I: 

Regular Papers, vol. 65, no. 6, pp. 1941–1953, Jun. 2018, doi: 

10.1109/TCSI.2017.2767204. 

[27] S. S. Mapara and V. B. Patravale, ‘Medical capsule robots: A renaissance for 

diagnostics, drug delivery and surgical treatment’, J Control Release, vol. 261, pp. 

337–351, Sep. 2017, doi: 10.1016/j.jconrel.2017.07.005. 

[28] Q. Li et al., "Colorectal polyp segmentation using a fully convolutional neural 

network," 2017 10th International Congress on Image and Signal Processing, 

BioMedical Engineering and Informatics (CISP-BMEI), 2017, pp. 1-5, doi: 

10.1109/CISP-BMEI.2017.8301980. 

https://doi.org/10.1109/IJCBS.2009.23
https://doi.org/10.1109/ICSSE.2011.5961921
https://doi.org/10.1109/ISCC.2017.8024530
https://doi.org/10.1109/TCSI.2017.2767204
https://doi.org/10.1016/j.jconrel.2017.07.005


 

86 

[29] J. Y. Lee et al., ‘Real-time detection of colon polyps during colonoscopy using 

deep learning: systematic validation with four independent datasets’, Sci Rep, vol. 

10, no. 1, p. 8379, May 2020, doi: 10.1038/s41598-020-65387-1. 

[30] R. Zhang et al., ‘Automatic Detection and Classification of Colorectal Polyps 

by Transferring Low-Level CNN Features From Nonmedical Domain’, IEEE J 

Biomed Health Inform, vol. 21, no. 1, pp. 41–47, Jan. 2017, doi: 

10.1109/JBHI.2016.2635662. 

[31] X. Liu, Y. Li, J. Yao, B. Chen, J. Song, and X. Yang, ‘Classification of Polyps 

and Adenomas Using Deep Learning Model in Screening Colonoscopy’, in 2019 

8th International Symposium on Next Generation Electronics (ISNE), Oct. 2019, 

pp. 1–3. doi: 10.1109/ISNE.2019.8896649. 

[32] A. Bour, C. Castillo-Olea, B. Garcia-Zapirain, and S. Zahia, ‘Automatic colon 

polyp classification using Convolutional Neural Network: A Case Study at Basque 

Country’, in 2019 IEEE International Symposium on Signal Processing and 

Information Technology (ISSPIT), Dec. 2019, pp. 1–5. doi: 

10.1109/ISSPIT47144.2019.9001816. 

[33] H.-C. Park, Y.-J. Kim, and S.-W. Lee, ‘Adenocarcinoma Recognition in 

Endoscopy Images Using Optimized Convolutional Neural Networks’, Applied 

Sciences, vol. 10, no. 5, Art. no. 5, Jan. 2020, doi: 10.3390/app10051650. 

[34] T. Ozawa, S. Ishihara, M. Fujishiro, Y. Kumagai, S. Shichijo, and T. Tada, 

“Automated endoscopic detection and classification of colorectal polyps using 

convolutional neural networks,” Therap Adv Gastroenterol, vol. 13, p. 

1756284820910659, 2020, doi: 10.1177/1756284820910659. 

[35] T. Wittenberg, P. Zobel, M. Rathke, and S. Mühldorfer, ‘Computer Aided 

Detection of Polyps in Whitelight- Colonoscopy Images using Deep Neural 

Networks’, Current Directions in Biomedical Engineering, vol. 5, no. 1, pp. 231–

234, Sep. 2019, doi: 10.1515/cdbme-2019-0059. 

https://doi.org/10.1038/s41598-020-65387-1
https://doi.org/10.1109/JBHI.2016.2635662
https://doi.org/10.1109/ISNE.2019.8896649
https://doi.org/10.1109/ISSPIT47144.2019.9001816
https://doi.org/10.3390/app10051650
https://doi.org/10.1177/1756284820910659
https://doi.org/10.1515/cdbme-2019-0059


 

87 

[36] W. Wang, J. Tian, C. Zhang, Y. Luo, X. Wang, and J. Li, ‘An improved deep 

learning approach and its applications on colonic polyp images detection’, BMC 

Medical Imaging, vol. 20, no. 1, p. 83, Jul. 2020, doi: 10.1186/s12880-020-00482-

3. 

[37] M. Liu, J. Jiang, and Z. Wang, ‘Colonic Polyp Detection in Endoscopic Videos 

With Single Shot Detection Based Deep Convolutional Neural Network’, IEEE 

Access, vol. PP, pp. 1–1, Jun. 2019, doi: 10.1109/ACCESS.2019.2921027. 

[38] D. Zhou et al., ‘Diagnostic evaluation of a deep learning model for optical 

diagnosis of colorectal cancer’, Nat Commun, vol. 11, no. 1, p. 2961, Jun. 2020, 

doi: 10.1038/s41467-020-16777-6. 

[39] V. Vani and KM. Prashanth, ‘Polyp Detection in Endoscopy Images Using 

Deep Learning’, EC Gastroenterology and Digestive System 2019, vol. 6, pp.663-

672. 

[40] E. S. Nadimi et al., ‘Application of deep learning for autonomous detection 

and localization of colorectal polyps in wireless colon capsule endoscopy’, 

Computers & Electrical Engineering, vol. 81, p. 106531, Jan. 2020, doi: 

10.1016/j.compeleceng.2019.106531. 

[41] J. W. Wei et al., ‘Evaluation of a Deep Neural Network for Automated 

Classification of Colorectal Polyps on Histopathologic Slides’, JAMA Netw Open, 

vol. 3, no. 4, p. e203398, Apr. 2020, doi: 10.1001/jamanetworkopen.2020.3398. 

[42] J. Meng et al., ‘Automatic detection and segmentation of adenomatous 

colorectal polyps during colonoscopy using Mask R-CNN’, Open Life Sciences, 

vol. 15, no. 1, pp. 588–596, Jan. 2020, doi: 10.1515/biol-2020-0055. 

[43] R. Xiao, J. Shi, and C. Zhang, ‘FPGA Implementation of CNN for Handwritten 

Digit Recognition’, Jun. 2020, pp. 1128–1133. doi: 

10.1109/ITNEC48623.2020.9085002. 

https://doi.org/10.1186/s12880-020-00482-3
https://doi.org/10.1186/s12880-020-00482-3
https://doi.org/10.1109/ACCESS.2019.2921027
https://doi.org/10.1038/s41467-020-16777-6
https://doi.org/10.1016/j.compeleceng.2019.106531
https://doi.org/10.1001/jamanetworkopen.2020.3398
https://doi.org/10.1515/biol-2020-0055
https://doi.org/10.1109/ITNEC48623.2020.9085002


 

88 

[44] S. Heller et al., ‘Hardware Implementation of a Performance and Energy-

optimized Convolutional Neural Network for Seizure Detection’, in 2018 40th 

Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society (EMBC), Jul. 2018, pp. 2268–2271. doi: 

10.1109/EMBC.2018.8512735. 

[45] M. Hügle et al., ‘Early Seizure Detection with an Energy-Efficient 

Convolutional Neural Network on an Implantable Microcontroller’, in 2018 

International Joint Conference on Neural Networks (IJCNN), Jul. 2018, pp. 1–7. 

doi: 10.1109/IJCNN.2018.8489493. 

[46] I. Kiral-Kornek et al., ‘Epileptic Seizure Prediction Using Big Data and Deep 

Learning: Toward a Mobile System’, EBioMedicine, vol. 27, pp. 103–111, Jan. 

2018, doi: 10.1016/j.ebiom.2017.11.032. 

[47] M. Odagawa et al., ‘A Hardware Implementation of Colorectal Tumor 

Classification for Endoscopic Video on Customizable DSP Toward Real-Time 

Computer-Aided Diagnosis System’, in 2019 IEEE International Symposium on 

Circuits and Systems (ISCAS), May 2019, pp. 1–5. doi: 

10.1109/ISCAS.2019.8702379. 

[48] M. Khatwani, M. Hosseini, H. Paneliya, T. Mohsenin, W. D. Hairston, and N. 

Waytowich, ‘Energy Efficient Convolutional Neural Networks for EEG Artifact 

Detection’, in 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), 

Oct. 2018, pp. 1–4. doi: 10.1109/BIOCAS.2018.8584791. 

[49] A. Jafari, S. Gandhi, S. H. Konuru, W. David Hairston, T. Oates, and T. 

Mohsenin, ‘An EEG artifact identification embedded system using ICA and multi-

instance learning’, in 2017 IEEE International Symposium on Circuits and Systems 

(ISCAS), May 2017, pp. 1–4. doi: 10.1109/ISCAS.2017.8050346. 

[50] M. Naresh Gowda and A. I. Rasheed, ‘Hardware Implementation of Hybrid 

Classifier to Detect Cancer Cells’, in 2017 14th IEEE India Council International 

https://doi.org/10.1109/EMBC.2018.8512735
https://doi.org/10.1109/IJCNN.2018.8489493
https://doi.org/10.1016/j.ebiom.2017.11.032
https://doi.org/10.1109/ISCAS.2019.8702379
https://doi.org/10.1109/BIOCAS.2018.8584791
https://doi.org/10.1109/ISCAS.2017.8050346


 

89 

Conference (INDICON), Dec. 2017, pp. 1–5. doi: 

10.1109/INDICON.2017.8487787. 

[51] C. Chen, Z. Li, Y. Zhang, S. Zhang, J. Hou, and H. Zhang, ‘Low-Power FPGA 

Implementation of Convolution Neural Network Accelerator for Pulse Waveform 

Classification’, Algorithms, vol. 13, no. 9, Art. no. 9, Sep. 2020, doi: 

10.3390/a13090213. 

[52] ‘AdaBoost Algorithm | Quick Start Guide To AdaBoost Algorithm in Detail’, 

EDUCBA, Jun. 15, 2019. https://www.educba.com/adaboost-algorithm/ (accessed 

Feb. 26, 2021). 

[53] K. Pogorelov et al., ‘KVASIR: A Multi-Class Image Dataset for Computer 

Aided Gastrointestinal Disease Detection’, Jun. 2017. doi: 

10.1145/3083187.3083212. 

[54] ‘The Kvasir Dataset [WWW Document]’. https://datasets.simula.no/kvasir/ 

(accessed Feb. 26, 2021). 

[55] ‘Etislarib - Polyp - Grand Challenge’. https://polyp.grand-

challenge.org/EtisLarib/ (accessed Apr. 12, 2020). 

[56] ‘Polyp - Grand Challenge’, grand-challenge.org. https://polyp.grand-

challenge.org/CVCClinicDB/ (accessed Apr. 12, 2020). 

[57] A. V. Mamonov, I. N. Figueiredo, P. N. Figueiredo, and Y.-H. R. Tsai, 

‘Automated polyp detection in colon capsule endoscopy’, IEEE Trans. Med. 

Imaging, vol. 33, no. 7, pp. 1488–1502, Jul. 2014, doi: 

10.1109/TMI.2014.2314959. 

[58] L. Gueye, S. Yildirim Yayilgan, F. Alaya Cheikh, and I. Balasingham, 

‘Automatic Detection of Colonoscopic Anomalies Using Capsule Endoscopy’, 

Sep. 2015. doi: 10.1109/ICIP.2015.7350962. 

https://doi.org/10.1109/INDICON.2017.8487787
https://doi.org/10.3390/a13090213
https://www.educba.com/adaboost-algorithm/
https://doi.org/10.1145/3083187.3083212
https://datasets.simula.no/kvasir/
https://polyp.grand-challenge.org/EtisLarib/
https://polyp.grand-challenge.org/EtisLarib/
https://polyp.grand-challenge.org/CVCClinicDB/
https://polyp.grand-challenge.org/CVCClinicDB/
https://doi.org/10.1109/TMI.2014.2314959
https://doi.org/10.1109/ICIP.2015.7350962


 

90 

[59] A. Nelikanti et al., ‘Colorectal Cancer MRI Image Segmentation Using Image 

Processing Techniques’, International Journal on Computer Science and 

Engineering (IJCSE), vol. 6, no. 7, pp. 280-286, Jul. 2014. 

[60] B. Jeyavathana, B. Ramasamy, and A. Pandian, ‘A Survey: Analysis on Pre-

processing and Segmentation Techniques for Medical Images’, International 

Journal of Research and Scientific Innovation (IJRSI), Jun. 2016. 

[61] ‘Torch | Training and investigating Residual Nets’. 

http://torch.ch/blog/2016/02/04/resnets.html (accessed May. 10, 2020). 

[62] C.-K. Shie, C.-H. Chuang, C.-N. Chou, M.-H. Wu, and E. Y. Chang, ‘Transfer 

representation learning for medical image analysis’, in 2015 37th Annual 

International Conference of the IEEE Engineering in Medicine and Biology 

Society (EMBC), Aug. 2015, pp. 711–714. doi: 10.1109/EMBC.2015.7318461. 

[63] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ramanan, ‘Object 

Detection with Discriminatively Trained Part Based Models’, IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 2009, doi: 

10.1109/TPAMI.2009.167. 

[64] D. Whitley, ‘Genetic Algorithms and Neural Networks’, in Genetic Algorithms 

in Engineering and Computer Science, 1995, pp. 191–201. 

[65] A. Ansari and A. A. Bakar, ‘A Comparative Study of Three Artificial 

Intelligence Techniques: Genetic Algorithm, Neural Network, and Fuzzy Logic, 

on Scheduling Problem’, in 2014 4th International Conference on Artificial 

Intelligence with Applications in Engineering and Technology, Kota Kinabalu, 

Malaysia, Dec. 2014, pp. 31–36. doi: 10.1109/ICAIET.2014.15. 

[66] ‘Pretrained Deep Neural Networks - MATLAB & Simulink - MathWorks 

United Kingdom’. https://uk.mathworks.com/help/deeplearning/ug/pretrained-

convolutional-neural-networks.html (accessed Apr. 5, 2020). 

http://torch.ch/blog/2016/02/04/resnets.html
https://doi.org/10.1109/EMBC.2015.7318461
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1109/ICAIET.2014.15
https://uk.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://uk.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html


 

91 

[67] A. Canziani, A. Paszke, and E. Culurciello, ‘An Analysis of Deep Neural 

Network Models for Practical Applications’, arXiv:1605.07678 [cs], Apr. 2017, 

Accessed: Feb. 15, 2021. [Online]. Available: http://arxiv.org/abs/1605.07678. 

[68] G. Kumar and P. K. Bhatia, ‘A Detailed Review of Feature Extraction in Image 

Processing Systems’, in 2014 Fourth International Conference on Advanced 

Computing Communication Technologies, Feb. 2014, pp. 5–12. doi: 

10.1109/ACCT.2014.74. 

[69] R. Zhu, R. Zhang, and D.-X. Xue, ‘Lesion detection of endoscopy images 

based on convolutional neural network features’, Oct. 2015, pp. 372–376. doi: 

10.1109/CISP.2015.7407907. 

[70] Y. H. Liu, ‘Feature Extraction and Image Recognition with Convolutional 

Neural Networks’, J. Phys.: Conf. Ser., vol. 1087, p. 062032, Sep. 2018, doi: 

10.1088/1742-6596/1087/6/062032. 

[71] ‘Performance Comparison of Dimension Reduction Implementations — umap 

0.5 documentation’. https://umap-

learn.readthedocs.io/en/latest/benchmarking.html (accessed Apr. 15, 2021). 

[72] S. Sivarajah, ‘Dimensionality Reduction for Data Visualization: PCA vs TSNE 

vs UMAP vs LDA’, Medium, Dec. 31, 2020. 

https://towardsdatascience.com/dimensionality-reduction-for-data-visualization-

pca-vs-tsne-vs-umap-be4aa7b1cb29 (accessed Mar. 11, 2021). 

[73] L. F. Sánchez-Peralta, L. Bote-Curiel, A. Picón, F. M. Sánchez-Margallo, and 

J. B. Pagador, ‘Deep learning to find colorectal polyps in colonoscopy: A 

systematic literature review’, Artificial Intelligence in Medicine, vol. 108, p. 

101923, Aug. 2020, doi: 10.1016/j.artmed.2020.101923. 

[74] M. K. Benkaddour and A. Bounoua, ‘Feature extraction and classification 

using deep convolutional neural networks, PCA and SVC for face recognition’, 

http://arxiv.org/abs/1605.07678
https://doi.org/10.1109/ACCT.2014.74
https://doi.org/10.1109/CISP.2015.7407907
https://doi.org/10.1088/1742-6596/1087/6/062032
https://umap-learn.readthedocs.io/en/latest/benchmarking.html
https://umap-learn.readthedocs.io/en/latest/benchmarking.html
https://towardsdatascience.com/dimensionality-reduction-for-data-visualization-pca-vs-tsne-vs-umap-be4aa7b1cb29
https://towardsdatascience.com/dimensionality-reduction-for-data-visualization-pca-vs-tsne-vs-umap-be4aa7b1cb29
https://doi.org/10.1016/j.artmed.2020.101923


 

92 

Traitement du signal, vol. 34, no. 1–2, pp. 77–91, Oct. 2017, doi: 10.3166/ts.34.77-

91. 

[75] H. Lu, L. Yang, K. Yan, Y. Xue, and Z. Gao, ‘A cost-sensitive rotation forest 

algorithm for gene expression data classification’, Neurocomputing, vol. 228, pp. 

270–276, Mar. 2017, doi: 10.1016/j.neucom.2016.09.077. 

[76] M. F. I. Ibrahim and A. A. Al-Jumaily, ‘PCA indexing based feature learning 

and feature selection’, in 2016 8th Cairo International Biomedical Engineering 

Conference (CIBEC), Dec. 2016, pp. 68–71. doi: 10.1109/CIBEC.2016.7836122. 

[77] M. Zhu et al., ‘PCA and Kernel-based extreme learning machine for side-scan 

sonar image classification’, in 2017 IEEE Underwater Technology (UT), Feb. 

2017, pp. 1–4. doi: 10.1109/UT.2017.7890275. 

[78] M. Gupta and B. Gupta, "A Comparative Study of Breast Cancer Diagnosis 

Using Supervised Machine Learning Techniques," 2018 Second International 

Conference on Computing Methodologies and Communication (ICCMC), 2018, 

pp. 997-1002, doi: 10.1109/ICCMC.2018.8487537. 

[79] M. Amrane, S. Oukid, I. Gagaoua and T. Ensarİ, "Breast cancer classification 

using machine learning," 2018 Electric Electronics, Computer Science, 

Biomedical Engineerings' Meeting (EBBT), 2018, pp. 1-4, doi: 

10.1109/EBBT.2018.8391453. 

[80] K. K. Jena, S. Kumar Bhoi, D. Mohapatra, C. Mallick and P. Swain, "Rice 

Disease Classification Using Supervised Machine Learning Approach," 2021 Fifth 

International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) 

(I-SMAC), 2021, pp. 328-333, doi: 10.1109/I-SMAC52330.2021.9641054. 

[81] ‘classification - Adaptive Boosting vs. SVM’, Cross Validated. 

https://stats.stackexchange.com/questions/111654/adaptive-boosting-vs-svm 

(accessed May. 22, 2020). 

https://doi.org/10.3166/ts.34.77-91
https://doi.org/10.3166/ts.34.77-91
https://doi.org/10.1016/j.neucom.2016.09.077
https://doi.org/10.1109/CIBEC.2016.7836122
https://doi.org/10.1109/UT.2017.7890275
https://stats.stackexchange.com/questions/111654/adaptive-boosting-vs-svm


 

93 

[82] J. P. Vink and G. de Haan, ‘Comparison of machine learning techniques for 

target detection’, Artif Intell Rev, vol. 43, no. 1, pp. 125–139, Jan. 2015, doi: 

10.1007/s10462-012-9366-7. 

[83] H. Lu, Y. Meng, K. Yan, and Z. Gao, ‘Kernel Principal Component Analysis 

Combining Rotation Forest Method for Linearly Inseparable Data’, Cognitive 

Systems Research, vol. 53, Feb. 2018, doi: 10.1016/j.cogsys.2018.01.006. 

[84] S. Pang, Y. Zhang, M. Ding, X. Wang, and X. Xie, ‘A Deep Model for Lung 

Cancer Type Identification by Densely Connected Convolutional Networks and 

Adaptive Boosting’, IEEE Access, vol. 8, pp. 4799–4805, 2020, doi: 

10.1109/ACCESS.2019.2962862. 

[85] L. Shi et al., ‘The MAQC-II project: a comprehensive study of common 

practices for the development and validation of microarray-based predictive 

models’, Nat Biotechnol, vol. 28, no. 8, pp. 827–838, Aug. 2010. 

[86] The SEQC/MAQC-III Consortium, ‘A comprehensive assessment of RNA-seq 

accuracy, reproducibility and information content by the Sequencing Quality 

Control Consortium’, Nat Biotechnol, vol. 32, no. 9, pp. 903–914, Sep. 2014, doi: 

10.1038/nbt.2957. 

[87] L. Shi et al., ‘The MicroArray Quality Control (MAQC)-II study of common 

practices for the development and validation of microarray-based predictive 

models’, Nat Biotechnol, vol. 28, no. 8, pp. 827–838, Aug. 2010, doi: 

10.1038/nbt.1665. 

[88] W. Zhang et al., ‘Comparison of RNA-seq and microarray-based models for 

clinical endpoint prediction’, Genome Biology, vol. 16, no. 1, p. 133, Jun. 2015, 

doi: 10.1186/s13059-015-0694-1. 

[89] D. Chicco and G. Jurman, ‘The advantages of the Matthews correlation 

coefficient (MCC) over F1 score and accuracy in binary classification evaluation’, 

BMC Genomics, vol. 21, no. 1, p. 6, Jan. 2020, doi: 10.1186/s12864-019-6413-7. 

https://doi.org/10.1007/s10462-012-9366-7
https://doi.org/10.1016/j.cogsys.2018.01.006
https://doi.org/10.1109/ACCESS.2019.2962862
https://doi.org/10.1038/nbt.2957
https://doi.org/10.1038/nbt.1665
https://doi.org/10.1186/s13059-015-0694-1
https://doi.org/10.1186/s12864-019-6413-7


 

94 

[90] G. Lacey, G. W. Taylor, and S. Areibi, ‘Deep Learning on FPGAs: Past, 

Present, and Future’, arXiv:1602.04283 [cs, stat], Feb. 2016, Accessed: Aug. 15, 

2021. [Online]. Available: http://arxiv.org/abs/1602.04283. 

[91] T. H. Vu, R. Murakami, Y. Okuyama, and A. Ben Abdallah, ‘Efficient 

Optimization and Hardware Acceleration of CNNs towards the Design of a 

Scalable Neuro inspired Architecture in Hardware’, in 2018 IEEE International 

Conference on Big Data and Smart Computing (BigComp), Jan. 2018, pp. 326–

332. doi: 10.1109/BigComp.2018.00055. 

[92] Z. Liao, R. Gao, C. Xu, and Z.-S. Li, ‘Indications and detection, completion, 

and retention rates of small-bowel capsule endoscopy: a systematic review’, 

Gastrointestinal Endoscopy, vol. 71, no. 2, pp. 280–286, Feb. 2010, doi: 

10.1016/j.gie.2009.09.031. 

[93] S. J. Heitman, P. E. Ronksley, R. J. Hilsden, B. J. Manns, A. Rostom, and B. 

R. Hemmelgarn, ‘Prevalence of adenomas and colorectal cancer in average risk 

individuals: a systematic review and meta-analysis’, Clin Gastroenterol Hepatol, 

vol. 7, no. 12, pp. 1272–1278, Dec. 2009, doi: 10.1016/j.cgh.2009.05.032. 

[94] D. H. Kim, P. J. Pickhardt, and A. J. Taylor, ‘Characteristics of advanced 

adenomas detected at CT colonographic screening: implications for appropriate 

polyp size thresholds for polypectomy versus surveillance’, AJR Am J Roentgenol, 

vol. 188, no. 4, pp. 940–944, Apr. 2007, doi: 10.2214/AJR.06.0764. 

[95] Y. Ren, Y. Chen, L. Lu, and J. Zhao, ‘Novel 3D Radiomic Features for 

Computer-Aided Polyp Detection in CT Colonography’, IEEE Access, vol. 6, pp. 

74506–74520, 2018, doi: 10.1109/ACCESS.2018.2874803. 

[96] H. Yuan, Q. Yu, Y. Zhang, Q. Yu, Q. Zhang, and W. Wang, ‘Ultrasound 

Radiomics Effective for Preoperative Identification of True and Pseudo 

Gallbladder Polyps Based on Spatial and Morphological Features’, Frontiers in 

Oncology, vol. 10, 2020, doi: 10.3389/fonc.2020.01719. 

http://arxiv.org/abs/1602.04283
https://doi.org/10.1109/BigComp.2018.00055
https://doi.org/10.1016/j.gie.2009.09.031
https://doi.org/10.1016/j.cgh.2009.05.032
https://doi.org/10.2214/AJR.06.0764
https://doi.org/10.1109/ACCESS.2018.2874803
https://doi.org/10.3389/fonc.2020.01719


 

95 

[97] H. Shakir, Y. Deng, H. Rasheed, and T. M. R. Khan, ‘Radiomics based 

likelihood functions for cancer diagnosis’, Sci Rep, vol. 9, no. 1, p. 9501, Jul. 2019, 

doi: 10.1038/s41598-019-45053-x. 

[98] S. A. Azer, ‘Challenges Facing the Detection of Colonic Polyps: What Can 

Deep Learning Do?’, Medicina (Kaunas), vol. 55, no. 8, p. 473, Aug. 2019, doi: 

10.3390/medicina55080473. 

[99] M. Nagendran et al., ‘Artificial intelligence versus clinicians: systematic 

review of design, reporting standards, and claims of deep learning studies’, BMJ, 

vol. 368, p. m689, Mar. 2020, doi: 10.1136/bmj.m689. 

[100] G. Urban et al., ‘Deep Learning Localizes and Identifies Polyps in Real Time 

With 96% Accuracy in Screening Colonoscopy’, Gastroenterology, vol. 155, no. 

4, pp. 1069-1078.e8, Oct. 2018, doi: 10.1053/j.gastro.2018.06.037. 

https://doi.org/10.1038/s41598-019-45053-x
https://doi.org/10.3390/medicina55080473
https://doi.org/10.1136/bmj.m689
https://doi.org/10.1053/j.gastro.2018.06.037

