

FINAL EXAMINATION JANUARY 2025 SEMESTER

COURSE :

MEB1043/MFB1043 - STATICS

DATE

12 APRIL 2025 (SATURDAY)

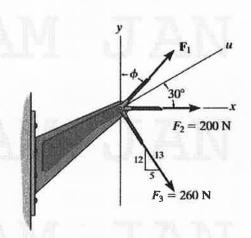
TIME

9.00 AM - 12.00 NOON (3 HOURS)

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions in the Answer Booklet.
- 2. Begin **EACH** answer on a new page in the Answer Booklet.
- 3. Indicate clearly answers that are cancelled, if any.
- 4. Where applicable, show clearly steps taken in arriving at the solutions and indicate **ALL** assumptions, if any.
- 5. **DO NOT** open this Question Booklet until instructed.

Note


- i. There are **EIGHT (8)** pages in this Question Booklet including the cover page and appendix.
- ii. DOUBLE-SIDED Question Booklet.

Universiti Teknologi PETRONAS

 a. Statics deals with the equilibrium of bodies that are either at rest or move with a constant velocity. Discuss the general procedure in analyzing problems related to statics.

[5 marks]

b. **FIGURE Q1** shows a free body diagram of bracket to hold the load of F_I and F_3 , respectively. If the F_I and Φ is given 150 N and 30°, respectively.

FIGURE Q1

 Determine the magnitude of the resultant force acting on the bucket and its direction measured clockwise from the positive x axis.

[13 marks]

ii. From the finding **Part (i)**, develop the force diagram to shows the forces involved and the magitude of the resultant force.

[7 marks]

a. Discuss the procedure on how to develop the free body diagram of the particle.

[5 marks]

b. **FIGURE Q2** shows a tow truck model with struts *AB*, *AC* and *AD* mounted on the frame.

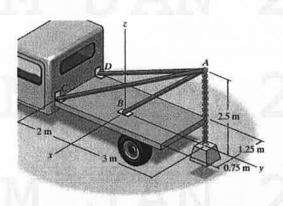
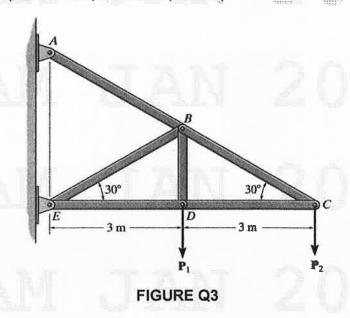


FIGURE Q2

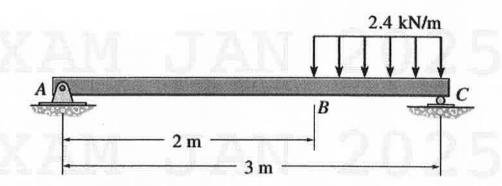

 Determine the force acting along the struts for them to support the 500 kg load.

[13 marks]

ii Develop a force diagram to show the forces acting along the truss by stating the magnitude and direction.

[7 marks]

3. The structural members shown in FIGURE Q3 is subjected to force $P_1 = 6$ kN and $P_2 = 4.5$ kN at point D and point C, respectively.


a. Determine the forces in each truss member and state if the member is in tension or compression.

[18 marks]

b. Draw all the forces acting at joint E and determine the vertical force at point E. Then draw the free body diagram of the structure.

[7 marks]

For the beam shown in FIGURE Q4, BC is subjected to a uniformly distributed load of 2.4 kN/m:

FIGURE Q4

Draw the free body diagram of the structure and calculate the support reactions at point A and point C.

[10 marks]

Develop the shear force diagram & bending moment diagram for the beam.

[15 marks]

- END OF PAPER -

APPENDIX

Cartesian Vector

$$\mathbf{A} = A_i + A_j + A_k$$

Magnitude

$$A = \sqrt{A_x^2 + A_x^2 + A}$$

Directions

$$\mathbf{u}_A = \frac{\mathbf{A}}{A} = \frac{\mathbf{A}_x}{A}\mathbf{i} + \frac{\mathbf{A}_y}{A}\mathbf{j} + \frac{\mathbf{A}_z}{A}\mathbf{k}$$
$$= \cos\alpha\mathbf{i} + \cos\beta\mathbf{j} + \cos\gamma\mathbf{k}$$
$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

Dut Product

$$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$$

= $A_x B_x + A_y B_y + A_z B_z$

Cross Product

$$\mathbf{C} = \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix}$$

Cartesian Position Vector

$$\mathbf{r} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}$$

Cartesian Force Vector

$$\mathbf{F} \approx F\mathbf{u} \approx F\left(\frac{\mathbf{r}}{r}\right)$$

Moment of a Force

f a Force
$$M_o = Fd \\
M_o = \mathbf{r} \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ r_1 & r_2 & r_2 \\ F_1 & F_2 & F_2 \end{vmatrix}$$

Moment of a Force About a Specified Axis

$$M_a = \mathbf{u} \cdot \mathbf{r} \times \mathbf{F} = \begin{vmatrix} u_x & u_y & u_z \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}$$

Simplification of a Force and Couple System

$$\mathbf{F}_R = \Sigma \mathbf{F}$$

 $(\mathbf{M}_R)_O = \Sigma \mathbf{M} + \Sigma \mathbf{M}_O$

E.quilibrium

Particle

$$\Sigma F_{\mu} = 0$$
, $\Sigma F_{\nu} = 0$, $\Sigma F_{\varepsilon} = 0$

Rigid Body-Two Dimensions

$$\Sigma F_i = 0, \Sigma F_y = 0, \Sigma M_O = 0$$

Rigid Body-Three Dimensions

$$\Sigma F_x = 0$$
, $\Sigma F_y = 0$, $\Sigma F_z = 0$
 $\Sigma M_{xz} = 0$, $\Sigma M_{yz} = 0$, $\Sigma M_{zz} = 0$

Friction

Static (maximum)
$$F_s = \mu_1 N$$

Kinetic

$$F_k = \mu_k N$$

Center of Gravity

Particles or Discrete Parts

$$r = \frac{\Sigma T W}{\Sigma W}$$

Body

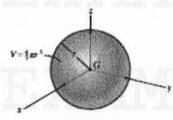
$$7 = \frac{\int \tilde{r} \, dw}{\int dw}$$

Area and Mass Moments of Inertia

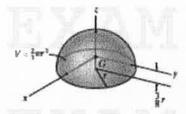
$$I = \int r^2 dA \qquad I = \int r^2 dn$$

Parallel-Axis Theorem

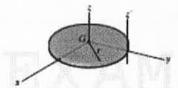
$$T = T + Ad^2 \qquad I = T + md^2$$


Radius of Gyration

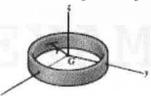
$$k = \sqrt{\frac{I}{A}}$$
 $k = \sqrt{\frac{I}{m}}$


Virtual Work

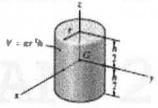
$$\delta U = 0$$

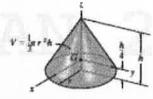

Center of Gravity and Mass Moment Inertia of Homogeneous Solids


Sphere

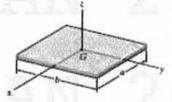


Hemisphere

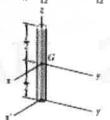

Thin Cincular disk


This ring

$$I_{xx} = I_{yy} = \frac{1}{2} m v^2$$
 $I_{cz} = m v^2$

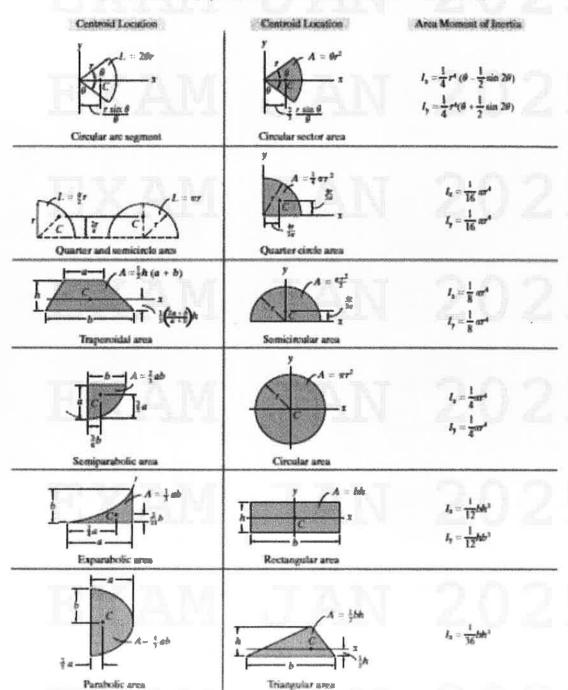

Cylinder

$$I_{m} = I_{m} = \frac{1}{12} m(3r^{2} + h^{2}) - I_{m} = \frac{1}{2} nn^{2}$$



Cons

$$I_{ab} = I_{pp} = \frac{3}{80} \text{ mr}(4r^2 + h^2)$$
 $I_{aa} = \frac{3}{10} \text{ ms}r^2$


Thin olde

Stender Ros

$$l_{xx} = l_{xy} = \frac{1}{12} m t^3$$
 $l_{xx} = l_{yy} = \frac{1}{4} m t^3$ $l_{xx} = 0$

Geometric Properties of Line and Area Elements

