

FINAL EXAMINATION MAY 2024 SEMESTER

COURSE

MEB3023 - MECHANICAL ENGINEERING DESIGN

DATE

13 AUGUST 2024 (TUESDAY)

TIME

2.30 PM - 5.30 PM (3 HOURS)

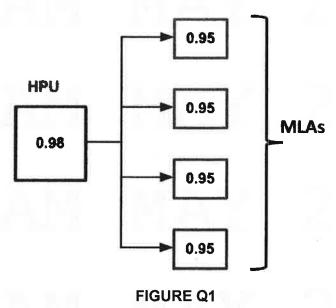
INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions in the Answer Booklet.
- 2. Begin **EACH** answer on a new page in the Answer Booklet.
- 3. Indicate clearly answers that are cancelled, if any.
- 4. Where applicable, show clearly steps taken in arriving at the solutions and indicate **ALL** assumptions, if any.
- 5. **DO NOT** open this Question Booklet until instructed.

Note:

- i. There are **SIXTEEN (16)** pages in this Question Booklet including the cover page and appendices.
- ii. DOUBLE-SIDED Question Booklet.

Universiti Teknologi PETRONAS


- 1. Engineering design involves material selection and creating provisions to address any potential causes that could lead to unreliability in the final product.
 - a. Describe **FOUR (4)** general factors that must be considered in selecting a material for a mechanical product such as power screw, helical compression springs, shafts, and gears.

[8 marks]

b. Discuss **THREE (3)** design-related provisions that can be used to ensure the reliability of a new product.

[6 marks]

c. Clusters of moving loading arms (MLAs) are commonly used for loading and unloading operations in the crude oil transportation business. In one specific design, an MLA cluster may have one hydraulic processing unit (HPU) providing the energy needed to operate four MLAs. FIGURE Q1 shows a reliability block diagram for such a design. At any given time, the operator can choose which MLA to operate. However, for safety reasons, it is not allowed to run more than one MLA simultaneously.

i. Determine the system reliability for a given loading or unloading operation.

[6 marks]

Discuss how to get the system reliability if the numbers in the reliability block diagram represent failure rates.

[5 marks]

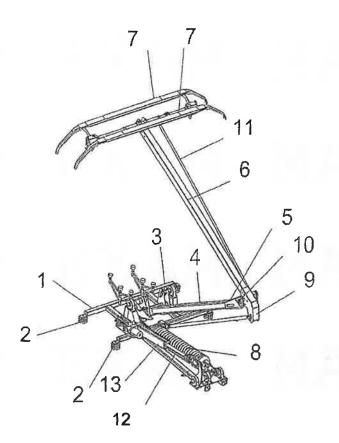
2. A pantograph is commonly used in modern electric-driven trains, tramways, and buses to transfer power through contact with an overhead electrical line. The pantograph allows the vehicle to draw high-voltage electricity from the overhead wires while traveling at high speeds. FIGURE Q2 shows spring-loaded pantograph as conceived by EC Engineering company. The spring is essential to provide a constant contact force between the pantograph's current-collecting shoe and the overhead contact wire. This spring force is crucial for maintaining reliable electrical contact and efficient power transfer.

TABLE Q2

Parameter	Value	
Total force on the spring	70 to 100 N	
Maximum deflection from free length, L ₀	not more than 50 mm	
Minimum wire diameter, d	5 mm	
Outside diameter, OD	100 mm	
Material	ASTM A229	
	(density, $\rho = 7850 \text{ kg/m}^3$)	

As a mechanical engineer, you are required to design the spring, assuming the specification provided in **TABLE Q2**. Your design analysis needs to include:

a. calculation of the free length,


[15 marks]

b. assessment of the potential for buckling, and

[5 marks]

c. estimation of natural frequency of the spring.

[5 marks]

No.	Name			
1	Frame			
2	Support insulator			
3	Eccentric shaft			
4	Girder			
5	Fork			
6	Upper arm			
7	Contact shoes			
8	Tension spring			
9	Boom			
10	Articulated joint			
11	Radius arm			
12	Spindle			
13	Lifting drive			

FIGURE Q2

Bolted joints are widely used in industrial applications due to their high strength, ease of assembly, cost-effectiveness, and flexibility. The upside-down steel A frame shown in **FIGURE Q3** is to be bolted to steel beams on the ceiling of a machine room using ISO grade 8.8 bolts ($S_p = 600$ MPa, E = 207 GPa). This frame is designed to support the 40 kN vertical load as illustrated. The total bolt grip is 48 mm, which includes the thickness of the steel beam, the A-frame feet, and the steel washers used. The bolts are size M20 × 2.5. The rest of the specification are as stated in **TABLE Q3**.

TABLE Q3

Parameter		Value
Nut hight, H (mm)		8
	L_T (mm)	46
Bolt dimensions	l _t (mm)	14
	l _d (mm)	34
	A _t (mm ²)	245
Washer outer diameter, d_{w} (mm)		39

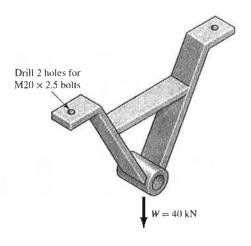


FIGURE Q3

	D (
а.	Dete	ורחונ	ino
C2.		71 I I I I	1110

i. the stiffness of the bolt and steel members, respectively, and

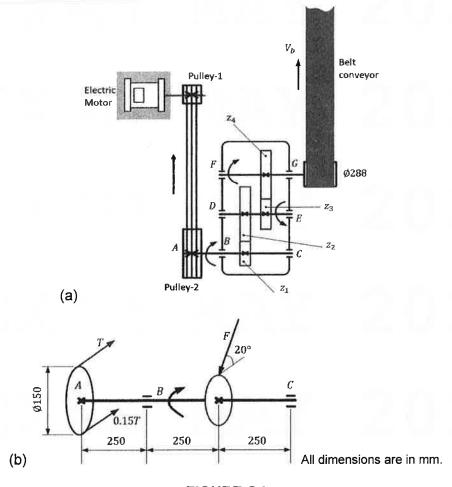
[10 marks]

ii. the tightening torque required for the joint to be permanent, assuming lubricated fasteners.

[5 marks]

- b. Assess the factor of safety guarding the bolted joint against
 - i. yielding, and

[5 marks]


ii. overload.

[5 marks]

4. You are required to design a power transmission system for a belt conveyor driven by a 150 kW electric motor through a v-belt drive and double-reduction grearbox as shown in **FIGURE Q4**. The conveyor drive end will operate at 475 rpm. The gearbox will utilize spur gears with a 20° pressure angle. A safety factor of 1.5 is considered adequate for the shaft design.

TABLE Q4

	Gear 1	Gear 2	Gear 3	Gear 4
Number of Teeth, Z_i $(i = 1,2,3,4)$	16	48	18	36
Module (mm)	5 7		7	

FIGURE Q4

a. Determine

i. pitch diameters of the gears, and

[5 marks]

ii. rotational speed of shaft ABC.

[5 marks]

b. Design shaft ABC by assuming AISI-1035 HR steel and based on the geometry data provided in FIGURE Q4(b).

[10 marks]

c. Select a suitable cylindrical roller bearing for use at supports *B* and *C*, assuming a desired life of 50,000 hours and reliability of 0.9. A load application factor of 1.3 is considered appropriate.

[5 marks]

- END OF PAPER -

APPENDIX - A

FORMULAE FOR RELIABILITY AND DESIGN CALCULATION

A.1 Reliability

• Combination formula:
$$C(m,n) = {m \choose n} = \frac{m!}{n!(m-n)!}$$

• System in series:
$$R_s = R_A \times R_B \times R_C \times ... \times R_n = \prod_{i=1}^n R_i$$

System in parallel:

$$R_s = 1 - (1 - R_A) \times (1 - R_B) \times ... \times (1 - R_n) = 1 - \prod_{i=1}^n (1 - R_i)$$

n -out-of-m system: $R_{\left(\frac{n}{m}\right)} = \sum_{i=n}^{m} {m \choose n} R^{i} (1-R)^{m-i}$

A.2 HELICAL COMPRESSION SPRINGS

• Spring Index:
$$C = \frac{D}{d}$$

• Minimum Tensile Strength:
$$S_{ut} = \frac{A_p}{d^m}$$

• Shear Stress:
$$au = K_B imes rac{8FD}{\pi d^3}$$

• Shear Stress correction factor:
$$K_B = \frac{4C+2}{4C-3}$$

• The condition for absolute stability is the free length: $L_0 < 2.63 \, \frac{D}{a}$

• Spring stiffness:
$$k = \frac{F}{y} = \frac{d^4 G}{8D^3 N_a}$$

where F is the force, N_a is the number of active coils, and y is the deflection.

Torsional yield strength for music wire and hard-drawn steel spring:

$$S_{sy} = 0.45 S_{ut}$$

Natural frequency of helical compression spring:

$$f=\sqrt{rac{k}{m}}$$
 where $m=\left(rac{1}{4}
ight)\pi^2d^2DN_a
ho$; ho is density.

A.3 SHAFT DESIGN

- Shear stress, $\tau_{xy} = \frac{cT}{J}$, where $J = \frac{\pi d^4}{32}$
- Bending stress, $\sigma_x = \frac{cM}{I}$, where $I = \frac{\pi d^4}{64}$
- Principal stress, σ_1 , $\sigma_2 = \frac{\sigma_x}{2} \pm \sqrt{\tau_{xy}^2 + \frac{{\sigma_x}^2}{4}}$,
- Von Mises Stress: $\sigma_e = ({\sigma_1}^2 + {\sigma_2}^2 {\sigma_1}{\sigma_2})^{0.5}$ or

$$\sigma_e = \left(\sigma_x^2 + 3\tau_{xy}^2\right)^{0.5}$$

• The Distortion Energy Theory predicts that failure will not occur if: $\sigma_e < \frac{s_y}{n_S}$ or

$$d^3 > \frac{16}{\pi \sigma_e} (4M^2 + 3T^2)^{0.5}.$$

Where, d is the shaft diameter.

A.4 BEARING SELECTION

• Catalogue load rating, $C_{10}=a_fF_D\left[\frac{x_D}{x_0+(\theta-x_0)\left[ln\left(\frac{1}{R_D}\right)\right]^{\frac{1}{b}}}\right]^{\frac{1}{a}}$, with

$$x_D = \frac{60 \times (\text{Required Design Life in hours}) \times n_D}{10^6}$$

Where,

 F_D maximum radial load in kN

 R_D reliability goal.

 n_D rotational speed in rev/min

 a_f load application factor.

a constant and is 3 for ball bearings.

b Weibull parameter and is equal to 1.483.

 x_0 Weibull parameter and is equal to 0.02.

 θ Weibull parameter and is equal to 4.459.

A.5 THREADED MEMBERS

• Equivalent stiffness of a bolt,
$$k_b = \frac{A_d A_t E}{A_d l_t + A_t l_d}$$

• Equivalent stiffness of a member,
$$k_m = \frac{0.5774\pi Ed}{ln\left[\left(\frac{1.1547t+D-d}{1.1547t+D+d}\right)\left(\frac{D+d}{D-d}\right]\right]}$$

Where t is the total grip, d is the bold diameter, and D = 1.5d

• Bolt torque:
$$T = K \times F_i d$$

· Initial tension,

o
$$F_i = 0.75 A_t S_p$$
 for non-permanent connection, and

$$\circ$$
 $F_i = 0.90 A_t S_p$ for permanent connection.

• Yielding factor of safety:
$$n_p = \frac{S_p A_t}{CP+F}$$

• Overload factor:
$$n_L = \frac{S_p A_t - F_i}{CP}$$

TABLE A.1: Torque Factor K

Bolt Condition	K
Non-plated, black finish	0.30
Zinc-plated	0.20
Lubricated	0.18
Cadmium-plated	0.16
With Bowman Anti-Seize	0.12
With Bowman-Grip nuts	0.09

APPENDIX - B

TABLES FOR DESIGN RELEVANT DATA

B.1 TABLES FOR SPRING DESIGN

TABLE B.1: Formulae for the Dimensional Characteristics of Compression Springs.

Material		Type of Sp	ring Ends	
	Plain	Plain & Ground	Squared or Closed	Squared & Ground
End coils, N _e	0	1	2	2
Total Coils, Nt	N _a	N _a + 1	N _a + 2	N _a + 2
Free Length, Lo	pN _a + d	p(N _a + 1)	pN _a + 3d	pN _a + 2d
Solid Length, Ls	d(N _t +1)	dN₁	d(N _t +1)	dN _t
Pitch, p	(L ₀ - d)/ N _a	(Lo / (Na + 1)	(L ₀ - 3d)/ N _a	(L _O - 2d)/ N _a

Na is the number of active coils.

TABLE B.2: Constants A and m of $S_{ut} = A/d^m$ for Estimating Minimum Tensile Strength of Common Spring Wires (Source from Design Handbook, 1987, Associated Spring).

Material	ASTM No.	Exponent m	Diameter, mm	A, MPa, mm ^m	Relative Cost of Wire
Music Wire	A228	0.145	0.10-6.5	2211	2.6
OQ & T Wire	A229	0.187	0.5-12.7	1855	1.3
Hard Drawn Wire	A227	0.190	0.7-12.7	1783	1.0
Chrome-Vanadium Wire	A232	0.168	0.8-11.1	2005	3.1
Chrome-Silicon Wire	A401	0.108	1.6-9.5	1974	4.0

TABLE B.3: Maximum Allowable Torsional Stresses for Helical Compression Springs in Static Application.

	Type of Spring Ends		
Material	Before Set Removed (including K _w and K _B)	After Set Removed (includes K _S)	
Music wire and cold-drawn carbon steel	45	60-70	
Hardened and tempered carbon and low- alloy steel	50	65-75	
Austenitic stainless steels	35	55-65	
Nonferrous alloys	35	55-65	

TABLE B.4: Mechanical Properties of Some Spring Wires

Material	Elastic Limit,	Percent of Sut	Diameter,	E, GPa	G, GPa
	Tension	Torsion	d, mm		
			< 0.8	203.4	82.7
Music wise ACCC	05.75	65-75 45-60	0.8 – 1.6	200	81.7
Music wire A228	65-75		1.61 – 3	196.5	81.0
			> 3	193	80.0
			< 0.8	198.6	80.7
IID Ond A207	00.70	45.55	45-55 0.8 - 1.6 197.9 1.61 - 3 197.2	197.9	80.0
HD Spring A227	60-70	45-55		79.3	
			> 3	196.5	78.6
Oil Tempered A229	85-90	45-50		196.5	77.2
Valve Spring A230	85-90	50-60		203.4	77.2

Note: Torsional yield strength for music wire and hard-drawn steel spring: $S_{sy} = 0.45S_{ut}$

TABLE B.5: End-Condition Constants α for Helical Compression Springs

End Condition	Constant α
Spring supported between flat parallel surfaces (fixed ends)	0.5
One end supported by flat surface perpendicular to spring axis (fixed); other end pivoted (hinged)	0.707
Both ends pivoted (hinged)	1
One end clamped; other end free	2

B.3 TABLES FOR SHAFT MATERIAL

TABLE B.6: Deterministic ASTM Minimum Tensile and Yield Strengths for Some Hot-Rolled (HR) and Cold-Drawn (CD) Steels.

AISI No.	Processing	Tensile Strength, MPa	Yield Strength, MPa	Brinell Hardness
4000	HR	300	170	86
1006	CD	330	280	95
4040	HR	320	180	95
1010	CD	370	300	105
1015	HR	340	190	101
1015	CD	390	320	111
1010	HR	400	220	116
1018	CD	440	370	126
	HR	380	210	111
1020	CD	470	390	131
1000	HR	470	260	137
1030	CD	520	440	149
4005	HR	500	270	143
1035	CD	550	460	163

B.4 TABLES FOR STANDARD CYLINDERICAL ROLLER BEARINGS

TABLE B.7: Dimensions and load ratings for 02-Series and 03-Series Cylindrical Roller Bearings.

Bore,	02-Series				03-Series			
	OD,	Width,	Load Ra	Load Rating, kN		Width,	Load Ra	ting, kN
mm	mm	mm	C ₁₀	C ₀	mm	mm	Cio	C ₀
25	52	15	16.8	8.8	62	17	28.6	15.0
30	62	16	22.4	12.0	72	19	36.9	20.0
35	72	17	31.9	17.6	80	21	44.6	27.1
40	80	18	41.8	24.0	90	23	56.1	32.5
45	85	19	44.0	25.5	100	25	72.1	45.4
50	90	20	45.7	27.5	110	27	0.88	52.0
55	100	21	56.1	34.0	120	29	102	67.2
60	110	22	64.4	43.1	130	31	123	76.5
65	120	23	76.5	51.2	140	33	138	85.0
70	125	24	79.2	51.2	150	35	151	102
75	130	25	93.1	63.2	160	37	183	125
80	140	26	106	69.4	170	39	190	125
85	150	28	119	78.3	180	41	212	149
90	160	30	142	100	190	43	242	160
95	170	32	165	112 .	200	45	264	189
100	180	34	183	125	215	47	303	220
110	200	38	229	167	240	50	391	304
120	215	40	260	183	260	55	457	340
130	230	40	270	193	280	58	539	408
140	250	42	319	240	300	62	682	454
150	270	45	446	260	320	65	781	502