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ABSTRACT

Collaborative robots performing tasks together have significant advantages over a single
robot. Applications can be found in the fields of underwater robotics, air traffic control,
intelligent highways, mines and ores detection and tele-surgery. Collaborative wheeled
mobile robots can be modeled by a nonlinear system having nonholonomic constraints.
Due to these constraints, the collaborative robots are not stabilizable at a point by
continuous time-invariant feedback control laws. Therefore, linear control is ineffective,
even locally, and innovative design techniques are needed. One possible design technique

is feedback control and the principal interest of this thesis is to evaluate the best feedback

control technique.

Feedback linearization is one of the possible feedback control techniques. Feedback
linearization is a method of transforming a nonlinear system into a linear system using
feedback transformation. It differs from conventional Taylor series linearization since it
is achieved using exact coordinates transformation rather than by linear approximations
of the system. Linearization of the collaborative robots system using Taylor series results
in a linear system which is uncontrollable and is thus unsuitable. On the other hand, the
feedback linearized control strategies result in a stable system. Feedback linearized
control strategies can be designed based on state or input, while both state and input

linearization can be achieved using static or dynamic feedback.

In this thesis, a kinematic model of the collaborative nonholonomic robots is derived,
based on the leader-follower formation. The objective of the kinematic model is to
facilitate the design of feedback control strategies that can stabilize the system and
minimize the error between the desired and actual trajectory. The leader-follower

formation is used in this research since the collaborative robots are assumed to have

communication capabilities only.
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The kinematic model for the leader-follower formation is simulated using
MATLAB/Simulink. A comparative assessment of various feedback control strategies is
evaluated. The leader robot model is tested using five feedback control strategies for
different trajectories. These feedback control strategies are derived using cascaded
system theory, stable tracking method based on linearization of corresponding error
model, approximation linearization, nonlinear control design and full state linearization
via dynamic feedback. For posture stabilization of the leader robot, time-varying and full
state dynamic feedback linearized control strategies are used. For the follower robots

using separation bearing and separation-separation formation, the feedback linearized

control strategies are derived using input-output via static feedback.

Based on the simulation results for the leader robot, it is found that the full state dynamic
feedback linearized control strategy improves system performance and minimizes the
mean of error more rapidly than the other four feedback control strategies. In addition to
stabilizing the system, the full state dynamic feedback linearized control strategy
achieves posture stabilization. For the follower robots, the input-output via static
feedback linearization control strategies minimize the error between the desired and
actual formation. Furthermore, the input-output linearized control strategies allow
dynamical change of the formation at run-time and minimize the disturbance of formation
change. Thus, for a given feasible trajectory, the full state feedback linearized strategy for

the leader robot and input-output feedback linearized strategies for the follower robots are

found to be more efficient in stabilizing the system.
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ABSTRAK

Robot-robot sekongkol mempunyai kelebihan dalam menjalankan kerja berbanding robot
tunggal. Aplikasinya boleh ditemui dalam bidang robotik dasar laut, kawalan trafik udara,
lebuhraya pintar, pengesanan galian dan bijih serta tele-bedah. Robot-robot sekongkol
gerak beroda boleh dimodelkan dengan sistem tak linear dengan kekangan tak holonomi.
Akibat kekangan-kekangan ini, robot-robot sekongkol tidak distabilkan pada satu titik
dengan hukum kawalan suap balik tak berubah terhadap masa. Maka, kawalan linear,
biarpun setempat, adalah tidak berkesan, membawa kepada keperluan terhadap kaedah
reka bentuk teknik yang innovatif. Salah satu teknik reka bentuk adalah kawalan suap

balik, dan tesis in bertujuan untuk menilai teknik kawalan suap balik yang terbaik.

Pelinearan suap balik adalah salah satu teknik kawalan suap balik yang mungkin.
Pelinearan suap balik adalah kaedah penjelmaan satu sistem tak linear kepada sistem
linear menggunakan penjelmaan suap balik. Ia berbeza daripada siri pelinearan Taylor
yang lazim, memandangkan ia dicapai menggunakan penjelmaan koordinat tepat
berbanding anggaran linear bagi sistem. Pelinearan bagi sistem robot-robot sekongkol
menggunakan siri Taylor menghasilkan sistem linear yang tak terkawal. Walau
bagaimanapun, strategi suap balik linear menghasilkan sistem yang stabil. Strategi suap
balik linear boleh direckabentuk berdasarkan keadaan atau input, dengan kedua-dua

keadaan dan pelinearan input dapat dicapai menggunakan suap balik statik atau dinamik.

Model kinematik robot-robot sekongkol tak holonomi telah diterbitkan dalam tesis ini
berdasarkan formasi ketua-pengikut. Objektif model kinematik ini adalah untuk
memudahkan reka bentuk strategi kawalan suap balik yang dapat menstabilkan sistem
dan meminimumkan ralat di antara trajektori yang dikehendaki dan trajektori sebenar.
Formasi ketua-pengikut digunakan dalam kajian ini memandangkan robot-robot

sekongkol diandaikan hanya mempunyai kebolehan komunikasi semata-mata.
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Model  kinematik untuk formasi ketua-pengikut disimulasikan menggunakan
MATLAB/Simulink. Satu penilaian secara membandingkan pelbagai strategi kawalan
suap balik telah dinilai. Model ketua robot diuji menggunakan lima strategi kawalan suap
balik untuk trajektori yang berbeza-beza. Kesemua strategi kawalan ini diterbitkan
menggunakan sistem teori terlata, kaedah pengesanan stabil berdasarkan pelinearan yang
secpadan dengan ralat model, anggaran pelinearan, reka bentuk kawalan tak linear dan
reka bentuk suap balik keadaan dinamik penuh terlinear. Pengubahan masa dan strategi
kawalan suap balik keadaan dinamik penuh terlinear digunakan bagi penstabilan postur
bagi robot ketua. Bagi robot-robot pengikut yang menggunakan pemisahan bearing dan
formasi pemisahan-pemisahan, strategi kawlan pelinearan suap balik diterbitkan

menggunakan input-output melalui suap balik statik.

Berdasarkan keputusan simulasi untuk robot ketua, didapati bahawa kawalan suap balik
keadaan dinamik penuh terlinear memperbaiki prestasi sistem dan meminimakan ralat
secara mendadak berbanding keempat-empat strategi kawalan suap balik yang lain. Di
samping menstabilkan sistem, strategi kawalan suap balik keadaan dinamik penuh
terlinear mencapai penstabilan postur. Bagi robot-robot pengikut, strategi kawalan input-
output melalui strategi pelinearan suap balik telah meminimumkan ralat di antara formasi
kehendak dan sebenar. Tambahan pula, strategi kawalan pelinearan input-output
membenarkan perubahan dinamik bagi formasi pada masa jalanan dan meminimakan
gangguan perubahan formasi. Oleh itu, untuk satu-satu trajektori tersaur, strategi suap
balik keadaan penuh terlinear untuk robot ketua dan strategi suap balik input-output
terlinear untuk robot-robot pengikut didapati lebih berkesan dalam menseimbangkan

sistem.
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CHAPTER 1
INTRODUCTION

1.1 Collaborative Robots

Collaborative robots involve a team of robots to achieve a task. Collaborative robots
cooperating with each other to solve problems can provide more capabilities than a single
robot. Applications of collaborative robots can be found in the fields of underwater
robotics, air traffic control, intelligent highways, security patrols, tele-surgery and mines
and ores detection [1], [2], [3], [4]. The accuracy of task completion by collaborative
robots depends on the control strategies implemented in the robots to minimize the effect

of external disturbances and errors.

Collaborative unicycle robots can be represented as an underactuated system in which the
number of control inputs is less than the number of generalized coordinates. In such a
system, the controllable degrees of freedom (DOF) is less than the total degrees of
freedom. Hence, motion control problems for such systems have attained considerable

attraction over the past few years [5].

1.2 Motion Planning

Motion planning for nonholonomic collaborative robots involves the following basic

motion tasks.

e Point to Point Motion
In point to point motion, the collaborative robots must reach a final goal starting
from a given initial configuration. The trajectory or path for the collaborative

robots is not specified in advance.



e Trajectory Tracking
In trajectory tracking, the collaborative robots must reach a final configuration
following a certain desired trajectory in the cartesian space. The desired trajectory
is a function of time. The collaborative robots’ starting position can be either a

part or not a part of the desired trajectory.

For an obstacle-free environment, point to point motion and trajectory tracking are shown

in Figures 1.1 and 1.2, respectively.

Starting point Goal point

Figure 1.1: Point to point motion for two unicycle collaborative robots



Starting point

Goal point

Figure 1.2: Trajectory tracking for two unicycle collaborative robots

In terms of control systems, point to point motion can be compared with a regulation
control or posture stabilization problem for an equilibrium point in the state space.
Trajectory tracking can be compared with a tracking problem such as to minimize the

error between the reference and desired trajectory to zero.

1.3 Problem Statement

Collaborative wheeled mobile robots can be modeled as a nonlinear system with
nonholonomic constraints imposed on their kinematics. Due to the nonholonomic
constraints, the collaborative unicycle robots are not stabilizable at a point by smooth
continuous time-invariant feedback control laws, according to Brockett theorem [6]. The
theorem states that for a system to be smooth stabilized, the number of inputs must be

equal to the number of states.



Let m and n represent the dimension of input and output, respectively. In case of point to
point motion, m is two and » is three. The point to point motion for the robots implies
zeroing three independent variables. In case of trajectory tracking, m is two and n is two.
The objective of trajectory tracking is to stabilize the two dimensional error vector
associated with the cartesian trajectory to zero. Thus, point to point stabilization and
controllability cannot be achieved using linear control, even locally, and innovative
design techniques are required. One such possible design techniques is feedback

linearization and this is the principal investigation of this thesis.

Feedback linearization is the method of transforming a nonlinear system into a linear
system (fully or partially) via a coordinate transformation, referred to as feedback
transformation [7], [8]. Feedback linearization differs from conventional linearization,
such as Jacobian linearization, because feedback linearization is achieved using exact

state transformations and feedback, rather than by linear approximations.

1.4 Modeling and Control Analysis

Collaborative robots need to maintain a certain formation control to complete a task. The
various approaches to formation control can be divided into three categories: behavior-
based, virtual structure and leader-follower formation [9]. The behavior-based formation
is a distributed approach and relies on implicit communication between robots [10]. The
virtual structure is a centralized approach [11]. Majority of current algorithms that focus
on behavior-based and virtual structure formation are implemented on robots having

visual capabilities [12], [13].

In this thesis, the robots are assumed to have communication capabilities only. Therefore,
the above two formation control approaches are not suitable; instead, the leader-follower
formation is used in this research. The leader-follower formation is a centralized
approach in which all the robots have a common goal. One of the robots is designated as
the leader and the others become the follower robots. The leader robot follows a desired

trajectory and guides the formation, while the follower robots follow the leader robot.



Using the leader-follower formation, the kinematic model for the collaborative robots
system is derived. After deriving the kinematic model, the control properties including
controllability, stability and observability are analyzed for the system. The collaborative
robots are not linearly controllable and stable around a point. Therefore, tools from
nonlinear control theory are used [14]. Lie Bracket is one such tool with the help of
which, the control properties of collaborative robots can be analyzed. Using the Lie
Bracket expansion, the collaborative robots are nonlinearly controllable and stable around

a point.

After analyzing the control properties, the system is transformed into chained forms.
Chained forms are canonical model structures which allow simple implementation of the
system consisting of integrators. The chained form transformation is useful in finding the
flat outputs of the system. The flat outputs are used to generate the desired reference
trajectory. The reference trajectory is given as an input to the feedforward controller to
generate the control inputs for the leader robot. These control inputs are transmitted to the
follower robots using the Bluetooth piconet profile. The follower robots derive their own

control inputs based on the inputs sent by the leader robot.

The control inputs for the leader and the follower robots are fed into the feedback
linearized controller, which generates the actual inputs for the robots. The actual inputs
are calculated based on the current states of the robot and the inputs from the feedforward
controller. The objective of the feedback controller is to minimize the error between the
actual and the desired trajectory. Furthermore, the feedback controller must achieve

posture stabilization.

The purpose of this thesis is to study the issues related to nonlinear controllability,

stability and the design of feedback controllers for collaborative nonholonomic robots.



1.5 Literature Review

The feedback linearized control design for collaborative robots is two-folds; first to
design feedback law for the leader robot and secondly to design feedback laws for the
follower robots. The leader robot is a single robot and is modeled using the unicycle
robot system. The follower robots are also unicycle robots but using the leader-follower

formation, they are modeled relatively to the leader and formation.

There have been various approaches to designing feedback control laws for the leader
robot. A nonlinear feedback controller for formation control was proposed in [15]. The
controller achieves asymptotic stability but the control laws depend on vision based
inputs. A feedback control strategy was designed using cascaded system theory in [16].

The controller results in K - exponentially stable system and locally uniform

exponentially stable system. A stable tracking controller based on the linearization of
corresponding error model was proposed in [17]. The control laws result in locally
asymptotic and locally uniformly asymptotic stable systems. A linear controller based on
approximate linearization was proposed in [18]. The approximate linearized control laws
result in a time-varying controller which does not guarantee asymptotic stability. A
nonlinear controller for trajectory tracking was proposed in [19] which globally
asymptotically stabilize the system. A dynamic feedback linearized control strategy was
proposed in [20]. The dynamic feedback linearized control strategy results asymptotic

tracking of the desired trajectory.

For the follower robots, feedback control strategies based on input-output linearized for
the follower robots using separation bearing and separation-separation formations were
presented in [21], [22], [23]. These feedback strategies stabilize the system and achieve
the desired formation. For posture stabilization, a time-varying feedback controller was
presented in [19]. A feedback controller based on polar coordinate transformation was
presented in [24]. A dynamic feedback linearized controller was presented in [25] to

achieve posture stabilization.



1.6 Objectives & Scope

The objectives and scope of this thesis are outlined below:

e To mathematically analyze the nonlinear control properties for collaborative
nonholonomic robots.

e To allow the collaborative nonholonomic robots to share information using the
Bluetooth piconet profile.

e To model the kinematics of nonholonomic collaborative robots using
MATLAB/Simulink and simulate feedback control strategies.

e To develop a framework for collaborative nonholonomic robots using the
leader-follower formation.

e To design feedback control strategies for the leader-follower formation using
feedback linearization techniques.

e To analyze the performances of feedback control laws for collaborative

nonholonomic robots.

1.7 Thesis Organization

This thesis is structured as follows. Chapter 2 presents the kinematic modeling of the
leader-follower formation for collaborative robots. The concept of nonholonomy is
discussed. To allow communication between robots, the Bluetooth piconet profile is

discussed.

Chapter 3 presents the analysis of control properties for collaborative robots. The control
analysis involves checking the controllability, stability and observability of the system.

The system is also transformed into chained forms and the flat outputs for the systems are
identified.

Chapter 4 presents the feedback controllers for collaborative robots using the leader-

follower formation. The stability analysis of the feedback controllers is also presented.



The full-state and input-output linearized design techniques are applied to the leader-
follower formation. The posture stabilization controllers for the leader robot are also

presented.

Chapter 5 presents the simulation results for different feedback controllers discussed. The
feedforward command controller is derived. A framework for collaborative robots is
presented. The feedback linearized control strategies and posture stabilization controllers
are simulated for a given set of trajectories. The error statistics using different feedback

controllers are also presented.

Chapter 6 presents the conclusions. The contribution of the thesis and future work is also

presented.



CHAPTER 2
MODELING OF COLLABORATIVE ROBOTS

This chapter presents the kinematic model for collaborative robots. The kinematic model
for collaborative robots involves the concept of nonholonomy. In order to check whether
a system is holonomic or nonholonomic, tools from nonlinear control theory will be used.
Lie Bracket is one of the available tools that will be used for checking the controllability
of the system. Finally, to allow communication among collaborative robots, the Bluetooth

Personal Area Network (PAN) profile will be discussed.

2.1 Holonomic and Nonholonomic Systems

A kinematic constraint usually limits the position and/or the velocities in a system. A
kinematic constraint can be holonomic or nonholonomic. A holonomic constraint is

written as an equation independent of the generalized velocity vector as

JS(p,t)=0 (2.1)

where pe X c R" represents the generalized coordinate vector or the state vector and #
is the dimension of the state space, X. A holonomic constraint depends only on the
coordinates of the system, p, and the time, ¢. It does not directly depend on the velocity or
momentum of the system. A holonomic system may contain holonomic or no constraints.
A mobile robot capable of moving in arbitrary directions is a holonomic system. A
mobile robot capable of only translations is also holonomic. A system is nonholonomic if

it cannot be written in the form of Eq. 2.1. Let p represent the velocity vector, so a

nonholonomic system can be expressed as

J(p,p)=0 (2.2)
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A nonholonomic system can not move in arbitrary directions in its configuration space.
Examples of nonholonomic systems include cars, bicycles, unicycles, wheeled mobile
robots, space robots, etc. A wheeled mobile robot can move in some directions (forward
and backwards), but not others (sideward) directly as shown in Figure 2.1. To move
sideways from position A to position B, the robot has to undergo a series of maneuvers

via position C.

In general, for a system with » coordinates and k& nonholonomic constraints, the allowable
velocities are restricted to m = n — k dimensional space. If a system has a kinematic
constraint in which the velocities appear in the constraint equations, then the system is
nonholonomic. There are various sources of nonholonomic constraints such as bodies in
rolling contact without slipping (wheeled mobile robots or automobiles), angular
momentum conservation and underactuated mechanical systems (having less control

inputs than the number of states).

Position A

Position C

Position B

Figure 2.1: A nonholonomic wheeled mobile robot
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All the possible configurations of a system can be determined by assigning a minimum
number of independent parameters p,, p,,..., p, which are called Lagrangian coordinates,
where n represents the system degrees of freedom (DOF). A holonomic constraint is
expressed as a function of Lagrangian coordinates and therefore it reduces the system
DOF equal to the corresponding number of constraint equations. On the other hand,
nonholonomic constraints, applying restrictions only to the velocities, do not prevent the

attainment of any configuration and therefore do not lessen the system’s DOF.

2.2 Lie Bracket

The Lie Bracket is the only tool required to determine whether a system is holonomic or
nonholonomic [14]. A holonomic system is integrable but a nonholonomic system is not
integrable. To check whether a system is integrable or not, its distribution, A, is computed
using the Lie Bracket. If A is involutive, then the system is nonholonomic, otherwise it is

a holonomic system.

2.2.1 Lie Bracket and Lie Bracket Tree
Let x € " represent the state of the system, u;, € R™ represent the control inputs and

n and m represent the dimension of the state space and control inputs, respectively. A

system, x = f(x,u)can be written in the form of
x=g,(x)+) g, (x)y, (2.3)
i=1

where g, represents the drift terms and each g, € R" represents the system vector

fields. For a driftless system, Eq. 2.3 can be expressed as

X =ig,.(x) u; (2.4)
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Let gi(x) and g»(x) denote two system vector fields. The associated Lie Bracket of

£1(x) and gy(x) is denoted by [g, g;] and is defined as

g, 0g,
Ox & ox

(&, &] = g, (2.5)

The Lie Bracket is anti-commutative. Using the properties of Lie algebra [14], the Lie

Bracket satisfies the property of skew symmetry which is

[g1.8,]1=-[8.,8)] (2.6)

The Lie Bracket tree is a tree formed by successive nested computations of the Lie
Brackets as shown in Figure 2.2. Using the property of skew symmetry expressed by
Eq. 2.6, the left branch of the Lie Bracket tree is equal in magnitude to the right

branch but there is a difference of sign change. If a system has m system vector fields

m
and can be expressed as of the form of Eq. 2.4, then there are (,}

s

J Lie Brackets of the

form [g;, g;] for i <j that can be formed.

(g1, &]
(&1, [81, 81] (82, [g1, &1
(g1, (&1, (g1, 2211] (g2, [g1, [g1, £21]]  [&1, [£2, 81, £2]]) (g2, (g2, [81, £211]

A 5 A R S

Figure 2.2: Lie Bracket tree



2.2.2 Involutive Distribution and Frobenius Theorem

A distribution, A, is the span of all system vector fields and is expressed as

A =span{g;(x):i=1,...,m} 2.7)

A distribution is said to be involutive if it is closed under the Lie Bracket operation. It
means every Lie Bracket can be expressed as a linear combination of the system
vector fields and belongs to A. Therefore the Lie Brackets are unable to escape the A

and generate new directions of motion. An involutive distribution can be expressed as

[g:,8;1€d, Vgi.g;eA (2.8)

According to Frobenius theorem, “A system is completely integrable if and only if its
distribution is involutive” [14]. It means that a holonomic system is integrable and its
distribution is involutive. Similarly, a nonholonomic system is not integrable and its

distribution is not involutive.

2.3 Types of Modeling

The mathematical modeling for the collaborative nonholonomic robots can be obtained

using the following two models:

e Dynamic Model
The dynamic model takes into consideration the actual forces and torques causing
the motion. The dynamic properties for the collaborative robots motion are taken

into account. The dynamic equations are obtained using Newton’s laws of motion.

e Kinematic Model
The kinematic model is the study of motion without consideration of the force and

torque. This type of model allows for the decoupling of collaborative robots

dynamics from its movement.
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The kinematic model will be further used for analysis and control purpose. The kinematic
model for the collaborative robotic system is obtained by taking into consideration each
individual robot. There are different models of wheeled mobile robots such as unicycle,
car-like robots, etc. The unicycle represents the basic fundamental model of wheeled
mobile robots. A unicycle robot consists of one front castor wheel and two rear fixed
wheels. The unicycle model can be expanded to represent complex wheeled mobile
robots. In this thesis, the unicycle model will be considered for collaborative robots. A
unicycle robot can be represented into two orthogonal coordinate systems which are as

follows.

e Global Frame of Reference
The global or fixed frame coordinates are denoted by (X, Y5). This frame of

reference remains fixed with the origin (0, 0) as shown in Figure 2.3.

e Local Frame of Reference
The local or body frame coordinates are denoted by (X, Yi). This frame of
reference remains fixed on the body of the robot with origin at point, p, as shown

in Figure 2.3.

Y

(0) 0) X /\,(i

Figure 2.3: Local and global frames for unicycle robot positioning
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A robot position can be represented by the vector p which is expressed as

el 2:9)

where x and y represent the position coordinates with respect to the global x-axis (X¢) and
y-axis (Y¢), respectively and @ represents the counterclockwise orientation angle between

the robot axle and the global x-axis (Xg). The velocity vector, p, can be expressed as

p=|y (2.10)
0
The relationship between the global and local coordinates is given as
pr = R@O)p = RO[x 3 0] where
cos@ sin® 0 @2.11)
R(O) =| —sin@ cosd 0
0 0 1

where p, is the velocity vector expressed in the local coordinate frame and R(&) is the

orthogonal rotation matrix.
2.4 Kinematic Modeling of Collaborative Nonholonomic Robots

A collaborative robot system can be described by its state, X, which is a composition of

the states of all the robots given as

X =[x,%,...,x,1" , X = F(X,1) (2.12)
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The state of each robot varies as a function of its continuous state, x;, and the input
vector, ;. Also each robot receives information about the position of other robots, . The
input vector, u;, depends on the discrete state of the robot, 4, which can be either the

leader or follower state. The state equations for each robot can be written as

X = f(x;,u;)

J - (2.13)
u, =g,(x;,2)

To model the kinematics of each robot in the 2D plane, the configuration p=[x, y, ] is
used. This configuration of the robot stands for three DOF. The kinematic equations for

each robot can be written, like the system expressed by Eq. 2.4, as

p = g(p) u+ g(p)u (2.14)
X cosd 0
y| = |sin@ (u,+ |0|u, (2.15)
0 0 1

where [u,, “2]7' are the control inputs. The system modeled by Eq. 2.15 has two system
vector fields. One vector allows pure translation, and the other allows pure rotation. In

terms of matrices, Eq. 2.15 can be expressed in terms of matrices as

X cos@ 0

u
y|=|sin@ 0 L’] (2.16)
0 0F  LjEE

The control inputs [u, uz]T depend on the discrete state, /4, of the robot which can be

either leader or follower. The control laws for the leader and follower robots are:

U, = v (1)
u, =m,(t)

u =v,(1)

o) (2.17)

Leader = { , Follower = {
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where 1(¢) and () represent the translational velocity and angular velocity respectively,
the subscript / and f denote the leader and follower robots respectively. The leader-

follower formation will be discussed in detail in the next section.

The nonholonomic constraint for wheeled mobile robots assumes that the robots exhibit
purely rolling motion and no slipping occur [20], [21]. The nonholonomic constraint is

expressed as
—xsin@+ ycosd =0 (2.18)
To verify that the kinematic model of Eq. 2.15 is nonholonomic, Frobenius theorem is

applied. Comparing the collaborative system model obtained in Eq. 2.15 with the

standard driftless system in Eq. 2.4, the following is obtained

cosf 0
g =|sinf |, g, =|0 (2.19)
0 1
From Eq. 2.7, A of the system vector fields is expressed as
A =span{g,, g,} (2.20)

The Lie Bracket, [gi, ], is given by Eq. 2.21. The Lie Bracket expressed by Eq. 2.21 can

be verified using the program Lie Bracket .m (attached in appendix A).

sind
(g, g&,]=| —cosb (2.21)
0
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From Eq. 2.21, the Lie Bracket is linearly independent of g, and g, and does not belong to
the distribution A. This means that A is not closed under the Lie Bracket operation and

therefore, A is not involutive. Hence, by Frobenius theorem it is proved that the system

modeled by Eq. 2.15 is nonholonomic.

2.5 Leader-Follower Formation for Collaborative Nonholonomic Robots

The control of collaborative robotic system requires coordination at different levels. At
the lowest level, it is necessary for each robot to control its motion and to avoid collisions
with its neighbors. Furthermore, the robot should move along a desired trajectory. At an

immediate supervisory level, it is necessary to maintain a certain formation strategy.

The various approaches to formation control can be divided roughly into three categories:
behavior-based, virtual structure formation and leader-follower formation. The behavior-
based formation is a distributed approach and has explicit information feedback between
neighbors [10]. The virtual structure formation is a centralized approach [11]. Majority of
the current algorithms that focus on behavior-based or virtual structure formation are
implemented on robots having visual capabilities [12], [13]. Similarly, behavior-based
formation focuses on peer to peer communication, whereas in this thesis Bluetooth is
considered, which is master-slave architecture [26]. Therefore, leader-follower formation

is used for the collaborative robots [22].

In the leader-follower formation, one of the robots is designated as the leader and the
others as followers. The leader robot plans and follows a desired trajectory. The follower
robots follow the leader robot with a desired distance. The leader robot is responsible for
guiding the formation. The leader-follower model comprises of two formation controllers

which are as follows.
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2.5.1 Separation Bearing Controller (SBC)

The separation bearing controller is used for two robots. The follower robot follows
the leader while maintaining a desired relative distance and separation bearing angle
with respect to the leader robot. Such type of leader-follower formation control
strategy is also denoted by / — ¢. A schematic for this control strategy is shown in
Figure 2.4. Let ¢, denote the separation bearing angle between the leader and
follower robot. The separation distance between the center of the leader and the front
castor of the follower robot is denoted by /. The position coordinates for the front
castor of the follower robot is represented by (x, »). The distance between the front
castor and the center of axis between the rear wheels for each robot is denoted by d.
The leader robot position is expressed by p; = [x;, Vi 6" and the control inputs by
w=[v;, w)]". The follower robot position is represented by p, = [x, y, 6,]" and the

control inputs by u,= [v;, /] 4

The kinematic equations for the leader and follower robot are expressed by Eq. 2.15.
Knowing the leader robot position and the separation distance between the leader and

follower, the follower robot position can be calculated as given in Eq. 2.22.

Yo
A
JYR
Leader Robot
P =[I;,y,n,9,]""
Up'= [VI.C!)(]T
Yy
Follower Robot
. 7'
P; =[xy, 57,071 ¥y =lvp0]
Py =U.gr-§f’rf-gf]!
(0, 0) Xg

Figure 2.4: Leader-follower formation using separation bearing controller
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X, =x, +dcost,

: 2
Yy =y, +dsinf, @22)

The follower robot can be modeled relatively to the leader robot as pi = [ljs ¢u5 6]".

The new state vector, p;, can be expressed through a transformation as py=Tss(ps Py)

given by

ly = \/(If —x, —dcost, )! +(y, =V _dsmgf)2

. (2.23)
@, =7 —arctan2(y, +dsin@, -y, x, - x; —dcost,)-6,

The original state vector can be recovered through the inverse transformation
pr= Tss ' (ps py)- Differentiating Eq. 2.23 and combining with Eq. 2.15, the follower
robot kinematic model is obtained as given by Eq. 2.24.

ly =v, cosy—v,cosQy, +dw,siny

. vsing, —v siny -, +do, cosy
Py = / (2.24)
If

0, =0,

where y = 0,— 6+ ¢ . In order to avoid collision between the leader and the follower
robots, a requirement that /, > 2d must be ensured. Let z,, = (I o), so the kinematic

system of Eq. 2.24 can be written in compact form as

z, = GS,,(z,f,y)uf + FSB(z,f)u,

_ 2.25
fiton (2.25)

where u;= (v;, @), ;= (v, ;) and
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cosy dsiny
Gg =| —siny dcosy
/

iy l, (2.26)

—cosg, 0
Fg =| . :|
sing, /1, -1

The separation bearing controller can be extended to multiple robots when they are

marching in a straight line.

2.6.3 Separation-separation Controller (SSC)

This controller is used when multiple robots are present in the formation. Such type
of leader-follower formation control strategy is also denoted by / — /. A schematic for
this control strategy is shown in Figure 2.5. In the / — / formation strategy, the leader
robot 2 is actually a follower relative to leader robot 1. The leader robot 2 can be
modeled using / — ¢ control strategy. The follower robot can be expressed relative to

the leader robot 1 and 2 as p;= [ly;, L, 6]". In the [ — I control strategy, the aim is to

maintain the desired lengths Iff and /; ; Wwith respect to both leader robots. Again, to

avoid collision /i > 2d and /5y > 2d must be ensured. The separation distances for the

leader robots can be expressed as

B :.J(x] -%; —a‘cosﬁf)z +(n -y, _“(Singf)2

(2.27)
lzf = J(x: -X, —a’cosé’f)2 +(y, -y, —dsinéff
Differentiating Eq. 2.27, the follower robot kinematics are obtained as
f,f =V, Cosy, —v,cos@,, +dw siny,
fzf =V, COS}Y, —V,C08Q,  + d(z)f siny, (2.28)
0, =0,

wherey, =6, -6, + ¢\, and y, = 6, - 6,+ ¢y .
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) Leader Robot 1

P =G 6)

Leader Robot 2

(0,0) D6

Figure 2.5 : Leader-follower formation using separation-separation controller

Let z;, = (/s by) and u, = (v, @), so the kinematic equations can be expressed in

compact form as

' cosy, dsiny, = V) COS @y
Z, = U,
" lcosy, dsiny,|’ |-v,cosq,, (2.29)

Bf =,

2.6 Information Sharing among Collaborative Robots

Collaborative robots need to share information while maintaining the leader-follower
formation. For information sharing, various communication protocols are available such
as Bluetooth, Infrared (Ir), ZigBee, Wireless Fidelity (Wi-Fi) and Ultra-wideband

(UWB). A comparative assessment of all these wireless technologies is given in Table 1.
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Table 2.1 : Comparison of various wireless technologies

Technologies
- Bluetooth Ir ZigBee Wi-Fi UWB
Properties
High at the
Cost Low Low Low High
moment
o Possible
Market viability Popular Popular Emerging Popular
Future
Data Transfer ] Upto 100
2.1 Mbit/s 4 Mb/s 250 kb/s 54 Mb/s
Rate Mb/s
Power
) ImW Low Low 200mW Low
Requirements
Upto2
| ) Short (30 to
Effective Range 10-100 m meters (Line 10-75m Upto3lm
) 40 feet)
of sight)

Based on the properties listed in Table 2.1, the Bluetooth protocol was selected as an
information sharing medium among the collaborative robots. Bluetooth is a short-range
wireless technology that operates in the license free Industrial, Scientific and Medical
(ISM) band at 2.4 GHz [26], [27]. To avoid interference with other devices that uses 2.4
GHz band, the Bluetooth protocol divides the band into 79 channels (each 1 MHz wide).
It changes channels up to 1600 times per second. The earlier versions of Bluetooth
protocol supported data transfer rate at 723.1 kbit/s. The new version 2.0 supports data

transfer rate up to 2.1 Mbits/s.

A Bluetooth profile is a standard interface between Bluetooth devices. Bluetooth profiles
are general behaviors through which Bluetooth enabled devices communicate with other
devices. There are several profiles available in the Bluetooth protocol suite for
communication among devices. One such profile is the Personal Area Network (PAN) or
piconet. A piconet can support at the maximum of eight devices in a master-slave
relationship. The first Bluetooth device in the piconet is the master and the remaining

devices are slaves that communicate with the master. Each device in the piconet is called
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as Personal Area Network User (PANU). A piconet defines three modes or roles in which

devices can interact with each other. These modes are explained as follows.

e PANU-PANU
This mode supports at the maximum two devices. One device acts as a master
device and the second one acts as a slave device. Figure 2.6 shows two robots

communicating using the PANU — PANU mode.

3 —

w
-~
LY

PANU PANU

Figure 2.6 : PANU — PANU mode for communication among two robots

e  Group Adhoc Network
The Group Adhoc Network (GN) enables two or more PAN Users to
communicate with each other. The GN device acts as a master and supports at the

maximum of seven slaves. The GN mode for communication is shown in Figure

2:7.

GN Controller / Master

2|

C?

aoo'ﬁ

PANU PANU PANU

Figure 2.7 : GN mode for communication among robots



e Network Access Point
A Network Access Point (NAP) is a Bluetooth device that provides the service of
routing network packets. A NAP can act as a bridge between Bluetooth networks
and other networks such as Local Area Network (LAN). Figure 2.8 shows the

NAP mode for communication among robots.

NAP / Master

PANU PANU PANU

Figure 2.8 : NAP mode for communication among robots

For information sharing among the robots, the GN mode in the piconet is used for
communication. The Bluetooth piconet protocol suite is implemented in software as well
as in hardware. For simulation of leader-follower formation of robots, Bluetooth USB
dongles are used to configure the piconet. A USB dongle is connected to a computer.
These dongles are configured to form a Bluetooth piconet using the GN mode. A
MATLAB/Simulink session runs on each computer. Each MATLAB/Simulink session
communicates with other MATLAB/Simulink sessions in the Bluetooth piconet using the
USB dongles. Each session models the leader-follower formation control of robots. The
master computer in the piconet models the leader robot in the leader-follower formation.
Currently, Bluetooth software protocol suite for PAN profile is commercially provided by

Extended Systems (XTND), Microsoft Windows XP Service Pack 2, IVT BlueSoleil and
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Widcomm. The summary and limitations of all these software protocol suites are listed in
Table 2.2. Based on the properties listed in Table 2.2, IVT BlueSoleil USB dongles are

used to form the Bluetooth piconet.

Table 2.2 : Comparison between various protocol suites providers

Protocol Suite Support for | Support for | Support for
Provider PANU GN NAP
XTND v

Microsoft

Windows XP v

Service Pack 2

IVT BlueSoleil v v v
Widcomm v v v

Currently, the TCPIP toolbox available in MATLAB does not provide support for TCP
connections between computers. Rather the TCPIP toolbox provides functions that can be
used to acquire data from a network device such as an oscilloscope. So to overcome this
limitation, a shared library is needed to be developed and compiled. Therefore, a shared
library was developed using Windows Socket programming [28]. This shared library
contained functions for message transmission between the computers. This shared library
was then compiled using the MATLAB compiler. The format of the message used for
communication conforms to the standard Agent Control Language, (ACL), provided by

Foundation for Intelligent Physical Agents, (FIPA), [29].
2.7 Summary

In this chapter, the kinematic models for the leader and the follower robots are derived.
The follower robots maintain two formation control strategies including separation
bearing and separation-separation. A toolbox for communication among the robots is
developed and compiled using MATLAB compiler. In the next chapter, the control

properties using the kinematic model for the leader-follower formation will be studied.



CHAPTER 3
ANALYSIS OF CONTROL PROPERTIES

This chapter presents the analysis of control properties for the unicycle collaborative
nonholonomic robots system. The control analysis involves checking the controllability,
stability and observability of the system. The controllability and stability are checked
with respect to a point as well as trajectory. The unicycle model of the collaborative
robots is considered for analysis purpose. The system is transformed into chained form.

Based on the chained form representation, the flat outputs of the system are identified.
3.1 Controllability and Stability at a point

A linear system is completely controllable (all state variables are controllable) if, given
any two points in the state space, p and p,, there exists admissible control inputs capable
of taking the system from p to p, in finite time. To check whether a system is

controllable, the controllability matrix, Cy, is computed, which is expressed as
C,=[B 4B AAB AR (3.1

For a linear controllable system Cj, has a full rank of n, where » is the dimension of the
configuration space. If a linear system is controllable, then there exists a feedback gain so
that the control law u = k(p — p.) makes the close loop system asymptotically stable
about the equilibrium point p, and the error goes to zero exponentially. For the kinematic
model of the unicycle collaborative robots, the approximate linearization of the system at
any equilibrium point p, will be considered. To recall, the kinematic model of the

unicycle collaborative robots is expressed as

b cost 0
y| = |sin@ |u, + |0 |u, (3.2)
0 0 |
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The approximate linearization of the system is given as

p=p=g(pu +g,(p,)u, where dp = p—-p, (3.3)
cosf, 0

p=0o(p)=|sinf, [v + |0|w (3.4)
0 1

Eq. 3.4 can be written in terms of matrices as

cost, 0
. 4
p=06(p)=|sind, 0 |:a)] (3.5)
0 1

The controllability matrix, Cyy, is expressed by Eq. 3.6. This matrix can also be verified

using the program Linear Controlability.m (attached in Appendix B).

cosé, 0 0 0 0 0
C, =[B AB A’B]=| sind, 0 0
0 1 0 0 0 0 (3.6)

rank(C,,) =2

From Eq. 3.6, the rank of Cy is less than the order of the system, n, which is 3. This
indicates that the linearized system expressed by Eq. 3.5 is not controllable. This implies
that a linear controller will never achieve posture stabilization, not even in a local sense.
Thus, if the system is linearized at an equilibrium point, the linearized system is not

controllable. Hence, a linear control will not work here.

In order to study the controllability of collaborative nonholonomic robots, tools from
nonlinear control theory will be used. Since the system modeled by Eq. 3.2 is driftless,
the term local accessibility and controllability can be used interchangeably. The

controllability of the system can be established using the Chow-Rashevski theorem [30].
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According to this theorem, for a driftless control system, if the accessibility rank

condition, given by Eq. 3.7, holds, then the control system is locally accessible

(controllable) from p,, .

rank A_(p,)=n (3.7)

where 1 is the order of the state space system and A, is the accessibility distribution. A. is

defined as the span of all the input vector fields and associated Lie Brackets.
A, =span{v|veA, Vizl}
A=A, +span{[g,v]|g€d,ved,,},i22 (3.8)

A, =span{g,, g,,..-s &n}

For the kinematic model given by Eq. 3.2, the accessibility distribution A, is computed as

follows.

A =lg & Ilg,8.]]

cosd 0 sin @
A, =|sin@ 0 —cosf (3.9)
0 1 0

rank (A.)=3=n

As the rank of A, is 3, which is equal to the order of the configuration space, therefore,
the kinematic model of Eq. 3.2 is nonlinearly controllable at a point. Controllability can
also be shown constructively, i.e.,, by providing an explicit sequence of maneuvers
bringing the robots from any start configuration (x;, ys, ;) to any desired goal
configuration (xg, yg, ). Since each robot can rotate itself, this task is simply achieved
by an initial rotation on (x;, ys) until the robot is oriented towards (x,, y,), followed by a

translation to the goal position, and by a final rotation on (x,, y,) so as to align & with &,.
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Regarding the stability of the system at a point, Lypaunov (asymptotic) stability cannot
be achieved by means of a smooth, time invariant feedback. This result is established on
the basis of Brockett’s theorem [6] which states that the stabilization of a driftless regular
system (a system in which the input vector fields are well defined and linearly
independent at p,) by a smooth time invariant feedback is not possible. It further implies
the number of inputs, m, should be equal to the number of states, #, as both a necessary

and sufficient condition for smooth stabilization.

To obtain posture stabilization, it is obligatory to give up the continuity requirement, i.e.
to include the non smooth (discontinuous) feedback or to apply the time varying control

laws or to apply a combination of both.
3.2 Controllability and Stability around a Trajectory

To check the controllability of the collaborative robots around a trajectory, a desired
trajectory and inputs are considered as p(f) = [xA1), vd1), ﬂd(t)]T and uy(t) = [vAr), a)‘,(t)]r,
respectively. In order to be feasible, the desired trajectory must satisfy the nonholonomic
constraint for the robots. Defining the state tracking error as p(¢) = p(f) — p.(t) and the
input variations as v (¢) = w(t) — v{?) and @(¢)= w(f) — w1), the approximate linearization

of the unicycle system about the reference trajectory is obtained as

p=A0)p+ B(f).[i;} where (3.10)
m a
A(t) = Z?‘ (), B()=G(p, (1) (3.11)
=t OP |, —
P =Dq

For the kinematic model of Eq. 3.2, the following is obtained.

s B@)=G(p, (1) (3.12)
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Computing the values for A(f) and B(r), Eq 3.13 is obtained. This can also be verified

using the program Linearized A.m (attached in Appendix C).

0 0 —-v,sin@, (1) cosd,(r) 0
A(t)=|0 0 v,cosd,(t)| , B()=|sind,() 0O (3:13)
0 0 0 0 1

Substituting the values in Eq. 3.10, the approximate linearized system is expressed as

0 0 —-v, sin@,(t) cosd, (1) O
p=|0 0 v,cos0,(t)|p + |sind,(t) O [i} (3.14)
2
0 0 0 0 1

Since the linearized system of Eq. 3.14 is time varying, the controllability analysis
involves to check whether the controllability matrix C, is nonsingular. However a

simpler analysis can be performed by transforming the state tracking error, p, into the

local or body frame coordinates, expressed by p,in Eq. 2.11, as

cosd, sind, 0
Pr =|-sinb, cosd, 0fp (3.15)
0 0 1

Next, similarity transformation is performed to change from global frame to the local
frame coordinates (see appendix D for proof). Let 7 denote the transformation matrix, so

using the similarity transformation, the system can be expressed as
Py =TT +TAT ") p, +(TB) (3.16)
The similarity transformation for the system of Eq. 3.14 is given by Eq. 3.17. This

transformation can also be verified using the program Similarity Transform.m

(attached in Appendix E).



0 w, 0 0]~

a = v

Pr=|—0y 0 Vo [Pt |0 0 [5] (3.17)
0 0 0 0

When v, and w, are constant, the above linear system becomes time-invariant hence the
controllability can be checked using the controllability matrix, Cy. The controllability
matrix, Cys, is given by Eq. 3.18. This matrix can also be verified using the program

Linear Controlability.m (attached in Appendix B).

1 0 0 0 -0, V,0,
C,=[B AB A’B]=| 0 0 -o v 0
M [ d d (318)
0 1 0 0 0 0

rank(C,,) =3
From Eq. 3.18, C,, has a rank of 3 provided that either v, or w, is nonzero. Therefore, the
conclusion is that the kinematic system of Eq. 3.2 can be locally stabilized around a
reference trajectory by linear feedback.
3.3 Observability
A system is completely observable if the state vector can be determined in finite time

using only the input, u(f) and/or output, o(f) of the system. Let p denote the state vector

and o denote the output vector given as

o=h(p) (3.19)

Let L, h(p) denote the Lie derivative of the vector field f along 4 at point p, which is

expressed as

L h(p)=V ;h(p) (3.20)
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The observability map, ®(p), for a system is expressed as

[ h(p)
L;h(p)
d(p) =| L h(p)

[ dh(p)
dL  h(p)

.0 :
with gqa(p)= dL:h(p) (3.21)

| L h(p) |

_dL"f“lh(p)_

The Jacobian of observability map is called the observability matrix and is denoted by
0

a—(D(p). For a nonlinear system to be observable, the observability matrix must be of
P

full rank. For the kinematic model of Eq. 3.2, the output can be chosen as

1o o]
o=h(p)=C.p= 010 y (3.22)
7

This results in the following observability map

0 h(p)

O(p)=|o|=| L/N(p) (3.23)
0 Lh(p)

Substituting the values, the observability map is written as

X
y

vcosd
D(p) =

.24
vsin @ 24)
—ywsin @

| vawcos 9_
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The observability matrix can be computed as

0
0

—vsin@
(3.25)
vcos

— v cosd

Z(p) =

o o ©o © -

o o o o — ©

10 vosing |
The observability matrix has full rank and is well defined for all values of 6. As long as

v# 0, this rank is preserved for all . Therefore the unicycle model for collaborative

robotic system is observable. For the leader-follower formation, the output vector for the

i" follower robot, using the SBC controller expressed by Eq. 2.25, can be chosen as

Iy

01 0
o=Cp= 00 1 Py (3.26)

0,

From Eq. 3.26 [o,, 02]']'= [0 Bf]T, the observability matrix can be written as

0 0 0 1

] = 9 a2

al,f ago,f 59f

0 0 0

0, —0 —g,

al, op, * 00,

o . o .

o LAt e
0 i If 7
- ®(p) = iy i 5 (3.27)
£ P =0 =9

al, o9, 20,

3, 0 . 0

=9 == 9 0,

ol o9y 00,

0 .. 0 o .

'__"’03 01 —07

81,7 5 aqo,f agf '“
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The determinant of the observability matrix is expressed as

%y _1

P, + @
51:; I, [99:; ;] (3.28)

det(ai O(p)) = -
P

Therefore, if det(—aé- d(p)) # 0, the states of the follower robot are observable. Hence the
P

unicycle as well as the leader-follower model for collaborative nonholonomic robots is

observable.
3.4 Chained Form

Chained forms are canonical model structures for the development of both open-loop and
closed-loop control strategies for nonholonomic systems [30]. Canonical model

structures can be categorized into three categories which are as follows.

e (Chained form
e Power form

e (Caplygin form

In case of collaborative nonholonomic robots modeled by Eq. 3.2, the above three forms
are cquivalent via a coordinate transformation [31]. The chained forms were first
introduced in [32]. A two-input driftless control system having » order, can be expressed

by (2, n) chained form as

5=V
Z, =V,
é; — zzvl (3.29)

Zo=lz

n n-1

Y
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where z), z, are called the base variables and v,, v, are the generating inputs. The (2, n)
chained form can be shown to be completely controllable using the Chow-Rashevski Lie
algebra rank condition. In performing this calculation, all Lie Brackets above the order of
n-2 are identically zero; this property of the system is called as nilpotency. The chained
forms conversion for a system may not be unique. For the unicycle collaborative robot

system modeled by Eq. 3.2, the following change of coordinates and inputs is introduced.

z, =X
z, =tand
Z; =Y (3.30)

u, =v,/cosé

U, =iV, COS* 8

The chained form for the system is expressed as

Z, =V
2, =V, (3.31)
Z, =2,V

The conversion to chained form using Eq. 3.30 is not unique. Another possibility for

conversion to chained form is given by Eq. 3.32.

0

z, =xcosf+ ysind

)

z, = xsin@ — ycosd (3.32)
U, =2z,y,+v,

U, =v,

The chained form will be further used in the design of feedback control strategies for

collaborative robots. The chained forms are also useful in determining the flat outputs for

the system.
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3.5 Differential Flatness

A nonlinear system is differentially flat if a set of variables, called flat outputs, can be
found such that all the inputs, states and outputs of the system can be determined
algebraically from them without integration. The algebraic expressions may involve the
flat outputs and a finite number of its high order derivatives. The flat outputs are denoted

by o, the states by z and inputs by u, such that

z = £,(0,6,6,",0"")

3.33
u=f,00,6,6,,0"") ( )

where » denotes a certain number of derivative, f; and f; denote some algebraic functions.
For a driftless system, flatness is equal to chained-form transformability. The flat outputs
of the chained form are z,, z,. For the collaborative robot chained form representation

using Eq. 3.30, (x, y) are the flat outputs.

Differential flatness is useful in trajectory generation where it reduces the problem of
trajectory generation to finding a trajectory of the flat outputs. Once the flat outputs are
identified, the remaining states of the system as well as the inputs can be computed using

algebraic transformations.

3.6 Summary

In this chapter, the control properties are analyzed for collaborative robots. The robots are
linearly not controllable at a point, but nonlinearly controllable. The leader robot model is
observable and the follower robot model using separation bearing and separation-
separation formation is also observable. The leader robot model is transformed into
chained forms and flat outputs which will be useful in generating the feedforward control
inputs. In the next chapter, feedback controllers for trajectory tracking and posture

stabilization are presented. The stability analysis for the feedback controllers is also

discussed.



CHAPTER 4
FEEDBACK LINEARIZATION TECHNIQUES

This chapter presents the feedback controllers for collaborative nonholonomic robots.
Feedback controllers can be designed using cascaded system theory, stable tracking
method based on linearization of error model, approximate linearization, nonlinear design
and feedback linearization. The full state and input-output feedback linearization design
techniques are discussed in detail for the leader and follower robots. Furthermore, the
stability analysis of the feedback controllers is also discussed. Finally, the posture

stabilization control strategies for the leader robot are presented.

4.1 Mathematical Preliminaries

The basic principle in designing feedback control strategies is to ensure the stability of

the system. To recall, some basic concepts regarding stability are presented.

4.1.1 Equilibrium Point
A nonautonomous system is written as a function of time. Let p represent the state of
a nonautonomous system and ¢ represent the time, so a nonautonomous system can be

expressed as
p=7/(p) 4.1)
A point, p = p*, in the state space is an equilibrium point for the system, if it has the

property that whenever the state of the system starts at p*, it will remain at p* for all

future times. For the system of Eq. 4.1, the equilibrium points can be expressed as

f(p,1)=0 4.2)
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Furthermore, an equilibrium point is said to be isolated if there exists a d > 0 such that

for any other equilibrium point p,,

p*—pu||>c5.

4.1.2 Types of Continuous Function
A function, f:R" — R", is continuous between two points p, and p,, if given any

arbitrary £, a constant ¢ > () exists such that Eq. 4.3 is satisfied.

”pl "]72” <0 = ||f(P1)—f(pz)

<& PP, €R° (4.3)

A function is continuous on a set S, if it continuous at every point in S. The function
is piece-wise continuous on S, if it is continuous on S, except for a finite number of
points. The function is uniformly continuous on S, if given any arbitrary &, a constant

o0 > 0 exists such that Eq. 4.3 holds.

A continuous function, «:[0,a) —[0,%), to class K (aeK) if it is strictly

increasing and &(0) = 0 [30]. The function,«, belongs to the class K, if @ = o and

a(t) >mast - o,

A continuous function, £ :[0,a)x[0,%) — [0,), belongs to class KL (B eKL) if

for each fixed ¢, fi(s, t) belongs to class K with respect to ¢ and if for each fixed ¢,

f(s, 1) is decreasing with respect to s and fi(s, 1) — 0 as s — 0,

4.1.3 Stability of Equilibrium Point

The equilibrium point p* = 0 is

e stable if, for each & > 0,there is § = d(¢) > Osuch that Eq. 4.4 is satisfied.

|p@,)

<6 = |pt)<e; Vizt,20 (4.4)

o
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uniformly stable if, for each £ >0, there is & = d(g) > 0, independent of ¢,,

such that Eq. 4.4 is satisfied.

asymptotically stable at #,, if it is stable and there is a positive constant

= ¢(f,) such that p(1) — 0 ast — oo for all || p(2,) || < c.

globally asymptotically stable if it is stable and lim,... p(f) = 0 for all
p, €R".

locally uniformly asymptotically stable if, there exist a function S e KL and a

positive constant r, such that for all # > 1, > 0 and for all initial state || p(z,) ||<r,
Eq. 4.5 is satisfied.

lp)| < B (||lpC)|t-1,) (4.5)

globally uniformly asymptotically stable if, Eq. 4.5 is satisfied with
f € KL, for any initial state p(7,).

locally exponentially stable if, Eq. 4.5 is satisfied with fi(s, 1) = kte™ and
k >0,y >0 for p(t,) <s.

globally exponentially stable is Eq. 4.5 is satisfied with f(s, 1) = kte™ and
k >0, y > 0 for any initial state p(z,).

globally K-exponentially stable if a function with k€ K and a constant

7 >0 exist such that for all (z,, p(z,) € R* xR, Eq 4.6 is satisfied.

lp()] < k(|p(t,)

), ettt (4.6)
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4.1.4 Lyapunov Stability
Let p = 0 be the equilibrium point for p= f(p) and D < R"be the domain

containing p = 0. Let V' : D — R be a continuously differentiable function such
that Eq. 4.7 holds, then p = 0 is stable and ¥(p) is called a Lyapunov function
[14], [30].

V(0)=0and V(p)>0in D\{0};

V(p)<0in D &7

In addition to Eq. 4.7, if Eq. 4.8 is also satisfied, then p = 0 is asymptotically
stable.

V(p) <0in D\ {0} (4.8)

For a nonautonomous system, p = f(p,t),assumingl :{0,0}xD — R be a

continuously differentiable function. The equilibrium point, p = 0, is uniformly

asymptotically stable if Eq. 4.9 is satisfied.

k(p) =V (p,t) <k, (p),

V(p,!):%—I:+Z—;f(p,t)s~k3(p), Vt20and Vpe D (5:2)

where k(p), k2(p) and ks(p) are continuous positive definite functions on D. If
ky(p) = 0, then p = 0 is uniformly stable. Furthermore, if k;(p)— o for all |[p||— oo,
then p = 0 is globally uniformly asymptotically stable.



If the conditions in Eq. 4.9 are replaced as

kol <vip.oy<k|p|’

; v oV \ (4.10)
Vip.0)=22+2" r(p.00< =kol".

(p1)=— +8p f(p.0) < ks p|

for some positive constants ky, &y, k3 and ¢, then p = 0 is exponentially stable.
Furthermore, if the assumptions are satisfied for all p € ", then p = 0 is globally

exponentially stable.

4.2 Feedback Control Design Techniques

In automatic control systems, feedback improves the system performance by completing
the task even if external disturbances and initial errors are present. Hence the effect of
unmodeled events at running time, such as occasional slipping of the wheels or erroneous
initial localization, is minimized. Furthermore, feedback control strategies can be used to
stabilize the system. There are various design techniques available for feedback control,

some of which are stated as follows [33].

¢ Root locus method

e PID method

e Poles placement

e (ascaded systems theory — can be applied to nonlinear system

e Linearization of corresponding error model — can be applied to nonlinear system
e Approximate linearization — applied to nonlinear system

e Feedback linearization — applied to nonlinear system

The design of nonlinear feedback control systems is a challenging task. A common

practice is to linearize the system. A system can be linearized in the following ways.
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This technique linearizes a nonlinear system around its nominal operating point, ¢, by

expanding the nonlinearity using Taylor series. Mathematically, it can be expressed

as transforming the following nonlinear system

p=f(p,u)

into a locally linearized system of the form

p=Ap + Bil

where p and & are small deviations given as

p(t)=p®)-p.(1)
u(t) =u(r)y—u.(r)

The coefficients 4 and B are calculated as

= o

du

a=Z
ox

Xe Ue

This technique has some limitations such as

(4.11)

(4.12)

(4.13)

(4.14)

e Retaining only the first order term and discarding the higher order terms may

result in a highly inaccurate linearized system.

e The resulting linearized system may not be uncontrollable.

Hence, this technique is not suitable for designing feedback control strategies for a

nonlinear system.
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4.2.2 Feedback Linearization

Feedback linearization is the procedure of algebraically transforming a nonlinear
system into a (fully or partly) linear one, so that linear control techniques can be
applied. It differs entirely from conventional linearization, such as Jacobian
linearization, in that feedback lincarization is achieved using exact state

transformations and feedback, rather than by linear approximations of the dynamics.

Feedback linearized control strategies are designed based on state and/or input. As the
system modeled by Eq. 2.15 is having two inputs, therefore, feedback linearized
strategies for Multi Input Multi Output systems, MIMO, are considered. There are
two techniques for feedback linearization of a MIMO nonlinear system which are as

follows [14], [30].

¢ Full State Feedback Linearization
In full state feedback transformation, the whole set of the system equations

become linear. This means that the state equations are completely linearized.

e Input-output Feedback Linearization

In input-output feedback transformation, the input and output response of the
close loop system is linear. For MIMO systems, this transformation results in the
decoupling of input and output vectors. This means that the input output map is

linearized, while the state equation may only be partially linearized.

To design controllers either using full state or input output linearization, static and
dynamic feedback can be used. For the leader robot, the unicycle model would be
used to design feedback control strategies. For the follower robots, the separation

bearing and separation-separation formation control models would be feedback

linearized.



4.3 Feedback Controller using Approximate Linearization

Let [x4, Va, ()d]rrepresem the desired trajectory for the leader robot. The desired inputs are
denoted by [vy4, wg]". The control objective of the feedback controller is to drive the errors
[xa—x, ya— v, 04— 0] to zero. To recall, the unicycle model for the leader robot is shown
in Figure 4.1. The kinematic equations for the unicycle model of the leader robot are

expressed as

X cos@ 0
y| = |sinf@ [v+ |0|@ (4.15)
0 0 1

The error, e, is expressed in the moving frame, (X, Yz), as

e cos@ sinf Dl x;-%
e=|e, |=|-sinf cosf Ollys—y (4.16)
e, 0 0 1{|6,-6
Y

X

D = [x + dcosf, y + dsinfl]”

Yi

p=[x.y, 0"

u=[v, o]

v

X 7
Figure 4.1: Leader robot positioning
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Introducing a change of inputs as in [17], [25]

u, =—v+yv, cose,

(4.17)
U, =0, —@

Differentiating Eq. 4.16 and combining with Eq. 4.17, the error dynamics are expressed

as

0 o 0 0 1 0
u
ée=|-w 0 Ole+|sine; v, +|0 O{ '} (4.18)
u,
0 0 1 0 0 1 °

Linearizing Eq. 4.18 about the equilibrium point, e = 0 and « = 0, the following is

obtained
0 (1) 0 1 0
u
é=|-w,(t) 0 v,(t) [e+|0 0 [ '} (4.19)
0 0 I 0o 1|1

Eq. 4.19 represents a time varying system. Assuming v 7) = v and w4(f) = @, Eq. 4.19

becomes a linear time invariant system. The feedback law for the system is expressed as

u, =—ke,

u, = —k,sign(v,)e, —k,e, (4.20)

where ky, &, and k; are feedback coefficients. The desired close-loop characteristic

equation is

(A+2%a)(A® +2%ad +a?), £,a>0 (4.21)
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Comparing Eq. 4.20 with the desired characteristic equation, the feedback gains are

obtained as

k, =k, =2¢a =2L w2 (e) + bV (2)

(4.22)
ky = blv, (1))

Substituting back to obtain the original control inputs, this design leads to the following

nonlinear time-varying controller.

v=v,cos(d, —0)+k [cosO(x, —x)+sin@(y, —y)]
@ =, + k,sign(v,)[cosO(y, — y) —sin@(x, —x)]+ k;(6, -0)

(4.23)
For the control law of Eq. 4.23, even if the eigenvalues are constant and with negative
real part, asymptotic stability is not guaranteed because the system is still time-varying.
The leader robot kinematics model is shown in Figure 4.2. The approximate linearized
feedback controller is shown in Figure 4.3. The leader robot kinematic model connected

to the approximate linearized feedback controller is shown in Figure 4.4.

—P cos n 1
x -—
cos(theta) <] S
X
v'cos(theta) Integrator1
¥
1
x -
» sin > > 3
visin(th y
sin(theta) sin{theta) Integrator2
1
=
v theta
Integrator

Figure 4.2: Leader robot kinematic model
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Figure 4.3: Feedback controller based on approximate linearization
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Figure 4.4: Leader robot using approximate linearization feedback controller
4.4 Feedback Controller using Cascaded Systems Theory
This controller was first proposed by [16]. The control law is given as
VeV, +08 =W 8 6y >0 >
(4.24)

W =w,; +ce,, ¢, >0

The control law of Eq. 4.24 is K-exponentially stable if v; is bounded and wy is

persistently exciting. A small modification to this law was also proposed, which is

V=V, +c8 —C;0,€,, gy =0,c5 51

. 425
@ =w,; +c,sine;, ¢, >0 (4.25)

The control law of Eq. 4.25 results in local uniform exponential stable system if v, is
bounded and wy is persistently exciting. The feedback controller using cascaded systems

theory is shown in Figure 4.5.
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4.5 Feedback Controller using Linearization of Error Model
This controller was first proposed by [17]. The control law is given as

v=y,cose; +K e, K.>0

L (4.26)
w=0,+v,(K e, +K;sine,), K, 6 >0,K,>0
The stability analysis of the control law expressed in 4.26 states that if v;> 0, then the
system is locally asymptotically stable. Furthermore, if v; and w, are both continuous, vg,
w4, Ky, Ky are all bounded and if v, and @, are both sufficiently small, then the system is

locally uniformly asymptotically stable. The feedback controller using linearization of

corresponding error model is shown in Figure 4.6.
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Figure 4.6: Feedback controller using linearization of error model

4.6 Feedback Controller using Nonlinear Design

The nonlinear design for feedback controller was first presented in [19]. The nonlinear

feedback control strategy is expressed as follows.

u, =k (v,(1),0,(1))e,

N ()

u, =—k,v,(t)

€

where k4 is a positive constant and k; and 4; are continuous functions strictly positive in

RxR —(0,0). The gains &, and k; are the same as Eq. 4.21, whereas £, is expressed as

k,=b , b>0 (4.28)



Using the original control inputs, the control law is given by Eq. 4.29.

v=v,cos(0, —0)+k ,(v,(1),w,()) [cosO(x, —x)+sinO(y, — y)]
sin(@, —0)
6,-0

kiy(v,,0,)0, -0).

w=w, +k,v,

[cos&(y, — y)—sinO(x, —x)]+ (4.29)

The nonlinear control strategy globally asymptotically stabilizes the origin e = 0 which is

demonstrated using Lyapunov stability theory. Assume the following Lyapunov function.

k, , ., e’
R (4.30)

V=

The time derivative of Eq. 4.30 is expressed as
P =k kel +kye? <0 431)

Assuming ||e(t)|| is bounded, ¥ (¢)is uniformly continuous and ¥{(r) tends to some limit
value. Using Barbalat lemma, V(r) tends to zero. Thus if vy and w, are bounded with

bounded derivative, and that v(r) 7['0 or wAt) —A 0 when t — oo, the control law of Eq.
4.27 globally asymptotically stabilizes the origin e = 0 [19]. The feedback controller

using nonlinear design is shown in Figure 4.7.
4.7 Full State Feedback Linearization via Static Feedback

The necessary condition for a system to be full state feedback linearized via static
feedback is that the distribution, A, generated by system vector fields must be involutive
[30]. Applying this condition to the leader robot modeled by Eq. 4.15, the full state
feedback linearization cannot be achieved using static (time invariant) feedback. The

reason for this is that A for the system is not involutive as explained in Section 2.4.
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Figure 4.7: Feedback controller using nonlinear design

4.8 Input-output Feedback Linearization via Static Feedback

If the static feedback design for full state feedback fails, input-output linearization may
be possible. The main idea of input-output linearization is to transform m equations via
feedback into simple decoupled integrators, where m represents the number of inputs.
However the choice of outputs which are linearized is not unique. For the leader robot,

the outputs are chosen as z = [z,, 32]7, which can be expressed as

2 X
z =|: ] = { ] (4.32)
Z; y
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The linearization algorithm begins by computing the derivative of the output as
cos@ Offv
z=| | = A(O)u
sind 0 ||lw

where A(0) is the decoupling matrix. Since A(0) is singular, static feedback fails to

(4.33)

achieve input-output linearization. However a possible way is to redefine the system

outputs at point D, as shown in Figure 4.1. The system output is expressed as

N x+dcos@
i y+dsinf

(4.34)
Differentiating Eq. 4.34, the following is obtained.
0 —bsin@
T e SIRENY 1= a6y (4.35)
sin@  bcosd || w

Since det(A(@))=b #0,let z=r, where r is an auxiliary input. Solving for the inputs,
the following is obtained

u=A"O)r (4.36)
In terms of the transformed coordinates (z,, z;, ), the close-loop system becomes
4L =N
2= _ (4.37)
gl cos@ —r,sind
d

which is input-output linearized and decoupled
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The control law for the inputs is given as

h=2z4+k,(24-2), k,;>0, i=12 (4.38)

i

The control law of Eq. 4.38 achieves exponential convergence of the output tracking

error to zero [7], [14], [30]. However the following conclusions can be made.

e If the system outputs are defined as in Eq. 4.34, there are two options for
generating the reference input trajectory. The first option is to directly plan a
cartesian motion to be executed by point D. The second option is that the
trajectory planner generates a desired motion for flat outputs [xu1), y,;(t)]"",
associated with the inputs, [v;, @;]". If the second case is considered, the trajectory

needs to be converted into a reference motion for the point D.

e A complete analysis would require the study of the stability of the time-varying

system, modeled by Eq. 4.37, with the input » given by Eq. 4.38.

e The output choice, Eq. 4.34, is not the only one leading to input output
linearization and decoupling static feedback. Another possible choice for the

output variables can be the chained form transformations of Eq. 3.32.
4.9 Full State Feedback Linearization via Dynamic Feedback

In order to design a trajectory tracking controller directly for the cartesian coordinates
(x, y), dynamic extension is required to overcome the singularity of the decoupling matrix

of Eq. 4.32. The dynamic state feedback compensator is given as

V= a(q’f) ar b(q::)r

£ =c(g,&)+d(q.E)r (£:3%)
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where£(¢) € R'is the compensator state vector of dimensions v, and r(r) € R'is the

auxiliary input. The condition for choosing &(f) and r(f) are such that the close-loop
system of Eq. 2.4 and Eq. 4.39 are equivalent, under a state transformation z = 7(g, &), to
a linear controllable system. For the nonholonomic leader robot, the lincarization process

involves the following procedure.

Initially, the system output is defined. To this output, a desired behavior is assigned such
as track a trajectory. This output is successively differentiated until the system inputs
appear explicitly in a nonsingular way. If in a step involving differentiation of system
outputs, the decoupling matrix of the system is singular (which means that some of the
inputs are still not appearing), integrators are added on some of the inputs and the process
of differentiation is continued. This operation is known as dynamic extension. The
dynamic compensator has the new auxiliary input, r, as its input. The process of
differentiation is continued until at some point, the system is invertible. The number of

successive addition of integrators gives dimension of the state ¢ of the dynamic

compensator. For the system modeled by Eq. 4.15, the output is defined as

BE: L cos@ Of|v 140
o y[ " |sing 0l|e (40

From Eq. 4.40, it can be observed that only v affects Z, while @ cannot be recovered. In

order to proceed, an integrator, ¢, is added on the linear velocity input v, as
¢=v, é=a (4.41)

where a 1s the new input representing the linear acceleration of the leader robot. In terms

of ¢, Eq. 4.40 can be expressed as

__COSQ 0l1¢ Lor cos @
o7 sind 0 ||w Z_é':sinﬁ (3:42)



Differentiating Eq. 4.41, the following is obtained

___Cfcosﬁ? +§—sin9 P e
" ?|sing cosf (4.43)
Substituting the value of & from Eq. 4.41 and @ = w, the following is obtained
. cost —sinf cosf® —Esinf ||a
Z=al . +& o =| . (4.44)
sind cos@ sin @ Ecosl || @

From Eq. 4.44, it can be observed that the decoupling matrix multiplied with the

modified input (a, @) is nonsingular provided that & # 0.

Let Z =r,so the inputs can be obtained as

[a} § [c'osf? —&sind ] [r, } _ |:cos_t9 sin @ }[rl } (4.45)
0] sin@ &cosd o —-sin@/¢& cos@/¢& || r,

Substituting the values for original inputs, the resulting dynamic compensator and the

inputs are

v=¢

r,cos@—r,sind

& =rcos@+r,sind

(4.46)

As one integrator, & was added, hence the order of the dynamic compensator is one.
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The new coordinates can be written as

zZ, =X
zZ, =y

44
z, =x=£cosd (447)

z,=y=¢£&sin0

The extended system of Eq. 4.47 is fully linearized in a controllable form. The decoupled

chain of input output integrators can be written as

(4.48)
L, =nh

The dynamic compensator of Eq. 4.46 has a potential singularity when ¢ = v = 0.
Assuming that the robot must follow a smooth output trajectory [x.(?), yd(t)]r, which is
persistent and the linear velocity, v, does not go to zero. The globally exponentially

stabilizing feedback law for the trajectory is given as

n=X,00)+k, (x, (1) —x)+k, (%, () - %)
o . ) (4.49)
n=yY,O)+k,,(y, ()= y)+k,; , (7,(0) = Y)

with PD gains chosen as k,; > 0, ks > 0, for i = 1,2. The full state feedback linearized

controller is shown in Figure 4.8. The values of x and y can be computed from Eq. 4.47

as a function of the robot state and the compensator state, & The values of the feedback

gains are chosen such that the polynomial expressed by Eq. 4.50 is Hurwitz.

2 rkyAvk,, i=12 (4.50)



59

Figure 4.8: Full state linearized via dynamic feedback controller

4,10 Posture Stabilization

In this section, the point to point motion for the collaborative robots is discussed. The
objective is to reach a final desired configuration starting from an initial point, without
the need to plan a trajectory. As stated in Section 3.1, the collaborative robot system is
not point stabilizable at a point by smooth continuous feedback. Therefore, the available
techniques are to use smooth time-varying feedback, non smooth time-varying feedback

and design based on polar coordinates.

4.10.1 Smooth Time-varying Feedback

Using the nonlinear feedback control design in Section 4.6, asymptotic stabilization
of the state tracking error can be achieved provided that v4(7) and w4(r) do not both
vanish to zero in finite time. The smooth time-varying feedback controller for posture

stabilization is similar to the nonlinear feedback controller and is expressed as

u, = —kl (Vd (I), @, ([))6’1 >

sine
u, =-kyv, (’)e—JeZ —ky(vy (1), @, (2))es
3

(4.51)
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where £y, k, and k; are positive constants. For generating the control inputs, Eq. 4.29
can be used. The control law of Eq. 4.51 globally asymptotically stabilizes the origin

e = () as discussed in section 4.6.

4.10.2 Design based on Polar Coordinates

This control design is based on the change of coordinates. Let y be the distance of the
reference point (x, y) of the leader robot from the goal, 4 be the angle of the pointing
vector to the goal with respect to the robot main axis and ¢ be the angle of the same
pointing vector with respect to the x-axis of the robot. The leader robot expressed in

the polar coordinates is shown in Figure 4.9.

The state transformation is given as

Ww=qx+y?

p=tan(y/x)-60+n
p=u+6

(4.52)

» .
‘\(,'

Figure 4.9: Leader robot positioning in polar coordinates
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Differentiating Eq. 4.52, the transformed kinematic equations can be written as

YW =—vCcos U
o= SLe V-
4 (4.53)
¢5 .. sin u
W

The control law for posture stabilization based on the polar coordinates was proposed

in [24]. The control law is given by Eq. 4.54

v=kycosu

sin gzcos i (4.54)

o =kyp+k, (1 +k;9)

The feedback law of Eq 4.54 globally asymptotically stabilizes the origin [24], [31].

The posture stabilization controller of Eq. 4.54 is shown in Figure 4.10.

S
-

x
-2 H sin(meu)*cos(meu) sn(m)costm)ney

sin(meu)

k1*sin'cosimeus(meu+kItheta)

x D

cos
cos(meu) l-.
L ‘ k1*phi*cos(meu)
k1 : E :

;ITI meu+kItheta

k31heta

Figure 4.10: Posture stabilization controller based on polar coordinates



4.10.2 Dynamic Feedback Linearized Controller
The dynamic feedback linearized controller can be extended to address the issue of

posture stabilization. The feedback control law is given as in [25]

no=—k, (x) =k, (%) 455)

ry ==k (V) kg () '
where k,;, k,, ka, kq are the feedback gains. The feedback law of Eq. 4.55 yields
exponential convergence from any initial configuration to the origin [25]. The

dynamic feedback controller for posture stabilization is shown in Figure 4.11.

il

5 LI—ﬂl @2'sin(theata)
D) o kil
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sin(theta)
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X

2" cos(theta)

x *sin(theta)

sum and diff

Figure 4.11: Posture stabilization controller based on dynamic feedback
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4.11 Feedback Linearized Control Strategies for Follower Robots

In this section, feedback linearized control strategies for the follower robots are

presented. The feedback laws are presented for different formation controllers as follows.

4.11.1 Feedback Strategy for Separation Bearing Controller
The kinematic model for the follower robot using the separation bearing controller
was expressed in Eq. 2.25 and Eq. 2.26. To recall, the kinematic model in compact

form is given as

2.’[ = GSE;(-Z;[,}’)“J{ + Fgp (sz u,

. 4.56
0, = o, ( )
where z;,= (I, ¢y), uy= (v, @), = (v, ;) and
cos ¥ dsiny
Gy =| —siny dcosy
ly ly (4.57)

—cos@, 0
Fp =| . :|
sing, /1, -1

The input-output linearization technique begins by defining the output as z,= (/j; ¢)).
Differentiating the output, Eq. 4.58 is obtained.

2y =G (zy,7)u, + Fgy (2 )u, = A(z)p Ju, + B (4.58)

The determinant of the decoupling matrix, A(zy), is d /[ # 0.
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Since A(z,) is nonsingular, the control velocities for the follower robot can be

expressed as

U, =Gg(psy — Feit)) (4.59)

where pgg is an auxiliary control input given as

- (ko0 =1y
ps =KZ, {0' ; } y (4.60)
2 Py — Py

with k& , k> > 0 as the controller gains. The control inputs for the follower robot are

expressed by Eq. 4.61.

v, =p-do tany

cos : ; :
w, = 'd_y{k”[”(w; —@y) -V sing, +1, 0, + psiny}
where (4.61)
N kb([;f’ —l;)+v,cosg,
cosy
Y=y + 6, —Bf

The stability of the controller expressed by Eq. 4.61 was presented in [21], [22]. If the
linear velocity of the leader robot is lower bounded i.e. v, > 0, angular velocity is
bounded i.e. @; < Wy, and the initial orientation is such that | €,(0) — 6,(0)| < z, then
the system of Eq. 4.61 is stable and the output error converges to zero exponentially.
The input-output linearized feedback strategy for the follower robot using separation

bearing controller is shown in Figure 4.12.
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Figure 4.12: Input-output linearized feedback strategy for follower robot using

separation bearing formation

4.11.2 Feedback Strategy for Separation-separation Controller
The kinematic model for the follower robot using the separation-separation controller
was expressed using Eq. 2.30. Using input-output linearization techniques the control

law for the follower robot is given as

_k (I —1,)+v,cosp,, —dw, siny,

‘?
4 Cos ¥,

k (I, =1, )cosy, +v, cosg, , cosy, "
a, =
4 dsin(y, = 7,)
v, cos@,  cosy, —k, (Iff —1,,)cosy,
dsin(y, - 7,)

(4.62)

where

Yi=¢,+06,-6,, pe=il2
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The stability analysis of the controller expressed in Eq. 4.62 was presented in [21],
[22]. Assuming the linear velocity of the leader robot 1 is lower bounded i.e. v, > 0,
angular velocity is bounded i.e. @; < @max, and the initial relative orientation is such
that | 8;(0) — 6, (0)| < = with i = 2, /. If the control input u,,is obtained using feedback
linearization, then the system of Eq. 4.62 is stable and the output converges
exponentially to the desired value z,. The input-output linearized feedback strategy

for the follower robot using separation-separation controller is shown in Figure 4.13.
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Figure 4.13 : Input-output linearized feedback strategy for follower robot using

scparation-scparation formation

4.12  Summary

In this chapter, feedback controllers for the leader and follower robots were presented.
The full state and input-output feedback linearization techniques were applied to the
leader and follower models. The stability analysis of the feedback controllers was also
discussed. The posture stabilization controllers for the leader robot were also presented.
In the next chapter, these feedback controllers are analyze and simulated for a different

set of trajectories.



CHAPTER 5
SIMULATION RESULTS

This chapter presents the simulation results for the different feedback control strategies
applied to the leader-follower formation. The feedforward input command controller for
the leader robot is derived. A framework for the collaborative robots is presented and
modeled using MATLAB/Simulink. The framework consists of feedforward and
feedback controllers. The feedback linearized and the posture stabilization controllers are
simulated for a given set of trajectories. From the simulation results, it is observed that
the dynamic feedback linearized control strategy for the leader robot, and input-output
linearized feedback strategy for the follower robots minimize the error more efficiently

than other strategies for the given trajectories.
5.1 Feedforward Command Controller

Assuming that the leader robot follows a desired cartesian trajectory [x4(7), va(r)]” with
t €[0,T]. As stated in section 3.5, using the flat outputs for the system, the remaining
states as well as the control inputs can be computed by algebraic transformations. The flat

outputs for the leader robot model are [x(f), y(#)]". Knowing the desired flat outputs, 6,

can be calculated as
0, =atan2 (y,,x,) (5.1)

where atan2 is the fourth-quadrant inverse tangent and is undefined only if both
arguments are zero. Differentiating Eq. 2.15 with respect to time, the feedforward control

inputs are computed as

v, (1) = +/52(1) +32(1) (5.2)

Y, O)x,@)=%,©)y,(t)

w, (1) = =< £
! 20+ 920

(5.3)
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The sign for v4(7) will determine the forward or backward motion of the robots. Eq. 5.3 is
not defined when v,(r) is equal to zero. The feedforward command controller is modeled

using Simulink as is shown in Figure 5.1.
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Figure 5.1: Feedforward command controller for the leader robot

5.2 Framework for Collaborative Robots

The simulation testbed is implemented using MATLAB/Simulink. The Bluetooth USB
dongles are configured to form the piconet. Each dongle is connected to a computer. A
MATLAB/Simulink session runs on each computer. Each MATLAB session models the
leader-follower formation for the leader and follower robots. The master robot in the
piconet acts as the leader and the slaves act as follower robots. The framework for the

leader and follower robots is shown in Figure 5.2 and 5.3, respectively.

Desired | Feedforward Leader Feedback Leader
Goal Command ”1 Follower * Control ] Robot ]
Trajectory Controller Strategy > Law Model

Figure 5.2: Framework for the leader robot
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Figure 5.3: Framework for the follower robot
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For a desired and feasible goal trajectory, [x1), yd(t)]r, the feedforward command

controller generates the feedforward control inputs, [vg, wd]T, for the leader robot. Using

the leader-follower strategy, the leader robot transmits the control inputs to the follower

robots. The control inputs are transmitted using the Bluetooth piconet. The follower

robots receive the leader robot inputs and derive their own control inputs, [v, @] il using

the leader-follower formation control. The control inputs for both the leader and follower

robots are fed into the feedback control law. The feedback control strategy generates the

actual inputs based on the feedforward inputs and feedback states of the robots.

A feasible trajectory must satisfy the nonholonomic constraint for the collaborative

robots. It means that the state € and the inputs can be recovered from the trajectory. A

feasible trajectory must be twice differentiable in order to generate the control inputs.

Figure 5.4 show examples of non-feasible trajectory for the nonholonomic robots.
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Figure 5.4: Non-feasible trajectories for nonholonomic robots
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5.3 Simulation Results for the Leader Robot

Using the leader-follower formation for collaborative robots, the following different

trajectories were considered for the leader robot.

5.3.1 Test 1 (Eight Shaped Trajectory)

In the first test, the desired trajectory was defined as follows.

x,(t) =10sin( ¢/20), y,(t) =10sin( ¢t/ 40) (5.4)

The desired trajectory of Eq. 5.4 begins at the origin (0, 0) and completes a full cycle

when 7' =27(40) ~ 251.3sec. This trajectory is shown in Figure 5.5. The linear and

angular velocities inputs for the leader robot are shown in Figure 5.6 and 5.7,
respectively. The error norm for the actual trajectory using approximate linearized
controller, nonlinear controller, cascaded systems controller, stable tracking controller
and full state dynamic feedback linearized controller are shown in Figure 5.8,5.9,
5.10, 5.11 and 5.12, respectively. The actual trajectory using dynamic feedback and
nonlinear controller is shown in Figure 5.13. The values for different parameters in
the feedback controllers are listed in Table 5.1. The error statistics for the given

trajectory are summarized in Table 5.2.

Table 5.1: Parameters values for different feedback controllers

Controllers Parameters values

Feedforward vA0)=0.0125 m/sec

Approximate linearized feedback (=05,b=2

Nonlinear feedback (=05,b=2

Cascaded systems feedback ¢, =216.9, c;=1.355 and
c;=-0414

Stable tracking K.=10,K,=0.0064 and K,=0.16

Dynamic linearized feedback ka=ko=0.7, k= k,,=1, {(0)=v(0)
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Figure 5.5: Desired trajectory for test 1
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Figure 5.6: Linear velocity for the desired trajectory of test 1
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Figure 5.11: Norm of error for the trajectory of test 1 using stable tracking controller
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Figure 5.13: Actual trajectory by the leader robot for test 1 using full state linearized

via dynamic feedback and nonlinear controller

Table 5.2: Error statistics using different feedback controllers for test 1

Statistical parameter Mean (m) Standard Variance (m)
Deviation (m)

Approximate linearized 0.1622 0.7746 0.6001

Nonlinear feedback 0.1630 0.7710 0.5945

Cascaded systems 0.5154 0.6758 0.4568

controller

Stable tracking 3.3460 2.9895 8.9369

controller

Full state linearized via 0.0192 0.0410 0.00017

dynamic feedback
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5.3.2 Test 2 (Straight Line Trajectory)

In the second test, the desired trajectory was defined as follows.

x,(1)=0,y,() =t (5.5)

The desired trajectory of Eq. 5.5 begins at the origin (0, 0) and is a straight line
parallel to y-axis. This trajectory is shown for 7 = 500 sec in Figure 5.14. The norm
of the errors for the actual trajectory by the leader robot using approximate linearized
controller, nonlinear controller, cascaded systems controller, stable tracking controller
and full state linearized via dynamic feedback controller is shown in Figure 5.15,5.16,
5.17, 5.18 and 5.19, respectively. The same values of Table 5.1 for the parameters of

the feedback controllers were used.
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Figure 5.14: Desired trajectory for test 2
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Figure 5.18: Norm of error for the trajectory of test 2 using stable tracking controller
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Figure 5.19: Norm of error for the trajectory of test 2 using full state linearized via

dynamic feedback controller

Table 5.3 summarizes the error statistics for the given trajectory using different

feedback controllers.

Table 5.3: Error statistics using different feedback controllers for test 2

Statistical parameter Mean (m) Standard Variance (m)
Deviation (m)

Approximate linearized 0.0222 0.1650 0.0272

Nonlinear feedback 0.0197 0.1558 0.0243

Cascaded systems 0.0460 0.0710 0.0050

controller

Stable tracking 0.2894 0.5222 0.2726

controller

Full state linearized via 0.0058 0.0498 0.0025

dynamic feedback
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5.3.3 Test 3 (Sinusoid Trajectory)

In the third test, the desired trajectory was defined as follows.

x,(t)=t,y,(t)=10sin(z) (5.6)

The desired trajectory of Eq. 5.6 begins at the origin (0, 0) and is a sinusoidal signal.
This trajectory is shown in for 7= 1000 sec in Figure 5.20. The same values of Table
5.1 for the parameters of the feedback controllers were used. Table 5.4 summarizes
the error statistics for the given trajectory using different feedback controllers. The
actual trajectory using full state linearized via dynamic feedback linearized controller

is shown in Figure 5.21.
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Figure 5.20: Desired trajectory for test 3
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Table 5.4: Error statistics using different feedback controllers for test 3

Statistical parameter Mean (m) Standard Variance (m)
Deviation (m)

Approximate linearized 0.2808 0.2619 0.0686
Nonlinear feedback 0.3387 0.4052 0.1642
Cascaded systems 0.6908 0.6538 0.4274
controller

Stable tracking 1.0406 0.8041 0.6465
controller

Full state linearized via 0.2265 0.6846 0.4687
dynamic feedback
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Figure 5.21: Desired and actual trajectory using full state linearized via dynamic

feedback controller for test 3



5.3.4 Test 4 (Circular Shaped Trajectory)

In the fourth test, the desired trajectory was defined as follows.

x, (1) =10cos(1/20), y, (1) = 10sin( t/20) (5.7)

The desired trajectory of Eq. 5.7 begins at the origin (10, 0) and completes a full
cycle when T =27(20) =~ 125.67sec. The leader robot is assumed to be at the origin
(0, 0). The desired trajectory and the actual trajectory for the leader robot using
cascaded systems controller is shown in Figure 5.22. The actual trajectory using
approximate linearized controller and controller based on Lyapunov function,
dynamic feedback controller and nonlinear controller is shown in Figure 5.23 and
5.24, respectively. Table 5.5 summarizes the error statistics for the given trajectory

using different feedback controllers.

Table 5.5: Error statistics using different feedback controllers for test 4

Statistical parameter Mean (m) Standard Variance (m)
Deviation (m)

Approximate linearized 0.9627 2.4787 6.1438

Nonlinear feedback 1.3260 2.8172 7.9112

Cascaded systems 9.7688 0.7949 0.6319

controller

Stable tracking 11.3544 1.3286 1.7651

controller

Full state linearized via 1.0957 2.8231 7.9700

dynamic feedback
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Figure 5.24: Actual trajectory using nonlinear and full state linearized via dynamic

feedback controller for test 4

5.4 Discussion of Results for the Leader Robot

Based on these simulation results for the leader robot, it is observed that the full state
lincarized via dynamic feedback controller minimizes the mean of error more rapidly for
the given trajectories, The cascaded systems and stable tracking feedback controllers fail
to track the correct trajectory, when the robot and trajectory starting position are not the

same, This is observed during test 4 in Figure 5.22 and 5.23.

The reason for failure to track the correct trajectory using cascaded systems controller is
that one of the conditions for stability using cascaded systems controller is that w, should
be persistently exciting. As in trajectory 4, @y is not persistently exciting, so the

controller can not correctly track the desired trajectory. Using the stable tracking
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controller based on lincarization of corresponding error model, the system is stable

provided @, is sufficiently small, which is not the case here. Therefore, the cascaded

systems controller and stable tracking controller fail to track the desired trajectory of test
4,

The full state lincarized via dynamic feedback controller minimizes the error more
rapidly if the trajectory 1s executed for a long time as observed in test 2 and 3. The effect

of changes in the feedback gains and parameters values is shown in Table 5.6.

Table 5.6: Effect of changing gains and parameters in feedback controllers

Feedback controller Parameter change Effect of change on
mean of error
Approximate lincarized Increase ¢ Decreases
Increase b Decreases
‘Nonlinear feedback Increase ¢ Decreases
Increase b Decreases
("uscudcclislyglclns Increase ¢ Decreases
controller Increase ¢ Decreases
Increase ¢ Increases
‘Stable tracking Increase K, Oscillates
controller Increase K, Increases
Increase Ky Decreases
Full state lincarized via Increase kg, Increases
dynamic feedback Increase kp Decreases
Increase &, till certain Increases, then
value oscillates
Increase k,, Decreases
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For approximate lincarized controller, let { be denoted by zeta. The effect of changing

the value of zeta and the parameter b are shown in Figure 5.25 and 5.26, respectively.
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Figure 5.25: Effect of zeta on mean of error using approximate linearized controller
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Figure 5.26: Effect of b on mean of error using approximate linearized controller
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For nonlincar controller, let { be denoted by zeta. The effect of changing the values of

zeta and the parameter b are shown in Figure 5.27 and 5.28, respectively.
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Figure 5.27: Effect of zeta on mean of error using nonlinear controller
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Figure 5.28: Effect of b on mean of error using nonlinear controller
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For cascaded systems controller, the effects of changing the values of ¢}, ¢, and ¢3 on the

mean of error are shown in Figure 5.29, 5.30 and 5.31, respectively.
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Figure 5.29: Effect of ¢; on mean of error using cascaded systems controller

9?8 ¥ L) T T T

974 vl

972\ 1

©
-~
1

mean of emor (m)
<2

° 9
£ 8 8

=
s
1

50 100 150 200 250 300
c2

<o
o

o

Figure 5.30: Effect of ¢; on mean of error using cascaded systems controller
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Figure 5.31: Effect of ¢y on mean of error using cascaded systems controller

Using the stable tracking controller, the effects of changing the values of K, K, and Kj on

the mean of error are shown in Figure 5.32, 5.33 and 5.34, respectively.
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Figure 5.32: Effect of K, on mean of error using stable tracking controller
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Figure 5.33: Effect of K, on mean of error using stable tracking controller
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Using the full state lincarized via dynamic feedback controller, the effects of changing
the values of k,, ky , ko and kg are shown in Figure 5.35, 5.36 5.37 and 5.38,

respectively,
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Figure 5.35: Effect of k,, on mean of error using full state linearized via dynamic

feedback controller

0 5 100 150 20 20 300
kp2

Figure 5.36: Effect of k,; on mean of error using full state linearized via dynamic

feedback controller
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feedback controller
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5.5 Simulation Results for the Follower Robots

5.5.1 Separation Bearing Controller

Using the separation bearing controller, the following parameters were considered.

4 =2

oy =nl3

k" (5.8)
L'k :_'l

) =Ry

d =1

The trajectory of test 1 (eight shaped) and test 4 (circular shaped) were used as the
desired reference trajectory for the leader robot. The full state dynamic feedback
controller was used by the leader robot. The actual trajectory for the leader-follower
formation using test 1 and 4 for separation bearing controller is shown in Figure 5.39
and 5.40, respectively. The separation distance and bearing angle for the follower

robot 1s shown in Figure 5.41 and 5.42, respectively.
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Figure 5.39: Actual trajectory using separation bearing controller for test 1



15 ' e v T '
Leader robot
*  Follower robot
10} o
&t v
1
e 0f -
-
Ll
51 -
A0} -
s 10 5 0 5 10 15

x-ax18 (m)

Figure 5.40: Actual trajectory using separation bearing controller for test 4
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Figure 5.42: Separation angle for the follower robot using separation bearing

controller

In another set of simulation, the separation bearing angle was changed as follows.

@y =x/3 fort <100
: (5.9)
@y =x+nx/3 forrz2100

The actual trajectory for the leader-follower formation using test 4 is shown in Figure
5.43.
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Figure 5.43: Actual trajectory using separation bearing controller for test 4
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5.5.2 Separation-separation Controller

Using the separation-separation controller, the following parameters were considered.

(5.10)

The actual trajectory for the leader-follower formation using test 1 and 4 for separation-

separation controller is shown in Figure 5.44 and 5.45, respectively.
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Figure 5.44: Actual trajectory using separation-separation controller for test 1
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Figure 5.45: Actual trajectory using separation-separation controller for test 4

5.6 Discussion of Results for Follower Robots

Based on the simulation results, it is observed that the input-output feedback linearization
for the follower robot minimizes the error between the desired and actual formation.
Even, if the parameter values of the separation bearing and separation-separation
controllers are changed dynamically at run time, the feedback linearized control strategies
successfully minimizes the error between the desired and actual trajectory. Hence, the
input-output linearized feedback controller is the preferred controller for separation

bearing and separation-separation formation control.
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5.7 Posture Stabilization Controller

For posture stabilization, two different goal points were selected as follows. The initial
starting position of the leader robot is (-10,-10). The first goal point was defined to reach
the origin point (0, 0). The second goal point was to reach the point (-10, 10). The
trajectory for the leader robot is not defined. The objective of the leader robot is to move

towards the goal point. The results of the posture stabilization controllers are as follows.

5.7.1 Time-varying Feedback Controller
The following parameters were used for the time-varying posture stabilization

feedback controller of Eq. 4.51.

v, (1)=0
0,()=0
w,(t) =0
v (1) = x, (1) = =kx, (1) + g(e,1) (5.11)
where
gle) = %—:sim

The following values of the gains are used.

(5.12)

The robot is assumed to be at the point (-10, -10). The results of time-varying posture
stabilization controller for the first and second goal points are shown in Figure 5.46

and 5.47, respectively.
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Figure 5.46: Actual point to point motion using time-varying feedback controller for

the first goal point.
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Figure 5.47: Actual point to point motion using time-varying feedback controller for

the second goal point.
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5.7.2 Polar Coordinates Feedback Controller

The following parameters were used for the polar coordinates posture stabilization

controller.

]

(5.13)

] ||
N W

The robot is assumed to be at the point (<10, -10). The results of point to point motion
using this controller for the first and second goal points are shown in Figure 5.48 and

5.49, respectively.
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Figure 5.48: Actual point to point motion using polar coordinates feedback controller

for the first goal point
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Figure 5.49: Actual point to point motion using polar coordinates feedback controller

for the second goal point

5.5.3 Full State Linearized via Dynamic Feedback Controller

The following parameters were used for the full state linearized dynamic feedback

controller,
I\'“ = 2
- = 3
A_'“ : (5.14)
k,, =12
kyy =17

The robot is assumed to be at the point (-10, -10) and the goal point is origin. The
results of point to point motion using this controller for the first and second goal

points are shown in Figure 5.50 and 5.51, respectively.
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Figure 5.50: Actual point to point motion using full state linearized via dynamic

feedback controller for the first goal point
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Figure 5.51: Actual point to point motion using full state linearized via dynamic

feedback controller for the second goal point
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5.8 Discussion of Results for Posture Stabilization

Based on the above results, it is found that the posture stabilization feedback controller
based on polar coordinates fails to eliminate the error between the desired and the actual
goal point. This can be seen in Figure 5.49 where the desired goal point is (-10, 10).
Although the robot is near to the goal point, still it does not converge to the goal point.
The robot achieves the correct goal configuration using the nonlinear and dynamic

feedback linearized controller.
5.9 Summary

In this chapter, the collaborative robots system was modeled using MATLAB/Simulink.
The feedforward controller for the leader robot was derived. The results of different
feedback control strategies for the leader robot were compared. The input-output
feedback lincarized controllers for the follower robot using the separation bearing and
separation-separation  formation were modeled. Finally the posture stabilization
controllers for the leader robot were simulated. In the next chapter, the conclusions and

future work are presented based on these simulation results.



CHAPTER 6
CONCLUSION

6.1 Accuracy and Stability of Feedback Controllers

This thesis described the issues related to motion planning of collaborative nonholonomic
robots. A kinematic model for the collaborative robots using the leader-follower
formation  was derived. Control analysis including controllability, stability and
observability was performed. The design of feedback controllers for leader-follower
formation using feedback lincarization techniques was also presented. The follower
robots derived their inputs based on the control inputs sent by the leader robot. The leader

robot transmitted its control inputs to the follower using the Bluetooth piconet profile.

The posture stabilization controllers using time-varying, polar coordinates and dynamic
feedback controller were simulated for the leader robot. The reference trajectory was
generated using the feedforward command controller. The collaborative nonholonomic
robotic system was modeled using MATLAB/Simulink and the feedback strategies were
simulated for a given set of reference trajectories. Based on the simulation results for the

various trajectories, the following conclusions are made:

e For the leader robot, the full state linearized controller via dynamic feedback
minimizes the mean of error more rapidly than the other feedback strategies.

e The full state lincarized dynamic feedback controller for the leader robot achieves
posture stabilization,

* The feedback strategies designed using cascaded systems theory and using
lincarization of corresponding error model fail to track the trajectory if the leader
robot’s starting point and the trajectory starting point is not the same (circular
shaped trajectory).

* The feedback strategy designed using approximated linearization results in a time-

varying controller. Hence asymptotic stability is not guaranteed.
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The nonlinear design of feedback control strategy results in global asymptotic
stabilization. However, for the given trajectories, the full state linearized via
dynamic feedback control strategy minimizes the error more rapidly than the
nonlinear strategy. Thus, the full state linearized via dynamic feedback control
strategy is preferred over the nonlinear strategy.

For the follower robot, the input-output feedback linearized controllers minimize
the error between the actual and the desired trajectory.

I the formation structure is changed dynamically at run-time, the input-output

lincarized feedback controllers minimize the effect of disturbances and errors.

In summary, the feedback lincarized techniques for collaborative nonholonomic robots

can more rapidly minimize the error for trajectory tracking and achieve posture

stabilization. For a given feasible trajectory, the full state feedback linearized strategy for

the leader robot and input-output feedback linearized strategies for the follower robots are

found to be more efficient in stabilizing the system.

6.2 Thesis Contribution

In this thesis, a framework for collaborative robots is presented. Unlike most of
previous rescarches, Bluetooth is used as a communication medium for
transmitting the leader robot control inputs to the follower robots. In pervious
rescarch, the follower robots had vision-based capabilities which allowed them to
estimate the leader robot position. By allowing robots to communicate using
Bluetooth, the exact control inputs of the leader robot are transmitted to the
follower robots.

In this thesis, feedback lincarized control strategies are designed for both the
leader and the follower robots. In the previous research, feedback linearized
strategies have been presented for the follower robots. However, using the leader-
follower formation, one of the important aspects is the accurate trajectory tracking
of the leader robot. If the leader robot is accurately tracking the desired trajectory,

the job of the follower robots is to maintain a relative scparation distance and
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bearing angle to the leader robot. Therefore, the leader robot plays an important
role in the formation control. In this thesis, emphasis is placed on designing
feedback lincarized strategies for the leader robot and evaluating and comparing
different feedback control strategies for the leader robot. Hence, this thesis
provides feedback linearized control strategies for all the robots in the formation.
In this thesis, a complete framework for collaborative robots is presented. A
shared library is written using Windows Socket programming and complied using
MATLAB compiler. The message format used for communication among the
robots conforms to standard Agent Control Language provided FIPA.

In this thesis, the unicycle model of collaborative robots is considered. The
unicycle is the basic model for wheeled mobile robots and cars. The unicycle
model of collaborative robots can be extended to complex robotic systems such as
underwater robots and flying robots. Hence to design feedback linearized control
strategies for complex robotic systems, small modifications are needed in the

existing feedback linearized strategies.

0.3 Future Work

In this thesis, the kinematic model of the collaborative nonholonomic robots has
been considered. However, for massive robots and at high speeds, the
nonholonomic constraint may not be realistic. It may happen that the robots
wheels may slip due to high speed. Hence, the robots dynamics are necessary to
be modeled.

Current implementation of Bluetooth piconet does not support roaming protocol;
hence the leadership in the formation is always static. To make the leadership
more dynamic, a roaming protocol for Bluetooth can be designed.

The leader and the follower robots are observable. Based on feedback linearized

control strategies, observer based feedback laws can be designed for the leader-

follower formation.
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APPENDIX A: M-file for calculating Lie Bracket

% LieBracket.m
% Programmed by: Salman Ahmed.

function [h,F]=LieBracket (gl,g92,q,n)

% function LieBracket

% invoked as LieBracket (gl,92,q)

% Input: vector-fields gl and g2, variable g, order n
% Output: F=[[gl,g2),...,[91"n,g2]];

% If input arguments are less than 4, 8O set n=1
if nargin <4, n=1; end

% Find the length of gl, g2 and q
lgl=length(gl); lg2=length(g2); lgg=length(q) ;

% If gl and g2 do not have same dimensions, so display
% derror
if (lgl~=1lg2)|(lgl~=1gq),
error ('dimensions of gl and g2 do not match') ;
end

h-92;

% Initally make F an array of zeros equal to the dimensions
Of "t
Feuzeros (1gl,n); Fssym(F);

for i=l:n
h-jacobian(h,q)*gl—jacobian(gl,q)*h;
hegimplify(h);
F(:,1)=h;

end
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APPENDIX B: M-file for calculating Linear Controllability

t Linear_ Controlability.m
¥ Programmed by: Salman Ahmed.

function [C,R]=Linear_Controlability(A,B)

% function Linear_ Contrability
¥ invoked as Linear_Contrability (A,B)
% Input: system matrix A, input matrix B
% Output: controlability matrix C, rank of controlability
¥ matrix R
n=length (A) ;
C=B;
for iwl: (n-1)
C=[C (A*1 * B));
end

R=rank (C) ;
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APPENDIX C: M-file for calculating Jacobian Coefficients

% Linearized A.m
% Programmed by: Salman Ahmed.

function [A]=Linearized_A(gl,ul,g2,u2,pd)

% function Linearized_A

% invoked as Linear A (gl,ul,g2,u2,pd)

% Input: system vector fields gl,g2

+ control inputs ul,u2 and point pd
% Output: linearized system matrix A

A= jacobian(gl,pd)*ul + jacobian(g2,pd)*u2;
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APPENDIX D: Coordinate Transformation
Considering a linear system
X=Ax+ Bu (1)
We want to change the coordinate from x to z as
z=1x (2)

whereas 7'is the transformation matrix. From Eq. 2, we can have

x=T"2 (3)

If the system matrix A is time-varying, then the derivative of Eq. 2 with respect to time, 1,
15 obtained as:

7= i'/:r = Qi_\- + 'r-a—" -  z=Tx+Tx (4)
dr ot or

Substituting the value of x from Eq. 1, we get
2=T x+T(Ax+ Bu) (5)
Substituting the value of x from Eq. 3, we get
2=TT'24T(AT "'z 4+ Bu)=T T 'z 4+ TAT 'z + TBu (6)

which can be simplified as

2= (TT +TAT )z +(TB)u
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APPENDIX E (Similarity_Transform.m)

Similarity Transform.m
Programmed by: Salman Ahmed.

function [An,Bn)=Similarity Transform(A,B,T)

function Similarity Transform
invoked as Similarity Transform(A,B,T,p)
Input: system matrix A input matrix B
Transform matrix T, variable p
Output: new system matrix An, new input matrix Bn

aymg v omega t

A= [0 0 -v*sin(omega*t); 0 0 v*cos(omega*t); 0 0 0];

B= [cos (omega*t) 0;sin(omega*t) 0; 0 1];

T= [cos (omega*t) sin(omega*t) 0; -sin(omega*t) cos(omega*t)
i 00 1];

yms t;
_dotw=diff(T,t);
_inveinv(T);

An=t_dot*t_inv + T*A*t_inv;
Anwaimplify (An)

Bn=T*H;
Bnegimplify (Bn)



