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ABSTRACT 

Collaborative robots performing tasks together have significant advantages over a single 
robot. Applications can be found in the fields of underwater robotics, air traffic control, 
intelligent highways, mines and ores detection and tele-surgery. Collaborative wheeled 
mobile robots can be modeled by a nonlinear system having nonholonomic constraints. 
Due to these constraints, the collaborative robots arc not stabilizable at a point by 

continuous time-invariant feedback control laws. Therefore, linear control is ineffective, 

even locally, and innovative design techniques are needed. One possible design technique 
is feedback control and the principal interest of this thesis is to evaluate the best feedback 

control technique. 

Feedback linearization is one of the possible feedback control techniques. Feedback 
linearization is a method of transforming a nonlinear system into a linear system using 
feedback transformation. It differs from conventional Taylor series linearization since it 

is achieved using exact coordinates transformation rather than by linear approximations 

of the system. Linearization of the collaborative robots system using Taylor series results 
in a linear system which is uncontrollable and is thus unsuitable. On the other hand, the 
feedback linearized control strategies result in a stable system. Feedback linearized 

control strategies can he designed based on state or input, while both state and input 

linearization can be achieved using static or dynamic feedback. 

In this thesis, a kinematic model of the collaborative nonholonomic robots is derived, 

based on the leader-follower formation. The objective of the kinematic model is to 
facilitate the design of feedback control strategies that can stabilize the system and 

Minimize the error between the desired and actual trajectory. The leader-follower 

formation is used in this research since the collaborative robots are assumed to have 

communication capabilities only. 
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The kinematic model for the leader-follower formation is simulated using 

MATLAB/Simulink. A comparative assessment of various feedback control strategies is 

evaluated. The leader robot model is tested using five feedback control strategies for 

different trajectories. These feedback control strategies are derived using cascaded 

system theory, stable tracking method based on linearization of corresponding error 

model, approximation linearization, nonlinear control design and full state linearization 

via dynamic feedback. For posture stabilization of the leader robot, time-varying and full 

state dynamic feedback linearized control strategies are used. For the follower robots 

using separation bearing and separation-separation formation, the feedback linearized 

control strategies are derived using input-output via static feedback. 

Based on the simulation results for the leader robot, it is found that the full state dynamic 

feedback linearized control strategy improves system performance and minimizes the 

mean of error more rapidly than the other four feedback control strategies. In addition to 

stabilizing the system, the full state dynamic feedback linearized control strategy 

achieves posture stabilization. For the follower robots, the input-output via static 
feedback linearization control strategies minimize the error between the desired and 

actual formation. Furthermore, the input-output linearized control strategies allow 
dynamical change of the formation at run-time and minimize the disturbance of formation 

change. Thus, for a given feasible trajectory, the full state feedback linearized strategy for 

the leader robot and input-output feedback linearized strategies for the follower robots are 
found to be more efficient in stabilizing the system. 
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ABSTRAK 

Robot-robot sekongkol mempunyai kelebihan dalam mcnjalankan kerja bcrbanding robot 

tunggal. Aplikasinya boleh ditemui dalarn bidang robotik dasar laut, kawalan trafik udara, 

lebuhraya pintar, pengesanan galian dan bijih serta tele-bedah. Robot-robot sekongkol 

gerak beroda bolch dimodelkan dengan sistem tak linear dengan kekangan tak holonomi. 

Akibat kekangan-kekangan im, robot-robot sekongkol tidak distabilkan pada satu titik 

dengan hukum kawalan suap balik tak berubah terhadap masa. Maka, kawalan linear, 

biarpun sctempat, adalah tidak berkesan, membawa kepada keperluan terhadap kaedah 

reka bentuk teknik yang innovatif. Salah satu teknik reka bentuk adalah kawalan suap 

balik, dan tesis in bertujuan untuk menilai teknik kawalan suap balik yang terbaik. 

Pelinearan suap balik adalah salah satu teknik kawalan suap balik yang mungkin. 
Pelinearan suap balik adalah kaedah pcnjelmaan satu sistem tak linear kepada sistern 
linear menggunakan penjelmaan suap batik. la berbeza daripada siri pelinearan Taylor 

yang lazim, memandangkan ia dicapai menggunakan penjelmaan koordinat tepat 

berbanding anggaran linear bagi sistem. Pelinearan bagi sistern robot-robot sekongkol 

menggunakan sin Taylor menghasilkan sistem linear yang tak terkawal. Walau 

bagaimanapun, strategi suap balik linear menghasilkan sistem yang stabil. Strategi suap 
balik linear boleh direkabentuk berdasarkan keadaan atau input, dengan kedua-dua 

keadaan dan pelinearan input dapat dicapai menggunakan suap balik statik atau dinarnik. 

Model kinematik robot-robot sekongkol tak holonomi telah diterbitkan dalam tesis ini 

berdasarkan formasi ketua-pengikut. Objektif model kinematik ini adalah untuk 

memudahkan reka bentuk strategi kawalan suap balik yang dapat menstabilkan sistem 

dan meminimumkan ralat di antara trajektori yang dikehendaki dan trajektori sebenar. 

Formasi ketua-pengikut digunakan dalam kajian ini memandangkan robot-robot 

sekongkol diandaikan hanya mempunyai kebolehan komunikasi semata-mata. 
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Model kinernatik untuk formasi ketua-pengikut disimulasikan menggunakan 
MATLAB/Simulink. Satu penilaian secara membandingkan pelbagai strategi kawalan 

suap balik telah dinilai. Model ketua robot diuji menggunakan lima strategi kawalan suap 
balik untuk trajektori yang berbeza-beza. Kesemua strategi kawalan ini diterbitkan 

menggunakan sistem teori terlata, kaedah pengesanan stabil berdasarkan pelinearan yang 

sepadan dengan ralat model, anggaran pelinearan, reka bentuk kawalan tak linear dan 

reka bentuk suap balik keadaan dinamik penuh terlinear. Pengubahan masa dan strategi 

kawalan suap balik keadaan dinamik penuh terlinear digunakan bagi penstabilan postur 

bagi robot ketua. Bagi robot-robot pengikut yang menggunakan pernisahan bearing dan 

formasi pemisahan-pemisahan, strategi kawlan pelinearan suap balik diterbitkan 

menggunakan input-output melalul suap balik statik. 

Berdasarkan keputusan simulasi untuk robot ketua, didapati bahawa kawalan suap balik 

keadaan dinamik penuh terlinear nlemperbaiki prestasi sistem dan menlininlakan ralat 

secara mendadak berbanding keempat-empat strategi kawalan suap balik yang lain. Di 

samping menstabilkan sistern, strategi kawalan suap balik keadaan dinanlik penuh 

terlinear mencapai penstabilan postur. Bagi robot-robot pengikut, strategi kawalan input- 

output melalui strategi pelinearan suap batik telah meminimumkan ralat di antara fornlasi 

kehendak dan sebenar. Tambahan pula, strategi kawalan pelinearan input-output 

membenarkan perubahan dinamik bagi fonnasi pada masa jalanan dan meminimakan 

gangguan perubahan formasi. Oleh itu, untuk satu-satu trajektori tersaur, strategi suap 

batik keadaan penuh terlinear untuk robot ketua dan strategi suap balik input-output 

terlinear untuk robot-robot pengikut didapati lebih berkesan dalam nienseimbangkan 

sistem. 
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CHAPTER 1 

INTRODUCTION 

1.1 Collaborative Robots 

Collaborative robots involve a team of robots to achieve a task. Collaborative robots 

cooperating with each other to solve problems can provide more capabilities than a single 

robot. Applications of collaborative robots can be found in the fields of underwater 

robotics, air traffic control, intelligent highways, security patrols, tele-surgery and mines 

and ores detection [1], [2], [3], [4]. The accuracy of task completion by collaborative 

robots depends on the control strategies implemented in the robots to minimize the effect 

of external disturbances and errors. 

Collaborative unicycle robots can be represented as an underactuated system in which the 

number of control inputs is less than the number of generalized coordinates. In such a 

system, the controllable degrees of freedom (DOF) is less than the total degrees of 

freedom. Hence, motion control problems for such systems have attained considerable 

attraction over the past few years [5]. 

1.2 Motion Planning 

Motion planning för nonholonomic collaborative robots involves the following basic 

motion tasks. 

" Point to Point Motion 

In point to point motion, the collaborative robots must reach a final goal starting 
from a given initial configuration. The trajectory or path for the collaborative 

robots is not specified in advance. 
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" Trajectory Tracking 

In trajectory tracking, the collaborative robots must reach a final configuration 

following a certain desired trajectory in the cartesian space. The desired trajectory 

is a function of time. The collaborative robots' starting position can be either a 

part or not a part of the desired trajectory. 

For an obstacle-free environment, point to point motion and trajectory tracking are shown 
in Figures 1.1 and 1.2, respectively. 

C-) 

Starting point Goal point 

Figure 1.1: Point to point motion for two unicycle collaborative robots 
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I 

J 

Starting point 

Goal point 

Figure 1.2: Trajectory tracking for two unicycle collaborative robots 

In terms of control systems, point to point motion can be compared with a regulation 

control or posture stabilization problem for an equilibrium point in the state space. 

Trajectory tracking can be compared with a tracking problem such as to minimize the 

error between the reference and desired trajectory to zero. 

1.3 Problem Statement 

Collaborative wheeled mobile robots can be modeled as a nonlinear system with 

nonholonomic constraints imposed on their kinematics. Due to the nonholonornic 

constraints, the collaborative unicycle robots are not stabilizable at a point by smooth 

continuous time-invariant feedback control laws, according to Brockett theorem [6]. The 

theorem states that for a system to be smooth stabilized, the number of inputs must be 

equal to the number of states. 
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Let m and n represent the dimension of input and output, respectively. In case of point to 

point motion, in is two and n is three. The point to point motion for the robots implies 

zeroing three independent variables. In case of trajectory tracking, in is two and n is two. 

The objective of trajectory tracking is to stabilize the two dimensional error vector 

associated with the cartesian trajectory to zero. Thus, point to point stabilization and 

controllability cannot be achieved using linear control, even locally, and innovative 

design techniques are required. One such possible design techniques is feedback 

linearization and this is the principal investigation of this thesis. 

Feedback linearization is the method of transforming a nonlinear system into a linear 

system (fully or partially) via a coordinate transformation, referred to as feedback 

transformation [7], [8]. Feedback linearization differs from conventional linearization, 

such as Jacobian linearization, because feedback linearization is achieved using exact 

state transformations and feedback, rather than by linear approximations. 

1.4 Modeling and Control Analysis 

Collaborative robots need to maintain a certain formation control to complete a task. The 

various approaches to formation control can be divided into three categories: behavior- 

based, virtual structure and leader-follower formation [9]. The behavior-based formation 

is a distributed approach and relies on implicit communication between robots [10]. The 

virtual structure is a centralized approach [ 11 ]. Majority of current algorithms that focus 

on behavior-based and virtual structure formation are implemented on robots having 

visual capabilities [12], [13]. 

In this thesis, the robots are assumed to have communication capabilities only. Therefore, 

the above two formation control approaches are not suitable; instead, the leader-follower 

formation is used in this research. The leader-follower formation is a centralized 

approach in which all the robots have a common goal. One of the robots is designated as 
the leader and the others become the follower robots. The leader robot follows a desired 

trajectory and guides the formation, while the follower robots follow the leader robot. 
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Using the leader-follower formation, the kinematic model for the collaborative robots 

system is derived. After deriving the kinematic model, the control properties including 

controllability, stability and observability are analyzed for the system. The collaborative 

robots are not linearly controllable and stable around a point. Therefore, tools from 

nonlinear control theory are used [14]. Lie Bracket is one such tool with the help of 

which, the control properties of collaborative robots can be analyzed. Using the Lie 

Bracket expansion, the collaborative robots are nonlinearly controllable and stable around 

a point. 

After analyzing the control properties, the system is transformed into chained forms. 

Chained forms are canonical model structures which allow simple implementation of the 

system consisting of integrators. The chained form transformation is useful in finding the 
flat outputs of the system. The flat outputs are used to generate the desired reference 

trajectory. The reference trajectory is given as an input to the feedforward controller to 

generate the control inputs for the leader robot. These control inputs are transmitted to the 
follower robots using the Bluetooth piconet profile. The follower robots derive their own 

control inputs based on the inputs sent by the leader robot. 

The control inputs for the leader and the follower robots are fed into the feedback 

linearized controller, which generates the actual inputs for the robots. The actual inputs 

are calculated based on the current states of the robot and the inputs from the feedforward 

controller. The objective of the feedback controller is to minimize the error between the 

actual and the desired trajectory. Furthermore, the feedback controller must achieve 

posture stabilization. 

The purpose of this thesis is to study the issues related to nonlinear controllability, 

stability and the design of feedback controllers for collaborative nonholonomic robots. 
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1.5 Literature Review 

The feedback linearized control design for collaborative robots is two-folds; first to 

design feedback law for the leader robot and secondly to design feedback laws for the 
follower robots. The leader robot is a single robot and is modeled using the unicycle 

robot system. The follower robots are also unicycle robots but using the leader-follower 

formation, they are modeled relatively to the leader and formation. 

There have been various approaches to designing feedback control laws for the leader 

robot. A nonlinear feedback controller for formation control was proposed in [15]. The 

controller achieves asymptotic stability but the control laws depend on vision based 

inputs. A feedback control strategy was designed using cascaded system theory in [16]. 

The controller results in K- exponentially stable system and locally uniform 

exponentially stable system. A stable tracking controller based on the linearization of 

corresponding error model was proposed in [17]. The control laws result in locally 

asymptotic and locally uniformly asymptotic stable systems. A linear controller based on 

approximate linearization was proposed in [18]. The approximate linearized control laws 

result in a time-varying controller which does not guarantee asymptotic stability. A 

nonlinear controller for trajectory tracking was proposed in [19] which globally 

asymptotically stabilize the system. A dynamic feedback linearized control strategy was 

proposed in [20]. The dynamic feedback linearized control strategy results asymptotic 

tracking of the desired trajectory. 

For the follower robots, feedback control strategies based on input-output linearized for 

the follower robots using separation bearing and separation-separation formations were 

presented in [21], [22], [23]. These feedback strategies stabilize the system and achieve 

the desired formation. For posture stabilization, a time-varying feedback controller was 

presented in [19]. A feedback controller based on polar coordinate transformation was 

presented in [24]. A dynamic feedback linearized controller was presented in [25] to 

achieve posture stabilization. 
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1.6 Objectives & Scope 

The objectives and scope of this thesis are outlined below: 

" To mathematically analyze the nonlinear control properties for collaborative 

nonholonomic robots. 

" To allow the collaborative nonholonomic robots to share information using the 

Bluetooth piconet profile. 

" To model the kinematics of nonholonomic collaborative robots using 
MATLAB/Simulink and simulate feedback control strategies. 

" To develop a framework for collaborative nonholonomic robots using the 

leader-follower formation. 

" To design feedback control strategies for the leader-follower formation using 
feedback linearization techniques. 

" To analyze the performances of feedback control laws for collaborative 

nonholonomic robots. 

1.7 Thesis Organization 

This thesis is structured as follows. Chapter 2 presents the kinematic modeling of the 

leader-follower formation for collaborative robots. The concept of nonholonomy is 

discussed. To allow communication between robots, the Bluetooth piconet profile is 

discussed. 

Chapter 3 presents the analysis of control properties for collaborative robots. The control 

analysis involves checking the controllability, stability and observability of the system. 

The system is also transformed into chained forms and the flat outputs for the systems are 
identified. 

Chapter 4 presents the feedback controllers for collaborative robots using the leader- 

follower formation. The stability analysis of the feedback controllers is also presented. 
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The full-state and input-output linearized design techniques are applied to the leader- 

follower formation. The posture stabilization controllers for the leader robot are also 

presented. 

Chapter 5 presents the simulation results for different feedback controllers discussed. The 

feedforward command controller is derived. A framework for collaborative robots is 

presented. The feedback linearized control strategies and posture stabilization controllers 

are simulated for a given set of trajectories. The error statistics using different feedback 

controllers are also presented. 

Chapter 6 presents the conclusions. The contribution of the thesis and future work is also 

presented. 



CHAPTER 2 

MODELING OF COLLABORATIVE ROBOTS 

This chapter presents the kinematic model for collaborative robots. The kinematic model 
for collaborative robots involves the concept of nonholonomy. In order to check whether 

a system is holonomic or nonholonomic, tools from nonlinear control theory will be used. 

Lie Bracket is one of the available tools that will be used for checking the controllability 

of the system. Finally, to allow communication among collaborative robots, the Bluetooth 

Personal Area Network (PAN) profile will be discussed. 

2.1 Holonomic and Nonholonomic Systems 

A kinematic constraint usually limits the position and/or the velocities in a system. A 

kinematic constraint can be holononllc or nonholonomic. A holononllc constraint is 

written as an equation independent of the generalized velocity vector as 

J(p, t) =o (2.1) 

where pEXc `B" represents the generalized coordinate vector or the state vector and n 

is the dimension of the state space, X. A holonomic constraint depends only on the 

coordinates of the system, p, and the time, t. It does not directly depend on the velocity or 

momentum of the system. A holonomic system may contain holonomic or no constraints. 

A mobile robot capable of moving in arbitrary directions is a holonomic system. A 

mobile robot capable of only translations is also holonomic. A system is nonholonomic if 

it cannot be written in the font of Eq. 2.1. Let P represent the velocity vector, so a 

nonholonomic system can be expressed as 

. 
i( h, P) =0 (2.2) 
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A nonholonomic system can not move in arbitrary directions in its configuration space. 
Examples of nonholonomic systems include cars, bicycles, unicycles, wheeled mobile 

robots, space robots, etc. A wheeled mobile robot can move in some directions (forward 

and backwards), but not others (sidcward) directly as shown in Figure 2.1. To move 

sideways from position A to position B, the robot has to undergo a series of maneuvers 

via position C. 

In general, for a system with n coordinates and k nonholonomic constraints, the allowable 

velocities are restricted to in =n-k dimensional space. If a system has a kinematic 

constraint in which the velocities appear in the constraint equations, then the system is 

nonholonomic. There are various sources of nonholonomic constraints such as bodies in 

rolling contact without slipping (wheeled mobile robots or automobiles), angular 

momentum conservation and underactuated mechanical systems (having less control 
inputs than the number of states). 

I 

Position A 

i 

Position C 

Figure 2.1: A nonholonomic wheeled mobile robot 
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All the possible configurations of a system can be determined by assigning a minimum 

number of independent parameters p,, p2 ,..., p� which are called Lagrangian coordinates, 

where n represents the system degrees of freedom (DOF). A holonomic constraint is 

expressed as a function of Lagrangian coordinates and therefore it reduces the system 

DOF equal to the corresponding number of constraint equations. On the other hand, 

nonholonomic constraints, applying restrictions only to the velocities, do not prevent the 

attainment of any configuration and therefore do not lessen the system's DOF. 

2.2 Lie Bracket 

The Lie Bracket is the only tool required to determine whether a system is holonornic or 

nonholonomic [14]. A holonomic system is integrable but a nonholonomic system is not 
integrable. To check whether a system is integrable or not, its distribution, A, is computed 

using the Lie Bracket. If A is involutive, then the system is nonholonomic, otherwise it is 

a holonomic system. 

2.2.1 Lie Bracket and Lie Bracket Tree 

Let x E' . 
H" represent the state of the system, u; E 91represent the control inputs and 

it and in represent the dimension of the state space and control inputs, respectively. A 

system, =f (x, u) can be written in the form of 

x=g" (x)+gr(-r)Ili (2.3) 

where go represents the drift terms and each g, E 91' represents the system vector 

fields. For a driftless system, Eq. 2.3 can be expressed as 

ý= 
ýj 

g( x) Ui (2.4) 
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Let gi(x) and g2(x) denote two system vector fields. The associated Lie Bracket of 

gi(x) and $2(x) is denoted by [g1,92] and is defined as 

aýý, 9_ 1391 191 
ý ý'z ý- 

ax ' 
(3x 

92 (2.5) 

The Lie Bracket is anti-commutative. Using the properties of Lie algebra [14], the Lie 

Bracket satisfies the property of skew symmetry which is 

[g1, g2] -[g, +g1 
1 

(2.6) 

The Lie Bracket tree is a tree formed by successive nested computations of the Lie 

Brackets as shown in Figure 2.2. Using the property of skew symmetry expressed by 

Eq. 2.6, the left branch of the Lie Bracket tree is equal in magnitude to the right 
branch but there is a difference of sign change. If a system has in system vector fields 

and can be expressed as of the form of Eq. 2.4, then there are 2ý 
Lie Brackets of the 

form [g;, g, ] for i <j that can be formed. 

Ib'I, 8z] 

[91, [91,92]] 

191,191, [äi, 92]]] 
[f, '?, [91, [91,9211] [91, [92, [91,92111 

[gz, [g1, g21] 

[92, [92, [91,92111 

ýý ýý ý 
Figure 2.2: Lie Bracket tree 
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2.2.2 Involutive Distribution and Frobenius Theorem 

A distribution, A, is the span of all system vector fields and is expressed as 

0= span }g1(x) :i=1,..., m} (2.7) 

A distribution is said to be involutive if it is closed under the Lie Bracket operation. It 

means every Lie Bracket can be expressed as a linear combination of the system 

vector fields and belongs to A. Therefore the Lie Brackets are unable to escape the A 

and generate new directions of motion. An involutive distribution can be expressed as 

[gi, gjE A, dgi, gj EA (2.8) 

According to Frobenius theorem, "A system is completely integrable if and only if its 

distribution is involutive" [14]. It means that a holonomic system is integrable and its 

distribution is involutive. Similarly, a nonholonomic system is not integrable and its 

distribution is not involutive. 

2.3 Types of Modeling 

The mathematical modeling for the collaborative nonholonomic robots can be obtained 

using the following two models: 

" Dynamic Model 

The dynamic model takes into consideration the actual forces and torques causing 

the motion. The dynamic properties for the collaborative robots motion are taken 

into account. The dynamic equations are obtained using Newton's laws of motion. 

" Kinematic Model 

The kinematic model is the study of motion without consideration of the force and 
torque. This type of model allows for the decoupling of collaborative robots 
dynamics from its movement. 
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The kinematic model will be further used for analysis and control purpose. The kinematic 

model for the collaborative robotic system is obtained by taking into consideration each 

individual robot. There are different models of wheeled mobile robots such as unicycle, 

car-like robots, etc. The unicycle represents the basic fundamental model of wheeled 

mobile robots. A unicycle robot consists of one front castor wheel and two rear fixed 

wheels. The unicycle model can be expanded to represent complex wheeled mobile 

robots. In this thesis, the unicycle model will be considered for collaborative robots. A 

unicycle robot can be represented into two orthogonal coordinate systems which are as 

follows. 

" Global Frame of Reference 

The global or fixed frame coordinates are denoted by (Xc, Yo). This frame of 

reference remains fixed with the origin (0,0) as shown in Figure 2.3. 

" Local Frame of Reference 

The local or body frame coordinates are denoted by (Xi?, Y1). This frame of 

reference remains fixed on the body of the robot with origin at point, p, as shown 

in Figure 2.3. 

Figure 2.3: Local and global frames for unicycle robot positioning 
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A robot position can be represented by the vectorp which is expressed as 

P= 
.x 

V 

0 
(2.9) 

where x and y represent the position coordinates with respect to the global x-axis (XG) and 

y-axis O'; ), respectively and 0 represents the counterclockwise orientation angle between 

the robot axle and the global x-axis (X(-; ). The velocity vector, p, can be expressed as 

ý_ 

x 

0 

(2.10) 

The relationship between the global and local coordinates is given as 

pk = R(O)p = R(0)[. i i, 0]` where 

cos 0 sin 00 

R(O)= -sin O cos 00 
001 

(2.11) 

where j), is the velocity vector expressed in the local coordinate frame and R(O) is the 

orthogonal rotation matrix. 

2.4 Kinematic Modeling of Collaborative Nonholonomic Robots 

A collaborative robot system can be described by its state, X, which is a composition of 
the states of all the robots given as 

(2.12) 
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The state of each robot varies as a function of its continuous state, x,, and the input 

vector, u,. Also each robot receives information about the position of other robots, z. The 

input vector, u,, depends on the discrete state of the robot, h, which can be either the 
leader or follower state. The state equations for each robot can be written as 

ti =. i(Xi, Ili) 

(Xi ý i -ýhI-ý) 
(2.13) 

To model the kinematics of each robot in the 2D plane, the configuration p=[x, y, 0]T is 

used. This configuration of the robot stands for three DOF. The kinematic equations for 

each robot can be written, like the system expressed by Eq. 2.4, as 

+ P=g, (P) it, g2 (p) 1l1 

x cos 40 

sin 0 u1 +012 
g01 

(2.14) 

(2.15) 

where [u,, u, ] arc the control inputs. The system modeled by Eq. 2.15 has two system 

vector fields. One vector allows pure translation, and the other allows pure rotation. In 

terms of matrices, Eq. 2.15 can be expressed in terms of matrices as 

T 

v 
6) 

cos0 0 
u, 

sin0 0 
0l iý' 

(2.16) 

The control inputs [u,, 1(, ]7' ,]1 depend on the discrete state, h, of the robot which can be 

either leader or follower. The control laws for the leader and follower robots are: 

= V, (t) Leader =ý'": 'I 
, 

Follower = 1 
2_ (o, (t ) 

Irý =l'f(1) 

uý (of (t) (2.17) 
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where vv(t) and cu(t) represent the translational velocity and angular velocity respectively, 

the subscript I and f denote the leader and follower robots respectively. The leader- 

follower formation will be discussed in detail in the next section. 

The nonholonomic constraint for wheeled mobile robots assumes that the robots exhibit 

purely rolling motion and no slipping occur [20], [21]. The nonholonomic constraint is 

expressed as 

-. i sin O+ 3, cosO =0 (2.18) 

To verify that the kinematic model of Eq. 2.15 is nonholonomic, Frobcnius theorem is 

applied. Comparing the collaborative system model obtained in Eq. 2.15 with the 

standard driltiess system in Eq. 2.4, the following is obtained 

9, = 

cos 00 

Sill 0, g2 =0 
01 

From Eq. 2.7, A of the system vector fields is expressed as 

(2.19) 

0= span1g,, g2 } (2.20) 

The Lie Bracket, [g,, g, ], is given by Eq. 2.21. The Lie Bracket expressed by Eq. 2.21 can 

be verified using the program Lie_Bracket .m (attached in appendix A). 

[g1, g2 ]= 
sill 0 

- cos 0 
0 

(2.21) 
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From Eq. 2.21, the Lie Bracket is linearly independent of g, and g2 and does not belong to 

the distribution A. This means that A is not closed under the Lie Bracket operation and 
therefore, A is not involutive. Hence, by Frobenius theorem it is proved that the system 

modeled by Eq. 2.15 is nonholonomic. 

2.5 Leader-Follower Formation for Collaborative Nonholonomic Robots 

The control of collaborative robotic system requires coordination at different levels. At 

the lowest level, it is necessary for each robot to control its motion and to avoid collisions 

with its neighbors. Furthennore, the robot should move along a desired trajectory. At an 
immediate supervisory level, it is necessary to maintain a certain formation strategy. 

The various approaches to formation control can be divided roughly into three categories: 

behavior-based, virtual structure formation and leader-follower formation. The behavior- 

based formation is a distributed approach and has explicit information feedback between 

neighbors [10]. The virtual structure formation is a centralized approach [11]. Majority of 

the current algorithms that focus on behavior-based or virtual structure formation are 
implemented on robots having visual capabilities [12], [13]. Similarly, behavior-based 

formation focuses on peer to peer communication, whereas in this thesis Bluetooth is 

considered, which is master-slave architecture [26]. Therefore, leader-follower formation 

is used for the collaborative robots [22]. 

In the leader-follower formation, one of the robots is designated as the leader and the 

others as followers. The leader robot plans and follows a desired trajectory. The follower 

robots follow the leader robot with a desired distance. The leader robot is responsible for 

guiding the formation. The leader-follower model comprises of two formation controllers 

which are as follows. 
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2.5.1 Separation Bearing Controller (SBC) 

The separation bearing controller is used for two robots. The follower robot follows 

the leader while maintaining a desired relative distance and separation bearing angle 

with respect to the leader robot. Such type of leader-follower formation control 

strategy is also denoted by 1- ý9. A schematic for this control strategy is shown in 

Figure 2.4. Let cp, f denote the separation bearing angle between the leader and 
follower robot. The separation distance between the center of the leader and the front 

castor of the follower robot is denoted by 1,,. The position coordinates for the front 

castor of the follower robot is represented by (x2, y2). The distance between the front 

castor and the center of axis between the rear wheels for each robot is denoted by d. 

The leader robot position is expressed by p, = [x,, y,, 01] T and the control inputs by 

it, = [v, , w, ]". The follower robot position is represented by pf = [Xf, yf, O, ]7 and the 

control inputs by u1= [vf, wf]'. 

The kinematic equations for the leader and follower robot are expressed by Eq. 2.15. 

Knowing the leader robot position and the separation distance between the leader and 

follower, the follower robot position can be calculated as given in Eq. 2.22. 

py =llrf, ýPrf, Bfly' 

Leader Robot 

Pr =[xi, Yl, 011 

III =[VI, WI] 
I 

Yj1 

Follower Robot 

(o, o) 

Pf =[xf, yf, Bf]I 

Xrc 

,! 1 =["f, 19117. 

º 
ý <; 

Figure 2.4: Leader-follower formation using separation bearing controller 
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xf =x, +dcosOf 

yf=y, +dsin©f (2.22) 

T The follower robot can be modeled relatively to the leader robot as pf = [, f, ýprf, äf] 
The new state vector, p, f, can be expressed through a transformation as p, f=TSE(p,, pf) 

given by 

! rf = (x, - xf -d cosOf)' +(y, - yf -(I sinOf)' 

ýrr =, 7-arctan2(yf +dsinOf -y,, x, -xf - dcosOf)-O, (2.23) 

The original state vector can be recovered through the inverse transformation 

pf = TS1 1(p,, pf). Differentiating Eq. 2.23 and combining with Eq. 2.15, the follower 

robot kinematic model is obtained as given by Eq. 2.24. 

if =Vf Cosy - V, Cos(O, f +(1(11 f Sill 7 
V, Sill (9, f -Vf sin y-u111, f +dalf cosy 

if= /7 

Of 
=COf 

(2.24) 

where y=0, --- Of+ (p, f . In order to avoid collision between the leader and the follower 

robots, a requirement that 1, f > 2d must be ensured. Let Z, f = (1, f, ý00, so the kinematic 

system of Eq. 2.24 can be written in compact form as 

if = Gsjs (2y , Y)tif + Fsý (-7y )u, 
0f =wf 

(2.25) 

where uf= (vf, (of), ur = (vr 
, (U, ) and 
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GsE; _ 

cosy dsiny 

- sin yd cos y 
if 1, f (2.26) 

rsii 
cos (O, 0 

sinýpf/1, l -1 sinýpf/l, l -1 

The separation bearing controller can be extended to multiple robots when they are 

marching in a straight line. 

2.6.3 Separation-separation Controller (SSC) 

This controller is used when multiple robots are present in the formation. Such type 

of leader-follower formation control strategy is also denoted by I-1. A schematic for 

this control strategy is shown in Figure 2.5. In the 1- I formation strategy, the leader 

robot 2 is actually a follower relative to leader robot 1. The leader robot 2 can be 

modeled using I-p control strategy. The follower robot can be expressed relative to 

the leader robot 1 and 2 as pf= [I, f, 12f, Of]". In the I-I control strategy, the aim is to 

maintain the desired lengths l; f and 1; f with respect to both leader robots. Again, to 

avoid collision l1f > 2d and /2f > 2d must be ensured. The separation distances for the 

leader robots can be expressed as 

Il f= (x, -xf -d cos e9 2 +(y, - yf -d sin Of )z 

J, f=(, r, -x f -d cos0f)' +(y, -Yf -d sinOf)' 

Differentiating Eq. 2.27, the follower robot kinematics are obtained as 

1, f =vfcosy, -viCos ý9, f +d(L)fsiny, 
'2f 

=of cos 72 - vý cos ý02f + (1(O f sin 72 
Of =wf 

(2.27) 

(2.28) 

where y, =0, -Of +ýo, j and y2 =0, -Oj+ýp, J. 
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Y1z 9ý, d ýci /// Leader Robot l 

(0, a) 

ni =(Xi, )'i, ©i) 

Figure 2.5 : Leader-follower formation using separation-separation controller 

Let _, j = (/if, 1, /) and uj = (vj , (of), so the kinematic equations can be expressed in 

compact form as 

cosy, d sin y, z, ý =u 
COS y2 d Sln y2 

+ 
(2.29) 

. B, = w1 

- VI COS ý01 f 

-vz COS (P21 

2.6 Information Sharing among Collaborative Robots 

Collaborative robots need to share information while maintaining the leader-follower 

formation. For information sharing, various communication protocols are available such 

as Bluetooth, Infrared (Ir), ZigBee, Wireless Fidelity (Wi-Fi) and Ultra-wideband 

(UWB). A comparative assessment of all these wireless technologies is given in Table 1. 
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Table 2.1 : Comparison of various wireless technologies 

Technologies 
Bluctooth Ir ZigBee Wi-Fi UWB 

Properties 

High at the 
Cost Low Low Low high 

` moment 

Possible 
Market viability Popular Popular Emerging Popular 

Future 

Data Transfer Upto 100 
2.1 Mbit/s 4 Mb/s 250 kb/s 54 Mb/s 

Rate Mb/s 

Power 
1mW Low Low 200mW Low 

Requirements 

Up to 2 
Short (30 to 

Effective Range 10-100111 meters (Line 10-75nß Up to 31 m 
40 feet) 

of sight) 

Based on the properties listed in Table 2.1, the Bluetooth protocol was selected as an 

information sharing medium among the collaborative robots. Bluetooth is a short-range 

wireless technology that operates in the license free Industrial, Scientific and Medical 

(ISM) band at 2.4 G1-lz [26], [27]. To avoid interference with other devices that uses 2.4 

Gl-Iz band, the Bluetooth protocol divides the band into 79 channels (each I MHz wide). 

It changes channels up to 1600 times per second. The earlier versions of Bluetooth 

protocol supported data transfer rate at 723.1 kbit/s. The new version 2.0 supports data 

transfer rate up to 2.1 Mbits/s. 

A Bluetooth profile is a standard interface between Bluctooth devices. Bluetooth profiles 

are general behaviors through which Bluetooth enabled devices communicate with other 
devices. There are several profiles available in the Bluetooth protocol suite for 

communication among devices. One such profile is the Personal Area Network (PAN) or 

piconet. A piconet can support at the maximum of eight devices in a master-slave 

relationship. The first Bluetooth device in the piconet is the master and the remaining 
devices are slaves that communicate with the master. Each device in the piconet is called 
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as Personal Area Network User (PANU). A piconet defines three modes or roles in which 
devices can interact with each other. These modes are explained as follows. 

" PANU -PANU 
This mode supports at the maximum two devices. One device acts as a master 
device and the second one acts as a slave device. Figure 2.6 shows two robots 

communicating using the PANU - PANU mode. 

., _, <, ý 

aoao 

.. ýý 

PANU PANU 

Figure 2.6: PANU - PANU mode for communication among two robots 

" Group Adhoc Network 

The Group Adhoc Network (GN) enables two or more PAN Users to 

communicate with each other. The GN device acts as a master and supports at the 

maximum of seven slaves. The GN mode for communication is shown in Figure 

2.7. 

GN Controller / Master 

. /' 1 'ý. , V- I 

_-ý. -ý ý- 
b O, 

`OO, 

O O_ 

r`--'=ýý 
`ý ý"ý--ý'y ýý 

1'ANU PANU 

I I 
4 

PANU 

Figure 2.7 : GN mode for communication among robots 
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" Network Access Point 

A Network Access Point (NAP) is a Bluetooth device that provides the service of 

routing network packets. A NAP can act as a bridge between Bluetooth networks 

and other networks such as Local Area Network (LAN). Figure 2.8 shows the 
NAP mode for communication among robots. 

LAN / Internet 

NAP / Master 

-ý, 
./1 'ý. 

ýa 40, 
_ 

ý log 40 ý 
`ý ý.. ý, _ ý" 

ý`ýýý 
ý ýý . 

PANU PANU PANU 

Figure 2.8 : NAP mode for communication among robots 

For information sharing among the robots, the GN mode in the piconet is used for 

communication. The Bluetooth piconet protocol suite is implemented in software as well 

as in hardware. For simulation of leader-follower formation of robots, Bluetooth USB 

dongles are used to configure the piconet. A USB dongle is connected to a computer. 

These dongles are configured to form a Bluetooth piconet using the GN mode. A 

MA'l'LAB/Simulink session runs on each computer. Each MATLAB/Simulink session 

communicates with other MATLAB/Simulink sessions in the Bluetooth piconet using the 

USB dangles. Each session models the leader-follower formation control of robots. The 

master computer in the piconet models the leader robot in the leader-follower formation. 

Currently, Bluetooth software protocol suite for PAN profile is commercially provided by 

Extended Systems (XTND), Microsoft Windows XP Service Pack 2, IVT BlueSoleil and 
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Widcomm. The summary and limitations of all these software protocol suites are listed in 

't'able 2.2. Based on the properties listed in Table 2.2, IVT BlueSoleil USB dongles are 

used to form the Bluetooth piconet. 

Table 2.2 : Comparison between various protocol suites providers 
Protocol Suite 

Provider 

Support for 

PANU 

Support for 

GN 

Support for 

NAP 

XTND � 

Microsoft 

Windows XP 

Service Pack 2 

� 

IVT BlueSolcil � � � 

Widcomm � � � 

Currently, the TCPIP toolbox available in MATLAB does not provide support for TCP 

connections between computers. Rather the TCPIP toolbox provides functions that can be 

used to acquire data from a network device such as an oscilloscope. So to overcome this 

limitation, a shared library is needed to be developed and compiled. Therefore, a shared 

library was developed using Windows Socket programming [28]. This shared library 

contained functions for message transmission between the computers. This shared library 

was then compiled using the MATLAB compiler. The format of the message used for 

communication conforms to the standard Agent Control Language, (ACL), provided by 

Foundation for Intelligent Physical Agents, (FIPA), [29]. 

2.7 Summary 

In this chapter, the kinematic models for the leader and the follower robots are derived. 

The follower robots maintain two formation control strategies including separation 
bearing and separation-separation. A toolbox for communication among the robots is 

developed and compiled using MATLAB compiler. In the next chapter, the control 

properties using the kinematic model for the leader-follower formation will be studied. 



CHAPTER 3 

ANALYSIS OF CONTROL PROPERTIES 

This chapter presents the analysis of control properties for the unicycle collaborative 

nonholonomic robots system. The control analysis involves checking the controllability, 

stability and observability of the system. The controllability and stability are checked 

with respect to a point as well as trajectory. The unicycle model of the collaborative 

robots is considered for analysis purpose. The system is transformed into chained form. 

Based on the chained form representation, the flat outputs of the system are identified. 

3.1 Controllability and Stability at a point 

A linear system is completely controllable (all state variables are controllable) if, given 

any two points in the state space, p and po, there exists admissible control inputs capable 

of taking the system from p to po in finite time. To check whether a system is 

controllable, the controllability matrix, Car, is computed, which is expressed as 

C", = 1B A13 A'ß . A"-'13] (3.1) 

For a linear controllable system C� has a full rank of n, where n is the dimension of the 

configuration space. If a linear system is controllable, then there exists a feedback gain so 

that the control law it =k (p - p,. ) makes the close loop system asymptotically stable 

about the equilibrium point p, and the error goes to zero exponentially. For the kinematic 

model of the unicycle collaborative robots, the approximate linearization of the system at 

any equilibrium point pc will be considered. To recall, the kinematic model of the 

unicycle collaborative robots is expressed as 

.x 

y 
e 

(cos Bý 

= Isin 0 

0 
-1- III 

0 
0 
1 

Itz (3.2) 
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The approximate linearization of the system is given as 

P= (5P = g1 (Pe)u, + g, (P(, )"' where Bp =p-P, 

p= s(p) = 
cos 0, 

sin 0ý. + 
0 

0 
0w 

1 

Eq. 3.4 can be written in terms of matrices as 

P =8(P)= 

cos 0ý, 0 

Sill 01,0 
01 

v 

Lw 

(3.3) 

(3.4) 

(3.5) 

The controllability matrix, CAf, is expressed by Eq. 3.6. This matrix can also be verified 

using the program Linear_Controlability. m (attached in Appendix B). 

cosB, 00000 

C,, r = [B AB A`'B] = sin0� 00000 
010000 (3.6) 

rank(CM1, )=2 

From Eq. 3.6, the rank of Cti, is less than the order of the system, n, which is 3. This 

indicates that the linearized system expressed by Eq. 3.5 is not controllable. This implies 

that a linear controller will never achieve posture stabilization, not even in a local sense. 
Thus, if the system is linearized at an equilibrium point, the linearized system is not 

controllable. Hence, a linear control will not work here. 

In order to study the controllability of collaborative nonholonomic robots, tools from 

nonlinear control theory will be used. Since the system modeled by Eq. 3.2 is driftless, 

the term local accessibility and controllability can be used interchangeably. The 

controllability of the system can be established using the Chow-Rashevski theorem [30]. 
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According to this theorem, for a drißless control system, if the accessibility rank 

condition, given by Eq. 3.7, holds, then the control system is locally accessible 

(controllable) from p,. 

rank A (p0)=n (3.7) 

where n is the order of the state space system and , is the accessibility distribution. A is 

defined as the span of all the input vector fields and associated Lie Brackets. 

A =span{vIvEAi Vi _ 1} 
0; _Ar-I +span{[g, v]IgEA >vEAr-I}, l? 2 

A, =span { g, , 
g� 

... ,gm} 

(3.8) 

For the kinematic model given by Eq. 3.2, the accessibility distribution A is computed as 
follows. 

[g1 gz [g1 ý 
gz ]] 

cos B0 sin 0 
Ac = sin O0- cos B 

010 L 

rank (A, ) =3=n 

(3.9) 

As the rank of A is 3, which is equal to the order of the configuration space, therefore, 

the kinematic model of Eq. 3.2 is nonlinearly controllable at a point. Controllability can 

also be shown constructively, i. e., by providing an explicit sequence of maneuvers 

bringing the robots from any start configuration (xs, ), s, 9s) to any desired goal 

configuration (. rs, yg, O 
g). 

Since each robot can rotate itself, this task is simply achieved 

by an initial rotation on (x,, y, ) until the robot is oriented towards (Tx, yg), followed by a 

translation to the goal position, and by a final rotation on (xg, yg) so as to align 0 with ©s. 
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Regarding the stability of the system at a point, Lypaunov (asymptotic) stability cannot 
be achieved by means of a smooth, time invariant feedback. This result is established on 
the basis of Brockett's theorem [6] which states that the stabilization of a driftless regular 

system (a system in which the input vector fields are well defined and linearly 

independent at p,. ) by a smooth time invariant feedback is not possible. It further implies 

the number of inputs, m, should be equal to the number of states, n, as both a necessary 

and sufficient condition for smooth stabilization. 

To obtain posture stabilization, it is obligatory to give up the continuity requirement, i. e. 
to include the non smooth (discontinuous) feedback or to apply the time varying control 
laws or to apply a combination of both. 

3.2 Controllability and Stability around a Trajectory 

To check the controllability of the collaborative robots around a trajectory, a desired 

trajectory and inputs are considered as p,, (t) _ [x,, (t), yd(t), 6,, (t)]7* and ur(t) = [v,, (t), w1(t)]', 

respectively. In order to be feasible, the desired trajectory must satisfy the nonholonomic 

constraint for the robots. Defining the state tracking error as p(t) = p(t) - p,, (I) and tile 

input variations as i -, (I) = v(t) - v,, (t) and w(t) = w(t) - w,, (t), the approximate linearization 

of the unicycle system about the reference trajectory is obtained as 

v 
p= ý1(t)p+ß(t). where 

ýt(r)=") ag, 
an P =Pd 

B(t) = G(P, (1)) 

For the kinematic model of Eq. 3.2, the following is obtained. 

A(r) , 
- an 

+ 0),, 
92 
aP 

P=P P =Pd , B(1) = G(n, (t)) 

(3.10) 

(3.11) 

(3.12) 
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Computing the values for A(t) and I3(t), Eq 3.13 is obtained. This can also be verified 

using the program Lineari zed_A .m (attached in Appendix Q. 

00-V, 51110, (l) COs 0', (t) 0 

A(t) =00 i", Cos 0,1 (t) , 13(t) = sin 0d (t) 0 (3.13) 
00001 

Substituting the values in Eq. 3.10, the approximate linearized system is expressed as 

P= 
1o o0 
r0 0 -' d sinO, (t) 
00v,, cos0', (t) 73+ 

cos 0', (t) 0 

Sill 0,, (t) 0 

01 

V 

iý 
(3.14) 

Since the linearized system of Eq. 3.14 is time varying, the controllability analysis 

involves to check whether the controllability matrix c, is nonsingular. However a 

simpler analysis can be performed by transforming the state tracking error, p, into the 

local or body frame coordinates, expressed by p� in Eq. 2.11, as 

Pk - 

CosOd Sill 6d 

-sinCos8d 
00 

0 
0 
1 

P (3.15) 

Next, similarity transformation is performed to change from global frame to the local 

frame coordinates (see appendix D for proof). Let T denote the transformation matrix, so 

using the similarity transformation, the system can be expressed as 

+ TAT ' )nR +( TB)ü (3.1 G) 

The similarity transformation for the system of Eq. 3.14 is given by Eq. 3.17. This 

transformation can also be verified using the program Similarity Transform. m 

(attached in Appendix E). 
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Pe = 

[o aJ, I 0 

-(Ur/ 0 ýd 

000 
Pk + 

rl 
0 
0 

0 
0 
1 

V 
w 

(3.17) 

When v,, and co,, are constant, the above linear system becomes time-invariant hence the 

controllability can be checked using the controllability matrix, C, 1,. The controllability 

matrix, C1,, is given by Eq. 3.18. This matrix can also be verified using the program 

Linear_Controlabi1ity. in (attached in Appendix B). 

Car = [B AB A2B]= 

rank(C,, )=3 

1000- Cod , v, r (t)d 

0 0- ýo<< vý 00 

010000 (3.18) 

From Eq. 3.18, C,,, has a rank of 3 provided that either v,, or w, is nonzero. Therefore, the 

conclusion is that the kinematic system of Eq. 3.2 can be locally stabilized around a 

reference trajectory by linear feedback. 

3.3 Observability 

A system is completely observable if the state vector can be determined in finite time 

using only the input, u(t) and/or output, o(t) of the system. Let p denote the state vector 

and o denote the output vector given as 

o=h(p) (3.19) 

Let LL h(p) denote the Lie derivative of the vector field f along h at point p, which is 

expressed as 

w 

L1/i(p) = Vfh( p) (3.20) 
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The observability map, (1)(p), for a system is expressed as 

d)(p) = 

h(p) 

Lfh(p) 

Lfh(p) 

ýLýf'h(P) 

witýl aP 

dh(p) 
dLfh(p) 

dL'`fh( p) 

LdL'f'h(p)] 

(3.21) 

The Jacobian of observability map is called the observability matrix and is denoted by 

q)(p) 
. 

For a nonlinear system to be observable, the observability matrix must be of 
p 

full rank. For the kinematic model of Eq. 3.2, the output can be chosen as 

o=h(p)=C. p= 
100 
010 

x 

l' 
9 

This results in the following observability map 

0 

cI)(n) = 6 

6 

h(p) 
LJh(p) 

L`Jh( p) 

Substituting the values, the observability map is written as 

nP(P) = 

x 

Y 

vcos0 

vsinO 

-vwsin 0 

vw cos 0 

(3.22) 

(3.23) 

(3.24) 
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The observability matrix can be computed as 

100 

010 
00 -vsill 

0 

00 vcosO 
00- vw cos fI 

00 wo sill 0 

(3.25) 

The observability matrix has full rank and is well defined for all values of 0. As long as 

v$0, this rank is preserved for all 0. Therefore the unicycle model for collaborative 

robotic system is observable. For the leader-follower formation, the output vector for the 

its' follower robot, using the SBC controller expressed by Eq. 2.25, can be chosen as 

o=C. p= 
010 

L0 () 1 001 
['f 

of 

From Eq. 3.26 [o,, o2] = [(p, f, Of]', the observability matrix can be written as 

=(U(nl= 

aa0 
al, l 

°' aýp, 
l 

°' a©I °' 

aaa 
a! °= a °' °' 7 rP, l a Of 

01 °' 
0 _. _ ,, 

al 
,l 

39, f aol 
°' 

aý ", aaa 
ar, f 
-0, aý, f 

°' ao, °' 
aaa.. 

ar, f 
°' 

ag, f 
°' 

ao f 
°' 

aaa °2 ° ar, f 
°- aý, f ao f= 

(3.26) 

(3.27) 
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The determinant of the observability matrix is expressed as 

det( d'(P)) _ 
ýýPrf 

=1 1011 + CI), ] P rf if 
(3.28) 

Therefore, if det(ä d)(p)) ý 0, the states of the follower robot are observable. Hence the 
p 

unicycle as well as the leader-follower model for collaborative nonholonomic robots is 

observable. 

3.4 Chained Form 

Chained forms are canonical model structures for the development of both open-loop and 

closed-loop control strategies for nonholonomic systems [30]. Canonical model 

structures can be categorized into three categories which are as follows. 

" Chained form 

" Power form 

" Caplygin form 

In case of collaborative nonholonomic robots modeled by Eq. 3.2, the above three forms 

are equivalent via a coordinate transformation [31]. The chained forms were first 

introduced in [32]. A two-input driftless control system having n order, can be expressed 

by (2, n) chained form as 

7' 
1=1 

z, =v, 
43=Z, V1 (3.29) 

7 _7 ,i �-i v, 
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where z,, z, are called the base variables and v,, v, are the generating inputs. The (2, n) 

chained form can be shown to be completely controllable using the Chow-Rashevski Lie 

algebra rank condition. In performing this calculation, all Lie Brackets above the order of 

n-2 are identically zero; this property of the system is called as nilpotency. The chained 
forms conversion for a system may not be unique. For the unicycle collaborative robot 

system modeled by Eq. 3.2, the following change of coordinates and inputs is introduced. 

=x 

=tan0 
j=y 

i(, = VI / cos 0 

u, =1V, cos`'0 

The chained form for the system is expressed as 

43 
=Z2vl 

(3.30) 

(3.31) 

The conversion to chained form using Eq. 3.30 is not unique. Another possibility for 

conversion to chained form is given by Eq. 3.32. 

ZI =0 

=. TcosO+ysin8 

z3 =_rsinB-ycos9 
ilI =Z3VI+V, 

11, = V, 

(3.32) 

The chained form will be further used in the design of feedback control strategies for 

collaborative robots. The chained forms are also useful in determining the flat outputs for 

the system. 
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3.5 Differential Flatness 

A nonlinear system is differentially flat if a set of variables, called flat outputs, can be 

found such that all the inputs, states and outputs of the system can be determined 

algebraically from them without integration. The algebraic expressions may involve the 

flat outputs and a finite number of its high order derivatives. The flat outputs are denoted 

by o, the states by z and inputs by u, such that 

-_ 
fý (0, ö, ö,... p[`I ) 

it = f, (o, o, o,..., oi, 1) (3.33) 

where r denotes a certain number of derivative, f, and f2 denote some algebraic functions. 

For a driflless system, flatness is equal to chained-form transfornmability. The flat outputs 

of the chained form are z,, z,,. For the collaborative robot chained form representation 

using Eq. 3.30, (, r, y) are the flat outputs. 

Differential flatness is useful in trajectory generation where it reduces the problem of 

trajectory generation to finding a trajectory of the flat outputs. Once the flat outputs are 

identified, the remaining states of the system as well as the inputs can be computed using 

algebraic transformations. 

3.6 Summary 

In this chapter, the control properties are analyzed for collaborative robots. The robots are 
linearly not controllable at a point, but nonlinearly controllable. The leader robot model is 

observable and the follower robot model using separation bearing and separation- 

separation formation is also observable. The leader robot model is transformed into 

chained forms and flat outputs which will be useful in generating the feedforward control 
inputs. In the next chapter, feedback controllers for trajectory tracking and posture 

stabilization are presented. The stability analysis for the feedback controllers is also 
discussed. 



CHAPTER 4 

FEEDBACK LINEARIZATION TECHNIQUES 

This chapter presents the feedback controllers for collaborative nonholonomic robots. 
Feedback controllers can be designed using cascaded system theory, stable tracking 

method based on linearization of error model, approximate linearization, nonlinear design 

and feedback linearization. The full state and input-output feedback linearization design 

techniques are discussed in detail for the leader and follower robots. Furthermore, the 

stability analysis of the feedback controllers is also discussed. Finally, the posture 

stabilization control strategies for the leader robot are presented. 

4.1 Mathematical Preliminaries 

The basic principle in designing feedback control strategies is to ensure the stability of 

the system. To recall, sonic basic concepts regarding stability are presented. 

4.1.1 Equilibrium Point 

A nonautonomous system is written as a function of time. Let p represent the state of 

a nonautonomous system and t represent the time, so a nonautonomous system can be 

expressed as 

P= f(ýIO (4.1) 

A point, p= p*, in the state space is an equilibrium point for the system, if it has the 

property that whenever the state of the system starts at p*, it will remain at p* for all 
future times. For the system of Eq. 4.1, the equilibrium points can be expressed as 

(p, t) =0 (4.2) 
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Furthermore, an equilibrium point is said to be isolated if there exists a6>0 such that 

for any other equilibrium point P,, ý*-p'l > cS. 

4.1.2 Types of Continuous Function 

A function, f: 91" -+ 91", is continuous between two points p, and P2' if given any 

arbitrary--, a constant 6>0 exists such that Eq. 4.3 is satisfied. 

Jý 11 Pl - P, <8ýf (Pt )- i(Pz ) «; AI Pz E , Ji, (4.3) 

A function is continuous on a set S, if it continuous at every point in S. The function 

is piece-wise continuous on S, if it is continuous on S, except for a finite number of 

points. The function is uniformly continuous on S, if given any arbitrarye, a constant 

O) >0 exists such that Eq. 4.3 holds. 

A continuous function, a: [0, a) -> [O, oo), to class K (a c K) if it is strictly 

increasing and a(0) =0 [30]. The function, a, belongs to the class K. If a=m and 

a(t) -aco ast -+ co. 

A continuous function, 13 : [0, a) x [0, oo) -* [0, cc), belongs to class KL (ß E KL) if 

for each fixed t, /3(s, t) belongs to class K with respect to t and if for each fixed t, 

/3(s, t) is decreasing with respect to s and 13(s, 1) 0 as s ce. 

4.1.3 Stability of Equilibrium Point 

The equilibrium point p* =0 is 

" stable if, for each -- > 0, there is S= S(E) >0 such that Eq. 4.4 is satisfied. 

P(t� ) I< ä=: > P(t )II < s; (4.4) 
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" uniformly stable if, for each c>0, there is 8= 8(s) > 0, independent of to, 

such that Eq. 4.4 is satisfied. 

" asymptotically stable at to, if it is stable and there is a positive constant 

c= c(t0) such that p(t) 0 as t -> ao for all 11 p(to) II < c. 

" globally asymptotically stable if it is stable and lim, ., p(l) =0 for all 

PO E ̀ W. 

" locally uniformly asymptotically stable if, there exist a function ßE KL and a 

positive constant r, such that for all t> t0 >0 and for all initial state 11 p(t,, ) 1I<r, 

Eq. 4.5 is satisfied. 

10t)ll <R( llP(t�)Il>t - to ) (4.5) 

" globally uniformly asymptotically stable if, Eq. 4.5 is satisfied with 

ßE KLr for any initial state p(to). 

0 locally exponentially stable if, Eq. 4.5 is satisfied with /J(s, t) = kte'' and 

k>0, y>0for P(", ) <S. 

" globally exponentially stable is Eq. 4.5 is satisfied with 13(s, t) = kte lS and 
k>0, y>0 for any initial state p(to). 

9 globally K-exponentially stable if a function with kEK and a constant 

y>0 exist such that for all (to, p(to) E 93+ x 91, Eq 4.6 is satisfied. 

p(1)11<_ k( p(r�) ), e ru-r�> (4.6) 
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4.1.4 Lyapunov Stability 

Let p=0 be the equilibrium point for p=f (p) and Dc 91' be the domain 

containing p=0. Let V: D -> 91 be a continuously differentiable function such 

that Eq. 4.7 holds, then p=0 is stable and V(p) is called a Lyapunov function 

[14], [30]. 

v(o)=0and V(P)>0in Dv{0}; 

V(P) 50 in D 
(4.7) 

In addition to Eq. 4.7, if Eq. 4.8 is also satisfied, then p=0 is asymptotically 

stable. 

V( p) <0 in D\{0} (4.8) 

For a nonautonomous system, n=f (p, t), assuming V: {0, co} xD-9 be a 

continuously differentiable function. The equilibrium point, p=0, is uniformly 

asymptotically stable if Eq. 4.9 is satisfied. 

k, (P)<_V(p, t)<_k, (P), 

V(P, t)= i+ aý. 
f(P, t)ý-k3(P), `dt>_0andb'pED 

P 

(4.9) 

where ki(p), k2(p) and k3(p) are continuous positive definite functions on D. If 

k3(p) = 0, then p=0 is uniformly stable. Furthermore, if k1(p)-º oo for all j[ptI-> co, 

then p=0 is globally uniformly asymptotically stable. 
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If the conditions in Eq. 4.9 are replaced as 

k, 11pll `' <- V (p, t) _< k, p ", 

V(p t)- 
av+avf(p, 

t): ý -ks at ap 
[I (4.10) 

nl 

for some positive constants k,, k2, k3 and q, then p=0 is exponentially stable. 

Furthermore, if the assumptions are satisfied for all pe 9V H, then p=0 is globally 

exponentially stable. 

4.2 Feedback Control Design Techniques 

In automatic control systems, feedback improves the system performance by completing 

the task even if external disturbances and initial errors are present. Hence the effect of 

unmodeled events at running time, such as occasional slipping of the wheels or erroneous 
initial localization, is minimized. Furthermore, feedback control strategies can be used to 

stabilize the system. There are various design techniques available for feedback control, 

some of which are stated as follows [33]. 

" Root locus method 

" PID method 

" Poles placement 

" Cascaded systems theory - can be applied to nonlinear system 

" Linearization of corresponding error model - can be applied to nonlinear system 

" Approximate linearization - applied to nonlinear system 

" Feedback linearization - applied to nonlinear system 

The design of nonlinear feedback control systems is a challenging task. A common 

practice is to linearize the system. A system can he linearized in the following ways. 
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4.2.1 Taylor Series Expansion 

This technique linearizes a nonlinear system around its nominal operating point, c, by 

expanding the nonlinearity using Taylor series. Mathematically, it can be expressed 

as transforming the following nonlinear system 

P= f(P, i() 

into a locally linearized system of the form 

(4.11) 

P=Ap+Bü (4.12) 

where !) and it are small deviations given as 

P(t) = P(t)-P, (t) 
ir(t)=iu(t)-u, (t) 

The coefficients A and B are calculated as 

(51.1 Yr 
ß- ýI. 

ý 
c? tr tic 

(4.13) 

(4.14) 

This technique has some limitations such as 

" Retaining only the first order term and discarding the higher order terms may 

result in a highly inaccurate linearized system. 

" The resulting linearized system may not be uncontrollable. 

Hence, this technique is not suitable for designing feedback control strategies for a 

nonlinear system. 
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4.2.2 Feedback Linearization 

Feedback linearization is the procedure of algebraically transforming a nonlinear 

system into a (fully or partly) linear one, so that linear control techniques can be 

applied. It differs entirely from conventional linearization, such as Jacobian 

linearization, in that feedback linearization is achieved using exact state 

transformations and feedback, rather than by linear approximations of the dynamics. 

Feedback linearized control strategies are designed based on state and/or input. As the 

system modeled by Eq. 2.15 is having two inputs, therefore, feedback linearized 

strategies for Multi Input Multi Output systems, MIMO, are considered. There are 

two techniques for feedback linearization of a MIMO nonlinear system which are as 
follows [14], [30]. 

" Full State Feedback Linearization 

In full state feedback transformation, the whole set of the system equations 

become linear. This means that the state equations are completely linearized. 

" Input-output Feedback Linearization 

In input-output feedback transformation, the input and output response of the 

close loop system is linear. For MIMO systems, this transformation results in the 

decoupling of input and output vectors. This means that the input output map is 

linearized, while the state equation may only be partially linearized. 

To design controllers either using full state or input output linearization, static and 
dynamic feedback can be used. For the leader robot, the unicycle model would be 

used to design feedback control strategies. For the follower robots, the separation 
bearing and separation-separation formation control models would be feedback 

linearized. 
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4.3 Feedback Controller using Approximate Linearization 

Let [xd, yd, Od]'' represent the desired trajectory for the leader robot. The desired inputs are 
denoted by [Vd, wd]'. The control objective of the feedback controller is to drive the errors 
[xd- x, yd- y, Od - Of" to zero. To recall, the unicycle model for the leader robot is shown 
in Figure 4.1. The kinematic equations for the unicycle model of the leader robot are 

expressed as 

C 
cos 90 

y= sinB v+ 0w 
©01 

The error, e, is expressed in the moving frame, (XR, Y R), as 

e= 

ci 

el , 
G 3 

cos 0 sin 00x,, -x 

-sinB cosB 0 y, -y 
001 

_O�-o- 

(4.15) 

(4.16) 

Figure 4.1: Leader robot positioning 
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Introducing a change of inputs as in [17], [25] 

u, =-v+v, cos e3 
li, = (v,, - (0 

(4.17) 

Differentiating Eq. 4.16 and combining with Eq. 4.17, the error dynamics are expressed 

as 

0 rv 0 
0 0e+ 

001 

0 
sin e3 

0 

Vd + 

10 
0 01 ["1 «, 01 IL ` 

(4.18) 

Linearizing Eq. 4.18 about the equilibrium point, e=0 and u=0, the following is 

obtained 

e=- ýý<r (t )0 1', i ýt) e+00 
ýý' 

uý 00101 
(4.9) 

Eq. 4.19 represents a time varying system. Assuming Vd(t) _v and (oa(t) = co, Eq. 4.19 

becomes a linear time invariant system. The feedback law for the system is expressed as 

it, _ -kie, 

U. _ -k, sign(v, r )e, - k3e3 
(4.20) 

where k,, k, and k3 are feedback coefficients. The desired close-loop characteristic 

equation is 

o COd (1) oI I1 oI 

(A + 2ý`a)(R'- + 2,; aA +a2), ý, a>0 (4.21) 
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Comparing Eq. 4.20 with the desired characteristic equation, the feedback gains are 

obtained as 

k, =k 3=2,; ä = 2; w5l (t )+ bv5(t ) 

k, =bv, r(t) 
(4.22) 

Substituting back to obtain the original control inputs, this design leads to the following 

nonlinear time-varying controller. 

v=v,, cos(0,, -0)+ k, [cos0(x,, -x)+ sin 0(y,, - y)] 
(0 = w,, + k, sign(i�, )[cos 0(y�, - ), ) - sin 0(x,, -x)]+ k3 (0,, - 0) 

(4.23) 

For the control law of Eq. 4.23, even if the eigenvalues are constant and with negative 

real part, asymptotic stability is not guaranteed because the system is still time-varying. 

The leader robot kinematics model is shown in Figure 4.2. The approximate linearized 

feedback controller is shown in Figure 4.3. The leader robot kinematic model connected 

to the approximate linearized feedback controller is shown in Figure 4.4. 
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Figure 4.2: Leader robot kinematic model 
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Figure 4.4: Leader robot using approximate linearization feedback controller 

4.4 Feedback Controller using Cascaded Systems Theory 

This controller was first proposed by [16]. The control law is given as 

V= 1'rt +C, e, -C3(O� e� C, > 0, c3 > -1 

(u = (v<< + c, e3 , 
c, >0 

Eifer D6 Iay 

(4.24) 

The control law of Eq. 4.24 is K-exponentially stable if 1'1 is bounded and w1 is 

persistently exciting. A small modification to this law was also proposed, which is 

v=v,, +c, e, - c, (ode, Cl- > 0, c3 > -1 
«=o, +c, sine,, c, >0 

(4.25) 

The control law of Eq. 4.25 results in local uniform exponential stable system if I'd is 

bounded and cv, j is persistently exciting. The feedback controller using cascaded systems 

theory is shown in Figure 4.5. 
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Figure 4.5: Feedback controller using cascaded systems theory 

4.5 Feedback Controller using Linearization of Error Model 

This controller was first proposed by [17]. The control law is given as 

v=V cose3 +Kre,, K., >0 

co=o, +vd (K, e, +K0sine3), K,. >0, K© >0 

+O 

(4.26) 

The stability analysis of the control law expressed in 4.26 states that if Vd > 0, then the 

system is locally asymptotically stable. Furthermore, if v, 1 and Wd are both continuous, V(j, 

ood, K, K0 are all bounded and if i,,, and d'd are both sufficiently small, then the system is 

locally uniformly asymptotically stable. The feedback controller using linearization of 

corresponding error model is shown in Figure 4.6. 
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Figure 4.6: Feedback controller using linearization of error model 

4.6 Feedback Controller using Nonlinear Design 

oc-L) 

The nonlinear design for feedback controller was first presented in [19]. The nonlinear 

feedback control strategy is expressed as follows. 

ui = -ý` i 
(vd (t ), (o, r (1))e, 

sin e( Il, _ -k417 d(l) 
3 e, - 

%{3 ýhd (l ý, CDd lt 
))e3 

e3 

(4.27) 

where k4 is a positive constant and k, and k3 are continuous functions strictly positive in 

`3x01- (0,0). The gains k, and k, are the same as Eq. 4.21, whereas k4 is expressed as 

k4 =b, b>0 (4.2 8) 
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Using the original control inputs, the control law is given by Eq. 4.29. 

v=v,, cos(0. - 0) + k, (v,, (1), w, (f)) [cos 0(x,, - x) + sin 0(y,, - y)] 

w= w,, + k4 vr 
siný0,, B- 0) 

[cos 0(Y,, - y) - sin 0(x,, - x)] + 
r 

k3 (v,, 
, w,, )(0, - 0). 

(4.29) 

The nonlinear control strategy globally asymptotically stabilizes the origin e=0 which is 

demonstrated using Lyapunov stability theory. Assume the following Lyapunov function. 

)+ ýC', 2 + e2 2 e, 

The time derivative of Eq. 4.30 is expressed as 

(4.30) 

Iý=-k, kae; +k, eý <0 (4.31) 

Assuming Ile(t)II is bounded, V(t) is uniformly continuous and 17(t) tends to some limit 

value. Using Barbalat lemma, i'(t) tends to zero. Thus if I'd and COd are bounded with 

bounded derivative, and that vd(t) -/0 or wd(t) -0 when t -> oo, the control law of Eq. 

4.27 globally asymptotically stabilizes the origin e=0 [19]. The feedback controller 

using nonlinear design is shown in Figure 4.7. 

4.7 Full State Feedback Linearization via Static Feedback 

The necessary condition for a system to be full state feedback linearized via static 
feedback is that the distribution, A, generated by system vector fields must be involutive 

[30]. Applying this condition to the leader robot modeled by Eq. 4.15, the full state 
feedback linearization cannot be achieved using static (time invariant) feedback. The 

reason for this is that A for the system is not involutive as explained in Section 2.4. 
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Figure 4.7: Feedback controller using nonlinear design 

4.8 Input-output Feedback Linearization via Static Feedback 

ý 

ýal 

If the static feedback design for full state feedback fails, input-output linearization may 

be possible. The main idea of input-output linearization is to transform m equations via 

feedback into simple decoupled integrators, where in represents the number of inputs. 

However the choice of outputs which are linearized is not unique. For the leader robot, 

the outputs are chosen as z= [z1, z2]', which can be expressed as 

xý 

rzi 
_x (4.32) 

ý, y 
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The linearization algorithm begins by computing the derivative of the output as 

rcos 00 [1'1 
= A(0)u 

sin 00 r0 
(4.33) 

where A(O) is the decoupling matrix. Since A(O) is singular, static feedback fails to 

achieve input-output linearization. However a possible way is to redefine the system 

outputs at point D, as shown in Figure 4.1. The system output is expressed as 

z =x+dcos© 
y+dsin© 

Differentiating Eq. 4.34, the following is obtained. 

[cosO- b sin 0v 
== A(O)u 

sin 0b cos 0o 

(4.34) 

(4.35) 

Since det(A(O)) =b#0, let ±=r, where r is an auxiliary input. Solving for the inputs, 

the following is obtained 

u=A -'(©)r (4.36) 

In terms of the transformed coordinates (z1, z,, 0), the close-loop system becomes 

Zt = jl 

/i cos O- T, sin 0 
0= 

1 

(4.37) 

which is input-output linearized and decoupled. 
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The control law for the inputs is given as 

jr = Zdi + kn, (-7di - z1), kP, > 0, i=1,2 (4.38) 

The control law of Eq. 4.38 achieves exponential convergence of the output tracking 

error to zero [7], [14], [30]. However the following conclusions can be made. 

"1f the system outputs are defined as in Eq. 4.34, there are two options for 

generating the reference input trajectory. The first option is to directly plan a 

cartesian motion to be executed by point D. The second option is that the 

trajectory planner generates a desired motion for flat outputs [x, (t), yd(t)]1, 

associated with the inputs, [1'1, w 1]'. If the second case is considered, the trajectory 

needs to be converted into a reference motion for the point D. 

"A complete analysis would require the study of the stability of the time-varying 

system, modeled by Eq. 4.37, with the input r given by Eq. 4.38. 

" The output choice, Eq. 4.34, is not the only one leading to input output 

linearization and decoupling static feedback. Another possible choice for the 

output variables can be the chained form transformations of Eq. 3.32. 

4.9 Full State Feedback Linearization via Dynamic Feedback 

In order to design a trajectory tracking controller directly for the cartesian coordinates 
(x, y), dynamic extension is required to overcome the singularity of the decoupling matrix 

of Eq. 4.32. The dynamic state feedback compensator is given as 

v= a(q, + h(g, ý)r 
(4.39) 

c(g> +d (q, ý)º" 
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wherea(t) E 91"is the compensator state vector of dimensions v, and r(t) E 9l" is the 

auxiliary input. The condition for choosing fi(t) and r(t) are such that the close-loop 

system of Eq. 2.4 and Eq. 4.39 are equivalent, under a state transformation z= T(q, c), to 

a linear controllable system. For the nonholonomic leader robot, the linearization process 

involves the following procedure. 

Initially, the system output is defined. To this output, a desired behavior is assigned such 

as track a trajectory. This output is successively differentiated until the system inputs 

appear explicitly in a nonsingular way. If in a step involving differentiation of system 

outputs, the decoupling matrix of the system is singular (which means that some of the 

inputs are still not appearing), integrators are added on some of the inputs and the process 

of differentiation is continued. This operation is known as dynamic extension. The 

dynamic compensator has the new auxiliary input, r, as its input. The process of 
differentiation is continued until at some point, the system is invertible. The number of 

successive addition of integrators gives dimension of the state c of the dynamic 

compensator. For the system modeled by Eq. 4.15, the output is defined as 

COS oo l[1, 
}' 

ýG 
sin 00w 

(4.40) 

From Eq. 4.40, it can be observed that only v affects while cv cannot be recovered. In 

order to proceed, an integrator, S, is added on the linear velocity input v, as 

S=v, ý=a (4.41) 

where a is the new input representing the linear acceleration of the leader robot. In terms 

of c, Eq. 4.40 can be expressed as 

cos 0 ol cos 0 
sill o0 CU 

=r 
[sin 

0 (4.42) 
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Differentiating Eq. 4.41, the following is obtained 

cos0 -sin 0 
ýr0 1ý sin 0+~ cos 0 

Substituting the value of 5 from Eq. 4.41 and 0= wo, the following is obtained 

cos 0- sin 0 cos 0- sin a 
y-a sill 0+ cos© 

ýý 
sin0 c cos Ba 

(4.43) 

(4.44) 

From Eq. 4.44, it can be observed that the decoupling matrix multiplied with the 

modified input (a, (u) is nonsingular provided that j #- 0. 

Let --'= r, so the inputs can be obtained as 

[a cos 0-ý sin 0 ]-' r, [cos O sin 0 ý; 
w sill ýcos0 rz -sin0/ý cos0/ý rz 

(4.45) 

Substituting the values for original inputs, the resulting dynamic compensator and the 

inputs are 

v=ý 

r, cos0-1-1 sill 0 
w= 

r, cos(I+r, sin© 

(4.46) 

As one integrator, ý, was added, hence the order of the dynamic compensator is one. 
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The new coordinates can be written as 

Z, =X 

Z2 =y 
Z3 ="=ý COS O 

z4 =y=ýsinO 

(4.47) 

The extended system of Eq. 4.47 is fully linearized in a controllable form. The decoupled 

chain of input output integrators can be written as 

Z, = 1j 

Z2 = /2 
(4.48) 

The dynamic compensator of Eq. 4.46 has a potential singularity when S=v=0. 

Assuming that the robot must follow a smooth output trajectory [x', (t), y<1(t)]7, which is 

persistent and the linear velocity, v, does not go to zero. The globally exponentially 

stabilizing feedback law for the trajectory is given as 

rI -ýd(1)+k,,, (xd(t)-x)+kdlCZd(t)-'ý) 
r_ =j'd(t)+k o2 

(Yd(1)-1')+kd2 (1'd(t)-; 
(4.49) 

with PD gains chosen as k,,, > 0, kdi > 0, for i=1,2. The full state feedback linearized 

controller is shown in Figure 4.8. The values of and y can be computed from Eq. 4.47 

as a function of the robot state and the compensator state, S. The values of the feedback 

gains are chosen such that the polynomial expressed by Eq. 4.50 is Hurwitz. 

A` +kd; A+kP;, i=1,2 (4.50) 
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Figure 4.8: Full state linearized via dynamic feedback controller 

4.10 Posture Stabilization 

In this section, the point to point motion for the collaborative robots is discussed. The 

objective is to reach a final desired configuration starting from an initial point, without 

the need to plan a trajectory. As stated in Section 3.1, the collaborative robot system is 

not point stabilizable at a point by smooth continuous feedback. Therefore, the available 

techniques are to use smooth time-varying feedback, non smooth time-varying feedback 

and design based on polar coordinates. 

4.10.1 Smooth Time-varying Feedback 

Using the nonlinear feedback control design in Section 4.6, asymptotic stabilization 

of the state tracking error can be achieved provided that v<, (t) and cod(t) do not both 

vanish to zero in finite time. The smooth tinge-varying feedback controller for posture 

stabilization is similar to the nonlinear feedback controller and is expressed as 

itI = -k, (Vd (t), (od (t))e,, 
/ 112 =-k2Vd\l) sin e, e, - 

k3 (vi, (t), cod(t))e3 
e3 

0, 

(4.51) 
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where k,, k, and k, are positive constants. For generating the control inputs, Eq. 4.29 

can be used. The control law of Eq. 4.51 globally asymptotically stabilizes the origin 

e=0 as discussed in section 4.6. 

4.10.2 Design based on Polar Coordinates 

This control design is based on the change of coordinates. Let yr be the distance of the 

reference point (x, y) of the leader robot from the goal, It be the angle of the pointing 

vector to the goal with respect to the robot main axis and 0 be the angle of the same 

pointing vector with respect to the x-axis of the robot. The leader robot expressed in 

the polar coordinates is shown in figure 4.9. 

The state transformation is given as 

ý_ x2+y2 
, c=tan'(ylx)-O+z 

0 =p+0 

y<; 

(4.52) 

_l 
ý; 

Figure 4.9: Leader robot positioning in polar coordinates 
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Differentiating Eq. 4.52, the transformed kinematic equations can be written as 

-1' COS 
, 
CI 

Slllp 
f1 = V-(0 

V/ 

sin fr 

Vi 

(4.53) 

The control law for posture stabilization based on the polar coordinates was proposed 

in [24]. The control law is given by Eq. 4.54 

v=k, yrcos fr 

kp +k, Sill /I COS /1 (�u+k3ý) 
fI 

(4.54) 

The feedback law of Eq 4.54 globally asymptotically stabilizes the origin [24], [31]. 

The posture stabilization controller of Eq. 4.54 is shown in Figure 4.10. 
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Figure 4.10: Posture stabilization controller based on polar coordinates 
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4.10.2 Dynamic Feedback Linearized Controller 

The dynamic feedback linearized controller can be extended to address the issue of 

posture stabilization. The feedback control law is given as in [25] 

/'i = -kPl 
(x) 

- 
kJl ('r) 

rz = -kl,, (Y) - kd 
2 ()') 

(4.55) 

where k,,,, k p2, k,,,, k,, are the feedback gains. The feedback law of Eq. 4.55 yields 

exponential convergence from any initial configuration to the origin [25]. The 

dynamic feedback controller for posture stabilization is shown in Figure 4.11. 

i 
s, npneta) 

r---E 

11'GO; tnf; J) 

2'sm(ineda) 

Zeta 

+1. 

coAtftýti) 

0 

2' coqtn it, ) 

iLJ 
ý, "ý, ýctý. ý. ý 

O4 

11 nn(tnel1 ) ¢'co(tn eU) 

4 

Figure 4.11: Posture stabilization controller based on dynamic feedback 
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4.11 Feedback Linearized Control Strategies for Follower Robots 

In this section, feedback linearized control strategies for the follower robots are 

presented. The feedback laws are presented for different formation controllers as follows. 

4.11.1 Feedback Strategy for Separation Bearing Controller 

The kinematic model for the follower robot using the separation bearing controller 

was expressed in Eq. 2.25 and Eq. 2.26. To recall, the kinematic model in compact 
form is given as 

-lf = 
GSB ("If j)ll 

f+1 4[3 (z f )u, 
Bf =CUf 

where z 1f = (1, f, (p, f), uf= (vf, (of), u, = (v, , col) and 

cosy cl sin y 

-sin)/ d cos y 
I, f 1, f 

FSB - COS pfp 

-1 Sill (plf/IIf 

(4.56) 

(4.57) 

The input-output linearization technique begins by defining the output as z= (1,,; ý, ý). 
Differentiating the output, Eq. 4.58 is obtained. 

If = Gsß (zrl 
ý y)tt J+ Fsts (ztl )u, = A(zýf )u 

j+B (4.58) 

The determinant of the decoupling matrix, A(z f), is d /I #- 0. 
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Since A(zf) is nonsingular, the control velocities for the follower robot can be 

expressed as 

tl = Gsý; (PsEi -1 srs«r 
) (4.59) 

whereps13 is an auxiliary control input given as 

Psi3 = K'il = 
k, 0 l; f - ýr1 

0 kz ý9rf 
(4.60) 

with ki , k2 >0 as the controller gains. The control inputs for the follower robot are 

expressed by Eq. 4.61. 

of =p- dwof tang 

Of = 
cosy {kal f (cp if - ýprf) - yr sin ýof +l fwo, + psin y} d 

where 

P= 
k,, (IJ -I, J)+v, cos(OJ 

cosy 
Y=V, f+0, -Of 

(4.61) 

The stability of the controller expressed by Eq. 4.61 was presented in [21], [22]. If the 
linear velocity of the leader robot is lower bounded i. e. v, > 0, angular velocity is 

bounded i. e. w, < and the initial orientation is such that 1 01(0) - Of (0)I < 7r, then 

the system of Eq. 4.61 is stable and the output error converges to zero exponentially. 
The input-output linearized feedback strategy for the follower robot using separation 
bearing controller is shown in Figure 4.12. 
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Figure 4.12: Input-output linearized feedback strategy for follower robot using 

separation bearing formation 

4.11.2 Feedback Strategy for Separation-separation Controller 

The kinematic model for the follower robot using the separation-separation controller 

was expressed using Eq. 2.30. Using input-output linearization techniques the control 

law for the follower robot is given as 

Vf = 
k, (1i`f -1, f)+v" 

COS(Piý -(I(ýf Sill 71 

cosy, 
k, (1; f-/ )cos y, + v, Cos ý91 t cos Y2 

dsin(y, -Y2) 
v, cosgp, t cosy, -k, (I" -I, t)cosy, 

d sin(y, -72) 
where 

+ 

(4.62) 

Yr=ýPrj+O; -Of, i=1,2 



66 

The stability analysis of the controller expressed in Eq. 4.62 was presented in [21], 

[22]. Assuming the linear velocity of the leader robot I is lower bounded i. e. iv, > 0, 

angular velocity is bounded i. e. w1 < (Omax, and the initial relative orientation is such 

that 101 (0) - 0; (0)I <n with i=2, f If the control input u, f is obtained using feedback 

linearization, then the system of Eq. 4.62 is stable and the output converges 

exponentially to the desired value Z(,. The input-output linearized feedback strategy 

for the follower robot using separation-separation controller is shown in Figure 4.13. 
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Figure 4.13: Input-output linearized feedback strategy for follower robot using 

separation-separation formation 

ºO N 

4.12 Summary 

In this chapter, feedback controllers for the leader and follower robots were presented. 
The full state and input-output feedback linearization techniques were applied to the 
leader and follower models. The stability analysis of the feedback controllers was also 
discussed. The posture stabilization controllers for the leader robot were also presented. 
In the next chapter, these feedback controllers are analyze and simulated for a different 

set of trajectories. 



CHAPTER 5 

SIMULATION RESULTS 

This chapter presents the simulation results for the different feedback control strategies 

applied to the leader-follower formation. The feedforward input command controller for 

the leader robot is derived. A framework for the collaborative robots is presented and 

modeled using MATLAB/Sinuilink. The framework consists of feedforward and 

feedback controllers. The feedback linearized and the posture stabilization controllers are 

simulated for a given set of trajectories. From the simulation results, it is observed that 

the dynamic feedback linearized control strategy for the leader robot, and input-output 

linearized feedback strategy for the follower robots minimize the error more efficiently 

than other strategies for the given trajectories. 

5.1 Feedforward Command Controller 

Assuming that the leader robot follows a desired cartesian trajectory [x<<(t), y1, (t)]' with 

t c: [0, T]. As stated in section 3.5, using the flat outputs for the system, the remaining 

states as well as the control inputs can be computed by algebraic transformations. The flat 

outputs for the leader robot model are [x(t), y(t)]'. Knowing the desired flat outputs, O(( 

can be calculated as 

Bj = atan2 ( i'ý, , xe, ) (5.1) 

where atan2 is the fourth-quadrant inverse tangent and is undefined only if both 

arguments are zero. Differentiating Eq. 2.15 with respect to time, the feedforward control 
inputs are computed as 

dýt)=± týr(t)+l'd(t) 

ýýt(t)= 
(t)'ýý(t)-. V21(t) 

(t ) x41 ýt )+ Yd 

(5.2) 

(5.3) 
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The sign for 1ý, 1(t) will determine the forward or backward motion of the robots. Eq. 5.3 is 

not defined when V, f(t) is equal to zero. The feedforward command controller is modeled 

using Simulink as is shown in Figure 5.1. 
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Figure 5.1: Feed forward command controller for the leader robot 

5.2 Framework for Collaborative Robots 

The simulation testbed is implemented using MATLAB/Simulink. The Bluetooth USB 

dongles are configured to form the piconet. Each dongle is connected to a computer. A 

MATLAB/Simulink session runs on each computer. Each MATLAB session models the 

leader-follower formation for the leader and follower robots. The master robot in the 

piconet acts as the leader and the slaves act as follower robots. The framework for the 

leader and follower robots is shown in Figure 5.2 and 5.3, respectively. 
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Figure 5.2: Framework for the leader robot 
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Figure 5.3: Framework for the follower robot 

For a desired and feasible goal trajectory, [x, I(t), yd(t)]', the feedfonvard command 

controller generates the feedforward control inputs, [I'd, (OA]T, for the leader robot. Using 

the leader-follower strategy, the leader robot transmits the control inputs to the follower 

robots. The control inputs are transmitted using the Bluctooth piconet. The follower 

robots receive the leader robot inputs and derive their own control inputs, [v1, wß]1, using 

the leader-follower formation control. The control inputs for both the leader and follower 

robots are fed into the feedback control law. The feedback control strategy generates the 

actual inputs based on the feedforward inputs and feedback states of the robots. 

A feasible trajectory must satisfy the nonholonomic constraint for the collaborative 

robots. It means that the state 0 and the inputs can be recovered from the trajectory. A 

feasible trajectory must be twice differentiable in order to generate the control inputs. 

Figure 5.4 show examples of non-feasible trajectory for the nonholonomic robots. 
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Figure 5.4: Non-feasible trajectories for nonholonornic robots 
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5.3 Simulation Results for the Leader Robot 

Using the leader-follower formation for collaborative robots, the following different 

trajectories were considered for the leader robot. 

5.3.1 Test 1 (Eight Shaped Trajectory) 

In the first test, the desired trajectory was defined as follows. 

x<, (t) =10 sin( t1 20) , v, (t) = 10sin( t 140) (5.4) 

The desired trajectory of Eq. 5.4 begins at the origin (0,0) and completes a full cycle 

when T= 27r(40) 251.3sec. This trajectory is shown in Figure 5.5. The linear and 

angular velocities inputs for the leader robot are shown in Figure 5.6 and 5.7, 

respectively. The error norm for the actual trajectory using approximate linearized 

controller, nonlinear controller, cascaded systems controller, stable tracking controller 

and full state dynamic feedback linearized controller are shown in Figure 5.8,5.9, 

5.10,5.11 and 5.12, respectively. The actual trajectory using dynamic feedback and 

nonlinear controller is shown in Figure 5.13. The values for different parameters in 

the feedback controllers are listed in Table 5.1. The error statistics for the given 

trajectory are summarized in Table 5.2. 

Table 5.1: Parameters values for different feedback controllers 

Controllers Parameters values 
Feedforward v, 40)= 0.0 125 nilsec 
Approximate linearized feedback C= 0.5, b=2 

Nonlinear feedback 0.5, b=2 

Cascaded systems feedback c, = 216.9, c2 = 1.355 and 

C3=-0.414 
Stable tracking Kr = 10, K,. = 0.0064 and Ku = 0.16 

Dynamic linearized feedback k, 1, = k, r =0.7, kk, = kp2 =1, ((0)=v(0) 
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Figure 5.11: Norm of error for the trajectory of test 1 using stable tracking controller 
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Figure 5.13: Actual trajectory by the leader robot for test 1 using full state linearized 

via dynamic feedback and nonlinear controller 

Table 5.2: Error statistics using different feedback controllers for test I 

Statistical parameter Mean (m) Standard Variance (m) 

Deviation (m) 

Approximate linearized 0.1622 0.7746 0.6001 

Nonlinear feedback 0.1630 0.7710 0.5945 

Cascaded systems 0.5154 0.6758 0.4568 

controller 

Stable tracking 3.3460 2.9895 8.9369 

controller 
Full state linearized via 0.0192 0.0410 0.00017 

dynamic feedback 
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5.3.2 Test 2 (Straight Line Trajectory) 

In the second test, the desired trajectory was defined as follows. 

Xd(1)=0, yd(1)=1 (5.5) 

The desired trajectory of Eq. 5.5 begins at the origin (0,0) and is a straight line 

parallel to Y-axis. This trajectory is shown for T= 500 sec in Figure 5.14. The norm 

of the errors for the actual trajectory by the leader robot using approximate linearized 

controller, nonlinear controller, cascaded systems controller, stable tracking controller 

and full state linearized via dynamic feedback controller is shown in Figure 5.15,5.16, 

5.17,5.18 and 5.19, respectively. The same values of Table 5.1 for the parameters of 

the feedback controllers were used. 
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Figure 5.14: Desired trajectory for test 2 
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controller 
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Figure 5.18: Norm of error for the trajectory of test 2 using stable tracking controller 
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Figure 5.19: Norm of error for the trajectory of test 2 using full state linearized via 
dynamic feedback controller 

Table 5.3 summarizes the error statistics for the given trajectory using different 

feedback controllers. 

Table 5.3: Error statistics using different feedback controllers for test 2 

Statistical parameter Mean (m) Standard Variance (m) 

Deviation (m) 

Approximate linearized 0.0222 0.1650 0.0272 

Nonlinear feedback 0.0197 0.1558 0.0243 

Cascaded systems 0.0460 0.0710 0.0050 

controller 
Stable tracking 0.2894 0.5222 0.2726 

controller 

Full state linearized via 0.0058 0.0498 0.0025 

dynamic feedback 
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5.3.3 Test 3 (Sinusoid Trajectory) 

In the third test, the desired trajectory was defined as follows. 

. CJ (r) =t , yd (1) =1 Osin(r) (5.6) 

The desired trajectory of Ey. 5.6 begins at the origin (0,0) and is a sinusoidal signal. 

This trajectory is shown in for T= 1000 sec in Figure 5.20. The same values of Table 

5.1 for the parameters of the feedback controllers were used. Table 5.4 summarizes 

the error statistics for the given trajectory using different feedback controllers. The 

actual trajectory using full state linearized via dynamic feedback linearized controller 

is shown in Figure 5.21. 
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Figure 5.20: Desired trajectory for test 3 
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Table 5.4: Error statistics using different feedback controllers for test 3 

Statistical parameter Mean (m) Standard Variance (m) 

Deviation (m) 

Approximate linearized 0.2808 0.2619 0.0686 

Nonlinear feedback 0.3387 0.4052 0.1642 

Cascaded systems 0.6908 0.6538 0.4274 

controller 

Stable tracking 1.0406 0.8041 0.6465 

controller 
Full state linearized via 0.2265 0.6846 0.4687 

dynamic feedback 
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Figure 5.21: Desired and actual trajectory using full state linearized via dynamic 

feedback controller for test 3 
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5.3.4 Test 4 (Circular Shaped Trajectory) 

In the fourth test, the desired trajectory was defined as follows. 

x,, (t)= 10cos( t1 20) , y, (t) = 10sin( t/ 20) (5.7) 

The desired trajectory of Eq. 5.7 begins at the origin (10,0) and completes a full 

cycle when T= 27r(20) 125.67 sec. The leader robot is assumed to be at the origin 

(0,0). The desired trajectory and the actual trajectory for the leader robot using 

cascaded systems controller is shown in Figure 5.22. The actual trajectory using 

approximate linearized controller and controller based on Lyapunov function, 

dynamic feedback controller and nonlinear controller is shown in Figure 5.23 and 

5.24, respectively. Table 5.5 summarizes the error statistics for the given trajectory 

using different feedback controllers. 

Table 5.5: Error statistics using different feedback controllers for test 4 

Statistical parameter Mean (m) Standard Variance (m) 

Deviation (m) 

Approximate linearized 0.9627 2.4787 6.1438 

Nonlinear feedback 1.3260 2.8172 7.9112 

Cascaded systems 9.7688 0.7949 0.6319 

controller 

Stable tracking 11.3544 1.3286 1.7651 

controller 

Full state linearized via 1.0957 2.8231 7.9700 

dynamic feedback 
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Figure 5.24: Actual trajectory using nonlinear and full state linearized via dynamic 

feedback controller for test 4 

5.4 Discussion of Itesulls for the Leader Robot 

Bascil on these simulation results for the leader robot, it is observed that the full state 

linearücd via dynamic feedback controller minimizes the mean of error more rapidly for 

the given trajectories. The cascaded systems and stable tracking feedback controllers fail 

to track the correct trajectory, when the robot and trajectory starting position are not the 

saint. This is observed during test 4 in Figure 5.22 and 5.23. 

The reason fir failure to track the correct trajectory using cascaded systems controller is 

that one of the conditions lür stability using cascaded systems controller is that cw, d should 
he persistently exciting. As in trajectory 4, ru, 1 is not persistently exciting, so the 

controller can not correctly track the desired trajectory. Using the stable tracking 
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controller haled on linearization of' corresponding error model, the system is stable 

I»rovvided w, is sufficiently small, which is not the case here. 't'herefore, the cascaded 

systems controller and stable tracking controller fail to track the desired trajectory of test 

4. 

The full state linearixcd via dynamic feedback controller minimizes the error more 

rapidly if the trajectory is executed liar a long time as observed in test 2 and 3. The effect 

of changes in the 1, Ccdback gains and parameters values is shown in Table 5.6. 

Table 5.0: 1: 11cct of changing gains and parameters in feedback controllers 

Feedback controllcl. 

Alihroxinratc Iincarir. cd 

Nunlinc; u IMIhack 

Cascaded systellis 

cUI1ttUIlc1. 

Stable track ing 

cuntrullrl. 

Parameter change 

Increase C 

Increase h 

Increase 

Increase 1) 

Increase cl 

Increase c2 

Increase c, 

Increase K, 

Increase K,. 

Increase K, 

Effect of change on 

mean of error 

Decreases 

Decreases 

I)ccrcascs 

Decreases 

Decreases 

Decreases 

Increases 

Oscillates 

Increases 

Decreases 

Full state Iincariied via 

dynamic fcrdhark 

Increase k,,, 

Increase k,,: 

Increase k,,, till certain 

value 

Increase k,, 2 

Increases 

Decreases 

Increases, then 

oscillates 

Decreases 
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For approximate Iincarix(A controller, let t he denoted by zeta. The effect of changing 
the value of. eta and the parameter h are shown in Figure 5.25 and 5.26, respectively. 
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For nonlinear controller, let he denoted by zeta. The effect of changing the values of 

eta and the parameter h are shown in Figure 5.27 and 5.28, respectively. 
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For cascaded systcros controller, the effects of changing the values of cl, c2 and c., on the 

mean uferror arc shown in Figure 5.29,5.30 and 5.31, respectively. 
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I. king the stable tracking controller, the effects of changing the values of K, K,. and Ko on 

the mean of error are shown in Figure 5.32,5.33 and 5.34, respectively. 
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I using the full state linearized via dynamic feedback controller, the effects of changing 

the values of k,, 1, k,,; , k,, 1 and are shown in Figure 5.35,5.36 5.37 and 5.38, 

respectively. 
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Figure 5.35: I: ffcct of k,, 1 on mean of error using full state linearized via dynamic 

feedback controller 
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5.5 SintuI'll ion Rcsulis for the I ollo%%cr Robots 

5.5.1 Separation Rearing Controller 

Using the scpaiation bearing controller, the following parameters were considered. 

u 
° 
u 

k, k, 1 

ý/ I 

(5.8) 

The trajectory of test I (eight shaped) and test 4 (circular shaped) were used as the 
desired reference trajectory for the leader robot. The full state dynamic feedback 

controller was used by the leader robot. The actual trajectory for the leader-follower 

f irmalion using test I and 4 liar separation bearing controller is shown in Figure 5.39 

and 5.40. respectively. The separation distance and bearing angle for the follower 

rohol is shown in Figure 5.41 and 5.42, respectively. 
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Fi . isrc 5.39: Aciual Irtjcctory using separation hearing controller for tost I 
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Figure 5.40: Actual trajectory using separation bearing controller for test 4 
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controller 
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Figure 5.42: Separation angle for the follower robot using separation bearing 

controller 

In another set ol'simulation, the separation bearing angle was changed as follows. 

y'ri 713 1ort <1()U 

ylý = ; r+ýr/3 lo ct -- 100 
(5.9) 

'1'hc actual trajectory for the leader-follower formation using test 4 is shown in Figure 

5.43. 
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figure 5.43: Actual trajectory using separation bearing controller for test 4 
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5.5.2 tiepurutiou-scpiiruliom Controller 

I Jsing the separation-separation controller, the following parameters %%'ere considered. 

Id ý 
I/ 

I'` 

2( 240°) 

(p, ° 
I=2, r/3 (1'0°) 

k, =k, =1 
ýl=l 

(5.10) 

The actual trajectory for the leader-follower formation using test I and 4 for separation- 

separation controller is shown in Figure 5.44 and 5.45, respectively. 
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5.0 Discussion of Results for Follower Robots 

Based on the simulation results, it is observed that the input-output feedback linearization 

liºr the follower robot minimizes the error between the desired and actual formation. 

Even, if' the parameter values of the separation hearing and separation-separation 

controllers are changed dynamically at run time, the feedback linearized control strategies 

successfully minimizes the error between the desired and actual trajectory. Hence, the 

input-output linearized feedback controller is the preferred controller for separation 
bearing and separation-separation formation control. 
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5.7 1'mlllrC tilahilizution Controller 

For posture stabilüatloll, two different goal points were selected as follows. The initial 

stalling position of the leader robot is The first goal point was defined to reach 

the origin point (0,0). The second goal point was to reach the point (-10,10). The 

trajectory for the leader robot is not delined. The objective of the leader robot is to move 

towards the goal point. The results of the posture stabilization controllers arc as follows. 

5.7.1 'l'ime-vat}ing Feedback Conti-oller 

The following parameters were used li)r the time-varying posture stabilization 

lccdback controller of lid. 4.5I . 

! '., (r) U 
(1ý (r) =- U 

wlicrc 
rxli(k,, c". ) -1 

ý(c',! ) ----sin! 
rxp(k, c. )+I 

The following values of the gains are used. 

k, 0.5 
k _' a 
k, l 

k, 1 

k,, 50 

(5.11) 

(5.12) 

The robot is assumed to be at the point (-10, -10). The results of tine-varying posture 

stahilitation controller fir the first and second goal points are shown in Figure 5.46 

and 5.47, respectively. 
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I: igurc 5.40: Actual point to point motion using time-varying feedback controller for 

the first goal point. 
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Figurc 5.47: Actual point to point motion using time-varying feedback controller for 

the second goal point. 
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5.7.2 Polar Coordinates Feedback Controller 

The liillowing Parameters w ere used for the polar coordinates posture stabilization 

controllcr. 

3 
k, =' 

(5.13) 

The robot is assumed to be at the point (-10, -10). The results of point to point motion 

using this controller for the first and second goal points are shown in Figure 5.48 and 

5.49, respectively. 
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Figure 5.48: Actual point to point motion using polar coordinates feedback controller 
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Figure 5.49: Actual point to point motion using polar coordinates feedback controller 

for the second goal point 

5.5.3 Full State Linearized via Dynamic Feedback Controller 

The Ii0IIowing hai ameters were used for the full state linearized dynamic feedback 

controller. 

k,, 
i =2 

k, n =3 
ký,: = 12 

k,,: =7 

(5.14) 

The robot is assumed to be at the point (-10, -10) and the goal point is origin. The 

results of point to point motion using this controller for the first and second goal 
points are shown in Figure 5.50 and 5.5 I, respectively. 
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Figure 5,50: Actual point to point motion using full state linearized via dynamic 

feedback controller for the first goal point 

Figure 5.51: Actual point to point motion using full state linearized via dynamic 

feedback controller for the second goal point 
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5.8 Discussion of Results for Posture Stabilization 

Rased on the above results, it is tOund that the posture stabilization feedback controller 
based on polar coordinates täils to eliminate the error between the desired and the actual 

goal point. This can be seen in Figure 5.49 where the desired goal point is (-10,10). 

Although the robot is near to the goal point, still it does not converge to the goal point. 

The robot achieves the correct goal configuration using the nonlinear and dynamic 

Icedback linearized controller. 

5.9 tiunuttur ý 

In this chapter, the collaborative robots system was modeled using MATLAB/Simulink. 

The feedforward controller for the leader robot was derived. The results of different 

feedback control strategies for the leader robot were compared. The input-output 

feedback Iinea ircd controllers for the follower robot using the separation bearing and 

Separation separation formation were modeled. Finally the posture stabilization 

controllers for the leader robot were simulated. In the next chapter, the conclusions and 

future work are presented based on these simulation results. 



CI IAP'I'EIt 6 

('ON('LUSION 

6.1 Accuracy and Stability of Feedback Controllers 

This thesis described the issues related to motion planning of collaborative nonholonomic 

robots. A kinematic model for the collaborative robots using the leader-follower 

firrnration was derived. Control analysis including controllability, stability and 

observability was performed. The design of feedback controllers for leader-follower 

formation using feedback linearization techniques was also presented. The follower 

robots derived their inputs basal on the control inputs sent by the leader robot. The leader 

robot transmitted its control inputs to the follower using the t3luetooth piconet profile. 

The posture stabilization controllers using time-varying, polar coordinates and dynamic 

Iecdhack controller were simulated fir the leader robot. The reference trajectory was 

generated using the fed Forward command controller. The collaborative nonholonomic 

robotic system was modeled using MATLAB/Simulink and the feedback strategies were 

simulated I 'Or a given set of reference trajectories. Based on the simulation results for the 

various trajectories, the following conclusions are made: 

" for the leader robot, the lull state linearized controller via dynamic feedback 

ininimires the mean ofcrror more rapidly than the other feedback strategies. 

" The Dull state linearized dynamic Iccdback controller for the leader robot achieves 

posture stabilization. 

" The Iccdback strategies designed using cascaded systems theory and using 
linearization of corresponding error model fäll to track the trajectory if the leader 

robot's starting point and the trajectory starting point is not the same (circular 

shaped trajectory). 

" Flic Iccdback strategy designed using approximated linearization results in a time- 

varying controller. I fence asymptotic stability is not guaranteed. 
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" The nonlinear design of feedback control strategy results in global asymptotic 
stabilization. However, for the given trajectories, the full state linearized via 
dynamic feedback control strategy minimizes the error more rapidly than the 

nonlinear strategy. Thus, the full state linearized via dynamic feedback control 

strategy is preferred over the nonlinear strategy. 

" I-or the follower robot, the input-output feedback linearized controllers minimize 

the error between the actual and the desired trajectory. 

" If the formation structure is changed dynamically at run-time, the input-output 

linearized feedback controllers minimize the effect of disturbances and errors. 

In summary, the feedback linearized techniques for collaborative nonholonomic robots 

can more rapidly minimize the error for trajectory tracking and achieve posture 

stabilization. For a given feasible trajectory, the full state feedback linearized strategy for 

the leader robot and input-output feedback linearized strategies for the follower robots are 

finrnd to he more efficient in stabilizing the system. 

0.2 Thesis ('onIribution 

" In this thesis, a framework for collaborative robots is presented. Unlike most of 

previous researches, 13luetooth is used as a communication medium for 

transmitting the leader robot control inputs to the follower robots. In pervious 

research, the follower robots had vision-based capabilities which allowed them to 

estimate the leader robot position. By allowing robots to communicate using 

Uluetooth, the exact control inputs of the leader robot are transmitted to the 

f llower robots. 

" In this thesis, feedback linearized control strategies arc designed for both the 

leader and the follower robots. In the previous research, feedback linearized 

strategies have been presented for the follower robots. However, using the leader- 
IoIlowcr lirmation, one ofthe important aspects is the accurate trajectory tracking 

of the leader robot. If the leader robot is accurately tracking the desired trajectory, 
the Job of the follower robots is to maintain a relative separation distance and 
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bearing angle to the leader robot. Therefore, the leader robot plays an important 

role in the formation control. In this thesis, emphasis is placed on designing 

feedback linearized strategies for the leader robot and evaluating and comparing 
dificrent feedback control strategies for the leader robot. Hence, this thesis 

provides feedback linearized control strategies for all the robots in the formation. 

" In this thesis, a complete framework for collaborative robots is presented. A 

shared library is written using Windows Socket programming and complied using 

MATLAB compiler. The message format used for communication among the 

robots conforms to standard Agent Control Language provided FIPA. 

" In this thesis, the unicycle model of collaborative robots is considered. The 

unicycle is the basic model for wheeled mobile robots and cars. The unicycle 

model of collaborative robots can be extended to complex robotic systems such as 

underwater robots and flying robots. Hence to design feedback linearized control 

strategies for complex robotic systems, small modifications are needed in the 

existing feedback linearized strategies. 

6.3 Future Work 

" In this thesis, the kinematic model of the collaborative nonholonomic robots has 

been considered. However, for massive robots and at high speeds, the 

nonholonomic constraint may not be realistic. It may happen that the robots 

wheels may slip due to high speed. Hence, the robots dynamics are necessary to 

be modeled. 

" Current implementation of Bluetooth piconet does not support roaming protocol; 
hence the leadership in the formation is always static. To make the leadership 

more dynamic, it roaming protocol for Bluetooth can be designed. 

" The leader and the Tollowcr robots are observable. Based on feedback linearized 

control strategies, observer based feedback laws can be designed for the leader- 

lbllowcr formation. 
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AI'I'ENI)1X A: NI-file for calculating Lie Bracket 

' LicUi ýºcýkcL . fri 
Programmed by: Salman Ahmed. 

function [h, F)-LieBracket (gl, g2, q, n) 

% function LieBracket 
% invoked as LieBracket (gl, g2, q) 
% Input: vector-fields gi and g2, variable q, order n 
% Output: F. I (gl, g2] , ..., 

(gl"n, g2] ); 

% If input. argumenus are less than 4, so set n=1 
if nargin <4, n=1; end 

% Find the length of gi, g2 and q 
lgl"length(gl); lg2=length(g2); lgq=length(q); 

% If gl and g2 do not have same dimensions, so display 
% derror 
if (191--lg2) ((lgl--lgq) , 

crror('dimensions of gi and g2 do not match'); 
end 

li-g2 T 

'+ Initally make F an array of zeros equal to the dimensions 
of nn° 

F- zeros (lgl, n) ; F-sym(F); 

for i-1: n 
h-jacobian(h, q)*g1-jacobian(g1, q)*h; 
ti-nimplify(h) 
f'( , 

i)-h; 

end 
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APPENDIX It: I11-lilc for calculating Linear Controllability 

1. i Ilea L, Concrolability. m 
4 Programmed by: Salman Ahmed. 

function (C, RJ-Linear_Controlability(A, B) 

% function Linear_Contrability 
% invoked as Linear_Contrability (A, B) 
% Input: system matrix A, input matrix B 
% Output: controlability matrix C, rank of controlability 
% matrix R 

nrlength(A); 
C-B; 
for i-1: (n-1) 

C-[C (AAi * B)]; 
end 
R- rank (C) 



114 

AI'1'EhDI \ (': NI-file for calculating Jacobian ('ocflicicnts 

Linearized A. m 
$ Programmed by: Salman Ahmed. 

function [A] I, inearizcd A(gl, ul, g2, u2, pd) 

% function Linearized A 
% invoked as Linear_A (gl, ul, g2, u2, pd) 
% Input: system vector fields gl, g2 
% control inputs ul, u2 and point pd 
% Output: linearized system matrix A 

A- jacobian(gl, pd)*ul + jacobian(g2, pd)*u2; 
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APPENDIX 1): ('oordinate 'Transformation 

('<msi(lcring it IincAr SystCIll 

.i _= Ax + Bit (1) 

We want to Change the coordinate from x to z as 

z Tv 

whcrcas T Is the Itansliºrmatiun matrix. From Fq. 2, we can have 

V '1' 1 
.. 

(2) 

(3) 

II'the system matrix A is tine-varying, then the derivative of Eq. 2 with respect to time, t, 
is obtained as: 

rl 0 7' 
, ý7x Tr -- r -+- I->_=I: r + 7: c 

(it or ol 
(4) 

tiuhstilutint,, the value of i from 1, wc get 

7'. r-+T(A. r+Bit) (5) 

Substituting the value ººf % f'rurn I? cl. 3, we get 

Y' T 1z i 7'(A7' 'z + Brr) 7' T' 1z -+ 7A I'-'z -+ '! 'Bu (6) 

which call he "inºlºlificd as 

cr !'117: "t 7' 1 ):.. i (1, B )n 
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APPENDIX H: (Sirnilarit), 
_"Traiisform. m) 

$ Similarity_Transform. m 
$ Programmed by: Salman Ahmed. 

function (An, BnJ. Similarity_Transform(A, B, T) 

% function Similarity_Transform 
% invoked as Similarity_Transform(A, B, T, p) 
% Input: system matrix A input matrix B 
% Transform matrix T, variable p 
% Output: new system matrix An, new input matrix Bn 

% nymu v omega t 
% A-(0 0-v*sin(omega*t); 00 v*cos(omega*t); 00 0]; 
% F3"(cos(omega*t) 0; sin(omega*t) 0; 0 1]; 
% T"(cos(omega*t) sin(omega*t) 0; -sin(omega*t) cos(omega*t) 
0; 0011; 

©ym; it; 
t dUt. - ait! ("T, t_); 
t inv""inv (T) ; 

AI1rC dOt*t inv + T*A*t_inv; 
Aii-einip lify(An) 

F3ti-'1'" B; 
f3n-tjimplify(i3n) 


