CERTIFICATION OF APPROVAL

Optimization of Malaysian Mica in Oil Based Mud

by

Jagaan Selladurai

A project dissertation submitted to the

Petroleum Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirements for the

BACHELOR OF ENGINEERING (Hons)

(PETROLEUM ENGINEERING)

Approved by,

(AP Askury)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

January 2012

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken by unspecified sources or persons.

Jagaan Selladurai

ABSTRACT

It has been observed that lost circulation is one of the troublesome and costly problems encountered during drilling operation even with the best drilling practices. severity of loss of circulation can be classified according to the mud lost rate in the fractured formation. Considering the fact that lost circulation is one of the most serious and expensive problems the drilling industry is currently facing, lost circulation material (LCM) is one of the methods to solve this problem.

This report basically discusses the preliminary research and basic understanding of the chosen topic, which is Optimization of Malaysian Mica in Oil Based Mud. Preliminary research will lead to further study on the subject until the satisfactory result is obtained. This research will be a stepping stone for future research of the potential drilling fluid additives which is obtainable from abundant local resources.

Malaysia has not been explored for the possible use of local mica. Local mica will be experimented for possible use as mica and to be compared with the characteristics of the existing mica in the market. The source of Mica is taken from Bidor, Malaysia where KAOLIN(M) SDN BHD is operating the quary.

This project involves a lot of lab work to test the efficiency of Malaysian Mica. Finally, this project will identify the optimization of Malaysian Mica to be use in drilling operation as LCM in oil based mud.

ACKNOWLEDGEMENTS

Firstly, I would like to express a token of appreciation to UTP for providing laboratory equipment, facilities and funds for me to be able to conduct this project according to plan.

I would like to express my hearties gratitude to AP Askury for his supervision and for sharing his knowledge, experiences and guiding me throughout this project.. His guidance and his trust in me in completing this project have given me great strength. His guidance helped me to overcome several problems I faced during my project.

Special thanks to Geoscience and Petroleum Engineering technicians, for assisting and guiding me during the whole lab sessions. Finally, I am indebted to so many people who have been helping me during to completing this project, where their presence is the essence in making this project successful.

Last but not least my deepest appreciation to my family and friends for their endless support in helping me in completing my project and giving the courage to do my best.

TABLE OF CONTENT

CERTIFICATION	i
ABSTRACT	iii
ACKNOWLEDGMENTS TABLE OF CONTENT	
CHAPTER 1 INTRODUCTION	
1.1 Background of Study	1
1.2 Problem Statement	2
1.3 Objectives	3
1.4 Scope of Study	3
1.5 Relevancy and Feasibility of the Project	4
CHAPTER 2 LITERATURE REVIEW AND THEORY	
2.1 Literature review	5
2.2 Theory	7
2.2.1 Process of mixing and testing drilling fluids	7
2.2.2 Properties of drilling fluids	9
CHAPTER 3 METHODOLOGY	
3.1 Research Methodology	16
3.2 Project Work	17
3.2.1 Sample Collection	18
3.2.2 Sample Processing	18
3.3 Gantt Chart and Key Milestones	19

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1 Physical & Chemical properties of materials	21
4.1.1 XRD Results	22
4.1.2 Particle Size Distribution Results	23
4.1.3 Scanning Electron Microscope	25
4.2 Discussion on Physical & Chemical properties of materials	27
4.3 Properties of materials in drilling fluid	28
4.4 Discussion on Properties of materials in drilling fluid	29

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion	35
5.2 Recommendations	35
REFERENCES	36
APPENDIX 1	37

LIST OF FIGURES

Figure 1 : Mud Formulator Spreadsheet	8
Figure 2 : Properties of Drilling Fluids	9
Figure 3 : Regular Mud Balance	10
Figure 4 : Marsh Funnel Viscosity	11
Figure 5 : Fann 35 Direct Indicating Viscometer	11
Figure 6 : Types of Gel Strength	13
Figure 7 : Standard API Filter Press	14
Figure 8 : High Temperature High Pressure (HTHP) Filter Press	15
Figure 9: Processes of Mica	18
Figure 10: XRD result on Indian Mica	22
Figure 11: XRD result on Malaysian Mica	22
Figure 12: PSD Graph for Indian Mica	23
Figure 13: PSD Graph for Malaysian Mica	24
Figure 14: PSD Graph for Indian Mica using Malvern	25
Figure 15: Indian Mica at 100X magnification	25
Figure 16: Indian Mica at 1000X magnification	26
Figure 17: Malaysian Mica at 100X magnification	26
Figure 18: Malaysian Mica at 1000X magnification	27
Figure 19: Plastic Viscosity VS Amout of Mica	30
Figure 20: Yield Point VS Amout of Mica	31

Figure 21: Gel Strength VS Amout of Mica	32
Figure 22: Fluid Loss VS Amout of Mica	33

LIST OF TABLES

Table 1: Loss Zone Classification	5
Table 2: Activities And Description	17
Table 3: Gantt Chart for the first semester project implementation	19
Table 4: Gantt Chart for the second semester project implementation	20
Table 5: Particle Size Distribution for Indian Mica	23
Table 6: Particle Size Distribution for Malaysian Mica	24
Table 7: Mud formulations and Results	28
Table 8: With and Without Mica Mud formulations and Results	34