

AUTOMATED WRAPPER DESIGN FOR ISCAS ’89 BENCHMARK CIRCUITS

By

MUHAMMAD ILIAS BIN MOHAMED IBRAHIM

FINAL PROJECT REPORT

Submitted to the Department of Electrical & Electronic Engineering

in Partial Fulfillment of the Requirements

 for the Degree

Bachelor of Engineering (Hons)

(Electrical & Electronic Engineering)

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

 Copyright 2012

by

 MUHAMMAD ILIAS BIN MOHAMED IBRAHIM, 2012

ii

CERTIFICATION OF APPROVAL

AUTOMATED WRAPPED DESIGN FOR ISCAS ’89 BENCHMARK CIRCUITS

by

MUHAMMAD ILIAS BIN MOHAMED IBRAHIM

A project dissertation submitted to the

Department of Electrical & Electronic Engineering

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronic Engineering)

Approved:

Dr. Fawnizu Azmadi Hussin

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

September 2012

iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

MUHAMMAD ILIAS BIN MOHAMED IBRAHIM

iv

ABSTRACT

System-on-chip (SOC) enables the reuse of existing IP blocks in a system, thereby

making it possible to design complex systems within a short period of time. With the

complexity of the design comes the problem of testing the SOC. A typical SOC can

integrate many modules, therefore making it difficult to test these individual modules by

accessing from the primary interfaces of the chip. To aleviate this test access issue for

SOC‟s, the IEEE 1500 standard has been introduced. There are commercial tools from

main EDA players such as Synopsys that can help with the insertion of the IEEE 1500

wrapper. However, most researchers have no access to the expensive tool. Even if they

do, the tools are protected so they do not allow researchers access to the internal features

to explore potential enhancements. There is no open source tools that can assist test

researchers with the 1500 wrapper insertion.

 In this thesis, we illustrate our effort at automating the IEEE 1500 wrapper insertion.

The design of the IEEE 1500 wrapper is done in Verilog and the automation is done

using the Perl scripting language. The inserted wrapper modules are validated and an

efficient approach of executing wrapper external tests is also illustrated in this thesis.

v

ACKNOWLEDGEMENT

I would like to thank my supervisor, Dr. Fawnizu Azmadi Hussin, for the support and

time that he had gave me throughout the final year project period. He had assisted me in

answering to all my question and doubts and sharing ideas during the final year project. I

also would like to thank Adel Eskandar, who had been helping me in getting the software

tools and resources throughout the project.

I also would like to thank my friends especially Nazif Hawari and Annaitullah who had

been supporting me and encouraging me throughout the project. Last but not least, my

family. Thanks for being there for me!

Table of Contents

ABSTRACT ... iv

ACKNOWLEDGEMENT ...v

LIST OF FIGURES .. iii

LIST OF TABLES .. iv

CHAPTER 1: INTRODUCTION ... 1

1.1 Background Studies .. 1

1.2 Problem Statement ... 2

1.3 Objective of the project .. 2

1.4 Relevance of the project ... 3

1.5 Feasibility of the project ... 3

CHAPTER 2: LITERATURE REVIEW .. 4

2.1 SoC – System on a Chip ... 4

2.2 Testing System on a Chip (SoC) .. 5

2.3 IEEE 1500 Standard ... 6

2.3.1 WIP – Wrapper Interface Port .. 8

2.3.2 WIR – Wrapper Instruction Register .. 9

2.3.3 WBR – Wrapper Boundary Register ... 9

2.3.5 WBY – Wrapper Bypass Register .. 10

2.3.6 IEEE 1500 Instructions ... 11

2.4 ISCAS 1989 Benchmark Circuits .. 11

2.5 Stuck at Fault Analysis ... 12

2.6 PERL Automation Script ... 13

2.7 Need of Automation for Inserting the IEEE 1500 Wrapper Core 13

CHAPTER 3: METHODOLOGY .. 14

3.1 Research Methodology ... 14

3.2 Project Activities .. 15

3.3 Key Milestone .. 15

3.3 Flow chart of Task Executed in Developing the Automation Script 16

3.4 Gantt Chart ... 17

3.5 Tools and Equipment ... 17

3.6 IEEE 1500 Wrapper Design ... 18

ii

3.6.1 Wrapper Instruction Register ... 18

3.6.2 Wrapper Boundary Register ... 20

3.6.3 Wrapper Bypass Register .. 21

3.6.4 IEEE 1500 Verilog HDL Design ... 21

3.7 Perl Automation Script Design .. 23

CHAPTER 4: CASE STUDY, RESULT AND DISCUSSION ... 26

4.1 Case Study .. 26

4.1.1 Wrapper In Test .. 27

4.1.2 Wrapper Ex Test ... 28

4.1.3 Automation of IEEE 1500 Wrapper .. 29

4.2 Results and Discussion ... 30

4.2.1 Wrapper In Test .. 31

4.2.2 Wrapper Ex Test ... 32

CHAPTER 5: CONCLUSION AND RECOMMENDATION .. 35

CHAPTER 6: REFERENCES .. 36

iii

LIST OF FIGURES

Figure 1: Basic System on a Chip (SoC) .. 4

Figure 2: Modules in SoC are not connected directly to the chip pins 5

Figure 3: Simple SoC with GPU under test .. 6

Figure 4: Wrapped core... 7

Figure 5: Stuck at Fault Model ... 12

Figure 6: WIR model .. 18

Figure 7: WBR Model .. 20

Figure 8: WBY Model .. 21

Figure 9 : The overall design of 2 Wrapped Core in a single chip 22

Figure 10: Illustration of the Perl Code in determining the instantiation of the core . 23

Figure 11 : S27 Sequential ISCAS‟89 Benchmark Circuit ... 26

Figure 12 : Illustration of Wrapped „S27 Sequential Benchmark Circuit‟. 27

Figure 13 : Illustration of Wrapper Ex Test Design with 2 CUT 28

Figure 14 : Illustration during the automation is running ... 30

Figure 15 : Illustration on Scan In (WSI) and Scan Out (WSO) 31

Figure 16 : Waveform form Wrapper In Test Simulation Fault Free 31

Figure 17 : Waveform form Wrapper In Test Simulation with Fault 32

Figure 18 : Illustration on Scan In (WSI) and Scan Out (WSO) 33

Figure 19 : Waveform form Wrapper Ex Test Simulation with Fault Free 33

Figure 20 : Waveform form Wrapper Ex Test Simulation with Fault 33

file:///C:/Users/ilias/Downloads/Desktop/FYP%20II%20Muhammad%20Ilias%20Bin%20Mohamed%20Ibrahim%2012389/12389_FinRepp.docx%23_Toc334540019
file:///C:/Users/ilias/Downloads/Desktop/FYP%20II%20Muhammad%20Ilias%20Bin%20Mohamed%20Ibrahim%2012389/12389_FinRepp.docx%23_Toc334540020

iv

LIST OF TABLES

Table 1: Gantt chart .. 17

Table 2: Instruction List .. 19

1

CHAPTER 1: INTRODUCTION

1.1 Background Studies

Electronic devices are getting smaller as we try to approach mobility. In achieving

mobility, devices need to be portable and less consuming power. Electronic devices

such smartphones, tablet, notebook, netbook, and etc. are the example of mobility

devices. These products are able to build due to shrinking of the transistor (the

smallest component in integrated circuit/device) and able to combine multiple single

function module/circuit become a system that runs faster and consume less power in a

single integrated device.

Combining multiple single function module/circuit in achieving a system, built in a

single integrated device/circuit is called as System on a Chip (SoC). Example;

previously, a chipsets or a memory or a graphic processor or a processors were in

their own single chip acting as a single function module, but currently now these

module such chipset, memory, graphic processor, and the processors are built in a

single chip being a complete system in achieving smaller device with portability and

runs faster with less power consumed.

This able to achieve due to shrinking in transistor, where we can put more function or

modules in a single same size chip previously. Doing this would create complexity in

a single chip, which leads to one of the problem which is how to detect defects, fault

or problems after the chip is manufactured. Currently there are billions of transistors

in a single chip.

Why testing are important, we know that, nothing in this world are perfect, same goes

to the manufacturing stream in the microelectronic industry. There were faults or

defects will happen, if there is not test to check the functionality, reliability and faults

that happen, it may be a disaster for the company, when their product are in fault.

The red ring of death in Xbox 360 is one of the example of general hardware failure

where leads big loss for Microsoft (more than a billion) [11] [12].

2

To avoid these loss, testing are important. IEEE 1500 protocol has been suggested

and become a standard to facilitate SOC testing, but inserting these test design

manually are inefficient which would cost time and money.

1.2 Problem Statement

Every design needs to be tested; to check their functionality and fault that happens.

Same goes to System on a Chip (SoC), it needs to be tested too. Testing SoC are quite

complex and time consuming, since there are a lot of blocks need to be tested in a

single SoC.

IEEE 1500 standard for embedded core test is widely used to test SoC‟s. This

standard has been manually inserted to the SoC blocks for testing. Inserting wrapper

manually would consume time and money which is not efficient. Currently there isn‟t

any available open source automatic IEEE 1500 standard wrapper generator which

could save Design for Testability (DfT) engineers or researcher‟s time and cost.

1.3 Objective of the project

Objective of the project are the milestone that need to be accomplished to solve the

problem that arises. The objectives are:-

 To design IEEE 1500 Wrapper using Verilog and validate the

functionality using software Quartus II.

 To design an automation script to automate the IEEE 1500 Wrapper

insertion using Perl Script.

Final outcome of the project is the automated generated wrapped core using Verilog.

3

1.4 Relevance of the project

The IEEE 1500 standard for embedded core test which has been approved in 2005

defines the scalable and reusable wrapper architecture that allows the testing of and

access for to embedded cores within the system on chip (SoC). There are a lot of

Modular or SoC testing as the number of transistor decreases, and modules getting

more in a single same size IC‟s, but there are no open source automation for

generating and insertion of IEEE 1500 wrapper then the application to the real circuit.

Most of them manually generate the IEEE 1500 core.

Here developing the automation for IEEE 1500 wrapper insertion would save

engineer and researcher time, not only that, we could use as a tool to teach DfT to be

engineer, so they can easily understand the process in a short term.

1.5 Feasibility of the project

The feasibility of this project is to complete the project within the scope and time

frame,

During the FYP 1 period,

 Research on the IEEE 1500 wrapper

 Design the wrapper using Verilog Hardware Description Language

 Simulate the functionality of the wrapper design using Quartus II

During the FYP 2 period,

 Modification and improvise the wrapper design using Quartus II

 Validating the simulation result to check functionality of wrapper

 Developing the automation script for automatic wrapper design insertion.

4

CHAPTER 2: LITERATURE REVIEW

2.1 SoC – System on a Chip

System-on-Chip (SoC), combination of modules (cores previously were in a single

chip) to be a full system in a single chip. Example, previously, chipsets, memory,

graphic processor and the CPU were in their own single chip, becoming a complete

computer (system). Currently now these modules such chipset, memory, graphic

processor, and the CPU are built in a single chip to achieve smaller device for

mobility; laptop, netbook, and tablet.

SoC design able to achieve due to shrinking in transistor, where there are more

transistors (logic gates or modules) can fit in a single same size die or chip. When

more transistors has been fitted to a single chip, the functionality of the chip is

increased; as maintaining the previous functionality and adding up other/more

functionality to be a system in a single chip is called as System on a Chip. SoC‟s

design usually done by integrating reusable component or modules, and it had greatly

reduces total time and cost in the industry [12]. Even reducing total time and cost, but

the complexity of the design has increased.

Figure 1: Basic System on a Chip (SoC)

CPU

CPU GPU

DSP

Memory Memory

5

In Figure 1, there is one module of CPU, one module of GPU, one module of DSP

and two module of memory in a single chip/die. These modules combine become a

system which is a complete Computer System.

2.2 Testing System on a Chip (SoC)

Testing a basic SoC is necessary, this to test the fault that happen in the SoC upon

production. Testing this SoC‟s with normal fault analysis would be hard and time

consuming due to the complexity of the SoC‟s. It‟s hard to access the modules from

the chip pins, the modules are integrated in a single chip and not directly connected

with the chip pin, it‟s connected to another modules or user define logic.

Figure 2: Modules in SoC are not connected directly to the chip pins

The idea of testing SoC is by treating each module separately (isolating the modules),

in Figure 3, we are trying to test the GPU module in the SoC. We treat the GPU

module separately by isolating the GPU module, where we access this module from

the chip pins to the modules. Not all pins are directed connected to this module, but

one or more pins that use to access this module (using the Test Access Mechanism).

6

The idea of above SoC testing is being widely used, but a protocol is needed where it

defines a common test design or infrastructure amongst cores from different supplier

(IP cores) [13]. IEEE 1500 Standard protocol had provide a standard in assisting the

SoC Design for Testability (DfT) for a common test design for every cores which

from different supplier. It also assists in reusing the wrapped core for further SoC

design.

In Figure 2.2, illustrate one of the modules (GPU) from the basic SoC in Figure 3 is

being tested. Here we can observer that the module GPU is being isolated with a

wrapper surrounding it and connected to a Test Access Mechanism (TAM). TAM is

connected to a sink and to a source where test stimuli are stored or generated at

source while test response are stored or analyzed at the sink.

Figure 3: Simple SoC with GPU under test

2.3 IEEE 1500 Standard

How did the IEEE 1500 Standard Wrapper Core [1] introduced and what were

problem arise before this standard introduced. Increasing use of SoC‟s, designers

came up with the idea and solution in identifying the identical modules across the

chip. Then they isolate this module and implement once, where at the beginning of

the SoC‟s design, the re-use of previous module never done. Later, in the SoC‟s

design, the reuse of the modules was done, where the core design was a fact

SOURCE

SINK

TAM

CPU

DSP

Memory Memory

Wrapper

GPU
TAM

7

The reuse of the modules has led to a problem on how the DfT strategy fit into the

SoC environment when the core user and the core provider may not be the same

entity, this where the problem raised and my organizations came up with different

specific solution, and the needs of a standard were essential [4]. IEEE 1500 Std

Wrapper also has standardize the wrapper design where designers can re-use the

wrapped core for the other SoC‟s design.

Specific language has been used to address the communication between the core

provider and core user, which the IEEE 1450.6-Standard for Standard Test Interface

Language (STIL) for digital Test Vector Data – Core Test Language [6]. The core

user is the entity that is integrating the core to the SoC and the core provider is the

entity that design and develops the core.

From the core test wrapper handbook [7] sates IEEE 1500 architecture consists of:

1. Both combinational and sequential core test strategies need to meet

2. CTL requirement that allow for the characteristic of the wrapper to be

communicated to the core user

Figure 4: Wrapped core

Core under

Test

(CuT)

WBR

WBR WBR

WBR

WBY

WIR

0

1

Wrapper

WSI WSO

WSC

Core Functional Input

Core Functional Input

Core Functional Output

Core Functional Output

8

IEEE 1500 wrapper architecture consist of the following components [7]:

 The Wrapper Interface Port (WIP), which interface the pins and the wrapped

module across the SoC‟s.

 Wrapper Instruction Register (WIR), which consist control signal to control

IEEE 1500 component and multiplexers across the wrapper for specific test

mode.

 The Wrapper Boundary Register (WBR/WBI/WBO), registers that act to

isolate the core/module from other module across the SoC‟s.

 The Wrapper Bypass Register (WBY), provide the shortest path in the

wrapper when the wrapper is not used.

Figure 4 illustrate the basic block of a wrapped Core under Test (CUT) with wrapper

main blocks.

2.3.1 WIP – Wrapper Interface Port

Wrapper Interface Port (WIP), collection of terminal that which pins of the chips that

controls the wrapper through a Test Access Mechanism (TAM). It provides serial,

parallel or hybrid (serial and parallel) access to the core. IEEE 1500 focus on the

serial access, hence it is mandatory because the architecture is meant to be plug and

play, this difficult to achieve with the parallel access interface [4]. The serial access

provided to the wrapper serial port (WSP) while the parallel access provided through

the wrapper parallel port (WPP).

As the wrapper serial is mandatory for IEEE 1500, but it also containing several

control terminals which controls the wrapper. The control terminals are:

 Wrapper Clock Terminal (WRCK)

 Wrapper Reset Terminal (WRSTN)

 Wrapper Instruction Register Selection Terminal (SelectWIR)

 Wrapper Register Shift Control Terminal (ShiftWR)

 Wrapper Register Capture Control Terminal (CaptureWR)

 Wrapper Register Update Control Terminal (UpdateWR)

9

And the optional terminals:

 Wrapper Data Register Transfer Control Terminal (TransferDR)

 Auxiliary Wrapper Clock Terminal (AUXCK)

That were the control signal, WSP also consist of two data terminal which is Wrapper

Serial Input (WSI) and the (Wrapper Serial Output)

WPP is optional, and there are no specified terminal in the standard, but is prohibited

for the WPP use any of the WSP terminals with the exception clock terminal which is

WRCK and AUXCK.

2.3.2 WIR – Wrapper Instruction Register

WIR is the brain of the IEEE 1500 wrapper, where it contains the control signals to

control all the wrapper components such as the Wrapper Bypass Register (WBY),

Wrapper Boundary Register (WBR) and the multiplexers which controls the signal

path. The WIR controlled and clocked by signals from the WSC‟s terminal (Wrapper

Serial Input (WSI) and WRCK (Wrapper Clock)).

The WIR should be of dedicated IEEE 1500 logic, and the shift path must be at least

2 bits which can contain up to 3 mandatory modes, (bypass, external test and internal

test). No inversion on the logic values from the Wrapper Serial Input (WSI) to

Wrapper Serial Output (WSO) during the shift operation. WIR is designed so that the

current instruction is not interrupted with the loading if the new one, until the WIR

update operation is called.

2.3.3 WBR – Wrapper Boundary Register

The WBR enables the separation of core internal testing from external interconnect or

logic testing, it also provides isolation mechanism that allows test stimuli from

wrapper input terminal to the wrapped core input terminal and for the response from

core output terminal to wrapper output terminal. WBR data inputs are normally

coupled with TAM‟s which typically have a reduce data bandwidth compared to data

10

bandwidth of the embedded core under test, resulting WBR serves as data bandwidth

adaptation mechanism between the SOC environment and the embedded core.

IEEE 1500 mandates the presence of a single chain configuration of the WBR, but

allows multiple chain implementations mainly to increase the test data bandwidth. [7]

If a core terminal is directly connected to a register without any combinatorial logic

interconnects between them, the terminal is a registered port. If there is combinatorial

logic between the register and terminal, the terminal would be unregistered port.

Depending on if the port is registered or unregistered; you can use different types of

WBR cells. The dedicated WBR cell is meant to be used on an unregistered port to

ensured testability. For registered port, one may use the shared WBR cell to optimize

the design.

IEEE 1500 mandates provision of a WBR cell on all core level digital terminals with

the exception of the clocks, asynchronous set or reset and dedicated signals; this is to

ensure isolation, control and observation at every core terminal, while the exemption

allows signals such as clocks and scan inputs to be directly controlled from the SoC.

[4]

2.3.5 WBY – Wrapper Bypass Register

The WBY is used to bypass the other Wrapper Data Register (WDR‟s). It consists of

one or more register, and the simplest implementation using the D flip flop, it‟s a

register connecting the WSI to WSO during the wrapper bypass mode

(WS_BYPASS) [4]. It‟s basically the shortest path when the wrapper is not used but

happen to be a medium before the signal arrived to the other core. The whole purpose

is to reduce the test time.

11

2.3.6 IEEE 1500 Instructions

Internal Test, External Test and Bypass are the mandatory IEEE 1500 instructions as

stated in the standard [1]. There also optional instruction, these instructions has it

unique id or (called as opcode) to enable it. These instructions are shifted from the

WSI to the shift register in the WIR (at least 2 bit). The instruction can be parallel or

hybrid too, where parallel uses the wrapper parallel port (WPP) and hybrid uses both

(WSI and WPP). Serial instruction are mostly preferable and mandatory, parallel and

hybrid are optional but it reduces the test time and cost.

The mandatory instructions are:

 WS_BYPASS, allows core functional mode.

 WS_EXTEST, allows external test

 WX_INTEST, allows internal test.

The naming conventions of the instructions are based on the IEEE 1500 Std. here the

first word „W‟ represents the wrapper, then the second word „S‟ , „P‟, „H‟ represents

serial, parallel and hybrid respectively. The symbol „_‟ to separate the mode and

function in the naming convention, such in WS_BYPASS, means wrapper serial

mode and the function is bypass. [4]

2.4 ISCAS 1989 Benchmark Circuits

ISCAS 1989 Benchmark Circuit is a set of 31 digital sequential circuits use for

testing and benchmark purpose. The ‟89 Benchmark Circuit is much bigger and

complex compared to the previous released benchmark circuit which the ISCAS ‟85

benchmark circuits.

12

The benchmark circuit as serves researchers for benchmark which interested in the

sequential test generation, scans based test generation and mixed sequential or scan

based design test generation using the scan techniques. Faults and behavior faults can

be introduced (despite the benchmark circuits are sequential, synchronous and use

only the D-Flip-Flops) by modifying of substituting some of the logic gates of flip

flops with their appropriate function models. The standard model of the D-Flip-Flop

provides a reference point that is independent of the faults particular to the flip flop

implementation [8].

2.5 Stuck at Fault Analysis

Figure 5: Stuck at Fault Model

Circuit after production would face some problem where there were wires

interconnects to the HIGH logic or LOW logic. This fault are called as stuck at fault

where stuck at fault at 1, wires always connected to HIGH logic even it‟s getting the

LOW logic. While stuck at 0, wires always connected to LOW logic even it‟s getting

the HIGH logic.

Figure 5 shows a half adder with and without the stuck at fault. When the fault

happens, we observed that the output is different with the expected output (no fault

output). We know that the output of the AND gate is effected, so here we know that

along the path from the terminal to the AND gate, there are some stuck at fault. To

check this fault we need to make sure that the fault is propagated by changing value

of the input. In this case, to propagate the fault at AND gate, we need to set a HIGH

logic to another pin of the AND gate. Depending on the output observed, in this case,

the output should be LOW, but observed HIGH, so we can presume that there is stuck

at 1 fault at the AND gate.

1

0

0

1
1

0

1

1

Always stuck at 1 / 5V

13

2.6 PERL Automation Script

PERL stands for Practical Extraction and Reporting Language. PERL is a scripting

language, where the programs are written for a software environment that automates

the execution whereby usually is done step by step by a human operator. PERL

language it is simple (similar to C language) and powerful for regular expression.

PERL is widely used in varied application such as military, manufacturing, genetics,

finance, testing and etc; to process large data sets. PERL operates well in a UNIX

system and Windows system, developing PERL in the UNIX system; it also can be

portable to the Windows system [9] [14].

2.7 Need of Automation for Inserting the IEEE 1500 Wrapper Core

Current SoC design consist more modules (Core), inserting the wrapper manually to

these unwrapped modules (Core) would consume time and cost. Automation had

suggested in reducing time to insert the IEEE 1500 wrapper to each module. Current

there are software such Sysnopsys [15] which assist in the automation, but it is too

expensive. There are researchers that had built their automation tool in inserting the

wrapper [4] [12] [13]. The automation of inserting the wrapper has been done using

different script language such Phyton [2] and Tcl/Tk [8]. The design of the wrapper is

mostly in VHDL [2] [7]. Here we have proposed that to build an automation inserting

the wrapper and publish it open source. We also proposed that to design our

automation script in Perl which is similar to C language. The wrapper is design using

the Verilog HDL. This automation is compatible with modules that design in Verilog

HDL because it is easy to understand (follow the structure of C language) and easy to

troubleshoot (the design are in using behavior model).

14

CHAPTER 3: METHODOLOGY

Methodology; chapter that cover the flow of how the project will be conducted

through flow chart, milestone that need to be achieved in a period of time by Gantt

chart and tools and equipment that will be used in making the project successful.

3.1 Research Methodology

Method to be adopted;

Define Problem Statements

Clarify Objective and Case Study

Perform Literature Review

Design Process

Validate the design through simulation

Adopting automation to the generate the design

Validate simulation of the automation

Implementation in Hardware

Validate the functionality at the hardware

15

3.2 Project Activities

These are the details task done throughout the project.

1. Reading and Understanding about the IEEE 1500 Wrapper.

2. Understanding each blocks in IEEE 1500 wrapper before performing the

design stage

3. Designing the IEEE 1500 wrapper using Verilog HDL.

4. Validate the design through simulation using Quartus II

5. Creating an automation script using PERL for automating the generation of

IEEE 1500 wrapper for ISCAS ‟89 Benchmark Circuits

6. Validate the automated wrapper design using the Quartus II

3.3 Key Milestone

During the FYP 1 period,

 Research on the IEEE 1500 wrapper (week 1 to week 3)

 Design the wrapper using Verilog Hardware Description Language (week 3 to

week 8)

 Simulate the functionality of the wrapper design using Quartus II (week 9)

 Validate the wrapper design using the FPGA (optional, week 10)

 Creating the automation script for IEEE 1500 wrapper generator. (week 10 to

week 14)

During the FYP 2 period,

 Modification and improvise the wrapper design using Quartus II (week 1 –

week 6)

 Validating the simulation result to check functionality of wrapper (week 5 –

week 7)

 Developing the automation script for automatic wrapper design insertion.

(week 8 – week 14)

16

3.3 Flow chart of Task Executed in Developing the Automation Script

START

DESIGNING
MODULES OF THE

WRAPPER

VALIDATING EACH
MODULES OF THE

WRAPPER

IS THE MODULE
WORKING

MODIFICATION AND
IMPROVISING THE

MODULE
NO

COMBINING EACH
MODULE - FULL IEEE
1500 STD WRAPPER

YES

VALIDATING THE
FUNCTIONALITY OF
IEEE 1500 WRAPPER

IS THE IEE 1500
WRAPPER WORKING

TROUBLESHOOT
WHAT CAUSING THE

WRAPPER NOT
WORKING

NO

DEVELOPING/
MODIFYING THE
AUTOMATION

SCRIPT FOR
WRAPPER
INSERTION

YES

INSERTING THE IEEE
1500 WRAPPER

FROM THE
AUTOMATION TOOL

VALIDATING THE
FUNCTIONALITY OF

THE IEEE 1500
WRAPPER

IS THE IEE 1500
WRAPPER WORKING

END

YES

TROUBLESHOOT
THE AUTOMATION

FOR THE ERROR
NO

IMPROVISING THE
ALGORITHM FOR

THE AUTOMATION

17

3.4 Gantt Chart

Table 1 illustrates briefly the milestone need to be achieved versus the month frame.

Table 1: Gantt chart

3.5 Tools and Equipment

This project uses mostly software, and a little bit of hardware for validation. This are

the tool (software and hardware) that been used.

 Mentor Graphics ModelSim

 Quratus II 4.0 Web Edition

 ActiveState Perl

Activity
FYP1 FYP2

JAN FEB MAR APRIL MAY JUNE JULY AUG

Studying the IEEE 1500 wrapper

Design the wrapper using

Verilog Hardware Description

Language

Validate the functionality of the

wrapper design using Quartus II

Creating the automation script

for inserting IEEE 1500 wrapper

Simulating the output of

automation script to validate

functionality of the IEEE 1500

wrapper

Validate the output of

automation script on hardware

using the FPGA

18

3.6 IEEE 1500 Wrapper Design

3.6.1 Wrapper Instruction Register

Here in this design, the wrapper instruction register are divided to 4 main blocks,

which are: WIR shift register (4 bits), WIR update register (13 bits – control signal),

WIR Instruction Decode (decoding the opcode from shift register) and the WIR

external circuit.

Figure 6: WIR model

In the current design, we have 4 bit shift register and 13 control signal. The 4 bit shift

register is used to shift the serial input and updating the opcode to the WIR. Here this

4 bit opcode will be decoded to 13 bit control signal that controls other wrapper

modules and the multiplexers.

There are several control signal which controlling the WIR process; WIR Shift, WIR

Update, WIR Capture, Wrapper Select, Wrapper Clock, Wrapper Reset and the

Wrapper Serial Input. When the WIR Shift is HIGH, the shift process is enabling,

where the signal is shifted throughout the shift register from the WSI before it

decoded and updated through the update register. When the shift process is done, it

will be updated through the update register when WIR Update is HIGH. After the

WIR is updated, the wrapper instantly is already in the specific test mode.

4 Bit Shift Register

Instruction Decode

Update Register

WBY MUXES WBR

WSI WSO

WIR Control Signal

19

The 5 opcode that introduced in the wrapper design were the three mandatory

instructions (internal test, external test and the bypass) and two newly introduced

instruction in assisting the external test in reducing the test time (input bypass and

output bypass).

Opcode Instructions Mode

4‟b 0001 Wrapper External Test Mode

4‟b 0010 Wrapper Internal Test Mode

4‟b 0000 Wrapper Bypass Mode

4‟b 1100 Wrapper Input Bypass

4‟b 1000 Wrapper Output Bypass

Table 2: Instruction List

The three mandatory instructions were design as followed in the wrapper handbook

[7]. Two control signals were added to control addition multiplexer that design in

assisting the newly two instructions (Wrapper Input Bypass and Wrapper Output

Bypass).

Wrapper Internal Test (Intest) is a test to check faulty happen in the circuit/core. It is

done by loading all the flip flops/registers across the wrapper boundary register

(input) and the scan flip flop. After loading test value, capture process is done where

the output of the circuit would be updated at the scan flip flops. After the capture

process is done, the result in scan flip flop is shifted through the wrapper boundary

register (output) and observed at the Wrapper Serial Output.

The wrapper input bypass and wrapper output bypass need to run on the same time to

execute the wrapper external test, where the wrapper input bypass is set to the 1
st
 core

and the wrapper output bypass is set on the second core. The external test is done to

test whether there are any faults in the user defined logic. Assuming the user defined

logic is designed between these two cores, where it connects to the output of the 1
st

core and connected to input of the 2
nd

 core as in Figure 9. It would take more cycle if

the test stimuli are shifted through all the wrapper boundary register at the input of

the 1
st
 core and the scan flip flops. Setting the 1

st
 core to input bypass where the test

stimuli is bypass through the wrapper boundary register at the input and the scan flip

20

flop would save the clock cycle in loading the test stimuli at the output wrapper

boundary register. Same goes to the setting the 2
nd

 core to output bypass where it

bypass the scan flip flops and the wrapper boundary register at the output.

There are 13 bit control signal that generated from the WIR. These control signals

need to go through wrapper external circuitry, it‟s a combinational logic in

controlling the other wrapper modules (WBY and WBR) and multiplexers.

3.6.2 Wrapper Boundary Register

Wrapper Boundary Register is the register which controls the input and outputs of the

circuit under test. It‟s a register that allows test mode or functional mode to be

executed. All the wrapper boundary register are placed between the input and output

of the circuit and the logics in the circuit. The wrapper boundary register can execute

four different functions; functional, shift, capture and hold/apply. These operations

are set by controlling two multiplexers in the register from the WIR.

In the design, we were focusing on the functional and shift operation. The functional

allows functional operation of the Circuit/Core under Test (CuT), while the shift

operation allows test vectors being shifted across the boundary registers and the scan

flip flops.

Figure 7: WBR Model

D Q

Functional In

Scan In Functional Out

Scan Out

Scan enable Hold enable

21

3.6.3 Wrapper Bypass Register

Wrapper Bypass Register, used as a function to bypass the circuit/core under test

(CUT) if not being used. It saves time by reducing clock cycles to go through all the

inputs of the circuit, scan flip flops in the circuit and the outputs of the circuit while

the circuit is not used. The wrappers bypass register; consist of a d flip flop and a

multiplexer to enable the bypass. To control the bypass register, control signal from

the WIR would control the multiplexer in the register. Each circuit/core under test

(CuT) must have a wrapper bypass register.

Figure 8: WBY Model

3.6.4 IEEE 1500 Verilog HDL Design

The IEEE 1500 Wrapper were design using Verilog HDL, and been validated using

the Quartus II Waveform simulation tool. In the design we have break into several

module of Verilog HDL in designing the IEEE 1500 Wrapper. The modules were:-

 dff1.v – D flip flop without reset

 async_dff.v – D flip flop with reset

 mux_2_to_1.v – 2 to 1 Multiplexer

 ins_dec_log.v – Instruction Decode (WIR)

 wir_update.v – WIR update register

 wir_shift.v – WIR shift register

 wir_ext_circ.v – WIR external circuitry

 wir.v – Wrapper Instruction Register

D Q

WBY Shift

WSI

WSO

22

 WC_SF1_CII.v – Wrapper Boundary Register (Shared)

 wby.v – Wrapper Bypass Register

 wrapper.v – Higher level of Wrapper design

Most of the design followed as stated in the wrapper handbook [7]. There are some

modifications in the design in reducing time in test. The modification was done in

assisting the external test.

Figure 9 : The overall design of 2 Wrapped Core in a single chip

WBY

WIR

Input 3

Input 2

Input 1

WSI

Wrapped Core

WBY

WIR

WSI

WSO

OUTPUT

2 Wrapped Core in a single chip

Core

Select

Scan Flip Flop Scan Flip Flop

Wrapped Core

USER DEFINED LOGIC

23

3.7 Perl Automation Script Design

The automation script in inserting the wrapper to the core was done using the Perl

language and the software Active State Perl. The wrapper design was done in Verilog

and been written in different modules base on its functionality in assisting the

wrapper automation. The wrapper design consists of 12 modules with the wrapped

core for full complete design of the wrapped core. 10 modules of the wrapper are

similar in inserting the wrapper to any cores. The higher level of the wrapper design

is the main part need to edit in wrapping the specific core. Information that needed in

the automating the insertion of wrapper on the core are the inputs and outputs

terminal of the core, the instantiation of the core, the clock terminal of the core, scan

in terminal and the scan enable terminal. Information will be provided in the

automation, user just need to select which is not belong to the group of information.

The flowchart on automating the IEEE 1500 wrapper insertion shown next page.

Figure 10: Illustration of the Perl Code in determining the instantiation of the

core

24

Start

Moving common
modules in wrapper

to the new folder

Program ask user
about the file path

for the core

User input
wrapped core
folder name

Valid

Program Re-runs
again

Invalid

Program ask user to
input the wrapped

core name for folder
naming

User Input

Invalid

Valid

Continue on next page;

25

User Input

The core been
copied to the

wrapper module
folder

Valid

The program finds
the module line,

input line and the
output line

Program ask user
which is not the
functional I/O’s,

clock, scan in and
scan enable terminal

User Input

Invalid

Program insert the
wrapper base on the

information been
gathered

The higher level
wrapper module

named
wrapped_$core and
placed in the folder

End

26

CHAPTER 4: CASE STUDY, RESULT AND DISCUSSION

4.1 Case Study

Throughout the process of constructing the automation wrapper design, we were

designing the wrapper, for the use of automation in the future. In other to validate the

functionality of wrapper, we have chosen sequential circuit from the ISCAS ‟89

Benchmark Circuit, s27 and s298 as circuit under test. These wrapper design and the

s27 and s298 were in Verilog HDL, these wrapper design at 1
st
 were done manually,

in this design, modification been made while the functionality maintain the same for

the purpose of ease in designing the automation script for wrapper automation

insertion design.

The wrapped s27 sequential benchmark test was validated by introducing two stuck

at fault as Figure 11. During the validation process, we compared the wrapped core

without stuck at fault and with stuck at fault to verify the functionality of the

wrapper. This stuck at fault were tested for the Wrapper In test Mode, which to

validate faulty happens in the circuit under test (CUT).

Wrapper In test mode, were done by inserting the scan test input to the Wrapper

Serial Input (WSI) for setting the value for all the input boundary cells flip flops and

the internal circuit flip flops. After setting the value of the flip flop, capture mode

been done, where the new value updated base on the setting that been set in the

Figure 11 : S27 Sequential ISCAS’89 Benchmark Circuit

27

 Wrapped S27

 Sequential

 Benchmark Circuit

WBY

WIR

WSI

WRCK
WSO

WRSTN

DIn [3]

DIn [2]

DIn [1]

DIn [0]

DOut

Figure 12 : Illustration of Wrapped ‘S27 Sequential Benchmark Circuit’.

previous clock cycle to the internal flip flops and the output boundary cells. The

capture mode is done in a single clock cycle. The scan out been observed at the

Wrapper Serial Output (WSO). The output that been observed are the value updated

during the capture mode, at the boundary cells and the internal flip flops and the

setting value at the input boundary cells. The amounts of clock cycles are based on

the number of flip flops used during the test and a single cycle of capture mode.

4.1.1 Wrapper In Test

Figure shows the basic structure of the wrapped circuit under test. This design been

used to validate the wrapper in test mode. The basic operations were scan in, capture

and scan out. Before the In Test mode runs, we have to set the WIR to the wrapper In

Test operation. To set the mode of WIR is done by shifting the input at the WIR.

After setting the mode of operation, we need to set the value of internal flip flops and

input boundary cells flip flop. To do so, we need to shift the input from WSI, to the

boundary cells and the internal flip flops. In this case, we have 4 inputs and 3 internal

flip flops, so we shift the input from WSI for 7 cycles (for 7 flip flops) than 1 cycle

28

for the capture mode, during the capture mode, at the WSO, we already can observe

the value of output boundary cells. During the scan out, 7 clock cycles, where the 1
st

three clock cycles represent the captured value or the updated value during the faulty

test and the other 4 clock cycles are the input that we have set.

4.1.2 Wrapper Ex Test

Figure 13 : Illustration of Wrapper Ex Test Design with 2 CUT

Here in the wrapper ex test mode, we have introduced S298 sequential ISCAS ‟89

benchmark circuit, the reason choosing s298 sequential circuit, is to have more output

than the s27 sequential circuit inputs. Reason is to easy design the User Defined

Logic (UDL) and stuck at fault placement. Before the validation of Wrapper Ex Test

has been done, we have introduced three stuck at fault in the UDL as shown in

Figure 13. During the validation we have tested the operation during no fault and

faulty condition.

As we see in Figure 13; the design for the wrapper with 2 Circuit under Test (CUT)

in a single chip, where it almost represent the similar concept of SOC. In the Ex Test

Mode, the flip flop that are important are the output boundary cells of S298 CUT

which is the input of the UDL and the input boundary cells of S27 CUT which is the

output of the UDL. In the Ex Test mode, we are trying to test faulty that happen in

the UDL. Setting the value in output boundary cells of S298 CUT and capturing the

updated value at the input boundary cells of S27 CUT.

WBY

WIR

Wrapped S298

Sequential

Benchmark Circuit

Input 3

Input 2

Input 1

WSI

Wrapped S27

Sequential

Benchmark Circuit

WBY

WIR

User

Define

Logic

WSI

WSO

OUTPUT

2 Sequential Circuit in a single chip

S/1

S/0

S/1

Core

Select

29

Here to set the Wrapper Ex Test Mode to operate, we need to set two wrappers with

their own mode. For S298 CUT wrapper are set to the „input and internal bypass

mode‟, where it bypass the input from WSI to the boundary cells and the internal flip

flops, it just loaded and shifted through the output boundary cells, where in this case

for S298 CUT which has 14 internal flip flops and 3 input boundary cells, which we

can save about 17 clock cycles for loading the value of output boundary cells. While

in the S27 CUT wrapper are set to „internal and output bypass mode‟; where it bypass

the internal flip flops and output boundary cells. Here in S27 CUT have 3 internal flip

flops and 1 output boundary cells. Which in this mode, it can save up to 4 clock

cycles. Overall it can save up to 21 clock cycles. To select the wrapper, we can set at

the core select pin.

In this validation, we need to test for faulty UDL, as shown in Figure 13; we have

introduced 3 stuck at fault. This stuck at fault will be test to verify the functionality of

the wrapper.

4.1.3 Automation of IEEE 1500 Wrapper

The automation design using Perl scripting language, this language is almost similar

to C language. The idea of automation of the wrapper possible since the design of

wrapper involve in the core select and its route and the boundary register for each

functional input and output. Other components of the wrapper are the same, since the

design and meant for plug and play purpose. The illustration during the automation is

running shown in Figure 14. In validating the automation script is working fine, the

manually inserted wrapper has been compared with the automatically inserted

wrapper. If the comparison is ~99% to 100% similar using the special tool in the

Notepad ++, means the automation is working fine, since the manually inserted

wrapper had been validated its functionality.

30

Figure 14 : Illustration during the automation is running

4.2 Results and Discussion

Throughout the design, we have validated the functionality of the wrapper for In Test

and the Ex Test. This validation is done by comparing the expected result and the

observed result during the free fault and fault test. The circuit and the fault that been

introduced are shown in Figure 11 and Figure 13. This fault is purposely set to high

or low base on their respective stuck at fault at that point.

31

4.2.1 Wrapper In Test

In this mode, we have faulty and not faulty test, here there are two time of test been

done, where we test only one fault for the 1
st
 scan in, then for the second 2

nd
 scan in

were tested for 3 stuck at fault. The illustration shown in Figure 15,

Figure 15 : Illustration on Scan In (WSI) and Scan Out (WSO)

Referring to the Figure 11, the stuck at fault (S/1) after the U2A Gate, is the first

fault that been tested. Then, the three stuck at fault been tested in the second scan in

test input.

Figure 16 : Waveform form Wrapper In Test Simulation Fault Free

As observed in Figure 16, there are 7 clock cycle in each interval of capture, where

represent all the 8 flip flops that involved. During the capture cycle, the output of

WSO are the same as the output of output boundary cells. In the Figure 16 waveform

Scan In Test Input for

Single Stuck at Fault
WSI Scan In Test Input

for Three Stuck at

Fault

Capture

Capture Scan out for the

updated output for

1
st

 scan test in.

Capture

Capture Scan out for the

updated output for

2
nd

 scan test in.

WSO

Start Capture Capture

32

are fault free CUT. At the 1
st
 scan out the observed data are 10011010, the 2

nd
 scan

out the observed data are 00101000.

Figure 17 : Waveform form Wrapper In Test Simulation with Fault

In Figure 17, the waveform shows the faulty as we observed the 1
st
 scan out,

11011010 and the 2
nd

 scan out 11011000. Here we can observed or conclude that

during the single stuck at fault during the single fault, the effected flip flops were the

1
st
 flip flop shown in Figure 11 (comparing 10011010 (no fault) with 11011010 (with

fault)). By comparing the no fault and with the faulty one, we can know the path that

causing the fault.

4.2.2 Wrapper Ex Test

As discuss earlier, wrapper ex test mode is to test the fault of the user define logic

between the 2 CUT‟s. Here as shown in, Figure 13, there are 3 faults been introduced

during the ex-test mode, here we have simulated the design, and observed the free

fault and with fault waveform, to verify the functionality of the ex-test mode.

Capture Capture Start

33

Figure 18 : Illustration on Scan In (WSI) and Scan Out (WSO)

Figure 19 : Waveform form Wrapper Ex Test Simulation with Fault Free

Figure 20 : Waveform form Wrapper Ex Test Simulation with Fault

Start Capture

Start Capture

Scan In Test Input for

Single Stuck at Fault
WSI Capture

Capture Scan out for the

updated output for

1
st

 scan test in.

WSO

34

The test was done by inserting scan input, then the capture cycle, then the scan out

operation. In ex test, from the design, we have 6 clock cycles (6 output boundary cell)

and during the scan out, we will be observing the updated value in the input boundary

cell of S27 sequential benchmark circuit. The test input is 110101 for the fault and

free fault case. Here the output that observed in free fault is 0110|110101, here the

separation means, 0110 is the output value of the UDL while 110101 is the input that

the user set for the UDL. For faulty case, the output, 1011|110101, means they were

fault happen at the path leads to these 3 pins (comparing 0110 and 1011). The fault

that tested in both Ex Test and In Test were verified. From these output, we can tell

that the functionality of the wrapper valid.

35

CHAPTER 5: CONCLUSION AND RECOMMENDATION

In this thesis, we first proposed the needs of automating the IEEE 1500 wrapper

insertion to the cores due to difficulty faced by test researchers. The IEEE 1500

wrapper core design has been done using Verilog and been validated using Quartus II

simulation. During the IEEE 1500 wrapper validation, we found the design (which

follows protocol and the wrapper handbook) are not efficient during the external test

mode. Some modification had been done to increase the efficiency of the time to test

(reducing clock cycles) during the external test. The overall wrapper design is made

module base in assisting the development of automation script in inserting the

wrapper. The automation script is done using the Perl scripting language.

The automation script have some limitation during the automation process, the

automation can wrapped core with Verilog design, the core need to have shared or

functional input outputs, need to have internal test enable pin and internal test in

signal. The automation has tested to wrapped core with more than 30 input and

outputs.

For future design of the automation script, the automation would overcome problem

such the automation more flexible, the automation is done in graphical interface

where it would be user friendly and editable. The validation need to be done in full

SoC implementation and analyze using the CPLD/FPGA and the logic analyzer.

36

CHAPTER 6: REFERENCES

[1] IEEE standard 1500, Testability Method for Embedded Core-based Integrated

Circuits. IEEE, 2005

[2] System on a Chip – Wikipedia, the free encyclopedia. [Online], February

2012. Available: http://en.wikipedia.org/wiki/System-on-a-chip

[3] Modular Design – Wikipedia, the free encyclopedia. [Online], February 2012.

Available: http://en.wikipedia.org/wiki/Modular_design

[4] Niklas Huss, Automating IEEE 1500 wrapper insertion. Master‟s thesis, 2009.

Available: http://liu.diva-portal.org/smash/get/diva2:282026/FULLTEXT01

[5] Teressa, L. McLaurin, IEEE Std. 1500 Compliant Wrapper Boundary Register

Cell, 2005

[6] IEEE 1450.6 Core Test Language (CTL), February 2012.

 Available: http://grouper.ieee.org/groups/ctl/

[7] Francisco da Silva, Teresa L. McLaurin, and Tom Waayers. The Core Test

Wrapper Handbook – Rationale and Application of IEEE Std. 1500
TM

,

Springer, 2006. ISBN-10 0-387-30751-6

[8] F Brglez, D Bryan, K Kozminsk, Combinational Profiles of Sequential

Benchmark Circuits. In IEEE International Symposium Circuit and Systems,

May 1989. Available:

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=100747

[9] PERL. [Online], February 2012. Available: http://en.wikipedia.org/wiki/Perl

[10] Wrapper Diagram [Online], March 2012.

 Available: http://courses.cs.tamu.edu/cpsc680/walker/Slides/lecture4.ppt

[11] 3 Reds Lights of Death [Online], March 2012.

 Available: http://en.wikipedia.org/wiki/3_Red_Lights_of_Death

http://en.wikipedia.org/wiki/System-on-a-chip
http://en.wikipedia.org/wiki/Modular_design
http://grouper.ieee.org/groups/ctl/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=100747
http://en.wikipedia.org/wiki/Perl
http://courses.cs.tamu.edu/cpsc680/walker/Slides/lecture4.ppt
http://en.wikipedia.org/wiki/3_Red_Lights_of_Death

37

[12] S. Mlkhtonyuk, M. Davydov, R. Hwang and D. Shcherbin. IEEE 1500

Compliant Test Wrapper Generation Tool fo VHDL Models.

[13] B. Mullane, M Higgins and C. MacNamee. IEEE 1500 Core Wrapper

Optimization Techniques and Implementation

[14] Perl Tutorial [Online], July 2012.

Available: http://www.perltutorial.org/introducing-to-perl.aspx

[15] “Sysnopsys‟s Tetramax” [Online], July 2012.

Available: http://www.sysnopsys.com

http://www.perltutorial.org/introducing-to-perl.aspx
http://www.sysnopsys.com/

