

REMOTE CONTROLLING PRESENTATION USING ANDROID

APPLICAITON

by

Mohamad Firdaus Bin Zahari

Electrical and Electronic Engineering

11386

DISSERTATION

submitted to the Electrical & Electronics Engineering Programme

in Partial Fulfillment of the Requirements

for the Degree

Bachelor of Engineering (Hons)

(Electrical & Electronic Engineering)

MAY 2012

UNIVERSITI TEKNOLOGI PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

i

CERTIFICATION OF APPROVAL

Remote Controlling Presentation using Android Application

by

Mohamad Firdaus bin Zahari

A project dissertation submitted to the

Electrical and Electronics Engineering Program

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical and Electronics Engineering)

Approved by,

(Mr Azman bin Zakariya)

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or one by unspecified sources or persons.

MOHAMAD FIRDAUS BIN ZAHARI

iii

ABSTRACT

The numbers of smartphone users are increasing day by day. One of the popular

operating system used to power the smartphone is Android. Android is maintained

and developed by Google which they are providing Android SDK that contains the

tools and API needed to develop a custom application. By manipulating the

capability to access built-in sensors and reading of the smartphones such as touch

screen, phone orientation, accelerometer and GPS, a custom presentation remote

controlling application can be developed. This will be proven useful as the users will

not have to buy extra remote devices to assist them when they are doing presentation

as they can install this application directly to their phones. The application will be

designed and develop using Android SDK and coded in Java programming language.

Result shows that by manipulating the available sensors on the smartphones, we can

utilize the Bluetooth and Wi-Fi functionality of the smartphones to connect with

remote computer thus communicating with it. The application will send the data

based on user input which then will be interpreted by the server application on the

remote computer to control the slide presentation. The elements in this report contain

introduction, problem statement, objectives, literature review and methodology

which are used to develop the application. The discussion of the obtained results will

be looked further in this project.

iv

ACKNOWLEDGEMENT

Firstly, I would like to express my gratitude to the God for giving me guidance,

assistance and strength in completing this Final Year Project successfully on time.

I extend my gratitude to my supervisor and mentor, Dr. Azman bin Zakariya whose

help, advice and guidance have been a great help in order for me to complete this

project successfully. His willingness to teach and share me his knowledge

contributed greatly to my project.

My gratitude also goes to my co-supervisor, Dr Zuhairi Baharudin, for his full

support towards my project. His helpful comments and suggestions had contributed a

lot to me not only to complete the project but also further enhance the results. His

kindness, patience and friendly approach will always be appreciated.

Lastly, my appreciation goes to my family and friends who are supporting me

thoroughly towards the completion of my project. I would also like to express my

gratitude to all people who have contributed directly or indirectly in accomplishment

of this project.

v

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL…………………………………………....…i

CERTIFICATION OF ORIGINALITY..ii

ABSTRACT……………………………………………………..……………….....iii

ACKNOWLEDGEMENT……………………………………………..………….iv

TABLE OF CONTENTS………………………………………………...….….v-vii

LIST OF FIGURES………………….………………………………………...viii-ix

LIST OF TABLES………………………………………………………………….x

LIST OF ABBREVIATION……………………………………………….………xi

CHAPTER 1: INTRODUCTION…………………………………..………1

1.1 Background of Study………………………………...…1-2

1.2 Problem Statement………………………………………..2

1.3 Significance of Project…………………………….……...3

1.4 Objectives………………………………………………...3

1.5 Scope of Study…………………………………………3-4

1.6 Relevancy of Project………………………………..…….4

1.7 Feasibility of Project……………………………………...4

vi

CHAPTER 2: LITERATURE REVIEW…………………………………..5

 2.1 Android Application Framework…………………….…5-9

 2.2 Machine-to-Machine Network………………………..9-11

 2.3 Android-based SoD Client…………………….……..11-14

 2.4 Android User Interface Design……………….…..….15-16

CHAPTER 3: METHODOLOGY…………………………………..…….17

3.1 Research Methodology………………………………….17

3.2 Flow Chart……………………....……………….……...18

3.3 Project Task……………………………………………..19

3.4 Gantt Chart and Milestones...……………………..…20-22

3.5 Tools………………………………………………...…..22

3.6 Project Schedule……………………………………..….22

CHAPTER 4: RESULT AND DISCUSSION…………………………….23

 4.1 Results……………………………………………….23-32

 4.2 Discussion……………..…………………………..……33

CHAPTER 5: CONCLUSION AND RECOMMENDATION………….34

 5.1 Conclusion………………………………………………34

 5.2 Recommendation.……………………………………….34

REFERENCES…………………………………………………………………35-36

vii

APPENDICES……………………………………………………………………..37

Appendix A………………………………………………………….………………38

Appendix B……………………………………………………….…………………44

Appendix C……………………………………………………………….…………49

Appendix D…………………………………………………………….……………52

Appendix E………………………………………………………………………….57

viii

LIST OF FIGURES

Figure 1: Android system structure…………………………………………………...5

Figure 2: Position of DVM in Android system…………………………………...…..7

Figure 3: Components structure of Android application……………………………..7

Figure 4: Lifecycle of an activity……………………………………………………..8

Figure 5: M2M architecture for different domains………………………………….10

Figure 6: Communication principle between the components………..……….……10

Figure 7: Software architecture for SoD………………………………………….…12

Figure 8: Resource connection after starting program………………………………13

Figure 9: Resource disconnection after stopping program………………………….13

Figure 10: Operating procedures for resource allocation………………………...…14

Figure 11: Operating procedures for resource deallocation…………………………14

Figure 12: The design procedure of Android smartphone user interface…………...15

Figure 13: A Tree-structured UI…………………………………………………….16

Figure 14: Project methodology………………………………………………...…..18

Figure 15: Application workflow……………………………………………………23

Figure 16: Main screen of the application………………………………………..…24

Figure 17: Connection selection in the application…………………………………24

Figure 18: Application requesting to turn on the Bluetooth…………………..……25

Figure 19: Application turns on the Bluetooth once permission is given…………..25

Figure 20: Application lists the available devices that can be connected with……..26

Figure 21: Application will prompt for IP address………….………………………26

ix

Figure 22: Control screen of the application…………………..…………….………27

Figure 23: Data sent by the application is being interpreted on the server…………28

Figure 24: BluetoothScreen.java flow……………………………..……………….29

Figure 25: BluetoothCommandService.java flow…………………..………………30

Figure 26: WifiScreen.java flow……………..……………………………………..31

Figure 27: ProcessConnectionThread.java flow…………………………………….32

x

LIST OF TABLES

Table 1: Function for SoD Client…………………………………………………....12

Table 2: Gantt chart for Final Year Project I………………………………………..20

Table 3: Milestones of the Final Year Project I……………………………………..21

Table 4: Gantt chart for Final Year Project II……………………………………….21

Table 5: Milestones of the Final Year Project II…………………………………….22

Table 6: Project schedule for Final Year Project I...22

Table 7: Project schedule for Final Year Project II…………………………………22

Table 8: List of available commands in the application…………………………….28

xi

LIST OF ABBREVIATION

3G 3rd Generations

GPS Global Positioning System

SDK Software Development Kit

API Application Programming Interface

GUI Graphical User Interface

DVM Dalvik Virtual Machine

UI User Interface

M2M Machine-to-machine

XMPP eXtensible Messaging and Presence Protocol

CDP Content Data Provider

WLAN Wireless Local Area Network

LAN Local Area Network

SoD System on Demand

XML-RPC eXtensible Markup Language Remote Procedure Call

TCP Transmission Control Protocol

VM Virtual Machine

XML eXtensible Markup Language

JAR Java Archive

IP Internet Protocol

1

CHAPTER 1

INTRODUCTION

1.1 Background of Study

The numbers of mobile phone users are increasing day by day and such products are

becoming powerful compared to the previous generation. Mobile phones these days

are expected to bridge the gap between desktop computers and hand-held devices [1]

by being able to carry out the task that can be done using a personal computer such

video call, internet surfing via mobile and sharing content between two devices [2].

In order for mobile phone to do these kinds of task, mobile phones today are

equipped with new and latest hardware such as faster processing power for

computationally intensive applications, larger memories to handle lots of application

and faster Internet connection thanks to the 3
rd

 Generation (3G) technology [1].

Smartphones today are also different with traditional cell phones in a sense that they

are equipped with multiple sensors such as global positioning system (GPS), touch

screen, accelerometer and the phone orientation itself to enhance user experience [3].

These sensors open up possibilities for new functionality that cannot be achieved by

conventional cell phones.

Plus, the application programming platforms and development tools that are used to

build application for mobile devices such as Java, Open C, Objective C, Python and

Flash Lite help the developer to create highly functional mobile application that are

benefited from state-of-the-art hardware equipped with the smart phones [4].

Together with the advancement in hardware of smartphones, the operating system

that supports the application and running the devices are also becoming increasingly

powerful and flexible. One of popular operating system available for smartphones is

Google Android. The reason that Android becomes so popular is because of their

open-source policy that is widely adopted by industry and end users. Android

2

includes an operating system, middleware and core applications, and they are also

comes with downloadable Software Development Kit (SDK) [5].

The SDK provides necessary tools and Application Programming Interface (API) to

help the developers in developing application for Android platform. Another

interesting feature of Android is that there are different types of hardware and

sensors that are accessible to developers where can benefit the developer to write

better and creative applications compared to the other smartphones as they can

access different hardware in the smartphones such as magnetometers, proximity and

pressure sensors, touchscreens and gyroscopes [6].

1.2 Problem Statement

Google Android opens up vast possibilities to develop highly functional applications

since they are provided with SDK that ease up the development process. Plus, the

nature of Android devices that can be accessible directly by the application allowing

infinite possibilities to comes up with an application that is useful yet creative.

Even though there are already remote devices that are capable of controlling

PowerPoint presentation remotely, but the users need to buy extra devices that are

costly. Besides, these kinds of device such as wireless mouse or dedicated remote

control usually offer basic functionality only.

This project aims to develop an application that can be used to remote control

PowerPoint presentation from Android smartphones. Due to this problem stated

above, the application will helps the user to remote controlling a presentation without

the need to buy extra devices yet offering extended functionality to enhance the user

experience. Multiple sensors and hardware can be manipulated with the help of Java

programming to create remote presentation control specifically for Android platform.

3

1.3 Significance of Project

The improvement of technology used in smartphones be it software or hardware are

significant nowadays. With multiple built-in sensors, equipped with open source

operating system such an Android, we can use this technology to our advantage.

By utilizing the built-in sensors and hardware such as accelerometer, thermometer

and touch screen that are directly accessible by the Android application, a

presentation remote control application can be develop where input registered by the

sensors will be sent to the remote computer to handle basic presentation function.

1.4 Objectives

To develop a fully functional Android based applications that capable of controlling

presentation remotely on supported devices such as personal computer and laptops.

The sub objectives of the project are listed as following:

i. To learn about the basic framework architecture of Android operating

system.

ii. To utilize multiple hardware and sensors equipped on smartphones to

interact with connected devices.

1.5 Scope of Study

The scope of this project is doing research and literature review on Android

applications, methodology of graphical user interface (GUI) designing for Android

application and also utilization of sensors in the smartphone to create the

applications. Basic application framework structure will be drawn and coded using

Java language in the provided Android SDK. Further testing will be carried out to

design the best presentation remote control application for Android-powered mobile

phones.

4

The application will be built specifically for Android 2.3 (Gingerbread) and higher.

The application can be installed to all Android-based smartphone and the server-side

application can be run using Java Runtime Environment in Windows and Linux OS.

1.6 Relevancy of Project

Since the number of smartphone users is increasing day by day, with proper

programming tools and SDK coupled with advancement of hardware technology

used, a custom presentation remote control application will be beneficial. This will

help to save the cost from buying an extra dedicated device that is not only restricted

with limited functionality but also is expensive. Another important aspect is that if

the user owns Android-powered mobile phones, they can install this application

directly.

1.7 Feasibility of Project

This project will be done in two semesters which basically includes three basic areas,

which are research, application development and also beta-testing and improvement

of the final prototype. Android SDK will be utilized to develop the application from

scratch using Java programming language. Once the prototype is done, application

testing will be done. Based on the description above, it is very clear that this project

will be feasible to be carried out within the time frame.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Android Application Framework

Android is Linux based operating system for mobile devices such as smartphones

and tablets. It is an open source project led by Google so that means its openness will

promote technology innovation and at the same time reduce the development cost.

Android SDK is available to download if the end-users decide to develop an

application on their own to suit their own taste.

Common structure of a program is called application framework [7]. This framework

is reusable, meaning that the very same framework that consist a set of architectures

of application can be used again to create another application with another set of

classes and instances. Android software structure can be divided to four basic levels;

applications, application framework, library and Android runtime, and lastly Linux

kernel as operating system.

Figure 1: Android system structure

6

The first and top layer is applications layer. This is where all Android applications

such as web browser, music player and email client are residing [7]. These

applications are written in Java language and developer can benefit from the API

provided in application framework layer below to develop their own application for

application layer.

The second layer below the application layer is application framework. This is where

Android operating system stands out compared to the other mobile operating

systems. There are handfuls of services and managers that can be reuse by the users

for their applications. As an example, View System is used to build and develop

application with beautiful user interfaces, and it includes things such as grids, text

boxes, buttons and lists. Content Providers allows the application to access the data

from another application or even share their own data.

Next layer is the Libraries and Runtime. This layer contains a set of C/C++ libraries

that are used by various Android components. It also provides support and

dependencies needed by various Application Framework of higher layer. As being

told earlier, Android application is written in Java language but they do not use Java

runtime components to run the application. Instead the application will use Android

runtime component [7].

Android runtime component basically consisted of two main parts. The first one is

core library and Dalvik virtual machine (DVM). The former is responsible for storing

all the necessary Java classes which are needed by the application meanwhile the

latter is essentially a Java virtual machine that is optimized and redesigned by

Google for usage in Android-capable smartphone devices [2].

DVM is register-based virtual machine that can have multiple instances on one

device. As for example, one Android application is running on an instance of DVM,

and another application can use another instance of DVM to run. It also use little

memory resources and relies on underlying Linux kernel to function properly [7].

7

Figure 2: Position of DVM in Android system

The last and bottom layer is the Linux kernel itself. It contains all the necessary

drivers for the hardware to function properly such as camera driver, Bluetooth driver,

audio driver and keypad driver. It also acts as an abstraction layer between the

hardware and the software. Besides, some components and functions of DVM also

depend on the Linux kernel itself.

Android is unique as a certain application can use other application to complete its

own task or function. As an example, an application that needs to play some audio

files can directly use the function in a dedicated audio player application to achieve

its task. Furthermore, Android components can be further divided into several

components which are Activity, Intent Receiver or Broadcast Receiver, Service and

Content Provider [2].

Figure 3: Components structure of Android application

8

The first component, Activity is usually represented with a single screen with a user

interface (UI) [7]. The activities are independent from one another and work together

to improve the user experience when using an application. Usually, there will be a

“main” activity and other activities can be created as a subclass of Activity. Each

activity performs different function and when a new activity starts, the previous

activity are stopped as shown is Figure 4.

Figure 4: Lifecycle of an activity

Service is an Android component that performs work for remote process and usually

running in background so it does not provide user interface to the users. The activity

will first connect to the service required and from there, the activity can

communicate with the service to perform the task or achieve a specific function.

9

The third component is Content Providers. As its name suggests, Content Provider

functions to provide data share mechanism between applications. The data is

accessible to the application via file system, a database such as SQLite database or

any other persistent storage location. A content provider can be created as a subclass

of Content Provider, which will define the data format that is supported by the

application. It also helps other application to query and modify the data inside the

application [7].

Lastly, Intent Receiver or also known as Broadcast Receiver handles the reception of

all system wide broadcast. One example of broadcast is when a battery is low; the

system will broadcast the signal to notify the user that the battery needs to be

recharged. Broadcast can be initiated either by system or even an application.

Broadcast does not have a specific user interface, but it can also come in form of

notification to alert the user [8].

2.2 Machine-to-Machine Network

In a network, there are multiple types of device that are connected to it, be it

smartphones, tablets, personal computers and laptops. Machine-to-machine (M2M)

network is a network of devices with diverse capabilities to interact only and if only

with human intervention. This concept is getting popular as the numbers of devices

connecting to a network is increasing days by days.

Such devices are communicating through a network via different methods such as

wire lines, Wi-Fi, Bluetooth and 3G [9]. During this communication, data can be

then collected, analyzed and acted upon. Context-awareness involves the collection

and assessment of data depending on the system design.

Usually, for a M2M based application to work, it will need to fulfill four stages.

Firstly data will be collected through sensors. As for smartphones today, they are

already equipped with different kinds of sensors such as thermometer, accelerometer,

touch screen sensors and GPS. The data can be collected either periodically or upon

request. The collected data will then be transmitted over the network to another

M2M device that is capable to handle and store the data transmitted [10]. The

10

collected data will then be analyzed and assessed and lastly, act upon them based on

the analysis result.

Figure 5: M2M architecture for different domains

For a basic M2M network, there are three parts involved which are the smartphone

itself, eXtensible Messaging and Presence Protocol (XMPP) and Context Data

Processor (CDP). The components are communicating using XMPP protocol thus for

the system to work, a dedicated XMPP server will be needed. The smartphone will

act as the client part of the network and the reading from the built-in sensors will be

forwarded to the CDP to be processed and analyzed [9].

Figure 6: Communication principle between the components

11

The communication between the smartphone and XMPP server can be done either by

3G networks or Wireless Local Area Network (WLAN) meanwhile for a better and

more reliable connection, the communication between the CDP and XMPP will be

done via Local Area Network (LAN). The CDP will be responsible to track the status

of every available smartphone in the network and received the required context data

via the data collected from the sensors reading of the smartphones.

From the client side, context data is provided by the built-in sensors in the Android-

based smartphones. The application will then transmitted the data to the XMPP

server over the WLAN via formatted XMPP messages. This application will run as

long as it needed until the service is stopped by the user.

On the other hand, at the server side, XMPP server is run on a dedicated computer

that is connected to the network. The data available will then be collected by the

CDP that is connected to the XMPP via local network. CDP then will assess and

examine the data collected. This data will be proven useful for tasks such as tracking

system, alarming and remote controlling [9].

2.3 Android-based SoD Client

System on demand (SoD) is a framework that provides a function of dynamically

configurable peripheral devices for virtual peripheral resources such as monitors,

keyboards and mice [11].

There are several applications in Google Android market that enable remote

presentation which allow the user to view a remote presentation of his/her current

computer state via smartphones. The only downside is that this kind of application

cannot separate resources that consisting remote presentation such as keyboard and

mouse.

For SoD client, there are basically three main functions which are system login,

resource allocation/deallocation and resource virtualization.

12

Table 1: Function for SoD Client

Function Operation

SoD System Login Authenticate users through XML-RPC communication

Resource allocation /

deallocation

Receive list for currently existing virtual machines and

virtual resources

Execute the virtual machine through user’s input

Allocate resources through user’s input

Deallocate resources through user’s input

Resource virtualization

Keyboard Transmit keyboard inputs to the server

Mouse Transmit touch screen inputs to the server

Monitor Receive frame buffer data of server and

draw on the screen

The client software of SoD consists of eXtensible Markup Language Remote

Procedure Call (XML-RPC) module, a Command Controller module and each

module for monitor, mouse and keyboard respectively.

Figure 7: Software architecture for SoD

13

XML-RPC server functions to receive the list of resources and virtual machine

available. It will then allocate/deallocate the resource accordingly and also updating

the resources whenever there are changes to the resources. Meanwhile the Command

Controller module is responsible to virtualize the resources of the phone [11]. All

keyboard, mouse and monitor modules perform transmission control protocol (TCP)

connection to the virtual machine (VM).

Design and operating procedures of SoD can be seen from Figure 8 to Figure 11.

Figure 8 describe the resource connection right after starting the program. Figure 9

describes the operating procedures for resource disconnecting after stopping the

program and Figure 10 show the operating procedures for resource allocation. Lastly,

Figure 11 describes the operating procedures for resource deallocation.

Figure 8: Resource connection after starting program

Figure 9: Resource disconnection after stopping program

14

Figure 10: Operating procedures for resource allocation

Figure 11: Operating procedures for resource deallocation

15

2.4 Android User Interface Design

An application should not only be functional but must also have a good GUI as an

application with good GUI design will achieve better user’s demand and sold better

[12]. There are three main steps involved when developing a GUI for Android

application.

First, target users will be located and core users’ demands will be gathered by the

requirement analyst. He/she then will transform the demands into basic functionality.

Secondly, based on the ideas gathered and functions analyzed, the UI designer will

then develop a GUI. Lastly, software engineers will translated and implement the

design with eXtensible Markup Language (XML) coding.

Figure 12: The design procedure of Android smartphone user interface

The GUI design will be implemented by the system engineers. As being mentioned

earlier, Activity class control the function of application but the Activity itself does

not have presence on the screen so the engineers need to work views and view

groups. View is basically the rectangular area on the screen that can be drawn to,

handle clicks or any other interaction events [12] meanwhile a ViewGroup is merely

a container that holds multiple View child together. Activity can be defined as a tree-

structured UI by using a tree of view and view group nodes.

16

Figure 13: A Tree-structured UI

Once the GUI is structured, it can then be designed in XML using Layout class.

Layout class is basically a special class of ViewGroup that is used to display the

widgets. There are several types of Layout, such as LinearLayout which aligns the

children in either vertically or horizontally. For more flexible aligning and complex

UI, RelativeLayout can be used. AbsoluteLayout is used to specify the exact location

of children using x/y coordinates.

17

CHAPTER 3

METHODOLOGY

3.1 Research Methodology

In order to achieve the main objective of this project, the goals for two sub objectives

highlighted in the earlier part need to be accomplished. To develop a fully functional

Android application, brief research and literature review needs to be done on the

selected papers that concentrate on the Android application development including

GUI design and sensor utilization. The relevancy between selected papers and

project objectives need to be taken into account to ensure the credibility of the

project.

Basic application framework structure will then be drawn and coded using Java

language in the provided Android SDK. The source code and brief research

regarding the development are carried out on several resources such as books and

also internet. The basic functionality of the application will be tested during the beta-

testing stage, and once it is achieved, the overall UI will be designed and improved.

18

3.2 Flow Chart

The following flow chart explains the methodology in executing the project.

Figure 14: Project methodology

START

Select application to develop

Brief research and literature
review

Design application
framework structure

Learn Java programming
and code the application

Compile code to apk file

Install application to the
smartphone

Test Bluetooth
functionality

Test Wi-Fi
functionality

Improve application user
interface

Application beta-testing

END

OK

OK

NO

NO

19

3.3 Project Task

 Select application to develop

Based on background study and problem statement, one application to be

developed using Android SDK is decided.

 Brief research and literature review

Once application has been decided, brief research and literature review is

done to gain more knowledge and information regarding the project to

determine the feasibility of the project.

 Design application framework structure

The basic application structure will be designed where all the coding will be

applied based on the design decided.

 Learn Java programming and code the application

Since Android application is coded using Java language, all coding is written

in Java after basic Java programming is learnt.

 Compile code to apk file

Once the coding is done, it will then be compiled to apk file to make sure this

file is installable to the Android-based smartphones.

 Install application to the smartphone

The apk file will be installed to the smartphone for preliminary testing.

 Test Bluetooth functionality

Bluetooth connection between smartphone and connected personal

computer/laptop is verified to make sure it is working properly.

 Test Wi-Fi functionality

Once Bluetooth is verified working correctly, Wi-Fi module is checked to

make sure that the phone is able to connect to the selected computer/laptop

via WLAN.

 Improve application user interface

Once all the intended functionality for the application is working correctly,

the overall GUI will be improved for better user experience.

 Application beta-testing

This is the final stage of the project where the beta-testing of the application

occurs. The application will be distributed among few Android-based

smartphone users to test its functionality.

20

3.4 Gantt Chart and Milestones

In order to effectively conduct the project, a Gantt chart consisted of two semesters duration has been constructed.

Table 2: Gantt chart for Final Year Project I

21

Table 3: Milestones of the Final Year Project I

Activities Date

Completion of application selection Week 1

Completion of brief research and literature review Week 5

Completion of application framework structure design Week 6

Completion of application coding using Java Week 11

Completion for application compilation and installation to

smartphones for preliminary testing

Week 14

Table 4: Gantt chart for Final Year Project II

22

Table 5: Milestones of the Final Year Project II

3.5 Tools

The main software used for Android application development is Android SDK as it

provides necessary tools and APIs to build the application from scratch using Java

programming language. The other tools that are needed are Android-based

smartphones and a personal computer/laptop with Bluetooth and Wi-Fi technology.

3.6 Project Schedule

The planned schedule for Final Year Project I and Final Year Project II are as

follows.

Table 6: Project schedule for Final Year Project I

Title selection Week 1

Extended proposal Week 6

Proposal defense and progress

evaluation

Week 9

Draft report Week 13

Final report Week 14

Table 7: Project schedule for Final Year Project II

Pre-EDX Week 8

Draft report Week 13

Final report Week 14

VIVA Week 15

Activities Date

Completion of application user interface

development

Week 8

Completion of application beta testing Week 14

23

CHAPTER 4

RESULT AND DISCUSSION

4.1 Results

Figure 15: Application workflow

The working mechanism for the application can be divided to four basic parts. The

first is the client which contains the smartphone that have been installed with the

proposed application. The application (client) will interact with the remote computer

(server) via the transmission medium. On the server, data that had been passed from

the smartphone will be interpreted and executed to control the application.

When the application is first started, the application will create an instance of DVM

to run its own functionality. It will then build its interface and function based on the

framework that is already available in the phone including activity manager, view

system and resource manager. At the same time, it will load up necessary drivers

from Linux kernel such as Bluetooth driver and Wi-Fi driver. The application can be

connected to the remote computer via Bluetooth or Wi-Fi depending on the user

needs.

Application Server Client

Transmission

medium

24

Figure 16: Main screen of the application

Figure 17: Connection selection in the application

When the user chooses to connect the smartphone via Bluetooth, firstly the

application will check for the availability of Bluetooth adapter. If the application

detects no Bluetooth adapter available, the program would not proceed. Next, the

application will check whether the Bluetooth is already turned on or not. If it is not,

then the application will request the permission from the user to turn on the

Bluetooth.

25

Figure 18: Application requests to turn on the Bluetooth

Figure 19: Application turns on the Bluetooth once permission is given

The application then can search for available devices in range and retrieve the

already paired devices with the smartphones. The application will open up a socket

to establish connection with the selected remote device.

26

Figure 20: Application lists the available devices that can be connected with

If the user chooses to connect the devices via Wi-Fi, the user will then be prompted

to enter the IP address of the remote computer. For a faster connection, it is

recommended that the smartphone and the computer to be connected under a same

Wi-Fi network.

Figure 21: Application will prompt for IP address

27

When the user press the connect button, the application will validate the IP address to

make sure that it is valid. The value of IP address should be in the range of 0-255

only. It will then try to establish the connection to the server port as it had been

predefined in the application.

The application will then redirect the user to the control screen no matter of which

type of connection is used. There are basically six buttons in the control screen which

are Start, Stop, Next, Previous, Black Screen and White Screen.

.

Figure 22: Control screen of the application

Each button represents an integer value that will be sent to the server. As example,

when the user press the Start button, the application will send the value of 1 to the

server where on the server, the data then will be interpreted for the appropriate

response.

The server application must be running at the remote computer so that the data sent

by the smartphone will be received and handled. As being said before, each integer

value will represent a command to the Microsoft PowerPoint. When the server

received the data, it will then match the value with the respective command. The

28

command is executed by the Java Robot API where it can emulate the keyboard

press. Since the Microsoft PowerPoint has the predefined keyboard shortcut, it will

react to the different emulated keyboard press generated by the server application. As

an example, the value 1 that is sent by the application when the user clicks the Start

button is received by the server. It will then be matched with the appropriate

command, which is to emulate “F5” key press. The built-in keyboard shortcut of

Microsoft PowerPoint will start the presentation.

Table 8: List of available commands in the application

Button Integer Keyboard press

Start 1 F5

Next 2 Right arrow

Previous 3 Left arrow

Stop 4 Escape

Black screen 5 B

White screen 6 W

Figure 23: Data sent by the application is being interpreted on the server

29

As being described earlier, an activity consists of the user interface and all necessary

functions related to it. The proposed application can be breakdown to three core

activities, which are BluetoothScreen.java, BluetoothCommandService.java, and

WifiScreen.java. For the server application on the remote computer, the core activity

is ProcessConnectionThread.java.

The simplified program flow for each activity can be seen in the following Figure 24,

Figure 25, Figure 26 and Figure 27.

Figure 24: BluetoothScreen.java flow

Application imports all necessary libraries and framework

Application defines initial values for the variables

Application builds the interface based on the predefined
xml layout

Application checks for the availability of Bluetooth
adapter

Application checks
whether Bluetooth has
been turned on or not

Application
requests to turn on

the Bluetooth

Application turns on the Bluetooth

Application goes to the BluetoothCommandService.java

YES

YES

NO

EXIT

NO

30

BluetoothCommandService.java handles all the backend function of the Bluetooth

functionality of the application including creating the Bluetooth socket and initiating

the input and output streams of the Bluetooth connection.

Figure 25: BluetoothCommandService.java flow

Application imports all necessary libraries and framework

Application defines the UUID of the smartphone

Application cancels all existing connection thread and start new connection
thread

Application opens up a
Bluetooth socket to the

specific device

Application creates input
streams and output streams

Application writes data to output streams based on user click

YES

YES

NO

NO

EXIT

31

WifiScreen.java handles the Wi-Fi functionality of the application including defining

the output port and set up the IP address of the remote server on the computer that

the application wishes to connect to.

Figure 26: WifiScreen.java flow

Application imports all necessary libraries and framework

Application defines initial values for the variables

Application receives the IP address from user input

Application checks
whether the IP address

is valid or not

Application redirects user to slide control screen and send data
based on user click

NO

YES

32

ProcessConnectionThread.java handles the server part of the application. It receives

the data sent by the smartphones and translates it to the appropriate command to the

presentation control.

Figure 27: ProcessConnectionThread.java flow

Application imports all necessary libraries and framework

Application defines initial values for the variables

Application receives input data sent fromt he smartphones

Application checks the value
of integer receives

Application emulate keyboard press based on values received from the smartphone

33

4.2 Discussion

From the result that is obtained, the application can be run in the Android-based

smartphone with Android version 2.3 or higher. The application can be started

instantly and received the user input based on the touch screen. The application will

first ask the user permission to turn on the Bluetooth before scanning for available

devices in the range.

The implementation of the client-side of the application for the Bluetooth part can be

seen in the Appendix A meanwhile the code for Bluetooth device listing is available

in the Appendix B. The Java code of the server-side implementation for Bluetooth

part is available in Appendix C.

As for the Wi-Fi, full source code of the client-side implementation can be seen in

Appendix D meanwhile the server-side implementation itself can be seen in

Appendix E.

34

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Android SDK enables the users to write their own application using Java

programming language. The transparency of Android OS is useful in a sense that it

allows the user to access available hardware and sensors equipped with the phone

provided appropriate security permission is given. The application can be coded to

check for the hardware availability in such smartphones then further utilize it to

interact with user input and communicate with remote devices.

The application coded successfully connects to the remote computer via Bluetooth

and Wi-Fi. Depending on user interaction, the application can control the flow of

slide presentation by manipulating the keyboard press on the remote computer to

trigger the built-in keyboard shortcut of such application.

5.2 Recommendation

Through this project, Bluetooth connection can be initiated and the application on the

Android-based smartphone can be connected to a remote desktop or laptop via

Bluetooth and Wi-Fi. However, there are plenty of rooms for improvements. This

project can be expanded to remote controlling other application such as media player,

or imitating keyboard and touchpad gesture. Furthermore, the application’s user

interface can be vastly improved to give a better user experience when users are

using the application.

35

REFERENCES

[1] Amalfitano, D.; Fasolino, A.R.; Tramontana, P.; "A GUI Crawling-Based

Technique for Android Mobile Application Testing," Software Testing,

Verification and Validation Workshops (ICSTW), 2011 IEEE Fourth

International Conference, pp.252-261, 21-25 March 2011

[2] Pan Yong-Cai; Liu Wen-chao; Li Xiao; "Development and Research of

Music Player Application Based on Android," Communications and

Intelligence Information Security (ICCIIS), 2010 International Conference,

pp.23-25, 13-14 Oct. 2010

[3] Torunski, E.; El Saddik, A.; Petriu, E.; "Gesture recognition on a mobile

device for remote event generation," Multimedia and Expo (ICME), 2011

IEEE International Conference, pp.1-6, 11-15 July 2011

[4] Gavalas, D.; Economou, D.; "Development Platforms for Mobile

Applications: Status and Trends," Software, IEEE , vol.28, no.1, pp.77-86,

Jan.-Feb. 2011

[5] Chiu-Chiao Chung; Ching Yuan Huang; Shiau-Chin Wang; Cheng-Ming Lin;

"Bluetooth-Based Android Interactive Applications for Smart Living,"

Innovations in Bio-inspired Computing and Applications (IBICA), 2011

Second International Conference, pp.309-312, 16-18 Dec. 2011

[6] Wu Shyi-Shiou; Wu Hsin-Yi; "The Design of an Intelligent Pedometer Using

Android," Innovations in Bio-inspired Computing and Applications (IBICA),

2011 Second International Conference, pp.313-315, 16-18 Dec. 2011

[7] Jianye Liu; Jiankun Yu; "Research on Development of Android

Applications," Intelligent Networks and Intelligent Systems (ICINIS), 2011

4th International Conference, pp.69-72, 1-3 Nov. 2011

[8] OL. Google Android Developers, Android Develop Guide,

http://developer.android.com/guide/topics/fundamentals.html

[9] Kuna, M.; Kolaric, H.; Bojic, I.; Kusek, M.; Jezic, G.; "Android/OSGi-based

Machine-to-Machine context-aware system," Telecommunications

(ConTEL), Proceedings of the 2011 11th International Conferenc, pp.95-102,

15-17 June 2011

http://developer.android.com/guide/topics/fundamentals.html

36

[10] M2M Communications website, http://www.m2mcomm.com/about/what-is-

m2m/index.html

[11] Kyuchang Kang; Kiryong Ha; Jeunwoo Lee; "Android-based SoD client for

remote presentation," Advanced Communication Technology (ICACT), 2011

13th International Conference, pp.1162-1167, 13-16 Feb. 2011

[12] Maoqiang Song; Haiyan Song; Xiangling Fu; "Methodology of user

interfaces design based on Android," Multimedia Technology (ICMT), 2011

International Conference, pp.408-411, 26-28 July 2011

http://www.m2mcomm.com/about/what-is-m2m/index.html
http://www.m2mcomm.com/about/what-is-m2m/index.html

37

APPENDICES

38

APPENDIX A

Below is the Java code for the client-side Bluetooth implementation that is used to

turn on the Bluetooth, search the available device and initiate the connection.

package com.android.yaarc;

import android.app.Activity;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

import android.content.Intent;

import android.os.Bundle;

import android.os.Handler;

import android.os.Message;

import android.view.KeyEvent;

import android.view.Menu;

import android.view.MenuInflater;

import android.view.MenuItem;

import android.view.Window;

import android.widget.TextView;

import android.widget.Toast;

public class BluetoothScreen extends Activity {

 private TextView yTitle;

 private static final int REQUEST_CONNECT_DEVICE = 1;

 private static final int REQUEST_ENABLE_BT = 2;

 public static final int MESSAGE_STATE_CHANGE = 1;

 public static final int MESSAGE_READ = 2;

 public static final int MESSAGE_WRITE = 3;

 public static final int MESSAGE_DEVICE_NAME = 4;

 public static final int MESSAGE_TOAST = 5;

39

 public static final String DEVICE_NAME = "device_name";

 public static final String TOAST = "toast";

 private String yConnectedDeviceName = null;

 private BluetoothAdapter yBluetoothAdapter = null;

 private BluetoothCommandService yCommandService = null;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 requestWindowFeature(Window.FEATURE_CUSTOM_TITLE);

 getWindow().setFeatureInt(Window.FEATURE_CUSTOM_TITLE,

R.layout.custom_title);

 setContentView(R.layout.bluetooth);

 yTitle = (TextView) findViewById(R.id.title_left_text);

 yTitle.setText(R.string.app_name);

 yTitle = (TextView) findViewById(R.id.title_right_text);

 yBluetoothAdapter= BluetoothAdapter.getDefaultAdapter();

 if (yBluetoothAdapter == null) {

 Toast.makeText(this, "Bluetooth is not available

for your device", Toast.LENGTH_LONG).show();

 finish();

 return;

 } }

 @Override

 protected void onStart() {

 super.onStart();

 if (!yBluetoothAdapter.isEnabled()) {

 Intent enableBTIntent = new Intent

(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(enableBTIntent,

REQUEST_ENABLE_BT);

40

 }else {

 if (yCommandService == null)

 setupCommand(); }}

 @Override

 protected void onResume() {

 super.onResume();

 if (yCommandService != null) {

 if (yCommandService.getState() ==

BluetoothCommandService.STATE_NONE) {

 yCommandService.start();}}}

 private void setupCommand() {

 yCommandService = new BluetoothCommandService(this,

yHandler); }

 @Override

 protected void onDestroy() {

 super.onDestroy();

 if (yCommandService != null)

 yCommandService.stop(); }

 private void ensureDiscoverable() {

 if (yBluetoothAdapter.getScanMode() !=

BluetoothAdapter.SCAN_MODE_CONNECTABLE_DISCOVERABLE) {

 Intent discoverableBTIntent = new Intent

(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE);

 discoverableBTIntent.putExtra(BluetoothAdapter.EXTRA_DISCOVERA

BLE_DURATION, 300); //5minutes

 startActivity(discoverableBTIntent);}}

 private final Handler yHandler = new Handler() {

 @Override

41

 public void handleMessage(Message msg) {

 switch (msg.what) {

 case MESSAGE_STATE_CHANGE:

 switch (msg.arg1) {

 case

BluetoothCommandService.STATE_CONNECTED:

 yTitle.setText(R.string.title_connected_to);

 yTitle.append(yConnectedDeviceName);

 break;

 case

BluetoothCommandService.STATE_CONNECTING:

 yTitle.setText(R.string.title_connecting);

 break;

 case BluetoothCommandService.STATE_LISTEN:

 case BluetoothCommandService.STATE_NONE:

 yTitle.setText(R.string.title_not_connected);

 break;

 }

 break;

 case MESSAGE_DEVICE_NAME:

 yConnectedDeviceName =

msg.getData().getString(DEVICE_NAME);

 Toast.makeText(getApplicationContext(),

"Connected to " + yConnectedDeviceName, Toast.LENGTH_SHORT).show();

 break;

 case MESSAGE_TOAST:

 Toast.makeText(getApplicationContext(),

msg.getData().getString(TOAST), Toast.LENGTH_SHORT).show();

 break;

 }

 }};

42

 public void onActivityResult(int requestCode, int resultCode,

Intent data) {

 switch(requestCode) {

 case REQUEST_CONNECT_DEVICE:

 if (resultCode == Activity.RESULT_OK) {

 String address =

data.getExtras().getString(DeviceListActivity.EXTRA_DEVICE_ADDRESS);

 BluetoothDevice device =

yBluetoothAdapter.getRemoteDevice(address);

 yCommandService.connect(device);

 }

 break;

 case REQUEST_ENABLE_BT:

 if (resultCode == Activity.RESULT_OK) {

 setupCommand();

 }

 else {

 Toast.makeText(this,

R.string.bt_not_enabled_leaving, Toast.LENGTH_SHORT).show();

 finish();

 }}}

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.option_menu, menu);

 return true;

 }

 @Override public boolean onOptionsItemSelected(MenuItem item)

{

 switch (item.getItemId()) {

43

 case R.id.scan:

 Intent connectBTServer = new Intent(this,

DeviceListActivity.class);

 startActivityForResult(connectBTServer,

REQUEST_CONNECT_DEVICE);

 return true;

 case R.id.discoverable:

 ensureDiscoverable();

 return true;}

 return false; }

 @Override

 public boolean onKeyDown(int keyCode, KeyEvent event) {

 if (keyCode == KeyEvent.KEYCODE_VOLUME_UP) {

 yCommandService.write(BluetoothCommandService.VOL_UP);

 return true; }

 else if (keyCode == KeyEvent.KEYCODE_VOLUME_DOWN) {

 yCommandService.write(BluetoothCommandService.VOL_DOWN);

 return true; }

 return super.onKeyDown(keyCode, event); }}

44

APPENDIX B

Below is the Java code that is used to search for available device, retrieved the paired

devices of the phone and list the devices to the user.

package com.android.yaarc;

import java.util.Set;

import android.app.Activity;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.view.View.OnClickListener;

import android.view.Window;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemClickListener;

import android.widget.ArrayAdapter;

import android.widget.Button;

import android.widget.ListView;

import android.widget.TextView;

public class DeviceListActivity extends Activity {

 private static final String TAG = "DeviceListActivity";

 private static final boolean D = true;

 public static String EXTRA_DEVICE_ADDRESS = "device_address";

 private BluetoothAdapter yBtAdapter;

45

 private ArrayAdapter<String> yPairedDevicesArrayAdapter;

 private ArrayAdapter<String> yNewDevicesArrayAdapter;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 requestWindowFeature(Window.FEATURE_INDETERMINATE_PROGRESS);

 setContentView(R.layout.device_list);

 setResult(Activity.RESULT_CANCELED);

 Button scanButton = (Button)

findViewById(R.id.button_scan);

 scanButton.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {

 doDiscovery();

 v.setVisibility(View.GONE); }});

 yPairedDevicesArrayAdapter = new

ArrayAdapter<String>(this, R.layout.device_name);

 yNewDevicesArrayAdapter = new ArrayAdapter<String>(this,

R.layout.device_name);

 ListView pairedListView = (ListView)

findViewById(R.id.paired_devices);

 pairedListView.setAdapter(yPairedDevicesArrayAdapter);

 pairedListView.setOnItemClickListener(yDeviceClickListener);

 ListView newDevicesListView = (ListView)

findViewById(R.id.new_devices);

 newDevicesListView.setAdapter(yNewDevicesArrayAdapter);

 newDevicesListView.setOnItemClickListener(yDeviceClickListener

);

 IntentFilter filter = new

IntentFilter(BluetoothDevice.ACTION_FOUND);

 this.registerReceiver(yReceiver, filter);

46

 filter = new

IntentFilter(BluetoothAdapter.ACTION_DISCOVERY_FINISHED);

 this.registerReceiver(yReceiver, filter);

 yBtAdapter = BluetoothAdapter.getDefaultAdapter();

 Set<BluetoothDevice> pairedDevices =

yBtAdapter.getBondedDevices();

 if (pairedDevices.size() > 0) {

 findViewById(R.id.title_paired_devices).setVisibility(View.VIS

IBLE);

 for (BluetoothDevice device : pairedDevices) {

 yPairedDevicesArrayAdapter.add(device.getName() +

"\n" + device.getAddress());}}

 else {

 String noDevices =

getResources().getText(R.string.none_paired).toString();

 yPairedDevicesArrayAdapter.add(noDevices);

 }}

 @Override

 protected void onDestroy() {

 super.onDestroy();

 if (yBtAdapter != null) {

 yBtAdapter.cancelDiscovery(); }

 this.unregisterReceiver(yReceiver); }

 private void doDiscovery() {

 if (D) Log.d(TAG, "doDiscovery()");

 setProgressBarIndeterminateVisibility(true);

 setTitle(R.string.scanning);

47

 findViewById(R.id.title_new_devices).setVisibility(View.VISIBL

E);

 if (yBtAdapter.isDiscovering()) {

 yBtAdapter.cancelDiscovery(); }

 yBtAdapter.startDiscovery(); }

 private OnItemClickListener yDeviceClickListener = new

OnItemClickListener() {

 public void onItemClick (AdapterView<?> av, View v, int

arg2, long arg3) {

 yBtAdapter.cancelDiscovery();

 String info = ((TextView) v).getText().toString();

 String address = info.substring(info.length() -

17);

 Intent intent = new Intent();

 intent.putExtra(EXTRA_DEVICE_ADDRESS, address);

 setResult(Activity.RESULT_OK, intent);

 finish();}};

 private final BroadcastReceiver yReceiver = new

BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 String action = intent.getAction();

 if (BluetoothDevice.ACTION_FOUND.equals(action)) {

 BluetoothDevice device =

intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

 if (device.getBondState() !=

BluetoothDevice.BOND_BONDED) {

 yNewDevicesArrayAdapter.add(device.getName() + "\n" +

device.getAddress());}}

48

 else if

(BluetoothAdapter.ACTION_DISCOVERY_FINISHED.equals(action)) {

 setProgressBarIndeterminateVisibility(false);

 setTitle(R.string.select_device);

 if (yNewDevicesArrayAdapter.getCount() == 0)

{

 String noDevices =

getResources().getText(R.string.none_found).toString();

 yNewDevicesArrayAdapter.add(noDevices);

 }}}};}

49

APPENDIX C

Below is the JAVA code that is implemented on the server-side where it will handle

all the incoming input data and interpret it to allow appropriate response action for

every possible input data.

package com.apps.yaarc.server;

import java.awt.Robot;

import java.awt.event.KeyEvent;

import java.io.InputStream;

import javax.microedition.io.StreamConnection;

public class ProcessConnectionThread implements Runnable{

private StreamConnection yConnection;

 private static final int EXIT_CMD = -1;

 private static final int KEY_F5 = 1;

 private static final int KEY_RIGHT = 2;

 private static final int KEY_LEFT = 3;

 private static final int KEY_ESC = 4;

 private static final int KEY_B = 5;

 private static final int KEY_W = 6;

 public ProcessConnectionThread(StreamConnection connection) {

 yConnection = connection;}

 @Override

 public void run() {

 try {

 InputStream inputStream =

yConnection.openInputStream();

 System.out.println("Waiting for input");

 while(true) {

50

 int command = inputStream.read();

 if (command == EXIT_CMD) {

 System.out.println("Exit");

 break;}

 processCommand(command);}}

 catch (Exception e) {

 e.printStackTrace();}}

 private void processCommand(int command) {

 try {

 Robot robot = new Robot();

 switch (command) {

 case KEY_F5:

 robot.keyPress(KeyEvent.VK_F5);

robot.keyRelease(KeyEvent.VK_F5);

 System.out.println("Start presentation");

 break;

 case KEY_RIGHT:

 robot.keyPress(KeyEvent.VK_RIGHT);

robot.keyRelease(KeyEvent.VK_RIGHT);

 System.out.println("Next slide");

 break;

 case KEY_LEFT:

 robot.keyPress(KeyEvent.VK_LEFT);

robot.keyRelease(KeyEvent.VK_LEFT);

 System.out.println("Previous slide");

 break;

 case KEY_ESC:

 robot.keyPress(KeyEvent.VK_ESCAPE);

robot.keyRelease(KeyEvent.VK_ESCAPE);

 System.out.println("Stop presentation");

51

 break;

 case KEY_B:

 robot.keyPress(KeyEvent.VK_B);

robot.keyRelease(KeyEvent.VK_B);

 System.out.println("Black screen");

 break;

 case KEY_W:

 robot.keyPress(KeyEvent.VK_W);

robot.keyRelease(KeyEvent.VK_W);

 System.out.println("White screen");

 break;

 }}

 catch (Exception e) {

 e.printStackTrace();

 }}}

52

APPENDIX D

Below is the JAVA code that is implemented on the client-side for Wi-Fi

implementation where it will receive the input from the user and send the appropriate

data to the server running in the remote computer.

package com.android.yaarc;

import java.net.InetAddress;

import android.app.Activity;

import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.widget.Button;

import com.illposed.osc.OSCMessage;

import com.illposed.osc.OSCPort;

import com.illposed.osc.OSCPortOut;

public class SlideControl extends Activity {

 public static final int EXIT_CMD = -1;

 public static final int START_SLIDE = 1;

 public static final int NEXT_SLIDE = 2;

 public static final int PREV_SLIDE = 3;

 public static final int STOP_SLIDE = 4;

 public static final int BLACK_SCREEN = 5;

 public static final int WHITE_SCREEN = 6;

 public static final String TAG= "yaarcWifi";

 private OSCPortOut sender;

 public SlideControl() {

 super();

 }

53

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.bluetooth);

 try {

 this.sender = new

OSCPortOut(InetAddress.getByName(Settings.ip),

OSCPort.defaultSCOSCPort());}

 catch (Exception e) {

 Log.d(TAG, e.toString());}

 Button startSlide = (Button) findViewById(R.id.startSlide);

 startSlide.setOnClickListener(new View.OnClickListener()

{

 public void onClick(View v) {

 startSlide();}});

 Button nextSlide = (Button) findViewById(R.id.nextSlide);

 nextSlide.setOnClickListener(new View.OnClickListener()

{

 public void onClick(View v) {

 nextSlide();}});

 Button prevSlide = (Button) findViewById(R.id.prevSlide);

 prevSlide.setOnClickListener(new View.OnClickListener()

{

 public void onClick(View v) {

 prevSlide();}});

 Button stopSlide = (Button) findViewById(R.id.stopSlide);

 stopSlide.setOnClickListener(new View.OnClickListener()

{

 public void onClick(View v) {

 stopSlide();}});

54

 Button blackScreen = (Button) findViewById(R.id.blackScreen);

 blackScreen.setOnClickListener(new

View.OnClickListener() {

 public void onClick(View v) {

 blackScreen();}});

 Button whiteScreen = (Button) findViewById(R.id.whiteScreen);

 whiteScreen.setOnClickListener(new

View.OnClickListener() {

 public void onClick(View v) {

 whiteScreen();}});}

 @Override

 protected void onStart() {

 super.onStart();}

 @Override

 protected void onResume() {

 super.onResume(); }

 @Override

 protected void onDestroy() {

 super.onDestroy();}

 private void startSlide() {

 Object args[] = new Object[2];

 args[0] = 1;

 args[1] = "Start presentation";

 OSCMessage msg = new OSCMessage("/startslide", args);

 try {

 sender.send(msg); }

 catch (Exception e) {

 Log.d(TAG, e.toString());}}

55

 private void nextSlide() {

 Object args[] = new Object[2];

 args[0] = 2;

 args[1] = "Next slide";

 OSCMessage msg = new OSCMessage("/nextslide", args);

 try {

 sender.send(msg); }

 catch (Exception e) {

 Log.d(TAG, e.toString());}}

 private void prevSlide() {

 Object args[] = new Object[2];

 args[0] = 3;

 args[1] = "Prev slide";

 OSCMessage msg = new OSCMessage("/prevslide", args);

 try {

 sender.send(msg);}

 catch (Exception e) {

 Log.d(TAG, e.toString());}}

 private void stopSlide() {

 Object args[] = new Object[2];

 args[0] = 4;

 args[1] = "Stop slide";

 OSCMessage msg = new OSCMessage("/stopslide", args);

 try {

 sender.send(msg);}

 catch (Exception e) {

 Log.d(TAG, e.toString());}}

56

 private void blackScreen() {

 Object args[] = new Object[2];

 args[0] = 5;

 args[1] = "Black screen";

 OSCMessage msg = new OSCMessage("/blackscreen", args);

 try {

 sender.send(msg);}

 catch (Exception e) {

 Log.d(TAG, e.toString());}}

 private void whiteScreen() {

 Object args[] = new Object[2];

 args[0] = 6;

 args[1] = "White screen";

 OSCMessage msg = new OSCMessage("/whitescreen", args);

 try {

 sender.send(msg);}

 catch (Exception e) {

 Log.d(TAG, e.toString());}}}

57

APPENDIX E

Below is the JAVA code that is implemented on the server-side for the Wi-Fi

implementation where it will handle all the incoming input data and interpret it to

allow appropriate response action for every possible input data.

package com.android.yaarc.wifi.server;

import java.awt.Robot;

import java.net.InetAddress;

import java.awt.event.KeyEvent;

import com.illposed.osc.OSCListener;

import com.illposed.osc.OSCMessage;

import com.illposed.osc.OSCPort;

import com.illposed.osc.OSCPortIn;

public class WaitThread implements Runnable{

 private OSCPortIn receiver;

 private static final int KEY_F5 = 1;

 private static final int KEY_RIGHT = 2;

 private static final int KEY_LEFT = 3;

 private static final int KEY_ESC = 4;

 private static final int KEY_B = 5;

 private static final int KEY_W = 6;

 public WaitThread() {}

 public void run() {

 waitForConnection();}

 private void waitForConnection() {

 try {

58

 InetAddress local = InetAddress.getLocalHost();

 if (local.isLoopbackAddress()) {

 this.receiver = new

OSCPortIn(OSCPort.defaultSCOSCPort());}

 else {

 this.receiver = new

OSCPortIn(OSCPort.defaultSCOSCPort());}}

 catch (Exception e) {

 e.printStackTrace();}

 System.out.println("Waiting for input");

 OSCListener listener = new OSCListener() {

 public void acceptMessage(java.util.Date time,

OSCMessage message) {

 Object[] args = message.getArguments();

 if (args.length == 2) {

 processCommand(Integer.parseInt(args[0].toString()));}}};

 this.receiver.addListener("/startslide", listener);

 listener = new OSCListener() {

 public void acceptMessage(java.util.Date time,

OSCMessage message) {

 Object[] args = message.getArguments();

 if (args.length == 2) {

 processCommand(Integer.parseInt(args[0].toString()));}}};

 this.receiver.addListener("/nextslide", listener);

 listener = new OSCListener() {

 public void acceptMessage(java.util.Date time,

OSCMessage message) {

 Object[] args = message.getArguments();

 if (args.length == 2) {

 processCommand(Integer.parseInt(args[0].toString()));}}};

 this.receiver.addListener("/prevslide", listener);

59

 listener = new OSCListener() {

 public void acceptMessage(java.util.Date time,

OSCMessage message) {

 Object[] args = message.getArguments();

 if (args.length == 2) {

 processCommand(Integer.parseInt(args[0].toString()));}}};

 this.receiver.addListener("/stopslide", listener);

 listener = new OSCListener() {

 public void acceptMessage(java.util.Date time,

OSCMessage message) {

 Object[] args = message.getArguments();

 if (args.length == 2) {

 processCommand(Integer.parseInt(args[0].toString()));}}};

 this.receiver.addListener("/blackscreen", listener);

 listener = new OSCListener() {

 public void acceptMessage(java.util.Date time,

OSCMessage message) {

 Object[] args = message.getArguments();

 if (args.length == 2) {

 processCommand(Integer.parseInt(args[0].toString()));}}};

 this.receiver.addListener("/whitescreen", listener);

 this.receiver.startListening();}

 private void processCommand(int command) {

 try {

 Robot robot = new Robot();

 switch (command) {

 case KEY_F5:

 robot.keyPress(KeyEvent.VK_F5);

60

robot.keyRelease(KeyEvent.VK_F5);

 System.out.println("Start presentation");

 break;

 case KEY_RIGHT:

 robot.keyPress(KeyEvent.VK_RIGHT);

robot.keyRelease(KeyEvent.VK_RIGHT);

 System.out.println("Next slide");

 break;

 case KEY_LEFT:

 robot.keyPress(KeyEvent.VK_LEFT);

robot.keyRelease(KeyEvent.VK_LEFT);

 System.out.println("Previous slide");

 break;

 case KEY_ESC:

robot.keyPress(KeyEvent.VK_ESCAPE);

robot.keyRelease(KeyEvent.VK_ESCAPE);

 System.out.println("Stop presentation");

 break;

 case KEY_B:

 robot.keyPress(KeyEvent.VK_B);

robot.keyRelease(KeyEvent.VK_B);

 System.out.println("Black screen");

 break;

 case KEY_W:

 robot.keyPress(KeyEvent.VK_W);

robot.keyRelease(KeyEvent.VK_W);

 System.out.println("White screen");

 break;

 }}

 catch (Exception e) {

 e.printStackTrace();

 }}}

