CERTIFICATION OF APPROVAL

Experimental and Numerical Investigation on 2-D Wing-Ground Interference

by

A K Kartigesh A/L Kalai Chelven

A project dissertation submitted to the Mechanical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (MECHANICAL ENGINEERING)

Approved by,

(AP Dr Hussain H Al-Kayiem)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

January 2009

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

A K KARTIGESH A / L KALAI CHELVEN

ABSTRACT

The wing collision is a practical aerodynamic problem. All aerodynamics characteristic of the wing are changing in the collision phenomena. In the present project, the collision of 2-D airfoil section with ground will be investigated experimentally and numerically. The study includes a series of wind tunnel experiments to investigate the 2-D wing influence under collision. Numerical simulation by CFD has been carried out using FLUENT software in order to identify the changes of aerodynamics characteristics during the wing collision. The 2-D wing section selected for the study is NACA 4412 airfoil. The investigation has been carried out at different Reynolds Number ranging from $(0.1 \times 10^6 \text{ to } 0.4 \times 10^6)$, different angles of attack (-4⁰ to 20⁰) and different height above the ground.

Based on take off and landing fly stages the boundary conditions for the experimental and numerical analysis are determined. An experimental set up was designed and constructed to simulate the collision phenomena in a subsonic wind tunnel. The results of the airfoil characteristic are presented in non-dimensional form as lift, drag and pitching moment coefficient.

ACKNOWLEDGEMENT

My sincere appreciation goes to Universti Teknologi PETRONAS (UTP) and all individuals that have contributed to the continued development and refinement of this dissertation of Final Year Project (FYP) in order to complete my partial fulfillment of the requirement for the Bachelor of Engineering (Hons) Mechanical Engineering.

My special thanks to my supervisor, Assoc. Prof. Dr. Hussain H. Al-Kayiem for his supervision and his confidence in me through out this project. Also for his tremendous support, advices, and information. Thanks to lab Technician, Mr. Zailan for his comments, advices and technical assistance.

Last but not least, thank you for those who are contributed directly and indirectly to the success of this project. Special recognition to my beloved family, father - Kalai Chelven, mother - Periyanayaki, Sister - Sumathi for their endless love and support through thick and thin in leading life.

TABLE OF CONTENTS

CERTIFICATION	OF AP	PROVA	A L	•	•	•	•	i
CERTIFICATION	OF OR	IGINA	LITY	•	•	•	•	ii
ABSTRACT .	•	•	•	•	•	•	•	iii
ACKNOWLEDGEN	IENT	•	•	•	•	•	•	iv
TABLE OF CONTE	INTS	•	•	•	•	•	•	v
LIST OF FIGURES	AND 7	FABLE	S	•	•	•	•	vi
NOMENCLATURE	•	•	•	•	•	•	•	viii
CHAPTER 1:	INTR	ODUC'	TION	•	•	•	•	1
	1.1	Backg	round o	of Study				1
	1.2	0	m State	•				3
	1.3			d Scope	of Stud	lv.	•	3
	1.4		of stud	-	•	•	•	3
CHAPTER 2:	LITE	RATU	RE REV	VIEW A	ND T	HEORY	Y.	4
	2.1	Literat	ure Sur	vey	•	•	•	4
	2.1	Princip	ple of G	Fround E	Effect.	•	•	5
	2.2	Theory	y	•	•	•	•	8
CHAPTER 3:	METI	HODOI	LOGY		•	•		13
	3.1	Analys	sis Metl	hod	•	•	•	13
	3.2	Projec	t Flow	Chart	•	•	•	13
	3.3	Gantt	Chart					16
CHAPTER 4:	RESU	LTS A	ND DI	SCUSSI	[ON .	•	•	17
	4.1	Phase	1(NAC	A 4412	Coordi	nates).	•	17
	4.2	Phase	2(Expe	rimental	l) .	•	•	21
	4.3	Phase	3(Simu	lation)	•	•	•	29
	4.4	Discus	ssion	•	•	•	•	48
CHAPTER 5:	CONO	CLUSI	ON AN	D REC	OMMI	ENDAT	ION	49
	5.1	Conclu	usion	•	•	•	•	49
	5.2	Recon	nmenda	tion	•	•	•	50
REFERENCES	•	•	•	•	•	•	•	51
APPENDICES	•	•		•	•	•	•	53

APPENDIX A: AIRFOIL MODELS.	•	•	•	•	53	
APPENDIX B: FUNDAMENTAL FLUI	ID MEC	HANI	CS	•	53	
LIST OF FIGURES AND TABLES						
Figure 1.1: Phenomena of ground effect	•	•	•	•	•	1
Figure 2.1: Wingtip Sketch	•	•	•	•	•	5
Figure 2.2: Airfoil Sketch subjected to airs	treams	•	•	•	•	6
Figure 2.3: Graph of normal induced drag	against %	% of wi	ngspan	•	•	7
Figure 2.4: Effective Span	•	•	•	•	•	10
Figure 2.5: CFD Results	•	•	•	•	•	11
Figure 2.6: Boundary Condition for Airfoi	l modelii	ng in gr	ound ef	fect	•	12
Figure 3.1: Project Flow Chart .	•	•	•	•	•	15
Figure 3.2: Gantt chart	•	•	•	•	•	16
Figure 4.1: Naca 4412 Model Cconstructed	d using th	he Lase	r Digitiz	er Data	•	17
Figure 4.2: 100 Coordinate points of Naca	4412 M	odel	•	•	•	18
Figure 4.3: Critical Zone for Experimental	Analysi	S	•	•	•	21
Figure 4.4: Experimental Arrangement	•	•	•	•	•	22
Figure 4.5: Subsonic Wind Tunnel .	•	•	•	•	•	22
Figure 4.6: NACA 4412 Airfoil Model	•	•	•	•	•	23
Figure 4.7: Test section floor as ground	•	•	•	•	•	23
Figure 4.8: Sample arrangement of the airf	oil close	r to the	ground	•	•	24
Figure 4.9: Graph of AOA against Coeffic	ient of L	ift, Dra	g and M	oment	•	25
Figure 4.10: Graph of Re Number against	Coefficie	ent of L	ift and I	Drag	•	26
Figure 4.11: Graph of Re Number against	Coefficie	ent of P	itching]	Momen	t.	27
Figure 4.12: Graph of H/C Ratio against C	oefficier	nt of Lif	t and D	rag	•	28
Figure 4.13: NACA 4412 Vertexes plotted	on GAN	/ BIT	•	•	•	29
Figure 4.14: NACA 4412 Edges plotted or	n GAMB	IT	•	•	•	29
Figure 4.15: Boundary Model .	•	•	•	•	•	30
Figure 4.16: Boundary Model for $H/C=0.7$	1 and ang	gle of at	tack α =	= 0 ^o	•	31
Figure 4.17: Boundaries applied in GAMB	SIT		•	•	•	32
Figure 4.18: Stretched meshing of the flow	v field	•	•	•	•	32

Figure 4.19: Pressure Coefficient against the position .	•	•	33
Figure 4.20: Contour of static pressure around the Airfoil .	•	•	34
Figure 4.21: Contour of dynamic pressure around the Airfoil	•	•	35
Figure 4.22: Contour of velocity magnitude around the Airfoil	•	•	36
Figure 4.23: CL vs AOA at H/C = 0.1, Re =0.4 e+6 \cdot	•	•	37
Figure 4.24: CD vs AOA at H/C = 0.1, Re =0.4 e+6	•	•	38
Figure 4.25: CM vs AOA at H/C = 0.1, Re =0.4 e+6 \cdot	•	•	38
Figure 4.26: CL vs Re at AOA = 4, $H/C = 0.1$	•	•	39
Figure 4.27: CD vs Re at AOA = 4, $H/C = 0.1$	•	•	39
Figure 4.28: CM vs Re at AOA = 4, $H/C = 0.1$.	•	•	40
Figure 4.29: CL vs H/C Ratio at different Re and AOA .	•	•	41
Figure 4.30: CD vs H/C Ratio at different Re and AOA .	•	•	41
Figure 4.31: Comparison Graph of H/C Ratio against CL and CD	•	•	42
Figure 4.32: Comparison of Experimental work with previous work	k	•	44
Figure 4.33: Comparison of Simulation work with previous work	•	•	46
Figure A1: Airfoil Models	•	•	53
Table 2.1: Turbulence Flow for NACA 4412 in Ground Effect resu	ılts	•	4
Table 4.1: NACA 4412 Coordinates (published data) [10]	•	•	19
Table 4.2: Comparison of coordinates.	•	•	20
Table 4.3: Boundary conditions.	•	•	21
Table 4.4: Angle of Attack against Coefficient of Lift, Drag and M	oment	•	24
Table 4.5: Reynolds Number against Coefficient of Lift, Drag and	Momer	nt	26
Table 4.6: Height to Chord Ratio against Coefficient of Lift and Da	rag	•	27
Table 4.7: Angle Of Attack	•	•	33
Table 4.8: AOA against CL, CD, and CM.	•	•	37
Table 4.9: Re against CL, CD, and CM.	•	•	39
Table 4.10: H/C Ratio against CL and CD	•	•	40
Table 4.11: Error between the Experimental data and Simulation d	ata	•	43
Table 4.12: Error between Experimental work and previous work	•	•	45
Table 4.13: Error between Simulation work and previous work	•	•	47

NOMENCLATURE

NACA 4412	Aircraft Wing Section Model
CFD	Computerized Fluid dynamics
Re	Reynolds Number
α	Angle of Attack
ρ	Density of Air
μ	Viscosity of Air
V	Fluid Velocity
C _L	Lift Coefficient
C _M	Moment Coefficient
CD	Drag Coefficient
С	Chord Length
L	Lift Force
Μ	Pitching Moment
D	Drag Force
Н	Height (between the Chord Line and the Ground)
S	Projected Area
L / D	Lift to Drag Ratio
H/C	Height to Chord Ratio
SDGE	Span Dominated Ground Effect
CDGE	Chord Dominated Ground Effect
B or b	Span
H / B	Height to Span Ratio
$\mathbf{B}^2 / \mathbf{S}$	Geometric Aspect Ratio
X _p	Centre of Pressure
e	Span efficiency
AR	Aspect Ratio
AOA	Angle of Attack

i