APPLICATION OF POWERLINE COMMUNICATION TO WLAN SECURITY CAMERA SYSTEM

By

WAN AFIEDATUL SYAMIMI BT WAN ISHAK

FINAL PROJECT REPORT

Submitted to the Department of Electrical & Electronic Engineering in Partial Fulfilment of the Requirements for the Degree Bachelor of Engineering (Hons) (Electrical & Electronic Engineering)

> UniversitiTeknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak DarulRidzuan

> > © Copyright 2012

by

Wan AfiedatulSyamimi Bt. Wan Ishak, 2012

CERTIFICATION OF APPROVAL

APPLICATION OF POWERLINE COMMUNICATION TO WLAN SECURITY CAMERA SYSTEM SYSTEM

by

Wan AfiedatulSyamimi Bt. Wan Ishak

A project dissertation submitted to the Department of Electrical & Electronic Engineering UniversitiTeknologi PETRONAS in partial fulfilment of the requirement for the Bachelor of Engineering (Hons) (Electrical & Electronic Engineering)

Approved:

Dr. Zuhairi Bin Baharudin Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

Wan AfiedatulSyamimi Bt. Wan Ishak

ABSTRACT

Security camera system at public areas, such as car parks, housing estates, buildings and town centers is increasingly commonplace. It is important to have a good security camera system in order to detect incident and to coordinate police responses. Besides that it will be used as evidence and to inform investigation. For this project, the main focus will be on the security of the Building 22 in UniversitiTeknologiPetronas. The building consists of several Communication Labs which equipped with expensive tools and equipments. The chances for the equipments to get stolen are high since there is no security camera system is implemented in the labs. However, most of the current security and reliability, another alternative of networking is introduced. In this project, Power line Communication (PLC) is used. The power line communication. It reduces re-wiring and it is much more affordable compared to the security camera system in the market. The project will outline the connections for all equipment used and the architecture of the system. The report consists of an introduction, problem statement, objectives, literature review and methodology used.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the Most Merciful. Praise to Him the Almighty, that His blessings and guidance in giving me strength, courage, patience and perseverance to endure and complete this project in due course of time.

My deepest gratitude goes to my supervisor, Dr. ZuhairiHj. Baharudin, Senior Lecturer of Electrical & Electronics Department, UTP. The supervision and continuous support that he gave truly help me throughout completing this project. The guidance especially in correcting various documents of mine has been invaluable to me.

My respectful gratitude goes to my co-supervisor, Mr. Azman bin Zakariya, for his full support in the completion of this project. His constant guidance, helpful comments and suggestions has helped me not only to complete but also to enhance the expected results of the project. His kindness, valuable advice, friendly approach and patience will always be appreciated.

I sincerely thank to Ir. Fatimie, Mr. Noor Azwan and Mr.AdzJamrosfor their valuable assistance in this project by helping out with the connections of the devices, and giving out important information regarding the project. This project would not have been possible without the invaluable help provided. I

My deepest appreciation goes to my friends who have given immense support throughout the duration of completing the project. Without their consent the success today would not be a reality.

Thank you.

TABLE OF CONTENTS

ABSTRACT	IV
ACKNOWLEDGEMENT	V
TABLE OF CONTENTS	VI
LIST OF FIGURES	Х
LIST OF TABLES	XI
LIST OF ABBREVIATION	XII

CHAPTER 1: INTRODUCTION

1.1 Background of Study	1
1.2 Problem Statement	2
1.2.1 Problem Identification	2
1.2.2 Significance of the Project	2
1.3 Objectives and Scope of the Project	3
1.3.1 Main Objective	3
1.3.2 Scope of the Project	3
1.4Relevancy of the Project	4
1.5Feasibility of the Project	4

CHAPTER 2: LITERATURE REVIEW

2.1 Overview of the security camera system using Power line

2.2 Power line Communication (PLC) technology and device	6
2.3 IP Surveillance and Network Camera (Wire and Wireless)	7
2.4Wifi Router	9
2.5The system connections	10
2.5.1 Wifi Router broadcasting	10
2.5.2 The connections of Wifi Router and IP Camera	11
2.5.3 The connections of PLC Adaptors	11
2.5.4 The connections of Wifi Router and PLC Adaptors	12
2.5.5 The connections of Wifi Router, PLC Adaptors and IP	
Camera	13
2.6The electrical power distribution in a building	13
2.7The application examples	15
2.7.1 Power Line Communication based Home Automation and Electricity Distribution System	5
2.7.2 Broadband Power Line Communication System16	

CHAPTER 3: SCOPE OF PROJECT

3.1 The proposed location	18
3.2 PLC (Powerline Communication) Adaptor	18
3.2.1 The product specification	19
3.2.2 The product features	20
3.2.3 The diagram	20
3.3 The surveillance camera	21
3.3.1 The product specification	21
3.3.2 The product features	23
3.3.3 The diagram	23

3.4 The router	23
3.4.1 The product specification	24
3.4.2 The product features	25

CHAPTER 4: METHODOLOGY

	4.1 Research Methodology	.26
	4.2 Flow Chart	27
	4.3 Elaboration of the Flow Chart	28
	4.4 Project Schedule and Milestone	31
4.5Final Year Project	1 (EAB4012)Schedule/Timeline33	
	4.6 Tools and Equipments Required	33

CHAPTER 5: RESULT AND DISCUSSION

5.1 Power Distribution	
5.2 Connectivity	35
5.2.1 Case 1:Same Distribution Board, same phase	
5.2.2 Case 2:Same Distribution Board, different phase.	
5.2.3 Case 3:Same Distribution Board, different cable st	ructure40
5.2.4 Case 4: Different Distribution Board, Same Phase	40
5.2.5 Case 5: Different Distribution Board, Different Ph	ase43
5.3 Discussion	11

LIST OF FIGURES

Figure 1: Overview of the system security camera system using PLC device	5
Figure 2: Concept of PLC in a building	7
Figure 3: Example of IP Surveillance connection	8
Figure 4: Difference of the image quality between IP Camera and Low resolution camera	9
Figure 5: Connection of Wifi Router	10
Figure 6: Connection of Wifi Router and IP Camera	11
Figure 7: Connection of PLC Adaptors	11
Figure 8: Connection of Wifi Router and PLC Adaptors	12
Figure 9: Connection of Wifi Router, PLC Adaptors and IP Camera	13
Figure 10: One-line diagram of commercial buildings	13
Figure 11: Common service voltages	14
Figure 12:Example of home automation using PLC concept	15
Figure 13: Connection of last mile application	17
Figure 14: Working mode and Power-saving mode	19
Figure 15: The overview diagram of PLC usage	20
Figure 16: The overview diagram of IP Camera usage	23
Figure 17: The project methodology	27
Figure 18: Images captured for same DB, same phase	37
Figure 19: Images captured for same DB, different phase	39
Figure 20: Two Distribution Boards	40
Figure 21: Images captured for different DB, same phase	42
Figure 22: Images captured for different DB, different phase	44
Figure 23:The topology for three-phase system	45

LIST OF TABLES

Table 1: Overview of PLC technologies	6
Table 2: The specification of PLC adaptors	19
Table 3: The specification of IP camera	21
Table 4: The specification of router	24
Table 5: Project Schedule for Final Year Project 1	31
Table 6: Milestone for Final Year Project 1	31
Table 7: Project Schedule for Final Year Project 2	32
Table 8: Milestones for Final Year Project 2	32
Table 9: Project schedule throughout FYP 1	33
Table 10: Project schedule throughout FYP 2	33
Table 11: Result on connection for one Distribution Board, same phase	36
Table 12: Result on connection for one Distribution Board, different phase	
Table 13: Result on cable structure versus data rate	40
Table 14: Result on connection for two Distribution Boards, same phase	41
Table 15: Result on connection for two Distribution Boards, different phase	43

LIST OF ABBREVIATION

MACMedium Access ControlPLC Power Line CommunicationPHYPhysical layer of the OSI modelIPoPInternet Point of PresenceFTPFile Transfer ProtocolIPInternet ProtocolIPInternet ProtocolCCTV Closed Circuit TelevisionDVRDigital Video Recorder