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ABSTRACT 

 

High nitrogen stainless steels are being considered a new promising class of 

engineering materials. Theoretically, gas nitriding had improved fatigue life, strength 

and wear and localized corrosion resistance. In this work, this project is to study the 

effect of high temperature gas nitriding on the Austenitic Stainless Steel in term of 

mechanical properties and physical properties such as hardness, tensile strength and 

microstructure observation. The period of diffusion will be 1 hour, 5 hours and 9 hours 

respectively. The temperature will be constant in each experiment which is 

1200oC.The samples are heated at 1200oC in a tube furnace through which nitrogen 

gas is allowed to pass. The nitrogen reacts with the steel penetrating the surface to 

form nitrides. After that, a further study was conducted to study the microstructure, 

tensile test and hardness before and after the nitriding experiment. The Hardness of the 

materials was determined using Vickers Hardness with 300g load. The microstructures 

were examined by means of optical microscopy. The effect of the diffusion time of 

nitrogen into the stainless steels sample was observed. By increasing the nitrogen 

diffusion, significantly improve the hardness and tensile strength.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of Study 

 

Stainless steels may be defined as complex alloy steels containing a 

minimum of 10.5% Cr with or without other elements to produce austenitic, 

feritic, duplex (ferritic-austenitic), martensitic, and precipitation-hardening 

grades. AISI uses a three-digit code for stainless steels[1].  Austenitic 

stainless steels constitute about 65-70% of the total stainless steel 

production in United States and have occupied a dominant position because 

of their corrosion resistance such as strength and toughness at both elevated 

and ambient temperature, excellent cryogenic properties, esthetic appeal, 

and varying specific combination and properties that can be obtained by 

different compositions within the group of steel.Austenitic stainless steels 

have an austenitic, face centered cubic (fcc) crystal structure (see figure 1). 

Austenite is formed through the generous use of austenitizing elements such 

as nickel, manganese, and nitrogen. Chromium content typically is in the 

range of 16 to 26%; nickel content is commonly less than 35% 

 

Figure 1 : Face centered cubic unit cell.[1] 
1 
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1.2 Problem Statement 

 

Austenitic stainless steels are effectively nonmagnetic in the annealed 

condition and can be hardened only by cold working.  It is limited to certain 

size and shape of the metal. Some ferromagnetism may be noticed due to 

cold working or welding.  They typically have reasonable cryogenic and 

high temperature strength properties. Alloying Austenitic Stainless Steel 

with carbon is one way of upgrading to the proper material. Any metallic 

element added during the making of steel for the purpose of increasing 

corrosion resistance, hardness, or strength. The metals used most commonly 

as alloying elements in stainless steel include chromium, nickel, and 

molybdenum [2].The amount of carbon required in the finished steel limits 

the type of steel that can be made. As the carbon content of rimmed steels 

increase, surface quality deteriorates. Killed steels in the approximate range 

of 0.15 – 0.30%C may poorer surface quality and require special processing 

to attain surface quality comparable to steels with higher or lower carbon 

contents. carbon has a moderate tendency for macrosegregation during 

solidification, and it is often more signification than that of any alloying 

elements. As the carbon content in steel increases, strength increases, but 

ductility and weldability decrease. The addition of alloying element which 

is carbon will lead to chromium depletion during cooling down from above 

900oC to room temperature [7]. This type of corrosion is especially 

prevalent in some stainless steels. When heated to temperatures between 

500 and 800oC (950 and 1450oF) for sufficiently long time periods, these 

alloys become sensitized to intergranular attack. It is believed that this heat 

treatment permits the formation to small percipitate particles of chromium 

carbide (Cr23C6) by reaction between the chromium and carbon in the 

stainless steel. These particles form along the grain boundaries, as 

illustrated in figure 2. Both the chromium and carbon must diffuse to the 

grain boundaries to form the percipitates, which leaves a chromium depleted 

zone adjacent to  the grain boundary. Consequently, this grain boundary 

region is vulnerable to corrosion. 

 

http://metals.about.com/bldef-Alloying-Element.htm
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Figure 2: Schematic illustration of chromium carbide particles that have precipitated along 

grain boundaries in stainless steel, and the attendant zones of chromium depletion. [7] 

1.3 Objectives and scope of study 

The objectives of this study are to investigate and identify the change in 

mechanical and physical properties of Austenitic Stainless Steel by using 

gas nitriding at higher temperature of 1000oC – 1200oC and to compare the 

result with the raw Austenitic Stainless Steel.  

In order to achieve this objective, a few task and research has been planned 

by collecting all technical and specification details regarding material 

background.  The scope of the work is to perform nitriding at different 

period of nitrogen diffusion. Physical and mechanical properties were 

examined using hardness test, tensile test and metallography.

3 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

There are several literatures found related to author’s project about the high 

temperature gas nitriding. A few of the examples are regarding the 

improvement of the cavitations erosion resistance of an AISI 304L 

Austenitic Stainless Steel by high temperature gas nitriding, effect of partial 

solution nitriding on mechanical properties and corrosion resistance in a 

type 316L austenitic stainless steel plate.  

2.1 Improvement of the cavitations erosion resistance of an AISI 304L 

Austenitic Stainless Steel by high temperature gas nitriding 

Previous work show that by  increasing nitrogen content, through high 

temperature gas nitriding, will improve the  cavitation erosion resistance of 

an AISI 304L austenitic stainless steel[4]. From his experiment, an AISI 

304L austenitic stainless steel was high temperature gas nitrided in N2+Ar 

atmospheres under N2 partial pressures up to 0.10MPa at 1423K for 21.6 ks. 

Nitrogen contents at the surface up to 0.48 wt. % and case depths up to 

1mm were obtained. All the samples showed fully austenitic 

microstructures free of precipitates. Solution treated AISI 304L as well as 

nitrided samples were tested in distilled water in vibratory cavitation 

erosion (CE) equipment. Characterization of the test specimens was made 

by optical microscopy, electron back scattering diffraction coupled to a 

scanning electron microscope (EBSD–SEM), X-ray diffraction (XRD), 

wavelength dispersive spectroscopy (WDS) microanalysis and depth-



 

sensing indentation tests. All the samples had almost the same mean grain 

diameter, 80µm, similar mesotexture and microtexture, though the nitrogen 

contents differed. The nitrided samples exhibited much better cavitation 

erosion resistance and the erosion rate was reduced by almost 8.5 times. 

Increasing N2 partial pressure increased the nitrogen content at the surface, 

leading to an increase in the incubation period for damage and a decrease in 

the erosion rate. Figure 3 below shows the appearance of the surface at the 

initial stages of CE tests for solution treated and for nitrided samples. 

           
Figure 3: Surface at initial stages of CE for: (a and b) solution treated samples tested in CE 
after 5.4 ks, (c and d) samples with 0.33N (wt. %) at surface tested in CE after 14.4 ks and 

(e and f) samples with 0.48N (wt. %) at surface tested in CE after 14.4 ks.[4] 
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Based on the study by Jose Francisco dos Santos et. al [4], the results 

showed that increasing the nitrogen content in solid solution, up to 0.48 wt. 

%, increased the hardness. The increase in nitrogen content increases the 

elastic energy returned to the environment and decreases the amount of 

plastic energy absorbed by the alloy, at cavitations impact spots. The 

specimen is plastically loaded to a lesser extent and at the same time shows 

a greater resistance to plastic deformation due to hardening, leading to less 

deformed grains. As shown earlier, the mass loss inside microcavities 

occurs by a fatigue mechanism. The increase in nitrogen content leads to a 

more even deformation, to less extruded grain boundaries and to smaller 

amounts of microcavities. In the high nitrogen specimens, mass loss 

occurred mainly by microcrack formation at the first stages of damage and 

by a synergistic effect of microfatigue and microcrack formation at the 

latter stages of damage. On the other hand, in the low nitrogen specimens, 

mass loss occurred by microfatigue associated with microcrack formation in 

all stages of damage. Figure 4 below shows the hardness as a function of the 

nitrogen content. 
 

 

Figure 4: Hardness as a function of Nitrogen content [4] 

 
High temperature gas nitriding treatment significantly improves the CE 

resistance of austenitic AISI 304L stainless steels. Increasing the nitrogen 

content in solid solution (up to 0.48 wt. %) through HTGN increases 4.6 

times the incubation time and decreases 8.6 times the erosion rate. 
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2.2 Effect of partial solution nitriding on mechanical properties and 

corrosion resistance in a type 316L austenitic stainless steel plate. 

 

Tomonori Nakanishi et.al [5] points out that  solution nitriding had 

improved  the properties of the austenitic stainless steel used as commercial 

osteosynthesis implants and to also reduce the plate thickness, type 316L 

austenitic stainless steel plates (AISI 316L). The solution nitriding time 

varied up to 36 ks to change the nitrogen concentration distribution in the 

steel plates, and then the material properties were investigated to 

demonstrate the effect of the unsaturated solution nitriding (partial solution 

nitriding). As a result of tensile testing for the solution-nitrided steel plates, 

yield strength was almost identical irrespective of the solution nitriding time 

even in the partially solution-nitrided specimens, while tensile strength was 

monotonically increased as the solution nitriding time increased and then 

levelled off at the maximum value when nitrogen absorption was 

completed. As for corrosion resistance, the solution-nitrided steel plates 

exhibited excellent pitting corrosion resistance even in the case of partial 

solution nitriding. They attempted to improve the mechanical properties and 

corrosion resistance of commercial 316L austenitic stainless steel plates by 

means of “solution nitriding” (nitrogen absorption treatment or high 

temperature gas nitriding (HTGN)), which is one of chemical heat 

treatments to add nitrogen into stainless steel. It is well known that the 

nitrogen addition to austenitic stainless steels has many advantages 

including; 

 

1) The  tensile strength of the steels drastically increases without 

reducing the ductility too much  

2) The transformation to martensitic structures (generation of 

magnetism) can be reduced  

3) Corrosion resistance, especially pitting corrosion resistance, is 

improved   

4) Nitrogen is considered to be harmless to the human body. 
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Solution nitriding is a simple and powerful technique to obtain high 

nitrogen stainless steel without requiring any special equipment. In addition, 

the authors have also investigated the effect of solution nitriding in stainless 

steel thin plates where nitrogen has been fully absorbed to the state of 

equilibrium, resulting that the fully solution-nitrided austenitic steel has not 

only high strength but also large work hardening rate, thus leading to a large 

uniform elongation at ambient temperature. Solution nitriding is thus 

supposed to be one of the most effective methods to modify osteosynthesis 

implants through these reports. 

 

Figure 5 below shows the optical micrographs of 316L steel solution—

nitrided for 0.6ks (b) 4.8ks (c), and 36 ks (d), as well as nitrogen-free 316L 

steel (a). It is confirmed that the grain size of austenitic tends to be enlarged 

while increasing the solution nitriding time. Figure 6 displays the hardness 

result of the nitrided Stainless Steel. The original hardness level before 

solution nitriding (1.7Gpa) is also indicated by the broken line. 

 

Figure 5: Optical micrographs of the nitrogen-free 316L austenitic steel (a) and solution-
nitrided 316L ones (b–d). The solution nitriding was carried out at 1473 K–0.1MPa for (b) 

0.6 ks, (c) 4.8 ks, and (d) 36 ks.[5] 
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Figure 6: Vickers hardness profiles of the 316L steel solution-nitrided for 0.6, 1.8, 4.8, and 

36ks. [5] 

 

Figure 7 represents nominal stress-strain curves obtained by tensile testing 

for the steel A, N-0.6, N-1.8, and N-4.8. The solution-nitrided steels have 

much higher yield strength and tensile strength than the nitrogen-free Steel 

A. Figure 7 shows the changes in the yield strength and tensile strength as a 

function of the logarithm of the solution nitriding time. The increase in the 

yield strength saturates soon after starting the solution nitriding (0.6 ks), 

while the tensile strength was monotonically increased owing to the 

enlargement of work hardening rate and then it becomes constant after the 

system reaches the state of equilibrium (4.8 ks). The fully solution-nitrided 

steel, Steel N-4.8, exhibits the maximum work hardening rate and tensile 

strength of 900MPa. The uniform elongation was also the largest in the 

Steel N-4.8 among three solution-nitrided steels. The result of Figure 8 

indicates that the strengthening of the surface layer with nitrogen is 

effective for increasing the yield strength of the whole plate specimen, 

which means that the long treatment time is not required in the practical 

viewpoint when only a high yield strength is needed for the steel plates; 

however, the nitrogen absorption into the core region is essential for 

obtaining the best performance in terms of tensile strength and uniform 

elongation. The fracture surface was also observed for solution-nitrided 

9 

 



 

steels to confirm their fracture mode. Figure 9 represents SEM images 

showing the fracture surface of Steel A and N-4.8. Both specimens exhibit 

typical ductile fracture though the size of dimple is slightly different 

between the specimens. However, no such fracture mode was observed in 

this study, thus suggesting the ductile-to-brittle transition temperature to be 

lower than the ambient temperature in the case of solution-nitrided 316L 

steel containing 0.46%N. 

 

       
Figure 7: Nominal stress-strain curves obtained by tensile for the steel A, N-0.6, N-1.8, 

and N-4.8.  The solution-nitrided steels have much higher yield strength the nitrogen-free 
steel A.[5] 

 
 

             
Figure 8: Changes in the yield strength and tensile strength as a function of solution 
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Figure 9: SEM micrographs of the fracture surfaces of plate specimens after tensile testing 

in (a) nitrogen-free 316L steel and (b) solution-nitrided steel (Steel N-4.8).[5] 

 
When increasing the solution nitriding time, the yield strength rapidly 

increased and reached a maximum value of 550MPa before completing 

nitrogen absorption to the state of equilibrium. This suggests that a long 

treatment time is not required from a practical point of view when only high 

yield strength is needed for the steel plates. The tensile strength was 

monotonically increased with increases in the solution nitriding time and 

then levels off at 900MPa after the nitrogen absorption is completed. The 

fully solution-nitrided steel exhibits the maximum uniform elongation in 

spite of having a maximum tensile strength. This is due to the largest work 

hardening rate derived from the development of a planar dislocation 

structure within the whole specimen during the deformation.  
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2.3 Improvement of the slurry erosion resistance of an austenitic 

stainless steel with combinations of surface treatments: Nitriding 

and TiN coating. 

 

Abel André C. Recco et.al4 [12] emphasize that High Temperature Gas 

Nitriding (HTGN) has been successfully used to improve the erosion 

resistance of different stainless steels. Six kinds of sample conditions were 

tested in a slurry composed of distilled water and SiC particles: High 

temperature gas nitriding (HTGN), low temperature plasma nitriding 

(expanded austenite), high temperature gas nitriding followed by a PVD-

TiN coating, low temperature plasma nitriding followed by a PVD-TiN 

coating as well as PVD-TiN coated and uncoated samples in the solubilized 

condition. The erosion tests were performed during 6 h in a jet-like device 

with a normal angle of incidence and an impact velocity of 8.0 m/s. Wear 

rates were assessed by accumulated mass loss measurements and through 

analysis of scanning electron microscopy images of the worn surfaces. The 

results were related to the microstructure and hardness of the surface to 

establish a ranking of the different surface treatments. After the first few 

minutes of testing cutting of the surface occurred in the solubilized, in the 

HTGN and in the low temperature plasma nitrided AISI 304 samples, 

whereas TiN coated samples did not show any cutting marks, although 

some indentation marks could be observed. The TiN coated samples showed 

wear resistances one order of magnitude greater than the solubilized, HTGN 

and low plasma nitrided samples.[12] Solubilized (solution annealed) 

samples of AISI 304 stainless steel were used as base material for the 

different treatments. The surface of the samples was manually polished with 

diamond paste until 1.0 μm, washed in acetone and hot dried. The chemical 

analysis of the concentrations of the elements gave in wt.% Cr18.9, Ni 7.2, 

Mn 1.5, Mo 0.22, C 0.04, S 0.004, Fe bal. Six kinds of specimens were 

analyzed: solubilized, high temperature gas nitrided (HTGN), pulsed plasma 

nitride (expanded austenite), solubilized with a PVD-TiN layer deposition, 

HTGN with a PVD-TiN layer deposition and pulsed plasma nitrided plus 

PVD-TiN layer deposition. The solubilizing treatments were performed 

12 

 



 

with the aim of dissolving carbides present in the microstructure, and were 

carried out in an Ar atmosphere inside a tubular furnace described 

elsewhere the samples were heated up to 1373 K for 1 h and quenched in 

water. High temperature gas nitriding was carried out in the same 

equipment at 1473 K for 6 h under 0.15 Mpa N2 pressure. After nitriding 

the samples were directly quenched in water. The pulsed plasma nitriding 

and the PVD-TiN layer deposition were carried out in a hybrid reactor. The 

hybrid process allows coating the pre-nitrided sample with a TiN layer 

without exposing the specimen to atmospheric pressure, avoiding cleaning 

operations of the surface between depositions. [12] The test was carried out 

with slurry composed by 900 ml of distilled water and 100g of angular 

shaped silicon carbide particles. The size of the particles was between 212 

and 300 μm. The SiC abrasive particles with 26 GPa hardness are shown in 

figure 10. The impact angle was fixed in 90o and the velocity of the jet was 

8.0 m/s. The samples were cleaned with distilled water for 10 min, dried in 

hot air, and weighed in a Shimadzu AUW 220D scales with a precision of 

0.01 mg.  Thereafter, the samples were eroded and then weighed again.[12] 

 

 Figure 10: Morphology of Sic particles used in slurry test. [12]  

Hardness values (H) measured on top of the samples for the six different 

conditions are shown in Table 1, together with the Young Modules (E) 

values and the HSiC/Hsurface ratios. 
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 Table 1: Hardness, elastic modules and HSiC/HSurface ratios of the studied samples. [12] 

Material Elastic Module 
(Gpa) 

Hardness (Gpa) HSic/ H 
surface 

Solubilized 200±10.0 1.85±0.21 14.0 
HTGN 200±10.0 3.17±0.35 8.2 
Expanded Austenite 200±10.0 15.0±0.9 1.7 
Solubilized + Tin 430±25.6 21.86±2.14 1.2 
Expanded austenite 
+ Tin 

425±23.4 22.50±1.81 1.2 

HTGN + TiN 435±19.5 21.54±2.21 1.2 
 

Accumulated mass losses as a function of time are presented in Figure 11 

for the six surface treatment conditions. The calculated wear rates are 

shown in the Table 2. They are calculated through the slopes of the mass 

loss curves shown in Figure 11. 

 

Figure 11: Accumulated erosion as a function of exposure time. [12] 

Table 2 : Erosion rates of the specimens. [12] 
 

 

 

 

Sample Erosion rate 
(µg/min) 

Interval of 
time (min)  

Correlation 
coefficient, R 

Solubilized 88.0 240.0 0.999 
HTGN 57.0 240.0 0.996 
Expended austenite 43.0 240.0 0.992 
Solubilized + TiN 4.3 60.0 0.961 
HTGN + TiN 4.8 60.0 0.956 
Expanded austenite + 
Tin 

5.2 60.0 0.975 

15
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Figure 12 : SEM of the surface of the samples after 5 seconds testing: a) Solubilized, b) 
Solubilized+TiN, c) HTGN, d) HTGN+TiN, e) Expanded austenite and f) Expanded 
austenite + TiN.[12] 

 

Figure 12 show the scanning electron micrographs of the worn surfaces at 

the first seconds of testing and after one hour testing, respectively. The 

solubilized specimen shows considerable amounts of cutting marks since 

the beginning of the test. The worn surface reveals lips and craters and 

allows observing the way the particles cut the surface. A similar topography 

is observed for the HTGN sample (Fig. 12a and c). The surface of the 

plasma nitrided specimen is shown in Fig. 12e. The number of cutting 

marks decreases and some indentation marks can be observed. The samples 

coated with the TiN layer showed a considerably reduced number of cutting 

and indentation marks on the surface (Fig. 12 b, d and f). The mass removal 
15 

 



 

mechanism observed in the solubilized and HTGN samples was cutting, in 

spite of the normal incidence of the particles.[12] 

 

After testing an AISI 304 austenitic stainless steel submitted to high 

temperature gas nitrided, low temperature pulsed plasma nitriding, and 

PVD-TiN coating, in slurry made of water containing SiC particles, it is 

possible to conclude [12]: 

1. High temperature gas nitriding reduced 1.5 times the wear rate of 

the austenitic stainless steel. 

2. Low temperature pulsed plasma nitriding reduced 2 times the wear 

rate of the austenitic stainless steel. 

3. PVD-TiN coatings deposited over different surface treatments of the 

austenitic stainless steel reduced the wear rate by 20 times. 

4. The mechanical properties of the substrate did not affect the erosion 

rate of the TiN coated specimens. 

5. When the TiN coating is removed, the effect of the substrate 

hardness differences is observed and intense cutting of the samples 

is observed. 
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Nitriding Experiment 

The experiment started with 1 hour nitriding time which is known as 

preliminary experiment before proceeding with longer period of diffusion.  

Several tests needed to be carried out after the nitriding process was 

performed.  The experiment was conducted successfully and all the testing 

were achieved effectively. The samples show the arrangement in the 

Alumina boat (see Figure 13). The boat was then pushed by a long stick to 

ensure the samples were placed in the middle of the furnace (see Figure 14). 

Every step was needed to be followed properly and personal protection 

equipment must be worn while performing the experiment. 

            
                 Figure 13: Sample arrangement in the               Figure 14: Alumina boat was pushed    
                                   Alumina Boat                                                       into the tube furnace 
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The procedure of the Nitriding experiment is as follow; 

At the beginning; 

1. The cover of the tube furnace was opened. 
2. The sample was pushed into the middle of tube furnace 
3. The furnace cover was closed. 
4. Air was purged in the furnace for about 15 minutes. 
5. The instruction on the controller was set and followed. 

Nitrogen Flow 

1. Argon gas valve was closed. 
2. Outlet flow argon was closed. 
3. Gas inlet pipe was changed to N2 
4. The N2 gas valve was opened. 
5. Pressure inlet of N2 gas was set at 14.5psi 
6. Flow meter (rate) at 3 scale was set. 

Quenching 

1. N2 gas Valve was close. 
2. N2 inlet valve was close. 
3. The cover of tube furnace was opened 
4. The insulation plug was take out from the tube furnace 
5. The sample was pulled out from heating zone in a short period. 
6. The  sample was took out and quench it into the water at room 

temperature. 

End 

1. Switch off power (furnace) 
2. Check all the gas valve ( closed position) 

 

3.2 Metallographic 

Metallography is the science and art of preparing a metal surface for 

analysis by grinding, polishing, and etching to reveal microstructual 

constituents. After preparation, the sample can easily be analyzed using 

optical or electron microscopy. 
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3.2.1 Sectioning 

After the samples were received, they were cut into required sizes. 

The objective is to prepare for tests other than microstructure or 

macrostructure structure. The tool that author used to cut the 

specimen is abrasive cutter. Abrasive cutting is the sectioning of 

material using a relatively thin rotating disk composed of abrasive 

particles supported by a suitable medium. Figure 15 show the 

abrasive cutter used to cut the sample. Each sample was cut to same 

size which is 60mm (see Figure 16).   

            

       Figure 15: Abrasive Cutter                 Figure 16: 316L Stainless Steel sample 

3.2.2 Mounting 

Metallographic specimens were cut to an appropriate size, mounting 

of the specimen is often desirable or necessary for subsequent 

handling and metallographic polishing. The specimen was placed in 

the mounting press, the resin was added, and the sample was 

processed under heat and high pressure (see Figure 17).  The 

pressure used to mount the resin was set to 1200psi. Time allocated 

for the heat time was about one minute and for the cooling time was 

about 5 minutes. The machine used to mount the sample is 

Simplimet Auto Mounting Press (see Figure 18). 
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3.2.3 Grinding 

     Figure 18: Simplimet Auto Mounting PressFigure 17: Hot Mounting  

Investigations continue by grinding the mounted specimen to the 

parallel surface finish.  The abrasive particles are forced into a flat 

surface of a comparatively soft material.  The specimen is 

successively ground with finer and finer abrasive media. Silicon 

carbide sandpaper was the first method of grinding and is still used 

today. Many metallographers, however, prefer to use a diamond grit 

suspension which is dosed onto a reusable fabric pad throughout the 

polishing process. Diamond grit in suspension might start at 9 

micrometers and finish at one micrometer. Generally, polishing with 

diamond suspension gives finer results than using silicon carbide 

papers (SiC papers), especially with revealing porosity, which 

silicon carbide paper sometimes "smear" over. Because the austenitic 

grades work harden readily, cutting and grinding must be carefully 

executed to minimize deformation. The machine used to grind the 

sample s METASERV 1000 (see Figure 19).  
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Figure 19: METASERV 1000 grinder and polisher machine 

3.2.4 Polishing  

After grinding the specimen, polishing was performed. Typically, a 

specimen was polished with slurry of alumina, silica, or diamond on 

a napless cloth to produce a scratch-free mirror finish, free from 

smear, drag, or pull-outs and with minimal deformation remaining 

from the preparation process. 

3.2.5 Etching 

After polishing the sample, microstructural constituents of the 

specimen were revealed by using a suitable chemical or electrolytic 

etchant. A great many etchants have been developed to reveal the 

structure of metals and alloys, ceramics, carbides, nitrides, and so 

forth. While a number of etchants may work for a given metal or 

alloy, they generally produce different results, in that some etchants 

may reveal the general structure, while others may be selective to 

certain phases or constituents. The etchants that author used for the 

austenitic stainless steel are Glyceregia.  Author had chosen the best 

etchant which is Glyceregia’s reagent, the ingredient for this 

particular etchant are; 

a) 45ml Glycerol. 

b) 15ml Nitric Acid 

c) 30ml Hydrochloric Acid 
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The procedure of etching; 

a) Specimen was cleaned by the distilled water. 

b) Next, specimen was dip with the alcohol to remove the dirt 

and contamination. 

c) Then, the specimen was pour with a little etchant 

(Glyceregia’s Reagent). 

d) After 10minutes the specimen was rinsed with distilled 

water. 

e) Again, the specimen was dip in the Alcohol. 

f) Finally, the specimen was dried by using the dryer. 

3.2.6 Light Microscopy 

Light optical microscopy remains the most important tool for the 

study of microstructure. At first the magnification start with low 

magnification, such as 5x, followed by progressively higher 

magnification for efficient assessment of the basic characteristic of 

the microstructure. 

 

3.3 Vickers Hardness Testing 

Vickers Hardness tester was used to measure the hardness of the sample. 

The basic principle, as with all common measures of hardness, is to observe 

the questioned materials' ability to resist plastic deformation from a 

standard source. The Vickers Hardness test can be used for all metals and 

has one of the widest scales among hardness tests. The maximum load 

applied is 300g. The machine that author used to perform the hardness test 

was micro hardness tester Model LECO LM247 AT.  Figure 20 below 

shows the indentation process by using Vickers hardness.  
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       Figure 20: Indentation process by using Vicker Hardness 

 

3.4 Tensile Test 

After the hardness and microstructure analysis were done, tensile test was 

used to measure the maximum tensile strength for the as received sample, 1 

hour and 5 hours diffusion. This test is very important to see how the 

material reacts to forces being applied in tension. The sample was gripped 

at either end by suitable apparatus in a testing machine which slowly exerts 

an axial pull so that the steel is stretched until it breaks by using UTM 

100kN (see Figure 21). The test provides information on proof stress, yield 

point, tensile strength, elongation and reduction of area. According to the 

standard, there were 3 samples being test and the size of the sample is 

determined by the E8M Standard (see Figure 22 and Table 3). 

 

    Figure 21: UTM 100KN    
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Dimensions, mm 

 
Standard Specimen Small-size Specimens Proportional to Standard 

12.5 9 6 4 2.5 

G- Gage Length 62.5±0.1 45.0±0.1 30.0±0.1 20.0±0.1 12.5±0.1 

D-Diameter (Note 1) 12.5±0.2 9.0±01 6.0±.01 4.0±.01 2.5±.01 

R- Radius of Fillet. Min 10 8 6 4 2 

A-Length of Reduced section,min 75 54 36 24 20 

Figure 22: Schematic drawing for metal rod 

        Source: ASTM Standards  E8M , “ Standard test Methods for tension Testing of Metallic Metarials 

Table 3: Standard dimension for tensile test E8M 

D

G
R
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CHAPTER 4 

RESULT AND DISCUSSION 

 

 
4.1 Metallographic Result 

Figure 23 shows the optical micrographs of 316L steel solution nitrogen-

free 316L steel (a) nitrided for 1 hour (b) 5 hours (c), and 9 hours (d). This 

experiment was done in the tube furnace where the sample was heated for 1 

hour at 1200oC and purged by Nitrogen gas. By comparing the 

microstructure from the raw material (a) to the nitriding sample (b-d), there 

is no much different in size. It is predictive without changing the 

microstructure, the figures show that the austenitic structure remains the 

same. There is an indication but it is not obvious. In addition, the sizes of 

the microstructure slightly increase by extending the nitriding time from 1 

hour to 9 hours. The twin structure is the austenitic structure and it remains 

the same while changing the nitriding time. The slip band was produce 

during the manufacturing of the metal rod and its then removed by 

performing the normalizing experiment. Normalizing is the annealing 

process used to refine the grains, and produce a more uniform and desirable 

size distribution [11]. 
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(a)  (b) 

 

               

(c)  (d) 

 
Figure 23: Microstructure of (a) Normalizing sample Mag(50x) ,(b) 1hour(50x) ,  

(c) 5 hours Mag(50x),(d) 9 hours Mag(50x) nitriding time at 1200oC of 316SS. 
 

    4.2 Vickers Hardness result 

Based on the experiment of determining the hardness of the as received 

sample, 1 hour, 5 hours and 9 hours nitriding time, it was found that the 

highest hardness value is 430Hv for 9 hours nitriding time. The percentage 

of increase for the normalizing to 9 hours sample is 130%. Experimentally, 

the longer time of nitriding time significantly produces higher hardness 

value. According to this graph, the distance variable influences the hardness 

result which is show by fluctuate result during the test (see Figure 24). The 

lowest value of hardness is located at the core of the austenitic stainless 

steel sample. This is because of the diffusion capabilities of nitrogen into 

the surface of the sample. There is a certain depth for the nitrogen 

adsorption into the structure depends on the nitriding time.  
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Figure 24: Hardness value of as received sample, 1 hour, 5 hours and 9 hours diffusion of 
Nitrogen into Austenitic Stainless Steel 

 

4.3 Tensile test result 

Figure 25 shows the stress strain curve for the overall sample from the as 

received sample until 9 hours nitriding time. The value of the ultimate 

tensile stress (UTS) for the as received sample is 524.16N/mm2, 1 hour 

nitriding time is 538.64N/mm2, 5 hours is 556.88N/mm2 and the highest 

ultimate tensile strength is 559.23N/mm2 for the 9 hours (see Table 4).  A 

small constriction or neck begins to form at some point from 500 to 

550N/mm2, and all subsequent deformation is confined at this neck. The 

UTS significantly increases when the diffusion time increased. This 

phenomenon is termed “necking”, and fracture ultimately occurs at the neck 

(see Figure 26). Ordinarily, when the strength of a metal is cited for design 

purposes, the yield strength is used. Ductility is another important 

mechanical property. Form the result, the ductility value for the as received 

sample slightly less than the nitride sample. It proves that the nitriding 

experiment had affected the ductility of the respective sample.  Ductility is 

measure of the degree of plastic deformation that has been sustained at 
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fracture [11].  Yield strength is also important which is the stress 

corresponding to the intersection of this line and the stress- strain curve as it 

bends over in the plastic region. In order to determine the yield strength, a 

straight line is constructed parallel to the elastic portion of the stress strain 

curve at some specified strain offset, usually 0.002. Based on the 

experiment, the yield strength of the nitrided sample gave higher value 

compared to the as received sample.   

  

Figure 25: Stress Strain curve for normalizing, 1 hour, 5 hours, 9 hours of Nitrogen 
diffusion on austenitic Stainless Steel 
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Figure 26: Necking portion of the testing sample 

 

Table 4 :  Summary of stress strain curve 
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 Ultimate Tensile 

Strength (MPa) 

Yield Strength 

(MPa) 

Ductility (%) 

Normalizing 524.16 220 119.5 

1 Hour 538.64 210 126.43 

5 Hours 556.88 230 125.66 

9 Hours 559.23 235 124.11 

 

 



 

CHAPTER 5 

CONCLUSION 

 

Type 316L type austenitic stainless steel rod ( AISI 316L) were subjected to 

gas nitriding for various time of diffusion at constant temperature of 

1200OC, and the effect of gas nitriding time on the mechanical properties 

and physical properties were investigated. The results obtained are 

summarizes as follow:  

a) The nitriding had improved the mechanical properties of the raw 

material. Increasing the nitriding time trough high temperature gas 

nitriding increases 130% hardness from the normalizing to the 9 

hour diffusion time.  

b) The ultimate tensile strength (UTS) and ductility significantly 

increases when the diffusion time increased. The highest UTS 

collected during experiment was 559.23Mpa from 9-hours diffusion.  

c) The microstructures of the raw material remain the same when 

nitriding is performed. This is due to the crystalline structure of the 

austenitic which is face centered cubic (FCC). The nitriding may not 

be able to expand the bond between molecules on the FCC structure. 

But for the nitriding sample gave different result, it was shown that 

the microstructure slightly expands but it is not obvious and 

significant. 

d) The mechanical properties of hardness and tensile strength had 

significantly increased the austenitic AISI 316L stainless steels 

samples by performing Nitriding experiment. 
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