CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSION

The following conclusions could be drawn from the study conducted:

- a) Multistage Centrifugal Pumps are the type of injection pumps suitable for high pressure and high flow rate reservoirs due to their reliability and low maintenance cost as compared to the Positive displacement reciprocating pumps.
- b) Pressure Maintenance is achieved with the Line Drive water Injection Pattern used in this project. This process might be improved by combining with other patterns of injection and by considering not injecting only water but also injecting miscible gas.
- c) The Wells borehole pressure is improved when injecting equal number of water injection wells and producers. The ratio between the injected water and the Oil produced is about two (I/P =2 STB) barrels of water per 1STB of oil produced, which is not typical for line drive injection pattern.

5.2 RECOMMENDATIONS

- a) Combining Line drive injection with staggered injection should be analyzed.
- b) Further studies on the use of the Simulation software is required to better use and interpretation of the results obtained for each simulation work.

REFERENCES

- 1. http://en.wikipedia.org/wiki/Water_injection_%28oil_production%29
- 2. http://www.glossary.oilfield.slb.com
- 3. http://en.wikipedia.org/wiki/Petroleum_system
- De-Huan Han, University Of Houston, USA and M. Batzle, Colorado School of Mines, Golden, USA. April 2006, Velocities of deep Water reservoirs sands.
- (http://www.slb.com/content/services/solutions/reservoir/deepwater_understanding.asp)
- PETRONAS Carigali, Mechanical, Process section, Surface Engineering Department, 11 August 2008.
- Production technology, Department Of Petroleum Engineering, Heriot-watt University, water handling Ref. no. PT/2 version 1.2 November 2002.
- Stephenc. Rose, John F. Buckwalter, and Robert J. Woodhall : The Design Engineering Aspects of Waterflooding, Monograph Volume 11 SPE Henry L. Doherty Series, TX (1989)
- 9. http://en.wikipedia.org/wiki/Water_injection_%28oil_production
- Marcel Latil, Charles Bardon, Jacques Burguer and Pierre Sourieau, Enhanced Oil Recovery, Institut Francais Du Petrole (IFP) Publications Paris 1980
- 11. Pierre Donnez, Essentials of Reservoir Engineering, Paris 2007.
- 12. http://www.slb.com/content/services/software/reseng/index.asp?
- 13. (http://www.slb.com/content/services/software/reseng/eclipse_simulators/blacko il.asp?)
- 14. http://en.wikipedia.org/wiki/Petroleum_reservoir
- 15. http://www.glossary.oilfield.slb.com/Display.cfm?Term=waterflood
- 16. http://flowcontrol.globalspec.com/LearnMore/Flow_Control_Flow_Transfer/Pumps/Boost er_Pumps
- 17. http://www.sulzerpumps.com/desktopdefault.aspx
- William D. McCain, Jr. The properties of Petroleum Fluids, 2nd Edition Oklahoma 1990.

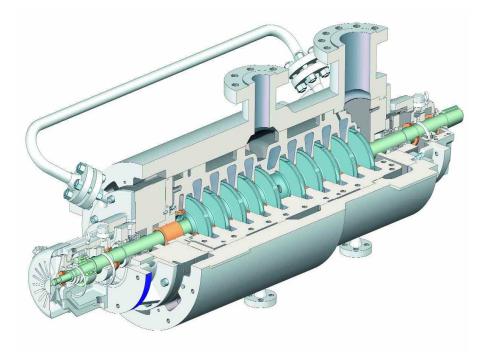
- PETRONAS Carigali and Upstream Downstream Process and Services SDN.
 BHD. Comprehensive Water injection Module Training, November 2007.
- 20. NATCO Group, HIPERVACTM & HIPERSTRIPTM Vacuum Deaerator (www.natcogroup.com/Content.asp?t=ProductPage) 2008.
- 21. http://flowcontrol.globalspec.com/LearnMore/Flow_Transfer_Control/Pumps/Piston_Plun ger_Pumps
- 22. http://www.globalspec.com/FeaturedProducts/Detail/CatPumps/Triplex_Piston_ Pumps_and_Plunger_Pumps/42825/0
- 23. James A. Fretwell, Edward S. Blair, World Oil, November 1999.

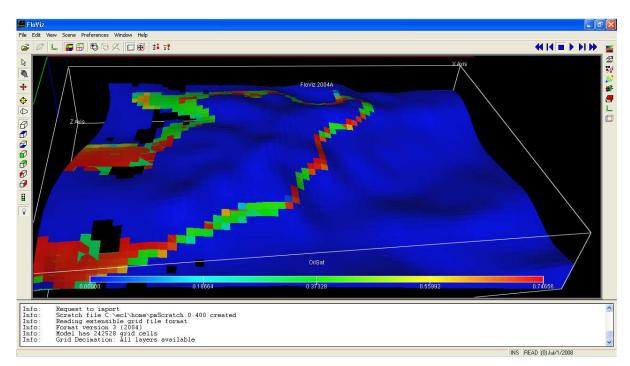
APPENDICES

Product Types		Oil & Gas	Hydrocarbon Processing	Pulp & Paper	Power Generation	Water & Wastewater	Food, Metals & Fertilizers
Single Stage Pumps	AHLSTAR" A Series			0		0	0
	AHLSTAR [®] N Series		•	•			•
	AHLSTAR" W Series		õ	0			0
	AHLSTAR" E Series		•	•	•		•
	CPT		0	0			0
	Z Series		•	0.1		•	•
	OHH/OHHL	01	•				
	OHM/OHC	0	•				
	BBS	0	•				
	HLTE		•				
	HZB						
Two Stage Pumps	BBT/BBT-D		•				
	LSP/LST			0			
Barrel Pumps	GSG	0	•				•
	HPT						
	HPcp/HPcpV	•					
	GP	Ó	•				
	MPP	•				1	
Ring Section Pumps	M Series			0		0	0
	HPP/HPT			•	•	•	•
	HPH/HPL				i and	0	0
	TUP					•	
Axial Split Pumps	MSD	0	•		0		
	SM/SMN/SMH Series	•	•	•		\mathbf{O}	•
	HSB	0					
	ZPP			•	•		
	HPDM	0				0	
Vertical Pumps	AHLSTAR" NVP/NVT		•	•	•	0	•
	AHLSTAR NKP/T WKP/T			0			0
	B Series	01	•		•	•	
	JD	0	0	0	0	0	0
	JF	•	•	•	•		•
	JM		•	0		0	0
	JP		•	•	•	0	•
	JS	0	•	•			0
	JT	0	•	0		0	•
	OHV	0					
	VCR	0	•				
	TTMCM		•				
	APV/NPV				10	0	
MC [®] Products	MC [®] Pumping System			0			
	AHLMIX™ Chemical Mixer			•		1	
	MC [®] Discharge Scraper			•			
	MC [®] Flow Discharger			•			
Agitators	SALOMIX" SL/ST			•			•
	SALOMIX® L Series			•			•
	SALOMIX TES, VULCA			0			
Service	Service products available f	or all seeme	ots				

APPENDIX A: PUMPS SEGMENT Matrix by SULZER Pumps [9]

APPENDIX B: DIFFERENT TYPES OF INJECTION PUMPS




Figure B1: CP Horizontal Double Casing Radially Split Multistage Pump [9]

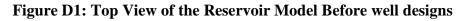
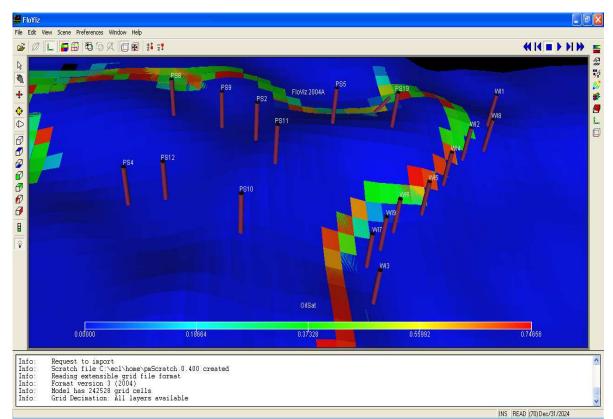
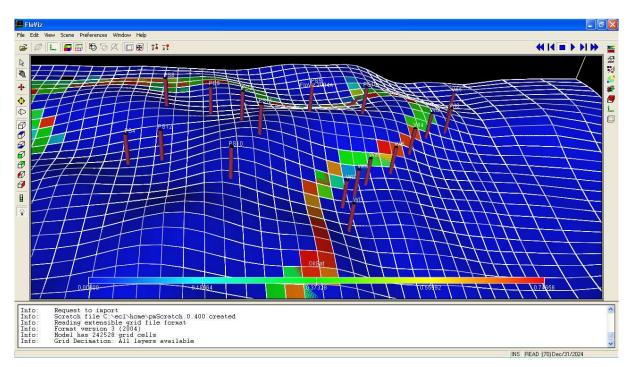
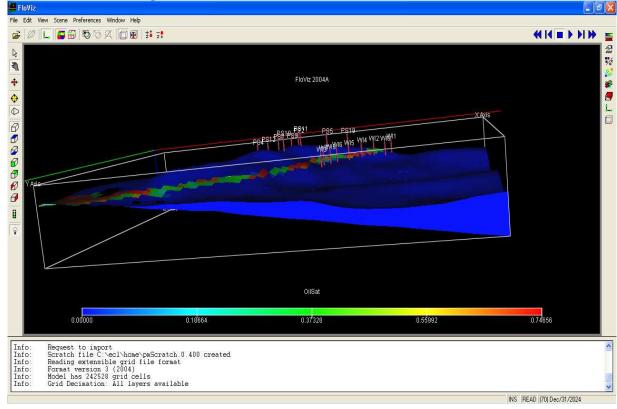
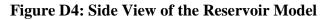

Figure B2: CP horizontal Pumps used in Angsi Field, Malaysia [19]

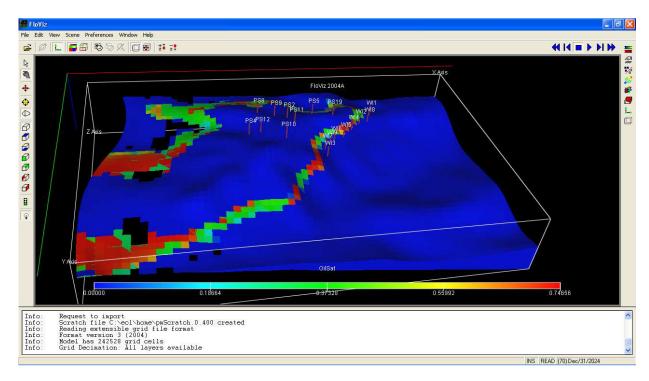
Table C: Gelama Merah Reservoir Model PVT Properties						
Parameter	Unit	Description				
Gas oil Contact (GOC) depth	Feet (ft)	4815.945				
Water Oil Contact(WOC)	Feet	4948.163				
depth						
Reservoir Thickness	Feet	132.218				
Maximum Reservoir Pressure	psi	2200				
Number of cells		53x44x104				
permeability	md	20-200 (average)				
Live Oil Properties						
Oil Density	lb /cu ft	51.85				
Oil Viscosity	Centipoises (cp)	2.938				
Oil Saturation, So	Percentage (%)	0.37328 0r 37.328 %				
Oil Volume Factor, Bo	Rb/STB	1.15				
Specific Gravity	(Oil density/Water Density)	0.83				
API Gravity	Degree API	38.87				
Dry Gas Properties						
Gas density	lb/cu ft	0.0522				
Gas Saturation, Sg	Percentage (%)	0.56 or 56.0%				
Gas viscosity	ср	0.0266				
Water Properties						
Water Volume Factor, Bw	Rb/STB	1.0				
Pressure at Water level	psi	(1874 to 21116.463)				
Water Viscosity	Centipoises (cp)	3.561e-006				
Water Density	lb/cu ft	62.43				
Water Saturation	Percentage (%)	0.18664 or 18.6%				
Reservoir Rock Properties						
Average Pressure,	Psia	1874				
Porosity	%	20				

APPENDIX C: GELAMA MERAH RESERVOIR PVT PROPERTIES

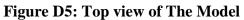
APPENDIX D: 3D Views of the Simulation Work

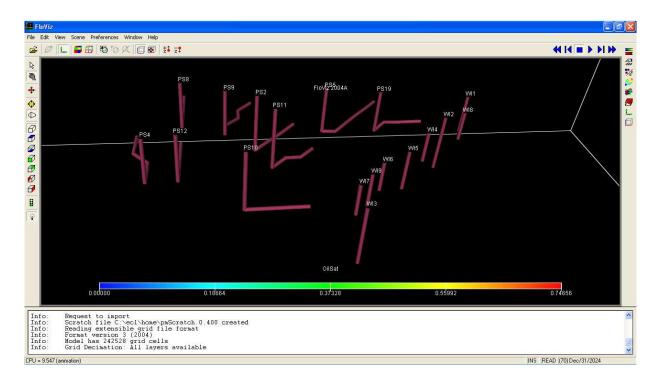





Figure D2: Top view Of the Reservoir Model after wells design



APPENDIX D: 3D Views of the Simulation Work (continue)





APPENDIX D: 3D Views of the Simulation Work (continue)

