LIST OF FIGURES

Figure 1.1	Typical setting of laser attenuation method for quantification of suspended	
	particles	2
Figure 1.2	Droplet size and velocity measurement in jet by using LDA/PDA system	3
Figure 1.3	PDPA technique for droplet size measurement	3
Figure 2.1	The process of laser attenuation	6
Figure 2.2	Input-output calibration curve for laser power meter, using neutral density	
	filters of known attenuation	7
Figure 2.3	Schematic illustration of: (a) spontaneous emission, (b) stimulated	
	emission, and (c) absorption	8
Figure 2.4	Electromagnetic wave with a coherence time of τ_0	10
Figure 2.5	Scheme of a laser	11
Figure 2.6	Divergence of a plane electromagnetic wave due to diffraction	12
Figure 2.7	Modes of light scattering	13
Figure 2.8	The average absorption of an infinitely thin slice under diffuse illumination	
	is related to the average path of the light in the medium	14
Figure 2.9	Light scattered by an infinitely thin layer containing light-scattering	
	particles at a concentration c	15
Figure 3.1	Flow chart of the project	19
Figure 3.2	Gantt chart for the project in July 2008 semester	20
Figure 3.3	Gantt chart for the project in January 2009 semester	21
Figure 4.1	The first design of laser attenuation measurement system	23
Figure 4.2	The second design of laser attenuation measurement system	23
Figure 4.3	The first unselected sketch of laser attenuation measurement system	24
Figure 4.4	The second unselected sketch of laser attenuation measurement system	24
Figure 4.5	The completed laser attenuation measurement system	25
Figure 4.6	The detached measurement system	25
Figure 4.7	Internal view of laser box	26
Figure 4.8	External view of laser box	26

Continue on page viii

LIST OF FIGURES (CONTINUE)

Figure 4.9	Beam expander	26
Figure 4.10	Laser pointer	26
Figure 4.11	Circuit diagram of light intensity power meter	27
Figure 4.12	Internal view of power meter	27
Figure 4.13	External view of power meter	27
Figure 4.14	Diameter of the lens holders	28
Figure 4.15	The completed lens holder with plano-convex lens	28
Figure 4.16	Plano-convex lenses	28
Figure 4.17	ScienceWorkshop 750 Interface from Pasco	29
Figure 4.18	USB cable	30
Figure 4.19	Voltage-sensor cable	30
Figure 5.1	The setting and condition when the laser source is turned off	32
Figure 5.2	The setting and condition when the laser source is turned on	32
Figure 5.3	The maximum and minimum voltages	33
Figure 5.4	The initial condition when the empty container is used	35
Figure 5.5	The final condition when the Hexane-filled container is used	35
Figure 5.6	The result of experiment with Hexane solution	37
Figure 5.7	The condition when the water spray is introduced into the measurement	
	area	37
Figure 5.8	The result of continuous-and-rapid water spraying experiment	38
Figure 5.9	The result of continuous-and-slow water spraying experiment	40