Study on the Effectiveness of Ionic Liquid as Low Dosage Hydrate Inhibitor (LDHI) for Flow Assurance in Pipeline.

by

LEE KUO CHUN (Student ID: 10697)

Mechanical Engineering Department

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Study on the Effectiveness of Ionic Liquid as Low Dosage Hydrate Inhibitor (LDHI) for Flow Assurance in Pipeline.

by

Lee Kuo Chun

A project dissertation submitted to the Mechanical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (MECHANICAL ENGINEERING)

Approved by supervisors:

(Dr Azuraien Jaafar)

(Dr Khalik M Sabil)

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK

December 2011

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

LEE KUO CHUN

ABSTRACT

This research project is an experimental approach to study the effectiveness of ionic liquids as low dosage hydrate inhibitors (LDHI) for flow assurance in pipelines. In addition, this project is also aimed to gain a better understanding about gas hydrates and choosing new potential ionic liquids as LDHI. Gas hydrates are solid crystalline compounds formed by water and molecules like natural components at low temperature and high pressure conditions. Hydrates formation often occur and block gas pipelines which causes production failure and safety hazards.

The conventional method to prevent the formation of gas hydrates is by using large quantities of thermodynamics inhibitors, which is expensive and dangerous to the environment. Thus, suitable new class of ionic liquids such as low dosage hydrate inhibitor(LDHI) that are strong and effective needs to be discovered to replace the conventional method. The criteria of ionic liquids were studied – stabilities, hydrophilic, tuneable organic cations and anions and extremely low vapour pressures.

In this study, parameters such as kinetic rate and induction time need to be experimentally considered and investigated by using High Pressure Kinetics Measurement (HPKM) for bulk volume. Currently for HPKM, the temperature at 273.65 K and pressure at 35bar is selected to be operating condition for the experiment of hydrate formation as data were recorded every second by data acquisition system. This experiment was continued by adding LDHI (0.1wt%, 0.5wt%, 1.0wt %) and using different pressures (25bar, 30bar and 35bar) to test the effects. However, 10.0 wt% high concentration of EMIM BF_4 is used for the study of ionic liquid effectiveness as thermodynamic inhibitors.

The findings of this work will contribute to a more environment friendly and economical hydrate inhibitors for usage in the oil and gas industrials.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my greatest gratitude towards God for His blessing to this FYP project. I also would like to thank both my supervisors, Dr Azuraien Jaafar and Dr Khalik, for their continuous support, advice and guidance in completing this project.

I would like to take this opportunity to thank UTP technicians and Security Department for their approval to enter the laboratory. Besides, I would like to thank PETRONAS Ionic Liquid Center for contributing the ionic liquid for this project. Last but not least, thanks to my family and colleagues for their precious help, comments, suggestions and support to do my best.

Thank you.

TABLE OF CONTENTS

CERTIFICATION	ii
ABSTRACT	iv
ACKNOLEDGMENT	v
LIST OF FIGURES AND LIST OF TABLES	vi
NOMENCLATURE	xi
Chapter 1.0 INTRODUCTION	
1.1 Background of Study	1
1.2 Problem Statement	2
1.3 Objective	2
1.4 Scope of Study	3
1.5 The Relevancy of the Project	3
1.6 Feasibility of the Project within the Scope and Time Frame	3
Chapter 2.0 LITERATURE REVIEW	
2.1 Hydrate Mechanism	4
2.2 Gas Hydrate	5
2.3 Current methods to mitigate the hydrate formation (plugs) in	
pipeline	7
2.4 Chemical Inhibitors (journals analysis)	7
2.5 Ionic liquid (molten salt)	7
2.6 Info on CO ₂ Hydrate Formation Experiment	11

Chapter 3.0 METHODOLOGY

3.1 Chemical Identification	12
3.2 Tools and Software Identification	13
3.3 Experiment Procedure for High Pressure Kinetics Measurement	14
3.4 Research and Experiment Methodology	16
3.5 Project Activities	17
3.6 Example calculation for 1-Ethyl-3-methylimidazolium	
tetrafluoroborate, EMIM BF_4 at 0.1wt%	18
3.6 Gantt Chart for FYP 2	19
3.7 Key Milestones and Dates	19
Chapter 4.0 RESULTS AND DISCUSSION	
4.1 Experiments status and example of CO ₂ hydrates	20
4.2 Results	20
4.2.1 Data Analysis for experiments at pressure, 25bar and	
temperature, 2 °C	21
4.2.2 Data Analysis for experiments at pressure, 30bar and	
temperature, 2 °C	24
4.2.3 Data Analysis for experiments at pressure, 35bar and	
temperature, 2 °C	27
4.3 Discussion	30
4.4 Results on the induction time for all pressure and concentrations	31
4.5 Data Analysis for additional experiment (10.0 wt% concentration)	
at pressure, <u>30bar</u> and temperature, 2 °C	32

Chapter 5.0 CONCLUSION AND RECOMMENDATION

5.1 Conclusion	36
5.2 Recommendation for Future Works Expansion and Continuation	37
REFERENCES	38
APPENDICES	

LIST OF FIGURES

Figure 1.1:	Figure 1.1:Hydrate plug formation via aggregation in an Oil-dominated	
	system	1
Figure 1.2:	Example of hydrate blockage in pipelines	2
Figure 2.1:	Schematic Diagram of Pressure Changes with Time during	
	Hydrate Formation	4
Figure 2.2:	Hydrate structure and hydrates solid examples	5
Figure 2.3:	Cages and Coordiantioin Number in Structure I, II and H.	6
Figure 2.4:	Effect of additional methanol on hydrates formation	8
Figure 2.5:	Three Phase Equilibrium Data for Carbon Dioxide and Water	
	Hydrate System	11
Figure 2.6:	Three Phase Equilibrium Data for Carbon Dioxide	
	Hydrate Formation	11
Figure 3.1:	Schematic Illustration of the Apparatus for the High	
	Pressure Kinetics Measurement (HPKM)	13
Figure 3.2:	Micropipette used to acquire precise amount of liquid	
	from Block 4 level 1	13
Figure 3.3:	HPKM system with magnetic stirrer.	15
Figure 3.4:	Computer + Data Acquisition System	15
Figure 3.5:	Cryostat (cooling device)	15
Figure 3.6:	CO2 gas tank	15
Figure 3.7:	Reactor Submerged in Thermostatic Bath	15
Figure 3.8:	Experiments station at Block 5. 00. 01 Laboratory	15
Figure 3.9:	Flowchart of Research Methodology	16
Figure 3.10:	Flowchart of Experimental works	16
Figure 4.1:	Example of CO2 hydrate formation in reactor @ 30bar	20
Figure 4.2:	CO2 hydrate formation outside of reactor @ 30bar	20
Figure 4.3:	CO2 hydrate formation outside of reactor @ 30bar	20
Figure 4.4:	Without Ionic Liquid @ 25bar	21
Figure 4.5:	With 0.1wt% EMIM BF ₄ @ 25bar	21

Figure 4.6:	With 0.5wt% EMIM BF ₄ @ 25bar	21
Figure 4.7:	With 1.0wt% EMIM BF ₄ @ 25bar	21
Figure 4.8:	CO ₂ Hydrate Temperature VS Time @ 25bar	22
Figure 4.9:	CO ₂ Hydrate Pressure VS Time @ 25bar	23
Figure 4.10:	Without Ionic Liquid @ 30bar	24
Figure 4.11:	With 0.1wt% EMIM BF ₄ @ 30bar	24
Figure 4.12:	With 0.5wt% EMIM BF ₄ @ 30bar	24
Figure 4.13:	With 1.0wt% EMIM BF ₄ @ 30bar	24
Figure 4.14:	CO ₂ Hydrate Temperature VS Time @ 30bar	25
Figure 4.15:	CO ₂ Hydrate Pressure VS Time @ 30bar	26
Figure 4.16:	Without Ionic Liquid @ 35bar	27
Figure 4.17:	With 0.1wt% EMIM BF ₄ @ 35bar	27
Figure 4.18:	With 0.5wt% EMIM BF ₄ @ 35bar	27
Figure 4.19:	With 1.0wt% EMIM BF ₄ @ 35bar	27
Figure 4.20:	CO ₂ Hydrate Temperature VS Time @ 35bar	28
Figure 4.21:	CO ₂ Hydrate Pressure VS Time @ 35bar	29
Figure 4.22:	Induction VS Pressure for CO2 Hydrate Formation	31
Figure 4.23:	Concentration VS Induction time for CO2 Hydrate Formation	28
Figure 4.24:	With 10.0 wt% EMIM BF ₄	32
Figure 4.25:	CO2 Hydrate Pressure VS Time (including 10 wt%)	33
Figure 4.26:	CO2 Hydrate Temperature VS Time (including 10 wt%)	33
Figure 4.27:	Induction time of CO2 Hydrate Formation (including 10 wt%)	34
Figure 4.28:	Concentration VS Induction time for CO2 Hydrate Formation	
	(including 10 wt%)	35
Figure 5.1:	2 different sizes of magnetic stirrers.	37
Figure 5.2:	Difficulties to place both thermostatic bath and magnetic	
	stirrer plate below the reactor	37

LIST OF TABLES

Table 2.1:	Analysis and ionic liquids that have been studied in journals	10
Table 3.1:	Ionic liquid studied in this work	12
Table 3.2:	Materials involved with their suppliers and phases.	12
Table 3.3:	Gantt chart for the Second Semester Project Implementation	19
Table 4.1:	Experiments start date.	20
Table 4.2:	Induction time of Carbon Dioxide hydrate Formation	
	at various pressures	31
Table 4.3:	Induction time of Carbon Dioxide hydrate Formation	
	at various pressure	34

Nomenclature

The following abbreviations and acronyms are used throughout the text:

AA	Anti-Agglomerant hydrate inhibitor
bb1	barrel (42 US gallons = 0.159 m^3)
bcpd	barrels of condensate per day
bopd	barrels of oil per day
bpd	barrels per day
bwpd	barrels of water per day
CAPEX	capital expenditure
CI	corrosion inhibitor
CO_2	carbon dioxide
FPSO	Floating Production Storage and Offloading
	vessel
GOR	Gas to Oil Ratio
H_2S	hydrogen sulfide
ec.	inch = 2.54 cm
KHI	Kinetic Hydrate Inhibitor
Km	Kilometer (1 KM = 0.621 mile)
L	Liter (1 Liter = 0.264 Gallons)
LDHI	Low Dosage Hydrate Inhibitor
m	Meter (1 meter = 3.28 ft)
MEG	ethylene glycol
MeOH	methanol
MM	million
MMscfd	million standard cubic feet per day
mpy	mils per year (corrosion rate)
OPEX	operational expenditure
PI	paraffin inhibitor
ppm	parts per million
psig	pounds per square inch (gauge)
scf	standard cubic feet
stb	standard barrel (1 barrel = 0.159 m^3)
THI	Thermodynamic Hydrate Inhibitor