CERTIFICATION OF APPROVAL

Study on the Air Conditioning Cooling Load and Operational Practices within Glazed Buildings in Universiti Teknologi PETRONAS

by

Ahmad Hadi Bin Hassan

A project dissertation submitted to the Mechanical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (MECHANICAL ENGINEERING)

Approved by,

(Ir. Dr. Shaharin Anwar Sulaiman)

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK January 2009

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

AHMAD HADI HASSAN

ABSTRACT

The centralized air conditioning system in Universiti Teknologi PETRONAS is a large scale air conditioning application, in which the average monthly consumption reaches as high as 850,000 RTh. For such a huge amount of energy consumption, the system has vast potential for energy and cost saving. Therefore, a thorough study on the cooling load of the whole system should be performed to identify potential areas for energy and cost saving. The objective of the present study is to investigate the potential energy savings within the air conditioning system. The study is conducted by analyzing the system's cooling load and the operational practices, both manually and by software simulation. For cooling load analysis, the effect of several design and operational variables towards building annual cooling energy are analyzed in terms of the building orientation, thermal insulation, night ventilation, window shading devices, infiltration and overcooling towards building annual cooling energy. On the operational side, building occupancy pattern is investigated. This involved analyzing the occupancy pattern during weekday and weekend as well as estimating the energy saving by isolating the unoccupied spaces. From the simulations' results, implementation of windows blinds and shadings as well as providing night ventilation give a significant reduction of buildings' annual cooling energy. For the operational practices, implementation of rooms' scheduling for the air conditioning system will also result in a substantial reduction of building cooling load.

ACKNOWLEDGEMENT

I would like to take this opportunity to acknowledge and thank everyone that has given me all the supports and guidance throughout the whole period of completing the final year project. Firstly, many thanks to the university and the Final Year Project coordinators that have coordinated and made the necessary arrangements, especially in terms of the logistics, for this study.

I must also acknowledge the endless help and support received from my supervisor, Ir. Dr. Shaharin Anwar Sulaiman throughout the whole period of completing the final year project. His guidance and advices are very much appreciated. Apart from that, many thanks to the UTP Property Management and Maintenance Department (PMMD UTP) Engineer, Mr. Fatimie Irzaq Khamis and Mr. Foong Kok Keong for helping me in arranging for the completion of a few experiments on the air conditioning system.

I would also like to express my utmost gratitude to my fellow FYP partners Ms. Fara Husna Thambi and Ms. Siti Nurfadilah Ahmad Mujor for their continous support upon the completion of my research work.

Finally many thanks to my fellow colleagues for their help and ideas throughout the completion of this study. Thank you all.

TABLE OF CONTENTS

CERTIFICATION (OF AP	PROVAL	•		•	•	•	i
CERTIFICATION (OF OR	IGINALITY						ii
ABSTRACT .								iii
ACKNOWLEDGEM	1ENT							iv
TABLE OF CONTE	NTS							v
LIST OF FIGURES								viii
LIST OF TABLES								х
ABREVIATIONS A	ND NC	OMENCLAT	URE					xi
CHAPTER 1:	INTR	ODUCTION				•	•	1
	1.1	Background	of study	•	•	•	•	1
	1.2	Problem stat	ement	•	•	•	•	4
	1.3	Objectives a	nd scope	of stuc	ly.	•	•	5
	1.4	Dissertation	Outline.					5
CHAPTER 2:	LITE	RATURE RE	VIEW					7
	2.1	Previous Stu	dv					7
	2.2	Theory of Co	ooling Lo	oad Cal	culation			9
		2.2.1 Concep	ot of Coo	ling Lo	ad			10
		2.2.3 Coolin	g Load C	alculat	ion			11
	2.3	Review on H	- IVAC Er	nergy C	onserva	tion		
		Opportunity	Review.					12
	2.4	Energy Savin	ng Featu	res in C	urrent	Air		
		Conditioning	g System		•	•	•	13
	2.5	Energy Sain	g Featur	e of UT	TP Air			
		Conditioning	g System					16
CHAPTER 3:	METI	HODOLOGY	7					18
	3.1	Project Flow						18
	3.2	Simulation T	Cool: Ene	ergy Plu	IS			20

	3.3	Cooling Load Manual Calculation:		
		CLTD Method		21
		3.3.1 Indoor/Outdoor Design Specification	ns.	22
		3.3.2 Building Description		22
		3.3.3 Heat Gain Calculation		24
		3.3.4 Energy Plus Simulation .		27
	3.4	Investigation on UTP Air Conditioning		
		Operational Practices		28
		3.4.1 Weekends Occupancy Pattern .		29
		3.4.2 Weekday Occupancy Pattern .		29
		3.4.3 Unoccupied Rooms		29
	3.5	Measurements of Envelope's		
		Thermal Resistance		30
CHAPTER 4:	COC	DLING LOAD ANALYSIS		32
	4 .1	Building Envelop Thermal Resistance		
		Experiment		32
	4.2	Cooling Load Analysis		33
		4.2.1 CLTD Method and Heat Balance		
		Method Comparison .		33
		4.2.2 Comparison between Equipment De	sign	
		Cooling Capacity and Calculated.		
		Cooling load		38
		4.2.3 Cooling Load Simulation for UTP		
		Academic Building.		39
		4.2.4 Effect of Building Orientation on		
		Annual building Cooling Energy.		39
		4.2.5 Effect of Window Blind and Shading	g	
		on Building Cooling Load.		43
		4.2.6 Effect of Thermal Insulation		44
		4.2.7 Effect of Night Ventilation.		45
		4.2.8 Effect of Space Overcooling vi	•	46

		4.2.9 E	Effect of	Infiltra	tion Lo	ad.	•		51
CHAPTER 5:	OPER	ATION	NAL AN	NALYS	IS.				53
	5.1	Weeke	ends Occ	cupancy	Patter	n.			53
	5.2	Weekd	lays Oco	cupancy	Patter	n.			54
	5.3	Unocc	upied R	ooms.			•		59
CHAPTER 6:	CONC	CLUSIC	DN				•		68
REFERENCES									70
APPENDIX .									72
APPENDIX 1: FYP C	Gantt Cł	nart	•			•			73
APPENDIX 2: Therm	nal Resi	stance H	Experim	ent Res	ults				75
APPENDIX 3: U Val	ue Calc	ulation							76
APPENDIX 4: AHU	operatio	on schee	lule for	UTP N	ew Aca	demic (Complex	x	78

LIST OF FIGURES

Figure 1.1	Aerial view of UTP new academic complex	3
Figure 1.2	UTP Chilled water consumption from year 2007 to 2008	6
Figure 2.1	Heat Flow Diagram of building heat gain, storage and cooling load	10
Figure 2.2	Schematic diagram of heat balance processes of a zone	11
Figure 2.3	Heat Wheel	14
Figure 2.4	Plate heat exchanger working mechanism	14
Figure 2.5	Run around coil	15
Figure 2.6	Presence (movement) sensor introduced by Fujitsu	15
Figure 2.7	Heat Wheel	16
Figure 2.8	Plate type heat exchanger	16
Figure 3.1	Project flow diagram for the present project	19
Figure 3.2	Energy Plus methodology schematic diagram	20
Figure 3.3	CLTD method of cooling load calculation	21
Figure 3.4	Floor layout for Block 17 Level 3	22
Figure 3.5	Methodology for Energy Plus simulation	28
Figure 3.6	Thermal circuit schematic diagram	31
Figure 4.1	Cooling load distribution by Commercial Building CLTD Method	33
Figure 4.2	Cooling load calculation via Commercial Building CLTD Method	34
Figure 4.3	Cooling load calculation via Residential Building CLTD Method	35
Figure 4.4	Annual simulation result of Energy Plus for Block 17 Level 3	36
Figure 4.5	UTP Academic building annual cooling energy	41
Figure 4.6	Aerial view of UTP Academic Buildings	40
Figure 4.7	Effect building orientation on annual cooling energy	42
Figure 4.8	Effect of night ventilation on cooling energy requirement for Block 23	47
Figure 4.9	Nighttime temperature profile for Block 23	48
Figure 4.10	Return Air Temperature Profile for Block 23 on April 15 th 2009	49
Figure 4.11	Effect of overcooling on building cooling energy	50
Figure 4.12	Effect of infiltration load from door opening	52
Figure 4.13	A door was left opened during class	51

Figure 5.1	Occupancy Pattern of UTP Mechanical Engineering Buildings	57
Figure 5.2	Annual cooling load comparison after implementing scheduling	58
Figure 5.3	Base case model for Block 17 first floor after isolation of the	
	unoccupied rooms	00
Figure 5.4	VAV layout for Block 17 first floor before and after isolation of the	
	unoccupied rooms	60
Figure 5.5	Result of cooling load simulation for Block 17 first floor before and	
	after isolation of the unoccupied rooms	rooms
Figure 5.6	The daily VSD profiles of Block 17 Level 1 before and after isolation	
	of the unoccupied rooms (AB side)	04
Figure 5.7	The daily VSD profiles of Block 17 Level 1 before and after isolation	65
	of the unoccupied rooms (CD side)	65
Figure 5.8	The daily cooling valve profiles of Block 17 Level 1 before and after	
	isolation of the unoccupied rooms (AB side)	00
Figure 5.9	The daily cooling valve profiles of Block 17 Level 1 before and after	
	isolation of the unoccupied rooms (CD side)	07

LIST OF TABLES

Table 1.1	Comparison on yearly consumption of various energy resources in	1		
	Malaysia	4		
Table 3.1	Building 17 dimensional and envelope details	18		
Table 3.2	Envelope material specification	19		
Table 3.3	CLTD, LM and CLTD _c values	20		
Table 3.4	Table of SHGC, A, SC and CLF values	21		
Table 3.5	Heat gain values for equipments and appliances	21		
Table 3.6	Heat gain values for equipments and appliances	22		
Table 3.7	Glass load factor (GLF) values	23		
Table 4.1	Building Envelope Thermal Resistance Experiment	28		
Table 4.2	Result for <i>h</i> and <i>R</i> value	29		
Table 4.3	Comparison between CLTD and HB method	37		
Table 4.2	Cooling Load Calculation via ASHRAE 2001 CLTD method	30		
Table 4.3	Annual simulation result of Energy Plus	31		
Table 4.4	Cooling Load comparison between HB method and CLTD method	37		
m 11 4 5	Cooling Load comparison Equipment Rated Cooling Capacity vs. HB			
1 able 4.5	method peak cooling load	20		
Table 16	Effect of windows blinds and shadings on annual cooling energy			
Table 4.0	requirement for Block 23	43		
m 11 / m	Effect of thermal insulation on annual cooling energy requirement	4.4		
Table 4.7	for Block 23	44		
Table 4.8	Effect night ventilation on cooling energy requirement for Block 23	45		
Table 4.9	Effect of overcooling on building cooling energy (Block 23)	46		
Table 5.1	Weekends Occupancy Pattern of UTP	54		
Table 5 0	Summary UTP weekends occupancy annual cooling energy			
Table 5.2	irements			
Table 5.3	Summary of Room Occupancy of UTP Mechanical Engineering	EC		
	Buildings	30		

Table 5.4	Summary of Unoccupied Room for UTP Mechanical Engineering			
	Buildings	59		
Table 5.5	Block 17 first floor AHU fan energy consumption comparison	62		
Table 5.6	Block 17 first floor AHU cooling valve total opening comparison	62		

ABREVIATIONS AND NOMENCLATURES

AHU	Air Handling Unit
ASHRAE	American Society of Heating Refrigeration and Air Conditioning Engineer
BLAST	Building Loads Analysis and Systems Thermodynamics
CFD	Conduction Finite Difference
CFM	Conduction Transfer Function
CLF	Cooling Load Factor
CLTD	Cooling Load Temperature Difference
CTF	Cubic Feet per Minute
DB	Dry Bulb
GLF	Glass Load Factor
HB	Heat Balance
HVAC	Heating Ventilation and Air Conditioning
SC	Shading Coefficient
SHGF	Solar Heat Gain Factor
TFM	Transfer Function Method
UTP	Universiti Teknologi PETRONAS
VAV	Variable Air Volume
VSD	Variable Speed Drive
WB	Wet Bulb