CERTIFICATION OF APPROVAL

Silo Management System

by

Nuraishah binti Zakaria

A project dissertation submitted to the Electrical and Electronics Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (EECTRICAL AND ELECTRONICS ENGINEERING)

Approved by,

(Assoc Prof Dr Irraivan Elamvazuthi) Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2009

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

NURAISHAH BINTI ZAKARIA

ABSTRACT

Grain storage is very important in paddy industry. The grain is stored inside a tank called a silo. Although the grain is safely stored in the silo, the changing of temperature and humidity inside the silo will affect the grain. So, in order to control them, aeration system is implemented. Aeration is the process of moving air through a medium (grain storage) in order to control the temperature and moisture of the grain. Aeration system can prevent condensation from happening. It can also reduce microbial growth and remove bad odours caused by the microbial activity. Therefore, this project is designed to monitor and control the aeration process in the silo. This aeration system consists of a fan, vent, transition duct, perforated floor, sensors and a motor. When the temperature is higher than the set point, the fan will blow the air up through the silo. The heat from the warm grain will transfer to the air while the air is moving to the top. The air will flow out from the silo to the atmosphere through a vent. This report will discuss on the literature review, methodology, results and also discussion of this project. Literature review is more on the research of the aeration process. The methodology discusses the requirements needed to design an aeration system. The discussion consists of calculations of parameters such as the airflow rate and also the labview programming.

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my final year project supervisor, Assoc Prof. Dr Irraivan Elamvazuthi for giving me advices and support for this one year project. His encouragement has given me the strength to overcome the problems that I have encountered when the project is in progress.

Thanks to all the people that have helped me in achieving the objectives of the project especially the lecturers. The lecturers whom I consult have explained to me the basic theory to make this project works. I would like to thank to the mechanical and electrical technician for assisting me in finishing the prototype. Not forgetting Mrs Siti Hawa for helping me preparing the necessary document in order to make sure the project is running smoothly.

Most importantly, I would like to express my gratitude to my parent and sibling who had supported me in finishing the project. Their sacrifices and support has helped me a lot in this project.

Last but not least, I would like to extend my appreciation to my friends in University Technology PETRONAS (UTP) who has helped me and gave me some advices so that my project works and has successfully achieved the objectives.

TABLE OF CONTENTS

CERTIFICATION	OF API	PROVA	L	•	•	•	•	•	i
CERTIFICATION	OF OR	IGINA	LITY	•	•	•	•	•	ii
ABSTRACT .	•	•	•	•	•	•	•	•	iii
ACKNOWLEDGEMENT									iv
LIST OF FIGURES								•	viii
LIST OF TABLES	•	•	•	•	•	•	•	•	ix
CHAPTER 1:	INTR	ODUC'	ΓΙΟΝ					•	1
	1.1	Backg	round o	f study	•	•	•	•	1
	1.2	Proble	m state	ment	•	•	•	•	1
	1.3	Object	ives	•	•	•	•	•	2
	1.4	Scope	of Stud	у	•	•	•	•	2
	1.5	Feasib	ility of I	Project	•	•	•	•	2
CHAPTER 2:	LITE	RATUH	RE REV	IEW A	AND TI	HEORY	ζ		3
	2.1	Currer	nt Syster	m.	•	•	•	•	3
	2.2	Aerati	on proc	ess flow		•	•		4
	2.3	Aerati	on syste	m desig	gn	•	•	•	6
		2.3.1	Airflov	v rate	•	•	•	•	7
		2.3.2	Fan Se	election	•	•	•	•	9
		2.3.3	Air dis	tributio	on.	•	•	•	10
			2.3.3.1	Trans	ition du	ct	•	•	11
			2.3.3.2	Perfo	rated Fl	loor	•		12
		2.3.4	Ventild	ution sy.	stem	•	•	•	13

CHAPTER 3:	MET	HODOLOGY	14
	3.1.	Procedure Identification	14
	3.2	Gantt Chart	14
~~	3.3	Tools and Equipments	15
		3.3.1 Hardware Material	15
		3.3.2 Software	15
	3.4	Requirement of an Aeration System	16
	3.5	Conceptual Design	17
		3.5.1 SCADA System	17
		3.5.1.1 Hardware	17
		3.5.1.2 Software	18
		3.5.2 Plant	19
	3.6	Calculation for Designing Aeration System .	21
		3.6.1 Calculate the Storage Volume	21
		3.6.2 Airflow Required	21
		3.6.3 Duct Location	21
		3.6.4 Calculate the Perforated Area	21
		3.6.5 Sizing of the Perforated Duct	22
		3.6.6 Sizing of non Perforated Duct Supply.	22
		3.6.7 Sizing of the Roof Vent	22
	3.7	Motor Control Circuit	23
	3.8	Procedure connecting DAQ Card with software	24

CHAPTER 4:	RESU	LTS	AND DISCUSSION	•	•	•	25
	4.1	Over	all System Connection	•	•	•	25
	4.2	DAQ	connection to CPU	•	•	•	28
	4.3	Simu	lation Coding and Resu	lts.	•	•	33

CHAPTER 5:	CONCLUSION AND RECOMMENDATION							·	37
	5.1	Con	clusion	•	•	•	•	•	37
	5.2	Reco	ommend	ation	•	•	•	•	37
REFERENCES	•	•	•	•	•	•	•	•	38
APPENDIX .	•	•	•	•	•	•	•	•	39
APPENDIX I	GAN	TT CI	HART I	FOR FY	P 1	•	•	•	40
APPENDIX II	GAN	TT CI	HART I	FOR FY	ΡII	•	•	•	41
APPENDIX III	DET	AILEI	D DRAV	WING	•	•	•	•	42
APPENDIX IV	PCI	6024E	DATAS	SHEET	•	•	•	•	45
APPENDIX V	CB68	BLP D	ATASH	IEET	•	•	•	•	48
APPENDIX VI	TIP 1	1 27 D A	ATASH	EET	•	•	•	•	49
APPENDIX VII	TIP 1	1 22 D A	TASH	EET	•	•	•	•	54
APPENDIX VIII	1N41	48 DA	TASHI	EET	•	•	•	•	59
APPENDIX IX	WIR	ING D	DIAGR A	M .	•	•	•	•	63

LIST OF FIGURES

Figure 1	Aeration Process Flow	•	•	4
Figure 2	Three zones in a bed of aerated grain	•	•	5
Figure 3	The process of cooling grain temperature .	•	•	6
Figure 4	Components of an aeration system	•	•	6
Figure 5	(a) Axial fan and (b) Centrifugal fan components	•	•	9
Figure 6	Types of transition duct shapes	•	•	12
Figure 7	Types of perforated floors for flat bottom bins	•	•	12
Figure 8	Gooseneck vent	•	•	13
Figure 9	Project Procedure Identification	•	•	14
Figure 10	The outline diagram of SCADA system .	•	•	17
Figure 11	Flow Chart for coding in Labview	•	•	18
Figure 12	Front View of the Silo	•	•	19
Figure 13	Perforated Duct	•	•	22
Figure 14	Non Perforated Duct Supply	•	•	22
Figure 15	H Bridge Circuit	•	•	23
Figure 16	Transistor Base Condition	•	•	23
Figure 17	System Testing	•	•	25
Figure 18	Overview of System Connection	•	•	26
Figure 19	Components on the silo	•	•	27
Figure 20	Soldered H Bridge Circuit	•	•	27
Figure 21	Test Connection of analog input	•	•	28
Figure 22	Test connection of digital output	•	•	29
Figure 23	Voltage checking at analog output channel .	•	•	29
Figure 24	Voltage connection at LED terminal	•	•	30
Figure 25	Reading of thermocouple before heating .	•	•	31
Figure 26	Reading of thermocouple after heating .	•	•	32
Figure 27	Labview coding	•	•	33
Figure 28	Front Panel of simulation	•	•	34

Figure 29	The temperature monitorin	•	•	35			
Figure 30	Data monitoring analysis	•	•	•	•	•	35
Figure 31	The recorded data	•	•	•	•	•	36

LIST OF TABLES

Table 1	Summary of Advantages and Disadvantages of Upward								
	(Pressure System)	•	•	•	7				
Table 2	Summary of Advantages and Disadvantage	s of Do	ownwar	d					
	(Suction System) Airflow	•	•	•	8				
Table 3	The equipment and tools being used	•	•	•	15				
Table 4	Software and related material being used	•	•	•	15				