
 1

CHAPTER 1

 INTRODUCTION

1.1 Background of Study

This project entitled “Optimal Parameters of Static Synchronous Series

Compensator (SSSC) connected to a power system” is intended to develop an SSSC

controller to control the power flow in the transmission line and minimize the

transmission line losses. SSSC is able to control both active and reactive powers in

an ac system simply by controlling the angular position of injected voltage into the

transmission line with respect to the line current [1]. The parameters in the power

flow are monitored and controlled to their optimized levels by using a SSSC

controller.

1.2 Problem Statement

Nowadays, the demand for electricity supply has been increasing to meet the

world’s needs. Many analysis and researches of options available for maximising the

existing transmission assets have been conducted that can substitute for conventional

solutions that have slow response times and high maintenance costs [2].

Currently, most of the world’s electrical power systems are widely

interconnected. Network interconnection is made for economic reasons that are to

reduce the cost of electricity and to improve reliability of power supply.

Transmission interconnections enable taking advantage of diversity of loads,

availability of sources, and fuel price in order to supply electricity to the loads at

 2

minimum cost with a required reliability [2].

While power flows in some of the transmission lines are well below their

normal limits, other lines are overloaded, which has an overall effect on deteriorating

voltage profiles and decreasing system stability and security. Therefore, it becomes

very crucial to control the power flow along the transmission lines to meet the needs

of power transfer [3].

1.3 Objective of Study

The objectives of this project report are as follows:

1. To develop an SSSC controller to control the power flow in transmission

lines.

2. To optimize the parameters of SSSC using an intelligent optimization

technique.

3. To construct the sizing of SSSC controller parameters with the purpose of

minimizing the transmission line losses in a network.

1.4 Scope of Study

The study on the optimization of parameters of SSSC connected to a power

system and implementation is to be completed within approximately one year

timeframe (two semesters). The scope for phase 1 of the project, which is research on

power flow, SSSC and optimization problem solution, is completed by the end of

first semester. Phase 2 which is the implementation of SSSC into power system and

design programming is started after phase 1 is completed.

When the software implementation is completed, the testing is to be

performed when all parameters set on the power systems can be controlled.

 3

Therefore, the accuracy of the results obtained and the outcome of SSSC can be

observed and assessed.

 4

CHAPTER 2

LITERATURE REVIEW AND THEORY

2.1 Flexible AC Transmission System (FACTS)

 Flexible AC Transmission System (FACTS) is an alternating current

transmission system incorporating power electronic-based and other static controllers

to enhance the controllability and increase the power transfer capability [1]. The

introduction of FACTS in a power system improves the stability, reduces losses and

improves the load ability of the system. With FACTS technology, such as Static

Synchronous Series Compensator (SSSC), Interline Power Flow Controller (IPFC)

and Unified Power Flow Controller (UPFC), the bus voltages, line impedances and

phase angles in the power system are regulated rapidly and flexibly [3], thanks to

their series-connected converter. The explanations for different controllers are

provided in the following sections.

2.2 FACTS Controllers

2.2.1 Static Synchronous Series Compensator (SSSC)

SSSC is a solid-state voltage source converter that generates a controllable ac

voltage source and connected in series to power transmission lines in a power system

[1]. The main function of SSSC is to compensate for the voltage drop across the

impedance in a transmission line. An SSSC injects a voltage in series with the line

transmission voltage which is always kept in quadrature with the line current so that

the SSSC can exchange only reactive power with the system. The injected voltage

emulates an inductive or a capacitive reactance so as to influence the power flow in

 5

the transmission lines.

The SSSC is generally connected in series with the transmission lines. It is

operated without an external electrical energy source as a series compensator whose

output voltage is in quadrature with, and controllable independently of, the line

current with the purpose of increasing or decreasing the overall reactive voltage drop

across the line and thereby controlling the transmitted electric power.

Figure 1: Basic diagram of Static Synchronous Series Compensator

2.2.2 Interline Power Flow Controller (IPFC)

IPFC is a combination of two or more SSSCs which are coupled via a

common dc link to facilitate bi-directional flow of real power between the ac

terminals of the SSSCs, and are controlled to provide independent reactive

compensation for the adjustment of real power flow in each line and maintain the

desired distribution of reactive power flow among the lines [1].

 6

2.2.3 Unified Power Flow Controller (UPFC)

UPFC is a combination of static synchronous compensator (STATCOM) and

an SSSC which are coupled via a common dc link, to allow bi-directional flow of

real power between the series output terminals of the SSSC and the shunt output

terminals of the STATCOM. Both the devices are controlled together to provide

concurrent real and reactive series line compensation without an external electrical

energy source. The UPFC, by means of angularly unconstrained series voltage

injection, is able to control, concurrently or selectively, the transmission line voltage,

impedance and angle, or alternatively, the real and reactive power flow in the line

[1].

2.3 Voltage-source Converter

 Converter-based FACTS controllers have two principle types of converters

which are voltage-source converters and current-source converters. From, overall

cost and performance point of view, the voltage-source controllers are preferred for

converter-based FACTS controllers. Basically, a voltage-source converter (VSC)

generates ac voltage from a dc voltage. The magnitude, the phase angle, and the

frequency of the output voltage are controlled by using this converter. The three

VSC-based controllers above share similar power system control capabilities. They

are able to regulate either nodal voltage magnitude or injection of reactive power at

one of its terminals, and active power flow through the controller [1] .

2.4 Power Flow Studies

Power flow studies deal with the steady-state analysis of an interconnected

power system during normal operation. The system is assumed to be operating under

balanced condition and is represented by a single-phase network. Power flow is a

function of transmission line impedance, the magnitude of the sending end and

 7

receiving end voltages and the phase angle between the voltages [3] [4]. By

controlling one or a combination of the power flow arrangements, it is possible to

control the active and the reactive power flow in the transmission line.

2.5 Static Synchronous Series Compensator

 As discussed earlier, the primary function of SSSC is to control the power

flow in the transmission line. SSSC is used to control the following parameters:

a) The active power flow of the transmission line

b) The reactive power flow of the transmission line

c) The bus voltage, and

d) The impedance of the transmission line [5].

 Figure 2: SSSC Operation principles

An SSSC usually consists of a coupling transformer, an inverter and a

capacitor. As shown in Figure 2, the SSSC is series connected with a transmission

line through the coupling transformer. It is assumed here that the transmission line is

series connected with the SSSC via its bus j. The active and reactive power flows of

the SSSC branch i-j entering the bus j are equal to the sending end active and

reactive power flows of the transmission line, respectively. In principle, the SSSC

generates and inserts a series voltage, which is regulated to change the impedance

 8

(more precisely reactance) of the transmission line. In this way, the power flow of

the transmission line or the voltage of the bus, in which the SSSC is connected with,

is controlled [4].

 Figure 3: SSSC equivalent circuit

 An equivalent circuit of the SSSC as shown in Figure 3 is derived based on

the operation principle of the SSSC. In the equivalent circuit, the SSSC is

represented by a voltage source, seV in series with a transformer’s impedance. In the

practical operation of the SSSC, seV can be regulated to control the power flow of

line i-j or voltage of bus i or j. In the equivalent circuit, ,, iiisesese VVVV  

and jjj VV  .

2.6 Method of Solving an Optimization Problem

 In order to find the optimal sizing of the SSSC controller, this subject is

formed as an optimization problem with the objective of minimizing the transmission

line losses in a network. The problem is solved by using different methods such as

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) techniques which

are widely used in many engineering applications.

 9

2.6.1 Genetic Algorithm (GA)

A genetic algorithm (GA) is a search technique used in computing to find

exact or approximate solutions to optimization and search problems. Genetic

algorithms use techniques inspired by evolutionary biology such as inheritance,

mutation, selection, and crossover to form a solution to a problem.

 To use a genetic algorithm, the solution to a particular problem must be

represented as a genome (or chromosome). GA then creates a population of solutions

and applies genetic operators such as mutation and crossover to evolve the solutions

in order to find the best one(s).There are six important aspects to be determined when

using GA:

1. chromosome (individual) presentation,

2. evaluation of objective function (fitness),

3. creation of the initial population,

4. choice of genetic operators,

5. selection function, and

6. stop criterion

Once these six aspects have been determined, the generic genetic algorithm

should work properly [6] [7].

2.6.2 Particle Swarm Optimization Technique

Particle swarm optimization (PSO) is an algorithm modelled on the swarm

intelligence that finds a solution to an optimization problem in a search space, or

model. This technique which was inspired by social behaviour of bird flocking or

fish schooling is not only used for an optimization problem, but also to predict or

model social behaviour based on principles of social psychology [7].

http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Approximation
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Problem
http://en.wikipedia.org/wiki/Evolutionary_biology
http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Mutation_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Selection_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Search_space

 10

 PSO method is used to find an optimal solution to an objective function

(fitness function) in a search space. The system is initialized with a population of

random solutions (particles) and then searches the optimal solution by updating

generations. The particles change their position with time or fly through the search

space by following the current optimum particles. During flight, each particle adjusts

its position according to its own experience, and according to the experience of a

neighbouring particle, making use of the best position encountered by itself and its

neighbour.

 In PSO, there are different types of fitness to describe the best solution to a

problem:

a. pbest - the best solution (fitness) a particle has achieved so far.

b. gbest - the best value that is tracked by the particle swarm optimizer, obtained

so far by any particle in the population.

c. lbest – the best value when a particle takes part of the population as its

topological neighbours.

2.7 Transmission Line Loss

 Consider a line connecting two buses i and j, the line current at bus i which is

positive and measured in the direction of i to j is

 jiijij VVYI  (a)

The line current at bus j, measured in the direction of j to i is,

  ijijji VVYI  (b)

The active powers from bus i to j and from bus j to i are

 ijiij IVP  (c)

jijji IVP  (d)

http://en.wikipedia.org/wiki/Fitness_function

 11

The power loss in line i-j is the algebraic sum of the active power flows in (c) and

(d),

jiijLij PPP  (e)

 12

CHAPTER 3

METHODOLOGY

There are some procedures to be followed in order to carry out and

implement this project. This is to ensure that the project is accomplished within the

given timeframe.

3.1 Procedure Identification

Information gathering and research

Analysis and calculation of power flow studies

Implementation of SSSC to power flow model

Identify method to solve optimization problem

 Design programming

Design testing

 Figure 4: Flow chart of project procedures

 13

3.1.1 Information Gathering and Research

At this stage, information and data included are the study of optimized power

flow, operation principles of SSSC, SSSC controller, PSO technique and

implementation methods.

3.1.2 Analysis and Calculation of Power Flow Studies

The important parameters of the power flow to be controlled are to be

identified and analyzed. Power flow studies and analysis are performed by using the

Newton-Raphson method to solve the power flow problems. It is observed from

many power system problems that the Newton-Raphson method is used in the power

flow problem since it is found to be more efficient and practical for large power

systems. This method is reported to be a most widely used and accurate method for

solving simultaneous nonlinear algebraic equations.

3.1.2.1 Power Flow Equations by using Newton-Raphson Method

The admittance matrix in a power system relates to current injections at a bus

to the bus voltages. The equation describing the performance of the network in

the bus admittance form is given by

 I = YV (1)

where I = the bus current vector

V = the bus voltage vector

Y = the bus admittance matrix

 14

The expanded form of the equations is:



















N

2

1

I

I

I


=



















NNN2N1

2N2221

1N1211

YYY

YYY

YYY



























N

2

1

V

V

V


 (2)

Considering a power system with two buses k and m, the complex power at bus k is

*

kkkkk IVjQPS  (3)

By rearranging the equation, the current injection at bus k is expressed as

*

k

kk

k
V

jQP
I


 (4)

Now, the current at bus k is written as

 



n

m

mkmk VYI
1

 (5)

Expressing the equation (5) in polar form,





n

m

mkmmkmk VYI
1

 (6)

The complex power at bus k is

kkkk IVjQP * (7)

Substituting kI of equation (6) into equation (7),





n

m

kkmmkmkkkk VYVjQP
1

 (8)

Separating the real and imaginary parts,

  



n

m

mkkmkmmkk YVVP
1

cos  (9)

 15

  



n

m

mkkmkmmkk YVVQ
1

sin  (10)

Equations (9) and (10) for real and reactive powers, respectively constitute a set of

nonlinear algebraic equations in terms of independent variables, voltage magnitude

in per unit, and phase angle in radians. Both of the equations are linearized on

compact form by Taylor’s first order approximation results in

 



























































V

V

QQ

V

PP

Q

P 




 (11)

To bring symmetry in the elements of the coefficient matrix,
V

V
 is taken as

problem variable in place of V . Then, equation (11) changes to




































































V

V

V
V

QQ

V
V

PP

Q

P





 (12)

In symbolic form, the equation (12) is written as











































V

V
LM

NH

Q

P


 (13)

The matrix 








LM

NH
 is known as Jacobian matrix.

The diagonal and off-diagonal elements of H are

 







km

mkkmkmmk

k

k YVV
P




sin (14)

 mkkmkmmk

m

k YVV
P








sin j ≠ 1 (15)

 16

The diagonal and off-diagonal elements of N are

    







km

mkkmkmmkkkkk

k

k YVYV
V

P
 sincos2 (16)

  mkkmkmk

m

k YV
V

P
 




cos j ≠ 1 (17)

The diagonal and off-diagonal elements of M are

  







km

mkkmkmmk

k

k YVV
Q




cos (18)

  mkkmkmmk

m

k YVV
Q








cos j ≠ 1 (19)

The diagonal and off-diagonal elements of L are

    







km

mkkmkmmkkkkk

k

k YVYV
V

Q
 sinsin2 (20)

  mkkmkmk

m

k YV
V

Q
 




sin j ≠ 1 (21)

The solution procedures for Newton Raphson method of power flow analysis are as

follows:

1. Read the line data and bus data of the power network; construct the bus

admittance matrix.

2. Set k = 0. Assume a starting solution. Usually a flat start is assumed in

which all the unknown phase angles are taken as zero and the

unknown voltage magnitudes are taken as 1.0 p.u.

3. Compute the mismatch powers i.e. the error vector. If the elements of

error vector are less than the specified tolerance, the problem is solved

and hence go to Step 7; otherwise proceed to Step 4.

4. Compute the elements of sub-matrices H, N, M and L. Solve

 17











































V

V
LM

NH

Q

P

KK



 for





















V

V



 (22)

5. Update the solution as

V

δ
 =

V

δ
 +

VΔ

Δδ
 (23)

6. Set k = k + 1 and go to Step 3.

7. Calculate line flows, transmission line loss and slack bus power.

3.1.3 Implementation of SSSC to Power Flow Model

The method of using SSSC is implemented into a load flow model that is

used to calculate the power losses and check the system operating constraints such as

voltage profile. The model is to be modified to consider the insertion of SSSC

devices into the network.

3.1.4 Identify Method to Solve Optimization Problem

The sizing of SSSC controllers in transmission network is formed as an

optimization problem and is solved by using the identified optimization technique.

After revising two types of evolutionary optimization techniques, GA and PSO that

are widely used in power system applications, the PSO technique is chosen by

considering its advantages over GA technique. The similarities between PSO and GA

are that both algorithms are using population-based search approaches and depend on

information sharing among their population members to enhance their search

processes.

 However, PSO does not have genetic operators like GA such as mutation and

crossover. The particles in PSO update themselves with the internal velocity. They

k+1
k

 18

also have memory, which is important to the algorithm. In terms of information

sharing mechanism, in GAs, chromosomes share information with each other making

the whole population moves like one group towards optimal area. In PSO, only gbest

or lbest gives out the information to others making the particles only looks for the

best solution. Compared with GA, all the particles tend to converge to the best

solution quickly in most cases, resulting in global optimal solution [8] [9].

 Also, PSO is more computationally efficient in a sense that the coding

is less complicated than the GA since it contains less function evaluations than the

GA.

 The PSO algorithm used follows the following procedure in solving the

optimization problem defined in this project.

 Figure 5: Flow chart of PSO algorithm

 19

Based on Figure 5, the PSO algorithm is performed by following the procedures

as follows:

1. Set the parameters of PSO such as the swarm size and number of iteration.

2. Generate the initial population with random solutions.

3. Find fitness solution of each particle based on pbest, lbest and gbest.

4. Run the power flow model and determine the power loss of the system.

5. Perform the position check. If the power loss is minimized, the final position

is the optimal parameters of SSSC. If the power loss is not minimized, update

the particle position and go back to step 3 until the power loss is minimized.

For this optimization problem, the number of particles used is 20 and number of

iterations is 50. The objective function for this problem is





n

i

LPMinF
1

where n is the number of buses.

The parameters constraints set for the problem are as follows:





900

15.00

se

se puV



3.1.5 Design and programming

 The programming and source code are to be developed in C language into its

designed system according to the proposed methods.

3.1.6 Design Testing

The controller is to be tested by using the identified parameters to verify the

validity of the design. The test includes the determination of the optimal parameters

of magnitude and phase angle of the voltage injection of the SSSC into the network

 20

and also the verification for the objectives of the project which are to improve the

voltage profile and minimize the transmission line loss of the network.

3.2 Tools Required

The software tool that is used in this project is MATLAB software version

7.1 to model the power flow and the determination of the optimal parameters of

SSSC controller. C programming is used to develop the optimization problem

solution’s coding in the M-file of MATLAB.

 21

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Implementation of SSSC to Power Flow Model

Considering the insertion of an SSSC into the power system network, the

existing load flow model needs to be modified to include the newly added parameters

of SSSC. Referring to Figure 3 in Section 2.5, the voltage source equivalent of SSSC

is represented by

  sesesesesese VjVV   sincos (24)

Based on the equivalent circuit of Figure 3, the following bus admittance matrix is

constructed:







































se

j

i

sesese

sesese

j

i

V

V

V

YYY

YYY

I

I
 (25)

The bus admittance matrix (25) is used to derive the mathematical model of the

SSSC for inclusion in the power flow Newton Raphson method.

Based on the equivalent circuit and the bus admittance matrix, the complex power at

bus i is written as

   jijseiiiiiiiii VYVYVYVIVS (26)

From equations (4) until (8), correct substitutions are performed until the following

expressions for active and reactive powers are obtained for node i,

 22

    

    seiijseiijsei

jin

niinniinnii

BGVV

BGVVP







 


sincos

sincos
, (27)

    

    seiijseiijsei

niinniin

jin

nii

BGVV

BGVVQ







 


cossin

cossin
, (28)

An identical set of active and reactive power equations are obtained for node j, where

the letter i and j are interchanged.

 Referring to equations (11) and (12), the power equations are linearized giving the

Jacobian matrix,



















































































































































































































































































se

se

se

j

j

i

i

j

i

se

se

ij

se

ij

j

j

ij

i

i

ij

j

ij

i

ij

se

se

ij

se

ij

j

j

ij

i

i

ij

j

ij

i

ij

se

se

j

se

j

j

j

j

i

i

j

j

j

i

j

se

se

i

se

i
j

j

i
i

i

i

j

i

i

i

se

se

j

se

j

j

j

j

i

i

j

j

j

i

j

se

se

i

se

i
j

j

i
i

i

i

j

i

i

i

ij

ij

j

i

j

i

V

V

V

V

V

V

V
V

QQ
V

V

Q
V

V

QQQ

V
V

PP
V

V

P
V

V

PPP

V
V

QQ
V

V

Q
V

V

QQQ

V
V

QQ
V

V

Q
V

V

QQQ

V
V

PP
V

V

P
V

V

PPP

V
V

PP
V

V

P
V

V

PPP

Q

P

Q

Q

P

P



















 (29)

From equation (29), the diagonal and off-diagonal elements of the Jacobian matrix

are derived based on the power equations of each bus.

Following the solution procedures of Newton-Raphson method for power flow

analysis in Section 3.1.2.1, the power mismatch equations at node i and k are

computed as follows:

   

   calc

ji

sp

jiji

calc

ji

sp

jiji

QQQ

PPP

,,,

,,,




 (30)

 23

Note:

 spjiP,
and  spjiQ ,

 are the specified active and reactive powers while  calc

jiP ,
 and

 calc

jiQ , are the calculated active and reactive powers.

After solving for the
















V

V


, the voltage magnitude and phase angle are updated

using the following matrix expression,








































seji

seji

seji

seji

k
seji

seji

k
seji

seji

V
V

V
VV ,,

,,

,,

,,

,,

,,

1
,,

,,




 (31)

Then, the procedures are implemented to calculate the line flows, transmission line

loss and the bus powers.

 24

4.2 Results

The coding of MATLAB for the Newton-Raphson method and the modified Newton-

Raphson method are tested on the IEEE 14-bus benchmark test system and the

following results are yielded.

 Table 1: The system transmission line loss

Condition Without SSSC With SSSC

Power Loss (MW) 13.503 9.018

 Table 2: Comparison of the voltage profiles without SSSC and with SSSC

Bus Number Voltage (p.u.)

Without SSSC With SSSC

1 1.06 1.06

2 1.045 1.05

3 1.01 1.0222

4 1.019 1.0306

5 1.02 1.03

6 1.07 1.0731

7 1.062 1.0639

8 1.09 1.09

9 1.056 1.0536

10 1.051 1.0606

11 1.057 1.06

12 1.055 1.0598

13 1.050 1.06

14 1.036 1.0383

 25

 Figure 6: Voltage profile of the 14-bus system without SSSC

 Figure 7: Voltage profile of the 14-bus system with SSSC

 26

 Table 3: The control parameters of SSSC

Condition Before iteration After iteration

seV (p.u.) 0.10 0.15

se (Degree) 90 88

4.3 Discussion

 From the results obtained in Table 1, the transmission line loss of the IEEE

14-bus system before the insertion of SSSC is 13.503 MW. After the SSSC device is

inserted in series with the system, the transmission line loss is reduced to 9.018 MW.

This result shows that the effect of installing an SSSC controller in the power system

network, a large reduction in transmission line loss is obtained.

 The voltage profile graphs are constructed for both conditions when the SSSC

device is not connected and is connected in the power network. From the comparison

of the both Figures 5 and 6, the voltages are improved at certain buses after the SSSC

is connected to the system, hence improving the performance of the system.

 Next, the PSO technique is included in the power flow mathematical model

for when the SSSC is connected between the buses of IEEE 14-bus system. The PSO

method is set with 20 numbers of particles and 50 iterations. The SSSC parameters

limits considered for the voltage is from 0 to 0.15 p.u. and for the phase angle is from

0 to 90 degrees. After the iterating process by the PSO, the optimal parameters

obtained for the SSSC controller are 0.15 p.u. for voltage while 88 degrees for phase

angle. These values of the SSSC controller yield the optimum performance of the

system while minimizing the transmission line losses of the network.

 27

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

 SSSC controller has multiple attributes of what it can do in terms of

controlling the voltage, power flow, stability and so on. It can control power flow as

ordered, reduce reactive power flows allowing transmission lines to carry more

active power and increase utilization of lowest cost generation.

 This project is focused on optimal sizing of the SSSC controller using the

implementation of both theoretical and practical knowledge that have been defined in

this report. The power flow problem follows the Newton-Raphson method into its

solution and an optimization technique which is Particle Swarm Optimization

technique is required in determining the optimal parameters of the SSSC controller.

The Newton-Raphson power flow algorithm was modified to consider the insertion

of SSSC into the network.

The MATLAB software is used to model and simulate the transmission

system with and without SSSC whereby the effect of SSSC to reduce the

transmission line loss and improve the voltage profile, are observed. The Particle

Swarm Optimization technique used has determined the optimal magnitude and

phase angle of SSSC’s series injected voltage into the network to minimize the

transmission line loss in the network.

 28

5.2 Recommendation

 For future studies, two suggestions are SSSC controller to be applied and

tested on larger power systems to determine the optimal parameters of the SSSC

controller and optimal location in which the controller can be inserted and also, more

type of FACTS controller can be used on the same case study so that the

performance of each controller can be observed and compared.

 29

REFERENCES

[1] Hingorani, N. G. and Gyugyi, L., 2000, Understanding FACTS: Concepts and

Technology of Flexible AC Transmission Systems, New York, Wiley-Interscience

[2] Acha, E., Fuerte-Esquivel, C. R., Ambriz-Perez, H. and Angeles-Camacho, C.,

2004, FACTS: Modelling and Simulation in Power Networks, UK, John Wiley &

Sons

 [3] El-Zonkoly, A., 2008, “Optimal sizing of SSSC controllers to minimize

transmission loss and a novel model of SSSC to study transient response”,

http://www.sciencedirect.com

[4] Saadat, H., 2004, Power System Analysis, Singapore, McGraw Hill

[5] Zhang, X. P., 2003, “Advanced modelling of the multicontrol functional static

synchronous series compensator (SSSC) in Newton power flow”,

http://ieeexplore.ieee.org

[6] Baskaran, J. and Palanisamy, V., 2005, “Genetic algorithm applied to optimal

location of FACTS device in a power system network considering economic

saving cost”, http://www.acadjournal.com

[7] Hassan, R., Conahim, B. and de Weck, O., 2004, “A Comparison of Particle

Swarm Optimization and The Genetic Algorithm”, American Institute of

Aeronautics and Astronautics

[8] Shayegi, H., Shayanfar, H. A. and Shojaei, A., 2008, “An improved PSO based

solution for the optimal power flow problems”, http://www.sciencedirect.com

[9] Vimal Raj, P., Senthikumar, S., Ravichandran, S., and Palanivelu, T. G., 2008,

“Optimization of distributed generation capacity for line loss reduction and

voltage profile improvement using PSO”, http://fke.utm.my/elektrika

 30

APPENDICES

 31

APPENDIX A

IEEE 14-bus System Data

 Table A.1: Bus data

*Bus Type: (1) swing bus, (2) generator bus (PV bus), and (3) load bus (PQ bus)

 32

APPENDIX A

IEEE 14-bus System Data

 Table A.2: Line data

 33

APPENDIX A

IEEE 14-bus System Data

 Figure A.1: IEEE 14-bus system diagram

 34

APPENDIX B

Newton-Raphson Method for Power Flow Model Matlab Code

ns=0; ng=0; Vm=0; delta=0; yload=0; deltad=0;

nbus = length(busdata(:,1));

kb=[];Vm=[]; delta=[]; Pd=[]; Qd=[]; Pg=[]; Qg=[]; Qmin=[]; Qmax=[];

Pk=[]; P=[]; Qk=[]; Q=[]; S=[]; V=[];

for k=1:nbus

n=busdata(k,1);

kb(n)=busdata(k,2); Vm(n)=busdata(k,3); delta(n)=busdata(k, 4);

Pd(n)=busdata(k,5); Qd(n)=busdata(k,6); Pg(n)=busdata(k,7); Qg(n) = busdata(k,8);

Qmin(n)=busdata(k, 9); Qmax(n)=busdata(k, 10);

Qsh(n)=busdata(k, 11);

 if Vm(n) <= 0 Vm(n) = 1.0; V(n) = 1 + j*0;

 else delta(n) = pi/180*delta(n);

 V(n) = Vm(n)*(cos(delta(n)) + j*sin(delta(n)));

 P(n)=(Pg(n)-Pd(n))/basemva;

 Q(n)=(Qg(n)-Qd(n)+ Qsh(n))/basemva;

 S(n) = P(n) + j*Q(n);

 end

end

for k=1:nbus

if kb(k) == 1, ns = ns+1; else, end

if kb(k) == 2 ng = ng+1; else, end

ngs(k) = ng;

nss(k) = ns;

end

Ym=abs(Ybus); t = angle(Ybus);

m=2*nbus-ng-2*ns;

maxerror = 1; converge=1;

iter = 0;

mline=ones(nbr,1);

for k=1:nbr

 for m=k+1:nbr

 if((nl(k)==nl(m)) & (nr(k)==nr(m)));

 mline(m)=2;

 elseif ((nl(k)==nr(m)) & (nr(k)==nl(m)));

 mline(m)=2;

 else, end

 end

 end

% Start of iterations

clear A DC J DX

while maxerror >= accuracy & iter <= maxiter % Test for max. power mismatch

for ii=1:m

for k=1:m

 A(ii,k)=0; %Initializing Jacobian matrix

end, end

iter = iter+1;

for n=1:nbus

nn=n-nss(n);

lm=nbus+n-ngs(n)-nss(n)-ns;

J11=0; J22=0; J33=0; J44=0;

 for ii=1:nbr

 if mline(ii)==1

 if nl(ii) == n | nr(ii) == n

 if nl(ii) == n , l = nr(ii); end

 if nr(ii) == n , l = nl(ii); end

 J11=J11+ Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));

 J33=J33+ Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));

 if kb(n)~=1

 J22=J22+ Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));

 J44=J44+ Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));

 35

 else, end

 if kb(n) ~= 1 & kb(l) ~=1

 lk = nbus+l-ngs(l)-nss(l)-ns;

 ll = l -nss(l);

 % off diagonalelements of J1

 A(nn, ll) =-Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));

 if kb(l) == 0 % off diagonal elements of J2

 A(nn, lk) =Vm(n)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));end

 if kb(n) == 0 % off diagonal elements of J3

 A(lm, ll) =-Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n)+delta(l));

end

 if kb(n) == 0 & kb(l) == 0 % off diagonal elements of J4

 A(lm, lk) =-Vm(n)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));end

 else end

 else , end

 else, end

 end

 Pk = Vm(n)^2*Ym(n,n)*cos(t(n,n))+J33;

 Qk = -Vm(n)^2*Ym(n,n)*sin(t(n,n))-J11;

 if kb(n) == 1 P(n)=Pk; Q(n) = Qk; end % Swing bus P

 if kb(n) == 2 Q(n)=Qk;

 if Qmax(n) ~= 0

 Qgc = Q(n)*basemva + Qd(n) - Qsh(n);

 if iter <= 7 % Between the 2th & 6th iterations

 if iter > 2 % the Mvar of generator buses are

 if Qgc < Qmin(n), % tested. If not within limits Vm(n)

 Vm(n) = Vm(n) + 0.01; % is changed in steps of 0.01 pu to

 elseif Qgc > Qmax(n), % bring the generator Mvar within

 Vm(n) = Vm(n) - 0.01;end % the specified limits.

 else, end

 else,end

 else,end

 end

 if kb(n) ~= 1

 A(nn,nn) = J11; %diagonal elements of J1

 DC(nn) = P(n)-Pk;

 end

 if kb(n) == 0

 A(nn,lm) = 2*Vm(n)*Ym(n,n)*cos(t(n,n))+J22; %diagonal elements of J2

 A(lm,nn)= J33; %diagonal elements of J3

 A(lm,lm) =-2*Vm(n)*Ym(n,n)*sin(t(n,n))-J44; %diagonal of elements of J4

 DC(lm) = Q(n)-Qk;

 end

end

DX=A\DC';

for n=1:nbus

 nn=n-nss(n);

 lm=nbus+n-ngs(n)-nss(n)-ns;

 if kb(n) ~= 1

 delta(n) = delta(n)+DX(nn); end

 if kb(n) == 0

 Vm(n)=Vm(n)+DX(lm); end

 end

 maxerror=max(abs(DC));

 if iter == maxiter & maxerror > accuracy

 fprintf('\nWARNING: Iterative solution did not converged after ')

 fprintf('%g', iter), fprintf(' iterations.\n\n')

 fprintf('Press Enter to terminate the iterations and print the results \n')

 converge = 0; pause, else, end

end

if converge ~= 1

 tech= (' ITERATIVE SOLUTION DID NOT CONVERGE'); else,

 tech=(' Power Flow Solution by Newton-Raphson Method');

end

V = Vm.*cos(delta)+j*Vm.*sin(delta);

deltad=180/pi*delta;

i=sqrt(-1);

k=0;

for n = 1:nbus

 if kb(n) == 1

 k=k+1;

 S(n)= P(n)+j*Q(n);

 36

 Pg(n) = P(n)*basemva + Pd(n);

 Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n);

 Pgg(k)=Pg(n);

 Qgg(k)=Qg(n);

 elseif kb(n) ==2

 k=k+1;

 S(n)=P(n)+j*Q(n);

 Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n);

 Pgg(k)=Pg(n);

 Qgg(k)=Qg(n);

 end

yload(n) = (Pd(n)- j*Qd(n)+j*Qsh(n))/(basemva*Vm(n)^2);

end

busdata(:,3)=Vm'; busdata(:,4)=deltad';

Pgt = sum(Pg); Qgt = sum(Qg); Pdt = sum(Pd); Qdt = sum(Qd); Qsht = sum(Qsh);

%clear A DC DX J11 J22 J33 J44 Qk delta lk ll lm

%clear A DC DX J11 J22 J33 Qk delta lk ll lm

 37

APPENDIX C

PSO Algorithm Matlab Code

% pso_Trelea_vectorized.m

% a generic particle swarm optimizer

% to find the minimum or maximum of any

% MISO matlab function

%

% Implements Common, Trelea type 1 and 2, and Clerc's class 1". It will

% also automatically try to track to a changing environment (with varied

% success - BKB 3/18/05)

%

% This vectorized version removes the for loop associated with particle

% number. It also *requires* that the cost function have a single input

% that represents all dimensions of search (i.e., for a function that has 2

% inputs then make a wrapper that passes a matrix of ps x 2 as a single

% variable)

%

% Usage:

% [optOUT]=PSO(functname,D)

% or:

% [optOUT,tr,te]=...

% PSO(functname,D,mv,VarRange,minmax,PSOparams,plotfcn,PSOseedValue)

%

% Inputs:

% functname - string of matlab function to optimize

% D - # of inputs to the function (dimension of problem)

%

% Optional Inputs:

% mv - max particle velocity, either a scalar or a vector of length D

% (this allows each component to have it's own max velocity),

% default = 4, set if not input or input as NaN

%

% VarRange - matrix of ranges for each input variable,

% default -100 to 100, of form:

% [min1 max1

% min2 max2

% ...

% minD maxD]

%

% minmax = 0, funct minimized (default)

% = 1, funct maximized

% = 2, funct is targeted to P(12) (minimizes distance to errgoal)

% PSOparams - PSO parameters

% P(1) - Epochs between updating display, default = 100. if 0,

% no display

% P(2) - Maximum number of iterations (epochs) to train, default = 2000.

% P(3) - population size, default = 24

%

% P(4) - acceleration const 1 (local best influence), default = 2

% P(5) - acceleration const 2 (global best influence), default = 2

% P(6) - Initial inertia weight, default = 0.9

% P(7) - Final inertia weight, default = 0.4

% P(8) - Epoch when inertial weight at final value, default = 1500

% P(9)- minimum global error gradient,

% if abs(Gbest(i+1)-Gbest(i)) < gradient over

% certain length of epochs, terminate run, default = 1e-25

% P(10)- epochs before error gradient criterion terminates run,

% default = 150, if the SSE does not change over 250 epochs

% then exit

% P(11)- error goal, if NaN then unconstrained min or max, default=NaN

% P(12)- type flag (which kind of PSO to use)

% 0 = Common PSO w/intertia (default)

% 1,2 = Trelea types 1,2

% 3 = Clerc's Constricted PSO, Type 1"

 38

% P(13)- PSOseed, default=0

% = 0 for initial positions all random

% = 1 for initial particles as user input

%

% plotfcn - optional name of plotting function, default 'goplotpso',

% make your own and put here

%

% PSOseedValue - initial particle position, depends on P(13), must be

% set if P(13) is 1 or 2, not used for P(13)=0, needs to

% be nXm where n<=ps, and m<=D

% If n<ps and/or m<D then remaining values are set random

% on Varrange

% Outputs:

% optOUT - optimal inputs and associated min/max output of function, of form:

% [bestin1

% bestin2

% ...

% bestinD

% bestOUT]

%

% Optional Outputs:

% tr - Gbest at every iteration, traces flight of swarm

% te - epochs to train, returned as a vector 1:endepoch

%

% Example: out=pso_Trelea_vectorized('f6',2)

% Brian Birge

% Rev 3.3

% 2/18/06

function [OUT,varargout]=pso_Trelea_vectorized(functname,D,varargin)

rand('state',sum(100*clock));

if nargin < 2

 error('Not enough arguments.');

end

% PSO PARAMETERS

if nargin == 2 % only specified functname and D

 VRmin=ones(D,1)*-100;

 VRmax=ones(D,1)*100;

 VR=[VRmin,VRmax];

 minmax = 0;

 P = [];

 mv = 4;

 plotfcn='goplotpso';

elseif nargin == 3 % specified functname, D, and mv

 VRmin=ones(D,1)*-100;

 VRmax=ones(D,1)*100;

 VR=[VRmin,VRmax];

 minmax = 0;

 mv=varargin{1};

 if isnan(mv)

 mv=4;

 end

 P = [];

 plotfcn='goplotpso';

elseif nargin == 4 % specified functname, D, mv, Varrange

 mv=varargin{1};

 if isnan(mv)

 mv=4;

 end

 VR=varargin{2};

 minmax = 0;

 P = [];

 plotfcn='goplotpso';

elseif nargin == 5 % Functname, D, mv, Varrange, and minmax

 mv=varargin{1};

 if isnan(mv)

 mv=4;

 end

 VR=varargin{2};

 minmax=varargin{3};

 P = [];

 39

 plotfcn='goplotpso';

elseif nargin == 6 % Functname, D, mv, Varrange, minmax, and psoparams

 mv=varargin{1};

 if isnan(mv)

 mv=4;

 end

 VR=varargin{2};

 minmax=varargin{3};

 P = varargin{4}; % psoparams

 plotfcn='goplotpso';

elseif nargin == 7 % Functname, D, mv, Varrange, minmax, and psoparams, plotfcn

 mv=varargin{1};

 if isnan(mv)

 mv=4;

 end

 VR=varargin{2};

 minmax=varargin{3};

 P = varargin{4}; % psoparams

 plotfcn = varargin{5};

elseif nargin == 8 % Functname, D, mv, Varrange, minmax, and psoparams, plotfcn,

PSOseedValue

 mv=varargin{1};

 if isnan(mv)

 mv=4;

 end

 VR=varargin{2};

 minmax=varargin{3};

 P = varargin{4}; % psoparams

 plotfcn = varargin{5};

 PSOseedValue = varargin{6};

else

 error('Wrong # of input arguments.');

end

% sets up default pso params

Pdef = [100 2000 24 2 2 0.9 0.4 1500 1e-25 250 NaN 0 0];

Plen = length(P);

P = [P,Pdef(Plen+1:end)];

df = P(1);

me = P(2);

ps = P(3);

ac1 = P(4);

ac2 = P(5);

iw1 = P(6);

iw2 = P(7);

iwe = P(8);

ergrd = P(9);

ergrdep = P(10);

errgoal = P(11);

trelea = P(12);

PSOseed = P(13);

% used with trainpso, for neural net training

if strcmp(functname,'pso_neteval')

 net = evalin('caller','net');

 Pd = evalin('caller','Pd');

 Tl = evalin('caller','Tl');

 Ai = evalin('caller','Ai');

 Q = evalin('caller','Q');

 TS = evalin('caller','TS');

end

% error checking

 if ((minmax==2) & isnan(errgoal))

 error('minmax= 2, errgoal= NaN: choose an error goal or set minmax to 0 or 1');

 end

 if ((PSOseed==1) & ~exist('PSOseedValue'))

 error('PSOseed flag set but no PSOseedValue was input');

 end

 if exist('PSOseedValue')

 40

 tmpsz=size(PSOseedValue);

 if D < tmpsz(2)

 error('PSOseedValue column size must be D or less');

 end

 if ps < tmpsz(1)

 error('PSOseedValue row length must be # of particles or less');

 end

 end

% set plotting flag

if (P(1))~=0

 plotflg=1;

else

 plotflg=0;

end

% preallocate variables for speed up

 tr = ones(1,me)*NaN;

% take care of setting max velocity and position params here

if length(mv)==1

 velmaskmin = -mv*ones(ps,D); % min vel, psXD matrix

 velmaskmax = mv*ones(ps,D); % max vel

elseif length(mv)==D

 velmaskmin = repmat(forcerow(-mv),ps,1); % min vel

 velmaskmax = repmat(forcerow(mv),ps,1); % max vel

else

 error('Max vel must be either a scalar or same length as prob dimension D');

end

posmaskmin = repmat(VR(1:D,1)',ps,1); % min pos, psXD matrix

posmaskmax = repmat(VR(1:D,2)',ps,1); % max pos

posmaskmeth = 3; % 3=bounce method (see comments below inside epoch loop)

% PLOTTING

 message = sprintf('PSO: %%g/%g iterations, GBest = %%20.20g.\n',me);

% INITIALIZE INITIALIZE INITIALIZE INITIALIZE INITIALIZE INITIALIZE

% initialize population of particles and their velocities at time zero,

% format of pos= (particle#, dimension)

 % construct random population positions bounded by VR

 pos(1:ps,1:D) = normmat(rand([ps,D]),VR',1);

 if PSOseed == 1 % initial positions user input, see comments above

 tmpsz = size(PSOseedValue);

 pos(1:tmpsz(1),1:tmpsz(2)) = PSOseedValue;

 end

 % construct initial random velocities between -mv,mv

 vel(1:ps,1:D) = normmat(rand([ps,D]),...

 [forcecol(-mv),forcecol(mv)]',1);

% initial pbest positions vals

 pbest = pos;

% VECTORIZE THIS, or at least vectorize cost funct call

 out = feval(functname,pos); % returns column of cost values (1 for each particle)

%---------------------------

 pbestval=out; % initially, pbest is same as pos

% assign initial gbest here also (gbest and gbestval)

 if minmax==1

 % this picks gbestval when we want to maximize the function

 [gbestval,idx1] = max(pbestval);

 elseif minmax==0

 % this works for straight minimization

 [gbestval,idx1] = min(pbestval);

 elseif minmax==2

 % this works when you know target but not direction you need to go

 % good for a cost function that returns distance to target that can be either

 % negative or positive (direction info)

 [temp,idx1] = min((pbestval-ones(size(pbestval))*errgoal).^2);

 gbestval = pbestval(idx1);

 41

 end

 % preallocate a variable to keep track of gbest for all iters

 bestpos = zeros(me,D+1)*NaN;

 gbest = pbest(idx1,:); % this is gbest position

 % used with trainpso, for neural net training

 % assign gbest to net at each iteration, these interim assignments

 % are for plotting mostly

 if strcmp(functname,'pso_neteval')

 net=setx(net,gbest);

 end

 %tr(1) = gbestval; % save for output

 bestpos(1,1:D) = gbest;

% this part used for implementing Carlisle and Dozier's APSO idea

% slightly modified, this tracks the global best as the sentry whereas

% their's chooses a different point to act as sentry

% see "Tracking Changing Extremea with Adaptive Particle Swarm Optimizer",

% part of the WAC 2002 Proceedings, June 9-13, http://wacong.com

 sentryval = gbestval;

 sentry = gbest;

if (trelea == 3)

% calculate Clerc's constriction coefficient chi to use in his form

 kappa = 1; % standard val = 1, change for more or less constriction

 if ((ac1+ac2) <=4)

 chi = kappa;

 else

 psi = ac1 + ac2;

 chi_den = abs(2-psi-sqrt(psi^2 - 4*psi));

 chi_num = 2*kappa;

 chi = chi_num/chi_den;

 end

end

% INITIALIZE END INITIALIZE END INITIALIZE END INITIALIZE END

rstflg = 0; % for dynamic environment checking

% start PSO iterative procedures

 cnt = 0; % counter used for updating display according to df in the options

 cnt2 = 0; % counter used for the stopping subroutine based on error convergence

 iwt(1) = iw1;

for i=1:me % start epoch loop (iterations)

 out = feval(functname,[pos;gbest]);

 outbestval = out(end,:);

 out = out(1:end-1,:);

 tr(i+1) = gbestval; % keep track of global best val

 te = i; % returns epoch number to calling program when done

 bestpos(i,1:D+1) = [gbest,gbestval];

 %assignin('base','bestpos',bestpos(i,1:D+1));

 %--

 % this section does the plots during iterations

 if plotflg==1

 if (rem(i,df) == 0) | (i==me) | (i==1)

 fprintf(message,i,gbestval);

 cnt = cnt+1; % count how many times we display (useful for movies)

 eval(plotfcn); % defined at top of script

 end % end update display every df if statement

 end % end plotflg if statement

 % check for an error space that changes wrt time/iter

 % threshold value that determines dynamic environment

 % sees if the value of gbest changes more than some threshold value

 % for the same location

 chkdyn = 1;

 rstflg = 0; % for dynamic environment checking

 if chkdyn==1

 threshld = 0.05; % percent current best is allowed to change, .05 = 5% etc

 42

 letiter = 5; % # of iterations before checking environment, leave at least 3 so

PSO has time to converge

 outorng = abs(1- (outbestval/gbestval)) >= threshld;

 samepos = (max(sentry == gbest));

 if (outorng & samepos) & rem(i,letiter)==0

 rstflg=1;

 % disp('New Environment: reset pbest, gbest, and vel');

 %% reset pbest and pbestval if warranted

% outpbestval = feval(functname,[pbest]);

% Poutorng = abs(1-(outpbestval./pbestval)) > threshld;

% pbestval = pbestval.*~Poutorng + outpbestval.*Poutorng;

% pbest = pbest.*repmat(~Poutorng,1,D) + pos.*repmat(Poutorng,1,D);

 pbest = pos; % reset personal bests to current positions

 pbestval = out;

 vel = vel*10; % agitate particles a little (or a lot)

 % recalculate best vals

 if minmax == 1

 [gbestval,idx1] = max(pbestval);

 elseif minmax==0

 [gbestval,idx1] = min(pbestval);

 elseif minmax==2 % this section needs work

 [temp,idx1] = min((pbestval-ones(size(pbestval))*errgoal).^2);

 gbestval = pbestval(idx1);

 end

 gbest = pbest(idx1,:);

 % used with trainpso, for neural net training

 % assign gbest to net at each iteration, these interim assignments

 % are for plotting mostly

 if strcmp(functname,'pso_neteval')

 net=setx(net,gbest);

 end

 end % end if outorng

 sentryval = gbestval;

 sentry = gbest;

 end % end if chkdyn

 % find particles where we have new pbest, depending on minmax choice

 % then find gbest and gbestval

 %[size(out),size(pbestval)]

 if rstflg == 0

 if minmax == 0

 [tempi] = find(pbestval>=out); % new min pbestvals

 pbestval(tempi,1) = out(tempi); % update pbestvals

 pbest(tempi,:) = pos(tempi,:); % update pbest positions

 [iterbestval,idx1] = min(pbestval);

 if gbestval >= iterbestval

 gbestval = iterbestval;

 gbest = pbest(idx1,:);

 % used with trainpso, for neural net training

 % assign gbest to net at each iteration, these interim assignments

 % are for plotting mostly

 if strcmp(functname,'pso_neteval')

 net=setx(net,gbest);

 end

 end

 elseif minmax == 1

 [tempi,dum] = find(pbestval<=out); % new max pbestvals

 pbestval(tempi,1) = out(tempi,1); % update pbestvals

 pbest(tempi,:) = pos(tempi,:); % update pbest positions

 [iterbestval,idx1] = max(pbestval);

 if gbestval <= iterbestval

 gbestval = iterbestval;

 gbest = pbest(idx1,:);

 % used with trainpso, for neural net training

 43

 % assign gbest to net at each iteration, these interim assignments

 % are for plotting mostly

 if strcmp(functname,'pso_neteval')

 net=setx(net,gbest);

 end

 end

 elseif minmax == 2 % this won't work as it is, fix it later

 egones = errgoal*ones(ps,1); % vector of errgoals

 sqrerr2 = ((pbestval-egones).^2);

 sqrerr1 = ((out-egones).^2);

 [tempi,dum] = find(sqerr1 <= sqrerr2); % find particles closest to targ

 pbestval(tempi,1) = out(tempi,1); % update pbestvals

 pbest(tempi,:) = pos(tempi,:); % update pbest positions

 sqrerr = ((pbestval-egones).^2); % need to do this to reflect new

pbests

 [temp,idx1] = min(sqrerr);

 iterbestval = pbestval(idx1);

 if (iterbestval-errgoal)^2 <= (gbestval-errgoal)^2

 gbestval = iterbestval;

 gbest = pbest(idx1,:);

 % used with trainpso, for neural net training

 % assign gbest to net at each iteration, these interim assignments

 % are for plotting mostly

 if strcmp(functname,'pso_neteval')

 net=setx(net,gbest);

 end

 end

 end

 end

 % % build a simple predictor 10th order, for gbest trajectory

 % if i>500

 % for dimcnt=1:D

 % pred_coef = polyfit(i-250:i,(bestpos(i-250:i,dimcnt))',20);

 % % pred_coef = polyfit(200:i,(bestpos(200:i,dimcnt))',20);

 % gbest_pred(i,dimcnt) = polyval(pred_coef,i+1);

 % end

 % else

% gbest_pred(i,:) = zeros(size(gbest));

% end

 %gbest_pred(i,:)=gbest;

 %assignin('base','gbest_pred',gbest_pred);

 % % convert to non-inertial frame

 % gbestoffset = gbest - gbest_pred(i,:);

 % gbest = gbest - gbestoffset;

 % pos = pos + repmat(gbestoffset,ps,1);

 % pbest = pbest + repmat(gbestoffset,ps,1);

 %PSO

 % get new velocities, positions (this is the heart of the PSO algorithm)

 % each epoch get new set of random numbers

 rannum1 = rand([ps,D]); % for Trelea and Clerc types

 rannum2 = rand([ps,D]);

 if trelea == 2

 % from Trelea's paper, parameter set 2

 vel = 0.729.*vel... % prev vel

 +1.494.*rannum1.*(pbest-pos)... % independent

 +1.494.*rannum2.*(repmat(gbest,ps,1)-pos); % social

 elseif trelea == 1

 % from Trelea's paper, parameter set 1

 vel = 0.600.*vel... % prev vel

 +1.700.*rannum1.*(pbest-pos)... % independent

 +1.700.*rannum2.*(repmat(gbest,ps,1)-pos); % social

 elseif trelea ==3

 % Clerc's Type 1" PSO

 vel = chi*(vel... % prev vel

 +ac1.*rannum1.*(pbest-pos)... % independent

 +ac2.*rannum2.*(repmat(gbest,ps,1)-pos)) ; % social

 44

 else

 % common PSO algo with inertia wt

 % get inertia weight, just a linear funct w.r.t. epoch parameter iwe

 if i<=iwe

 iwt(i) = ((iw2-iw1)/(iwe-1))*(i-1)+iw1;

 else

 iwt(i) = iw2;

 end

 % random number including acceleration constants

 ac11 = rannum1.*ac1; % for common PSO w/inertia

 ac22 = rannum2.*ac2;

 vel = iwt(i).*vel... % prev vel

 +ac11.*(pbest-pos)... % independent

 +ac22.*(repmat(gbest,ps,1)-pos); % social

 end

 % limit velocities here using masking

 vel = ((vel <= velmaskmin).*velmaskmin) + ((vel > velmaskmin).*vel);

 vel = ((vel >= velmaskmax).*velmaskmax) + ((vel < velmaskmax).*vel);

 % update new position (PSO algo)

 pos = pos + vel;

 % position masking, limits positions to desired search space

 % method: 0) no position limiting, 1) saturation at limit,

 % 2) wraparound at limit , 3) bounce off limit

 minposmask_throwaway = pos <= posmaskmin; % these are psXD matrices

 minposmask_keep = pos > posmaskmin;

 maxposmask_throwaway = pos >= posmaskmax;

 maxposmask_keep = pos < posmaskmax;

 if posmaskmeth == 1

 % this is the saturation method

 pos = (minposmask_throwaway.*posmaskmin) + (minposmask_keep.*pos);

 pos = (maxposmask_throwaway.*posmaskmax) + (maxposmask_keep.*pos);

 elseif posmaskmeth == 2

 % this is the wraparound method

 pos = (minposmask_throwaway.*posmaskmax) + (minposmask_keep.*pos);

 pos = (maxposmask_throwaway.*posmaskmin) + (maxposmask_keep.*pos);

 elseif posmaskmeth == 3

 % this is the bounce method, particles bounce off the boundaries with -vel

 pos = (minposmask_throwaway.*posmaskmin) + (minposmask_keep.*pos);

 pos = (maxposmask_throwaway.*posmaskmax) + (maxposmask_keep.*pos);

 vel = (vel.*minposmask_keep) + (-vel.*minposmask_throwaway);

 vel = (vel.*maxposmask_keep) + (-vel.*maxposmask_throwaway);

 else

 % no change, this is the original Eberhart, Kennedy method,

 % it lets the particles grow beyond bounds if psoparams (P)

 % especially Vmax, aren't set correctly, see the literature

 end

 %PSO

% check for stopping criterion based on speed of convergence to desired

 % error

 tmp1 = abs(tr(i) - gbestval);

 if tmp1 > ergrd

 cnt2 = 0;

 elseif tmp1 <= ergrd

 cnt2 = cnt2+1;

 if cnt2 >= ergrdep

 if plotflg == 1

 fprintf(message,i,gbestval);

 disp(' ');

 disp(['--> Solution likely, GBest hasn''t changed by at least ',...

 num2str(ergrd),' for ',...

 num2str(cnt2),' epochs.']);

 eval(plotfcn);

 end

 break

 end

 end

 45

 % this stops if using constrained optimization and goal is reached

 if ~isnan(errgoal)

 if ((gbestval<=errgoal) & (minmax==0)) | ((gbestval>=errgoal) & (minmax==1))

 if plotflg == 1

 fprintf(message,i,gbestval);

 disp(' ');

 disp(['--> Error Goal reached, successful termination!']);

 eval(plotfcn);

 end

 break

 end

 % this is stopping criterion for constrained from both sides

 if minmax == 2

 if ((tr(i)<errgoal) & (gbestval>=errgoal)) | ((tr(i)>errgoal) ...

 & (gbestval <= errgoal))

 if plotflg == 1

 fprintf(message,i,gbestval);

 disp(' ');

 disp(['--> Error Goal reached, successful termination!']);

 eval(plotfcn);

 end

 break

 end

 end % end if minmax==2

 end % end ~isnan if

 % % convert back to inertial frame

 % pos = pos - repmat(gbestoffset,ps,1);

 % pbest = pbest - repmat(gbestoffset,ps,1);

 % gbest = gbest + gbestoffset;

end % end epoch loop

%% clear temp outputs

% evalin('base','clear temp_pso_out temp_te temp_tr;');

% output & return

 OUT=[gbest';gbestval];

 varargout{1}=[1:te];

 varargout{2}=[tr(find(~isnan(tr)))];

 return

