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CHAPTER 1 

 INTRODUCTION 

 

 

1.1 Background  of Study 

 

This project entitled “Optimal Parameters of Static Synchronous Series 

Compensator (SSSC) connected to a power system” is intended to develop an SSSC 

controller to control the power flow in the transmission line and minimize the 

transmission line losses. SSSC is able to control both active and reactive powers in 

an ac system simply by controlling the angular position of injected voltage into the 

transmission line with respect to the line current [1]. The parameters in the power 

flow are monitored and controlled to their optimized levels by using a SSSC 

controller. 

 

 

1.2 Problem Statement 

 

Nowadays, the demand for electricity supply has been increasing to meet the 

world’s needs. Many analysis and researches of options available for maximising the 

existing transmission assets have been conducted that can substitute for conventional 

solutions that have slow response times and high maintenance costs [2]. 

 

Currently, most of the world’s electrical power systems are widely 

interconnected. Network interconnection is made for economic reasons that are to 

reduce the cost of electricity and to improve reliability of power supply. 

Transmission interconnections enable taking advantage of diversity of loads, 

availability of sources, and fuel price in order to supply electricity to the loads at 
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minimum cost with a required reliability [2]. 

 

While power flows in some of the transmission lines are well below their 

normal limits, other lines are overloaded, which has an overall effect on deteriorating 

voltage profiles and decreasing system stability and security. Therefore, it becomes 

very crucial to control the power flow along the transmission lines to meet the needs 

of power transfer [3]. 

 

 

1.3 Objective of Study 

 

The objectives of this project report are as follows: 

 

1. To develop an SSSC controller to control the power flow in transmission 

lines. 

2. To optimize the parameters of SSSC using an intelligent optimization 

technique. 

3. To construct the sizing of SSSC controller parameters with the purpose of 

minimizing the transmission line losses in a network. 

 

 

1.4 Scope of Study 

 

The study on the optimization of parameters of SSSC connected to a power 

system and implementation is to be completed within approximately one year 

timeframe (two semesters). The scope for phase 1 of the project, which is research on 

power flow, SSSC and optimization problem solution, is completed by the end of 

first semester. Phase 2 which is the implementation of SSSC into power system and 

design programming is started after phase 1 is completed. 

 

When the software implementation is completed, the testing is to be 

performed when all parameters set on the power systems can be controlled. 
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Therefore, the accuracy of the results obtained and the outcome of SSSC can be 

observed and assessed. 
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CHAPTER 2 

LITERATURE REVIEW AND THEORY 

 

 

2.1 Flexible AC Transmission System (FACTS) 

 

 Flexible AC Transmission System (FACTS) is an alternating current 

transmission system incorporating power electronic-based and other static controllers 

to enhance the controllability and increase the power transfer capability [1]. The 

introduction of FACTS in a power system improves the stability, reduces losses and 

improves the load ability of the system.  With FACTS technology, such as Static 

Synchronous Series Compensator (SSSC), Interline Power Flow Controller (IPFC) 

and Unified Power Flow Controller (UPFC), the bus voltages, line impedances and 

phase angles in the power system are regulated rapidly and flexibly [3], thanks to 

their series-connected converter. The explanations for different controllers are 

provided in the following sections. 

 

 

2.2 FACTS Controllers 

 

2.2.1 Static Synchronous Series Compensator (SSSC) 

 

SSSC is a solid-state voltage source converter that generates a controllable ac 

voltage source and connected in series to power transmission lines in a power system 

[1]. The main function of SSSC is to compensate for the voltage drop across the 

impedance in a transmission line. An SSSC injects a voltage in series with the line 

transmission voltage which is always kept in quadrature with the line current so that 

the SSSC can exchange only reactive power with the system. The injected voltage 

emulates an inductive or a capacitive reactance so as to influence the power flow in 
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the transmission lines. 

 

The SSSC is generally connected in series with the transmission lines. It is 

operated without an external electrical energy source as a series compensator whose 

output voltage is in quadrature with, and controllable independently of, the line 

current with the purpose of increasing or decreasing the overall reactive voltage drop 

across the line and thereby controlling the transmitted electric power. 

 

 

Figure 1: Basic diagram of Static Synchronous Series Compensator 

 

 

2.2.2 Interline Power Flow Controller (IPFC) 

 

IPFC is a combination of two or more SSSCs which are coupled via a 

common dc link to facilitate bi-directional flow of real power between the ac 

terminals of the SSSCs, and are controlled to provide independent reactive 

compensation for the adjustment of real power flow in each line and maintain the 

desired distribution of reactive power flow among the lines [1]. 
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2.2.3 Unified Power Flow Controller (UPFC) 

 

UPFC is a combination of static synchronous compensator (STATCOM) and 

an SSSC which are coupled via a common dc link, to allow bi-directional flow of 

real power between the series output terminals of the SSSC and the shunt output 

terminals of the STATCOM. Both the devices are controlled together to provide 

concurrent real and reactive series line compensation without an external electrical 

energy source. The UPFC, by means of angularly unconstrained series voltage 

injection, is able to control, concurrently or selectively, the transmission line voltage, 

impedance and angle, or alternatively, the real and reactive power flow in the line 

[1]. 

 

 

2.3 Voltage-source Converter 

 

 Converter-based FACTS controllers have two principle types of converters 

which are voltage-source converters and current-source converters. From, overall 

cost and performance point of view, the voltage-source controllers are preferred for 

converter-based FACTS controllers. Basically, a voltage-source converter (VSC) 

generates ac voltage from a dc voltage. The magnitude, the phase angle, and the 

frequency of the output voltage are controlled by using this converter. The three 

VSC-based controllers above share similar power system control capabilities. They 

are able to regulate either nodal voltage magnitude or injection of reactive power at 

one of its terminals, and active power flow through the controller [1] . 

 

 

2.4 Power Flow Studies 

 

Power flow studies deal with the steady-state analysis of an interconnected 

power system during normal operation. The system is assumed to be operating under 

balanced condition and is represented by a single-phase network. Power flow is a 

function of transmission line impedance, the magnitude of the sending end and 
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receiving end voltages and the phase angle between the voltages [3] [4]. By 

controlling one or a combination of the power flow arrangements, it is possible to 

control the active and the reactive power flow in the transmission line. 

 

 

2.5 Static Synchronous Series Compensator 

 

 As discussed earlier, the primary function of SSSC is to control the power 

flow in the transmission line. SSSC is used to control the following parameters: 

a) The active power flow of the transmission line 

b) The reactive power flow of the transmission line 

c) The bus voltage, and 

d) The impedance of the transmission line [5]. 

 

 

                   

   Figure 2: SSSC Operation principles 

 

An SSSC usually consists of a coupling transformer, an inverter and a 

capacitor. As shown in Figure 2, the SSSC is series connected with a transmission 

line through the coupling transformer. It is assumed here that the transmission line is 

series connected with the SSSC via its bus j. The active and reactive power flows of 

the SSSC branch i-j entering the bus j are equal to the sending end active and 

reactive power flows of the transmission line, respectively. In principle, the SSSC 

generates and inserts a series voltage, which is regulated to change the impedance 
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(more precisely reactance) of the transmission line. In this way, the power flow of 

the transmission line or the voltage of the bus, in which the SSSC is connected with, 

is controlled [4]. 

 

                      

      Figure 3: SSSC equivalent circuit 

 

 An equivalent circuit of the SSSC as shown in Figure 3 is derived based on 

the operation principle of the SSSC. In the equivalent circuit, the SSSC is 

represented by a voltage source, seV  in series with a transformer’s impedance. In the 

practical operation of the SSSC, seV  can be regulated to control the power flow of 

line i-j or voltage of bus i or j. In the equivalent circuit, ,, iiisesese VVVV    

and jjj VV  . 

 

 

2.6 Method of Solving an Optimization Problem 

 

 In order to find the optimal sizing of the SSSC controller, this subject is 

formed as an optimization problem with the objective of minimizing the transmission 

line losses in a network. The problem is solved by using different methods such as 

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) techniques which 

are widely used in many engineering applications. 
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2.6.1 Genetic Algorithm (GA) 

 

A genetic algorithm (GA) is a search technique used in computing to find 

exact or approximate solutions to optimization and search problems. Genetic 

algorithms use techniques inspired by evolutionary biology such as inheritance, 

mutation, selection, and crossover to form a solution to a problem. 

 

 To use a genetic algorithm, the solution to a particular problem must be 

represented as a genome (or chromosome). GA then creates a population of solutions 

and applies genetic operators such as mutation and crossover to evolve the solutions 

in order to find the best one(s).There are six important aspects to be determined when 

using GA: 

1. chromosome (individual) presentation, 

2. evaluation of objective function (fitness), 

3. creation of the initial population, 

4. choice of genetic operators, 

5. selection function, and 

6. stop criterion 

 

Once these six aspects have been determined, the generic genetic algorithm 

should work properly [6] [7]. 

 

 

2.6.2 Particle Swarm Optimization Technique 

 

Particle swarm optimization (PSO) is an algorithm modelled on the swarm 

intelligence that finds a solution to an optimization problem in a search space, or 

model. This technique which was inspired by social behaviour of bird flocking or 

fish schooling is not only used for an optimization problem, but also to predict or 

model social behaviour based on principles of social psychology [7]. 

 

http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Approximation
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Problem
http://en.wikipedia.org/wiki/Evolutionary_biology
http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Mutation_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Selection_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Search_space
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 PSO method is used to find an optimal solution to an objective function 

(fitness function) in a search space. The system is initialized with a population of 

random solutions (particles) and then searches the optimal solution by updating 

generations. The particles change their position with time or fly through the search 

space by following the current optimum particles. During flight, each particle adjusts 

its position according to its own experience, and according to the experience of a 

neighbouring particle, making use of the best position encountered by itself and its 

neighbour. 

 

 In PSO, there are different types of fitness to describe the best solution to a 

problem: 

a. pbest - the best solution (fitness) a particle has achieved so far. 

b. gbest - the best value that is tracked by the particle swarm optimizer, obtained 

so far by any particle in the population. 

c. lbest – the best value when a particle takes part of the population as its 

topological neighbours. 

 

 

2.7 Transmission Line Loss 

 

 Consider a line connecting two buses i and j, the line current at bus i which is 

positive and measured in the direction of i to j is 

 jiijij VVYI                                                                                                (a) 

 

The line current at bus j, measured in the direction of j to i is, 

  ijijji VVYI                                                                                               (b) 

 

The active powers from bus i to j and from bus j to i are 

 ijiij IVP                                                                                                          (c) 

jijji IVP                                                                                                         (d) 

 

http://en.wikipedia.org/wiki/Fitness_function
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The power loss in line i-j is the algebraic sum of the active power flows in (c) and 

(d), 

jiijLij PPP                                                                                                   (e) 
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CHAPTER 3 

METHODOLOGY 

 

There are some procedures to be followed in order to carry out and 

implement this project. This is to ensure that the project is accomplished within the 

given timeframe. 

 

 

3.1 Procedure Identification 

 

Information gathering and research 

 

 

Analysis and calculation of power flow studies 

 

 

Implementation of SSSC to power flow model 

 

 

Identify method to solve optimization problem 

 

 

 Design programming 

 

 

Design testing 

 

             Figure 4: Flow chart of project procedures 
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3.1.1 Information Gathering and Research 

 

At this stage, information and data included are the study of optimized power 

flow, operation principles of SSSC, SSSC controller, PSO technique and 

implementation methods. 

 

 

3.1.2 Analysis and Calculation of Power Flow Studies 

 

The important parameters of the power flow to be controlled are to be 

identified and analyzed. Power flow studies and analysis are performed by using the 

Newton-Raphson method to solve the power flow problems. It is observed from 

many power system problems that the Newton-Raphson method is used in the power 

flow problem since it is found to be more efficient and practical for large power 

systems. This method is reported to be a most widely used and accurate method for 

solving simultaneous nonlinear algebraic equations. 

 

 

3.1.2.1 Power Flow Equations by using Newton-Raphson Method 

 

The admittance matrix in a power system relates  to current injections at a bus 

to the bus voltages. The  equation  describing  the  performance  of  the  network  in  

the  bus  admittance  form  is  given  by 

 I = YV                                                                                                            (1) 

 

where  I = the  bus  current  vector 

V = the bus voltage vector 

Y = the bus admittance matrix 
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The expanded form of the equations is: 
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Considering a power system with two buses k and m, the complex power at bus k is 

 
*

kkkkk IVjQPS                                                                                       (3)   

 

By rearranging the equation, the current injection at bus k is expressed as 

 
*

k

kk

k
V

jQP
I


                                                                                                 (4) 

 

Now, the current at bus k is written as 

 



n

m

mkmk VYI
1

                                                                                                 (5) 

 

Expressing the equation (5) in polar form, 





n

m

mkmmkmk VYI
1

                                                                              (6) 

 

The complex power at bus k is 

kkkk IVjQP *                                                                                              (7) 

 

Substituting kI  of equation (6) into equation (7), 





n

m
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                                                    (8) 

 

 

Separating the real and imaginary parts, 

  



n

m

mkkmkmmkk YVVP
1

cos                                                   (9) 
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  



n

m

mkkmkmmkk YVVQ
1

sin                                                         (10) 

 

Equations (9) and (10) for real and reactive powers, respectively constitute a set of 

nonlinear algebraic equations in terms of independent variables, voltage magnitude 

in per unit, and phase angle in radians. Both of the equations are linearized on 

compact form by Taylor’s first order approximation results in 
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To bring symmetry in the elements of the coefficient matrix, 
V

V
 is taken as 

problem variable in place of V .  Then, equation (11) changes to 
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In symbolic form, the equation (12) is written as 
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The matrix 








LM

NH
 is known as Jacobian matrix. 

 

The diagonal and off-diagonal elements of H are 

 







km

mkkmkmmk

k

k YVV
P




sin                                                        (14) 

 mkkmkmmk

m

k YVV
P








sin    j ≠ 1                                              (15) 



 16 

The diagonal and off-diagonal elements of N are 
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The diagonal and off-diagonal elements of M are 
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The diagonal and off-diagonal elements of L are 
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The solution procedures for Newton Raphson method of power flow analysis are as 

follows: 

 

1. Read  the  line  data  and  bus  data of the power network;  construct  the  bus  

admittance  matrix. 

2. Set k = 0.   Assume   a starting solution.   Usually  a  flat start is assumed  in 

which   all   the  unknown   phase  angles  are   taken  as   zero  and the 

unknown  voltage magnitudes  are  taken  as  1.0 p.u. 

3. Compute the   mismatch powers   i.e.  the error vector. If  the  elements  of  

error  vector  are  less  than  the  specified  tolerance,  the problem  is  solved  

and  hence  go  to  Step 7;  otherwise  proceed  to  Step 4. 

4. Compute  the  elements  of  sub-matrices  H, N, M  and L. Solve 
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5. Update  the  solution  as 

 

                     
V

δ
                 =         

V

δ
           +         

VΔ

Δδ
                                 (23) 

 

6. Set k = k + 1 and go to Step 3. 

7. Calculate line flows, transmission line loss and slack bus power. 

 

 

3.1.3 Implementation of SSSC to Power Flow Model 

 

The method of using SSSC is implemented into a load flow model that is 

used to calculate the power losses and check the system operating constraints such as 

voltage profile. The model is to be modified to consider the insertion of SSSC 

devices into the network.  

 

 

3.1.4 Identify Method to Solve Optimization Problem 

 

The sizing of SSSC controllers in transmission network is formed as an 

optimization problem and is solved by using the identified optimization technique. 

After revising two types of evolutionary optimization techniques, GA and PSO that 

are widely used in power system applications, the PSO technique is chosen by 

considering its advantages over GA technique. The similarities between PSO and GA 

are that both algorithms are using population-based search approaches and depend on 

information sharing among their population members to enhance their search 

processes. 

 

 However, PSO does not have genetic operators like GA such as mutation and 

crossover. The particles in PSO update themselves with the internal velocity. They 

k+1 
k 
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also have memory, which is important to the algorithm. In terms of information 

sharing mechanism, in GAs, chromosomes share information with each other making 

the whole population moves like one group towards optimal area. In PSO, only gbest 

or lbest gives out the information to others making the particles only looks for the 

best solution. Compared with GA, all the particles tend to converge to the best  

solution quickly in most cases, resulting in global optimal solution [8] [9]. 

 

 Also, PSO is more computationally efficient in a sense that the coding 

is less complicated than the GA since it contains less function evaluations than the 

GA. 

 

 The PSO algorithm used follows the following procedure in solving the 

optimization problem defined in this project. 

          

   Figure 5: Flow chart of PSO algorithm 
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Based on Figure 5, the PSO algorithm is performed by following the procedures 

as follows: 

1. Set the parameters of PSO such as the swarm size and number of iteration. 

2. Generate the initial population with random solutions. 

3. Find fitness solution of each particle based on pbest, lbest and gbest. 

4. Run the power flow model and determine the power loss of the system. 

5. Perform the position check. If the power loss is minimized, the final position 

is the optimal parameters of SSSC. If the power loss is not minimized, update 

the particle position and go back to step 3 until the power loss is minimized. 

 

For this optimization problem, the number of particles used is 20 and number of 

iterations is 50. The objective function for this problem is 





n

i

LPMinF
1

                                                                                                     

where n is the number of buses. 

 

The parameters constraints set for the problem are as follows: 





900

15.00

se

se puV


 

 

 

3.1.5 Design and programming 

 

  The programming and source code are to be developed in C language into its 

designed system according to the proposed methods. 

 

 

3.1.6 Design Testing 

 

The controller is to be tested by using the identified parameters to verify the 

validity of the design. The test includes the determination of the optimal parameters 

of magnitude and phase angle of the voltage injection of the SSSC into the network 
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and also the verification for the objectives of the project which are to improve the 

voltage profile and minimize the transmission line loss of the network. 

 

 

3.2 Tools Required 

 

The software tool that is used in this project is MATLAB software version 

7.1 to model the power flow and the determination of the optimal parameters of 

SSSC controller. C programming is used to develop the optimization problem 

solution’s coding in the M-file of MATLAB. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

 

4.1 Implementation of SSSC to Power Flow Model 

 

Considering the insertion of an SSSC into the power system network, the 

existing load flow model needs to be modified to include the newly added parameters 

of SSSC. Referring to Figure 3 in Section 2.5, the voltage source equivalent of SSSC 

is represented by 

  sesesesesese VjVV   sincos                                                        (24) 

 

Based on the equivalent circuit of Figure 3, the following bus admittance matrix is 

constructed: 
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The bus admittance matrix (25) is used to derive the mathematical model of the 

SSSC for inclusion in the power flow Newton Raphson method. 

 

Based on the equivalent circuit and the bus admittance matrix, the complex power at 

bus i is written as 

   jijseiiiiiiiii VYVYVYVIVS                                                                (26) 

 

From equations (4) until (8), correct substitutions are performed until the following 

expressions for active and reactive powers are obtained for node i, 
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 


sincos

sincos
,                                                        (27) 

    
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nii
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


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

cossin

cossin
,                                                       (28) 

 

An identical set of active and reactive power equations are obtained for node j, where 

the letter i and j are interchanged. 

 

 Referring to equations (11) and (12), the power equations are linearized giving the 

Jacobian matrix, 
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      (29) 

 

From equation (29), the diagonal and off-diagonal elements of the Jacobian matrix 

are derived based on the power equations of each bus. 

 

Following the solution procedures of Newton-Raphson method for power flow 

analysis in Section 3.1.2.1, the power mismatch equations at node i and k are 

computed as follows: 

   

   calc
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sp

jiji

calc
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jiji

QQQ

PPP

,,,

,,,




                                                                             (30) 
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Note: 

 spjiP,
and  spjiQ ,

 are the specified active and reactive powers while  calc

jiP ,
 and 

 calc

jiQ ,  are the calculated active and reactive powers. 

 

After solving for the
















V

V


, the voltage magnitude and phase angle are updated 

using the following matrix expression, 
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                                                   (31) 

 

Then, the procedures are implemented to calculate the line flows, transmission line 

loss and the bus powers. 
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4.2 Results 

 

The coding of MATLAB for the Newton-Raphson method and the modified Newton-

Raphson method are tested on the IEEE 14-bus benchmark test system and the 

following results are yielded. 

 

 

   Table 1: The system transmission line loss 

Condition Without SSSC With SSSC 

Power Loss (MW) 13.503 9.018 

 

 

 Table 2: Comparison of the voltage profiles without SSSC and with SSSC 

Bus Number Voltage (p.u.) 

Without SSSC With SSSC 

1 1.06 1.06 

2 1.045 1.05 

3 1.01 1.0222 

4 1.019 1.0306 

5 1.02 1.03 

6 1.07 1.0731 

7 1.062 1.0639 

8 1.09 1.09 

9 1.056 1.0536 

10 1.051 1.0606 

11 1.057 1.06 

12 1.055 1.0598 

13 1.050 1.06 

14 1.036 1.0383 



 25 

 

  Figure 6: Voltage profile of the 14-bus system without SSSC 

 

 

  Figure 7: Voltage profile of the 14-bus system with SSSC 
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       Table 3: The control parameters of SSSC 

Condition Before iteration After iteration 

seV (p.u.) 0.10 0.15 

se (Degree) 90 88 

 

 

 

4.3 Discussion 

 

 From the results obtained in Table 1, the transmission line loss of the IEEE 

14-bus system before the insertion of SSSC is 13.503 MW. After the SSSC device is 

inserted in series with the system, the transmission line loss is reduced to 9.018 MW. 

This result shows that the effect of installing an SSSC controller in the power system 

network, a large reduction in transmission line loss is obtained. 

 

 The voltage profile graphs are constructed for both conditions when the SSSC 

device is not connected and is connected in the power network. From the comparison 

of the both Figures 5 and 6, the voltages are improved at certain buses after the SSSC 

is connected to the system, hence improving the performance of the system. 

 

 Next, the PSO technique is included in the power flow mathematical model 

for when the SSSC is connected between the buses of IEEE 14-bus system. The PSO 

method is set with 20 numbers of particles and 50 iterations. The SSSC parameters 

limits considered for the voltage is from 0 to 0.15 p.u. and for the phase angle is from 

0 to 90 degrees. After the iterating process by the PSO, the optimal parameters 

obtained for the SSSC controller are 0.15 p.u. for voltage while 88 degrees for phase 

angle. These values of the SSSC controller yield the optimum performance of the 

system while minimizing the transmission line losses of the network. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

 

5.1 Conclusion 

 

 SSSC controller has multiple attributes of what it can do in terms of 

controlling the voltage, power flow, stability and so on. It can control power flow as 

ordered, reduce reactive power flows allowing transmission lines to carry more 

active power and increase utilization of lowest cost generation. 

 

 This project is focused on optimal sizing of the SSSC controller using the 

implementation of both theoretical and practical knowledge that have been defined in 

this report. The power flow problem follows the Newton-Raphson method into its 

solution and an optimization technique which is Particle Swarm Optimization 

technique is required in determining the optimal parameters of the SSSC controller. 

The Newton-Raphson power flow algorithm was modified to consider the insertion 

of SSSC into the network. 

 

The MATLAB software is used to model and simulate the transmission 

system with and without SSSC whereby the effect of SSSC to reduce the 

transmission line loss and improve the voltage profile, are observed. The Particle 

Swarm Optimization technique used has determined the optimal magnitude and 

phase angle of SSSC’s series injected voltage into the network to minimize the 

transmission line loss in the network. 
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5.2 Recommendation 

 

 For future studies, two suggestions are SSSC controller to be applied and 

tested on larger power systems to determine the optimal parameters of the SSSC 

controller and optimal location in which the controller can be inserted and also, more 

type of FACTS controller can be used on the same case study so that the 

performance of each controller can be observed and compared. 
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APPENDIX A 

IEEE 14-bus System Data 

 

 

    Table A.1: Bus data 

 

 

 

*Bus Type: (1) swing bus, (2) generator bus (PV bus), and (3) load bus (PQ bus) 
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APPENDIX A 

IEEE 14-bus System Data 

 

   Table A.2: Line data 
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APPENDIX A 

IEEE 14-bus System Data 

 

 

 

   Figure A.1: IEEE 14-bus system diagram 
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APPENDIX B 

Newton-Raphson Method for Power Flow Model Matlab Code 

 

ns=0; ng=0; Vm=0; delta=0; yload=0; deltad=0; 

nbus = length(busdata(:,1)); 

kb=[];Vm=[]; delta=[]; Pd=[]; Qd=[]; Pg=[]; Qg=[]; Qmin=[]; Qmax=[];   

Pk=[]; P=[]; Qk=[]; Q=[]; S=[]; V=[];  

for k=1:nbus 

n=busdata(k,1); 

kb(n)=busdata(k,2); Vm(n)=busdata(k,3); delta(n)=busdata(k, 4); 

Pd(n)=busdata(k,5); Qd(n)=busdata(k,6); Pg(n)=busdata(k,7); Qg(n) = busdata(k,8); 

Qmin(n)=busdata(k, 9); Qmax(n)=busdata(k, 10); 

Qsh(n)=busdata(k, 11); 

    if Vm(n) <= 0  Vm(n) = 1.0; V(n) = 1 + j*0; 

    else delta(n) = pi/180*delta(n); 

         V(n) = Vm(n)*(cos(delta(n)) + j*sin(delta(n))); 

         P(n)=(Pg(n)-Pd(n))/basemva; 

         Q(n)=(Qg(n)-Qd(n)+ Qsh(n))/basemva; 

         S(n) = P(n) + j*Q(n); 

    end 

end 

for k=1:nbus 

if kb(k) == 1, ns = ns+1; else, end 

if kb(k) == 2 ng = ng+1; else, end 

ngs(k) = ng; 

nss(k) = ns; 

end 

Ym=abs(Ybus); t = angle(Ybus); 

m=2*nbus-ng-2*ns; 

maxerror = 1; converge=1; 

iter = 0; 

mline=ones(nbr,1); 

for k=1:nbr 

      for m=k+1:nbr 

         if((nl(k)==nl(m)) & (nr(k)==nr(m))); 

            mline(m)=2; 

         elseif ((nl(k)==nr(m)) & (nr(k)==nl(m))); 

         mline(m)=2; 

         else, end 

      end 

   end 

 

% Start of iterations 

clear A  DC   J  DX 

while maxerror >= accuracy & iter <= maxiter % Test for max. power mismatch 

for ii=1:m 

for k=1:m 

   A(ii,k)=0;      %Initializing Jacobian matrix 

end, end 

iter = iter+1; 

for n=1:nbus 

nn=n-nss(n); 

lm=nbus+n-ngs(n)-nss(n)-ns; 

J11=0; J22=0; J33=0; J44=0; 

   for ii=1:nbr 

    if mline(ii)==1   

        if nl(ii) == n | nr(ii) == n 

            if nl(ii) == n ,  l = nr(ii); end 

            if nr(ii) == n , l = nl(ii); end 

         J11=J11+ Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l)); 

         J33=J33+ Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l)); 

                if kb(n)~=1 

                J22=J22+ Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l)); 

                J44=J44+ Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l)); 
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                else, end 

                if kb(n) ~= 1  & kb(l) ~=1 

                    lk = nbus+l-ngs(l)-nss(l)-ns; 

                    ll = l -nss(l); 

                % off diagonalelements of J1 

                    A(nn, ll) =-Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l)); 

                    if kb(l) == 0  % off diagonal elements of J2 

                    A(nn, lk) =Vm(n)*Ym(n,l)*cos(t(n,l)- delta(n) + delta(l));end 

                    if kb(n) == 0  % off diagonal elements of J3 

                    A(lm, ll) =-Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n)+delta(l)); 

end 

                    if kb(n) == 0 & kb(l) == 0  % off diagonal elements of  J4 

                    A(lm, lk) =-Vm(n)*Ym(n,l)*sin(t(n,l)- delta(n) + delta(l));end 

               else end 

            else , end 

      else, end    

   end 

   Pk = Vm(n)^2*Ym(n,n)*cos(t(n,n))+J33; 

   Qk = -Vm(n)^2*Ym(n,n)*sin(t(n,n))-J11; 

   if kb(n) == 1 P(n)=Pk; Q(n) = Qk; end   % Swing bus P 

     if kb(n) == 2  Q(n)=Qk; 

         if Qmax(n) ~= 0 

           Qgc = Q(n)*basemva + Qd(n) - Qsh(n); 

           if iter <= 7                  % Between the 2th & 6th iterations 

              if iter > 2                % the Mvar of generator buses are 

                if Qgc  < Qmin(n),       % tested. If not within limits Vm(n) 

                Vm(n) = Vm(n) + 0.01;    % is changed in steps of 0.01 pu to 

                elseif Qgc  > Qmax(n),   % bring the generator Mvar within 

                Vm(n) = Vm(n) - 0.01;end % the specified limits. 

              else, end 

           else,end 

         else,end 

     end 

   if kb(n) ~= 1 

     A(nn,nn) = J11;  %diagonal elements of J1 

     DC(nn) = P(n)-Pk; 

   end 

   if kb(n) == 0 

     A(nn,lm) = 2*Vm(n)*Ym(n,n)*cos(t(n,n))+J22;  %diagonal elements of J2 

     A(lm,nn)= J33;        %diagonal elements of J3 

     A(lm,lm) =-2*Vm(n)*Ym(n,n)*sin(t(n,n))-J44;  %diagonal of elements of J4 

     DC(lm) = Q(n)-Qk; 

   end 

end 

DX=A\DC'; 

for n=1:nbus 

  nn=n-nss(n); 

  lm=nbus+n-ngs(n)-nss(n)-ns; 

    if kb(n) ~= 1 

    delta(n) = delta(n)+DX(nn); end 

    if kb(n) == 0 

    Vm(n)=Vm(n)+DX(lm); end 

 end 

  maxerror=max(abs(DC)); 

     if iter == maxiter & maxerror > accuracy  

   fprintf('\nWARNING: Iterative solution did not converged after ') 

   fprintf('%g', iter), fprintf(' iterations.\n\n') 

   fprintf('Press Enter to terminate the iterations and print the results \n') 

   converge = 0; pause, else, end 

    

end 

  

if converge ~= 1 

   tech= ('                      ITERATIVE SOLUTION DID NOT CONVERGE'); else,  

   tech=('                   Power Flow Solution by Newton-Raphson Method'); 

end    

V = Vm.*cos(delta)+j*Vm.*sin(delta); 

deltad=180/pi*delta; 

i=sqrt(-1); 

k=0; 

for n = 1:nbus 

     if kb(n) == 1 

     k=k+1; 

     S(n)= P(n)+j*Q(n); 
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     Pg(n) = P(n)*basemva + Pd(n); 

     Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n); 

     Pgg(k)=Pg(n); 

     Qgg(k)=Qg(n);     

     elseif  kb(n) ==2 

     k=k+1; 

     S(n)=P(n)+j*Q(n); 

     Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n); 

     Pgg(k)=Pg(n); 

     Qgg(k)=Qg(n);   

  end 

yload(n) = (Pd(n)- j*Qd(n)+j*Qsh(n))/(basemva*Vm(n)^2); 

end 

busdata(:,3)=Vm'; busdata(:,4)=deltad'; 

Pgt = sum(Pg);  Qgt = sum(Qg); Pdt = sum(Pd); Qdt = sum(Qd); Qsht = sum(Qsh); 

  

%clear A DC DX  J11 J22 J33 J44 Qk delta lk ll lm 

%clear A DC DX  J11 J22 J33  Qk delta lk ll lm 
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APPENDIX C 

PSO Algorithm Matlab Code 

 

% pso_Trelea_vectorized.m 

% a generic particle swarm optimizer 

% to find the minimum or maximum of any  

% MISO matlab function 

% 

% Implements Common, Trelea type 1 and 2, and Clerc's class 1". It will 

% also automatically try to track to a changing environment (with varied 

% success - BKB 3/18/05) 

% 

% This vectorized version removes the for loop associated with particle 

% number. It also *requires* that the cost function have a single input 

% that represents all dimensions of search (i.e., for a function that has 2 

% inputs then make a wrapper that passes a matrix of ps x 2 as a single 

% variable) 

% 

% Usage: 

%  [optOUT]=PSO(functname,D) 

% or: 

%  [optOUT,tr,te]=... 

%        PSO(functname,D,mv,VarRange,minmax,PSOparams,plotfcn,PSOseedValue) 

% 

% Inputs: 

%    functname - string of matlab function to optimize 

%    D - # of inputs to the function (dimension of problem) 

%     

% Optional Inputs: 

%    mv - max particle velocity, either a scalar or a vector of length D 

%           (this allows each component to have it's own max velocity),  

%           default = 4, set if not input or input as NaN 

% 

%    VarRange - matrix of ranges for each input variable,  

%      default -100 to 100, of form: 

%       [ min1 max1  

%         min2 max2 

%            ... 

%         minD maxD ] 

% 

%    minmax = 0, funct minimized (default) 

%           = 1, funct maximized 

%           = 2, funct is targeted to P(12) (minimizes distance to errgoal) 

%    PSOparams - PSO parameters 

%      P(1) - Epochs between updating display, default = 100. if 0,  

%             no display 

%      P(2) - Maximum number of iterations (epochs) to train, default = 2000. 

%      P(3) - population size, default = 24 

% 

%      P(4) - acceleration const 1 (local best influence), default = 2 

%      P(5) - acceleration const 2 (global best influence), default = 2 

%      P(6) - Initial inertia weight, default = 0.9 

%      P(7) - Final inertia weight, default = 0.4 

%      P(8) - Epoch when inertial weight at final value, default = 1500 

%      P(9)- minimum global error gradient,  

%                 if abs(Gbest(i+1)-Gbest(i)) < gradient over  

%                 certain length of epochs, terminate run, default = 1e-25 

%      P(10)- epochs before error gradient criterion terminates run,  

%                 default = 150, if the SSE does not change over 250 epochs 

%                               then exit 

%      P(11)- error goal, if NaN then unconstrained min or max, default=NaN 

%      P(12)- type flag (which kind of PSO to use) 

%                 0 = Common PSO w/intertia (default) 

%                 1,2 = Trelea types 1,2 

%                 3   = Clerc's Constricted PSO, Type 1" 
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%      P(13)- PSOseed, default=0 

%               = 0 for initial positions all random 

%               = 1 for initial particles as user input 

% 

%    plotfcn - optional name of plotting function, default 'goplotpso', 

%              make your own and put here 

% 

%    PSOseedValue - initial particle position, depends on P(13), must be 

%                   set if P(13) is 1 or 2, not used for P(13)=0, needs to 

%                   be nXm where n<=ps, and m<=D 

%                   If n<ps and/or m<D then remaining values are set random 

%                   on Varrange 

% Outputs: 

%    optOUT - optimal inputs and associated min/max output of function, of form: 

%        [ bestin1 

%          bestin2 

%            ... 

%          bestinD 

%          bestOUT ] 

% 

% Optional Outputs: 

%    tr    - Gbest at every iteration, traces flight of swarm 

%    te    - epochs to train, returned as a vector 1:endepoch 

% 

% Example:  out=pso_Trelea_vectorized('f6',2) 

  

% Brian Birge 

% Rev 3.3 

% 2/18/06 

  

function [OUT,varargout]=pso_Trelea_vectorized(functname,D,varargin) 

  

rand('state',sum(100*clock)); 

if nargin < 2 

   error('Not enough arguments.'); 

end 

  

% PSO PARAMETERS 

if nargin == 2      % only specified functname and D 

   VRmin=ones(D,1)*-100;  

   VRmax=ones(D,1)*100;     

   VR=[VRmin,VRmax]; 

   minmax = 0; 

   P = []; 

   mv = 4; 

   plotfcn='goplotpso';    

elseif nargin == 3  % specified functname, D, and mv 

   VRmin=ones(D,1)*-100;  

   VRmax=ones(D,1)*100;     

   VR=[VRmin,VRmax]; 

   minmax = 0; 

   mv=varargin{1}; 

   if isnan(mv) 

       mv=4; 

   end 

   P = []; 

   plotfcn='goplotpso';    

elseif nargin == 4  % specified functname, D, mv, Varrange 

   mv=varargin{1}; 

   if isnan(mv) 

       mv=4; 

   end 

   VR=varargin{2};  

   minmax = 0; 

   P = []; 

   plotfcn='goplotpso';    

elseif nargin == 5  % Functname, D, mv, Varrange, and minmax 

   mv=varargin{1}; 

   if isnan(mv) 

       mv=4; 

   end     

   VR=varargin{2}; 

   minmax=varargin{3}; 

   P = []; 
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   plotfcn='goplotpso'; 

elseif nargin == 6  % Functname, D, mv, Varrange, minmax, and psoparams 

   mv=varargin{1}; 

   if isnan(mv) 

       mv=4; 

   end     

   VR=varargin{2}; 

   minmax=varargin{3}; 

   P = varargin{4}; % psoparams 

   plotfcn='goplotpso';    

elseif nargin == 7  % Functname, D, mv, Varrange, minmax, and psoparams, plotfcn 

   mv=varargin{1}; 

   if isnan(mv) 

       mv=4; 

   end     

   VR=varargin{2}; 

   minmax=varargin{3}; 

   P = varargin{4}; % psoparams 

   plotfcn = varargin{5};  

elseif nargin == 8  % Functname, D, mv, Varrange, minmax, and psoparams, plotfcn, 

PSOseedValue 

   mv=varargin{1}; 

   if isnan(mv) 

       mv=4; 

   end     

   VR=varargin{2}; 

   minmax=varargin{3}; 

   P = varargin{4}; % psoparams 

   plotfcn = varargin{5};   

   PSOseedValue = varargin{6}; 

else     

   error('Wrong # of input arguments.'); 

end 

  

% sets up default pso params 

Pdef = [100 2000 24 2 2 0.9 0.4 1500 1e-25 250 NaN 0 0]; 

Plen = length(P); 

P    = [P,Pdef(Plen+1:end)]; 

  

df      = P(1); 

me      = P(2); 

ps      = P(3); 

ac1     = P(4); 

ac2     = P(5); 

iw1     = P(6); 

iw2     = P(7); 

iwe     = P(8); 

ergrd   = P(9); 

ergrdep = P(10); 

errgoal = P(11); 

trelea  = P(12); 

PSOseed = P(13); 

  

% used with trainpso, for neural net training 

if strcmp(functname,'pso_neteval') 

   net = evalin('caller','net'); 

    Pd = evalin('caller','Pd'); 

    Tl = evalin('caller','Tl'); 

    Ai = evalin('caller','Ai'); 

     Q = evalin('caller','Q'); 

    TS = evalin('caller','TS'); 

end 

  

  

% error checking 

 if ((minmax==2) & isnan(errgoal)) 

     error('minmax= 2, errgoal= NaN: choose an error goal or set minmax to 0 or 1'); 

 end 

  

 if ( (PSOseed==1) & ~exist('PSOseedValue') ) 

     error('PSOseed flag set but no PSOseedValue was input'); 

 end 

  

 if exist('PSOseedValue') 
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     tmpsz=size(PSOseedValue); 

     if D < tmpsz(2) 

         error('PSOseedValue column size must be D or less'); 

     end 

     if ps < tmpsz(1) 

         error('PSOseedValue row length must be # of particles or less'); 

     end 

 end 

  

% set plotting flag 

if (P(1))~=0 

  plotflg=1; 

else 

  plotflg=0; 

end 

  

% preallocate variables for speed up 

 tr = ones(1,me)*NaN; 

  

% take care of setting max velocity and position params here 

if length(mv)==1 

 velmaskmin = -mv*ones(ps,D);     % min vel, psXD matrix 

 velmaskmax = mv*ones(ps,D);      % max vel 

elseif length(mv)==D      

 velmaskmin = repmat(forcerow(-mv),ps,1); % min vel 

 velmaskmax = repmat(forcerow( mv),ps,1); % max vel 

else 

 error('Max vel must be either a scalar or same length as prob dimension D'); 

end 

posmaskmin  = repmat(VR(1:D,1)',ps,1);  % min pos, psXD matrix 

posmaskmax  = repmat(VR(1:D,2)',ps,1);  % max pos 

posmaskmeth = 3; % 3=bounce method (see comments below inside epoch loop) 

  

% PLOTTING 

 message = sprintf('PSO: %%g/%g iterations, GBest = %%20.20g.\n',me); 

  

% INITIALIZE INITIALIZE INITIALIZE INITIALIZE INITIALIZE INITIALIZE 

  

% initialize population of particles and their velocities at time zero, 

% format of pos= (particle#, dimension) 

 % construct random population positions bounded by VR 

  pos(1:ps,1:D) = normmat(rand([ps,D]),VR',1); 

   

  if PSOseed == 1         % initial positions user input, see comments above 

    tmpsz                      = size(PSOseedValue); 

    pos(1:tmpsz(1),1:tmpsz(2)) = PSOseedValue;   

  end 

  

 % construct initial random velocities between -mv,mv 

  vel(1:ps,1:D) = normmat(rand([ps,D]),... 

      [forcecol(-mv),forcecol(mv)]',1); 

  

% initial pbest positions vals 

 pbest = pos; 

  

% VECTORIZE THIS, or at least vectorize cost funct call  

 out = feval(functname,pos);  % returns column of cost values (1 for each particle) 

%--------------------------- 

  

 pbestval=out;   % initially, pbest is same as pos 

  

% assign initial gbest here also (gbest and gbestval) 

 if minmax==1 

   % this picks gbestval when we want to maximize the function 

    [gbestval,idx1] = max(pbestval); 

 elseif minmax==0 

   % this works for straight minimization 

    [gbestval,idx1] = min(pbestval); 

 elseif minmax==2 

   % this works when you know target but not direction you need to go 

   % good for a cost function that returns distance to target that can be either 

   % negative or positive (direction info) 

    [temp,idx1] = min((pbestval-ones(size(pbestval))*errgoal).^2); 

    gbestval    = pbestval(idx1); 
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 end 

  

 % preallocate a variable to keep track of gbest for all iters 

 bestpos        = zeros(me,D+1)*NaN; 

 gbest          = pbest(idx1,:);  % this is gbest position 

   % used with trainpso, for neural net training 

   % assign gbest to net at each iteration, these interim assignments 

   % are for plotting mostly 

    if strcmp(functname,'pso_neteval') 

        net=setx(net,gbest); 

    end 

 %tr(1)          = gbestval;       % save for output 

 bestpos(1,1:D) = gbest; 

  

% this part used for implementing Carlisle and Dozier's APSO idea 

% slightly modified, this tracks the global best as the sentry whereas 

% their's chooses a different point to act as sentry 

% see "Tracking Changing Extremea with Adaptive Particle Swarm Optimizer", 

% part of the WAC 2002 Proceedings, June 9-13, http://wacong.com 

 sentryval = gbestval; 

 sentry    = gbest; 

  

if (trelea == 3) 

% calculate Clerc's constriction coefficient chi to use in his form 

 kappa   = 1; % standard val = 1, change for more or less constriction     

 if ( (ac1+ac2) <=4 ) 

     chi = kappa; 

 else 

     psi     = ac1 + ac2; 

     chi_den = abs(2-psi-sqrt(psi^2 - 4*psi)); 

     chi_num = 2*kappa; 

     chi     = chi_num/chi_den; 

 end 

end 

  

% INITIALIZE END INITIALIZE END INITIALIZE END INITIALIZE END 

rstflg = 0; % for dynamic environment checking 

% start PSO iterative procedures 

 cnt    = 0; % counter used for updating display according to df in the options 

 cnt2   = 0; % counter used for the stopping subroutine based on error convergence 

 iwt(1) = iw1; 

for i=1:me  % start epoch loop (iterations) 

  

     out        = feval(functname,[pos;gbest]); 

     outbestval = out(end,:); 

     out        = out(1:end-1,:); 

  

     tr(i+1)          = gbestval; % keep track of global best val 

     te               = i; % returns epoch number to calling program when done 

     bestpos(i,1:D+1) = [gbest,gbestval]; 

      

     %assignin('base','bestpos',bestpos(i,1:D+1)); 

   %------------------------------------------------------------------------       

   % this section does the plots during iterations    

    if plotflg==1       

      if (rem(i,df) == 0 ) | (i==me) | (i==1)  

         fprintf(message,i,gbestval); 

         cnt = cnt+1; % count how many times we display (useful for movies) 

           

         eval(plotfcn); % defined at top of script 

          

      end  % end update display every df if statement     

    end % end plotflg if statement 

  

    % check for an error space that changes wrt time/iter 

    % threshold value that determines dynamic environment  

    % sees if the value of gbest changes more than some threshold value 

    % for the same location 

    chkdyn = 1; 

    rstflg = 0; % for dynamic environment checking 

  

    if chkdyn==1 

     threshld = 0.05;  % percent current best is allowed to change, .05 = 5% etc 
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     letiter  = 5; % # of iterations before checking environment, leave at least 3 so 

PSO has time to converge 

     outorng  = abs( 1- (outbestval/gbestval) ) >= threshld; 

     samepos  = (max( sentry == gbest )); 

  

     if (outorng & samepos) & rem(i,letiter)==0 

         rstflg=1; 

       % disp('New Environment: reset pbest, gbest, and vel'); 

       %% reset pbest and pbestval if warranted 

%        outpbestval = feval( functname,[pbest] ); 

%        Poutorng    = abs( 1-(outpbestval./pbestval) ) > threshld; 

%        pbestval    = pbestval.*~Poutorng + outpbestval.*Poutorng; 

%        pbest       = pbest.*repmat(~Poutorng,1,D) + pos.*repmat(Poutorng,1,D);    

  

        pbest     = pos; % reset personal bests to current positions 

        pbestval  = out;  

        vel       = vel*10; % agitate particles a little (or a lot) 

         

       % recalculate best vals  

        if minmax == 1 

           [gbestval,idx1] = max(pbestval); 

        elseif minmax==0 

           [gbestval,idx1] = min(pbestval); 

        elseif minmax==2 % this section needs work 

           [temp,idx1] = min((pbestval-ones(size(pbestval))*errgoal).^2); 

           gbestval    = pbestval(idx1); 

        end 

         

        gbest  = pbest(idx1,:); 

         

        % used with trainpso, for neural net training 

        % assign gbest to net at each iteration, these interim assignments 

        % are for plotting mostly 

        if strcmp(functname,'pso_neteval') 

           net=setx(net,gbest); 

        end 

     end  % end if outorng 

      

     sentryval = gbestval; 

     sentry    = gbest; 

      

    end % end if chkdyn 

     

    % find particles where we have new pbest, depending on minmax choice  

    % then find gbest and gbestval 

     %[size(out),size(pbestval)] 

    if rstflg == 0 

     if minmax == 0 

        [tempi]            = find(pbestval>=out); % new min pbestvals 

        pbestval(tempi,1)  = out(tempi);   % update pbestvals 

        pbest(tempi,:)     = pos(tempi,:); % update pbest positions 

        

        [iterbestval,idx1] = min(pbestval); 

         

        if gbestval >= iterbestval 

            gbestval = iterbestval; 

            gbest    = pbest(idx1,:); 

            % used with trainpso, for neural net training 

            % assign gbest to net at each iteration, these interim assignments 

            % are for plotting mostly 

             if strcmp(functname,'pso_neteval') 

                net=setx(net,gbest); 

             end 

        end 

     elseif minmax == 1 

        [tempi,dum]        = find(pbestval<=out); % new max pbestvals 

        pbestval(tempi,1)  = out(tempi,1); % update pbestvals 

        pbest(tempi,:)     = pos(tempi,:); % update pbest positions 

  

        [iterbestval,idx1] = max(pbestval); 

        if gbestval <= iterbestval 

            gbestval = iterbestval; 

            gbest    = pbest(idx1,:); 

            % used with trainpso, for neural net training 
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            % assign gbest to net at each iteration, these interim assignments 

            % are for plotting mostly 

             if strcmp(functname,'pso_neteval') 

                net=setx(net,gbest); 

             end 

        end 

     elseif minmax == 2  % this won't work as it is, fix it later 

        egones            = errgoal*ones(ps,1); % vector of errgoals 

        sqrerr2           = ((pbestval-egones).^2); 

        sqrerr1           = ((out-egones).^2); 

        [tempi,dum]       = find(sqerr1 <= sqrerr2); % find particles closest to targ 

        pbestval(tempi,1) = out(tempi,1); % update pbestvals 

        pbest(tempi,:)    = pos(tempi,:); % update pbest positions 

  

        sqrerr            = ((pbestval-egones).^2); % need to do this to reflect new 

pbests 

        [temp,idx1]       = min(sqrerr); 

        iterbestval       = pbestval(idx1); 

         

        if (iterbestval-errgoal)^2 <= (gbestval-errgoal)^2 

           gbestval = iterbestval; 

           gbest    = pbest(idx1,:); 

           % used with trainpso, for neural net training 

            % assign gbest to net at each iteration, these interim assignments 

            % are for plotting mostly 

             if strcmp(functname,'pso_neteval') 

                net=setx(net,gbest); 

             end 

        end 

     end 

    end 

     

     

 %   % build a simple predictor 10th order, for gbest trajectory 

 %   if i>500 

 %    for dimcnt=1:D 

 %      pred_coef  = polyfit(i-250:i,(bestpos(i-250:i,dimcnt))',20); 

 %     % pred_coef  = polyfit(200:i,(bestpos(200:i,dimcnt))',20);        

 %      gbest_pred(i,dimcnt) = polyval(pred_coef,i+1); 

 %    end 

 %    else  

%       gbest_pred(i,:) = zeros(size(gbest)); 

%    end 

   

   %gbest_pred(i,:)=gbest;     

   %assignin('base','gbest_pred',gbest_pred); 

  

 %   % convert to non-inertial frame 

 %    gbestoffset = gbest - gbest_pred(i,:); 

 %    gbest = gbest - gbestoffset; 

 %    pos   = pos + repmat(gbestoffset,ps,1); 

 %    pbest = pbest + repmat(gbestoffset,ps,1); 

  

     %PSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSO 

  

      % get new velocities, positions (this is the heart of the PSO algorithm)      

      % each epoch get new set of random numbers 

       rannum1 = rand([ps,D]); % for Trelea and Clerc types 

       rannum2 = rand([ps,D]);        

       if     trelea == 2     

        % from Trelea's paper, parameter set 2 

         vel = 0.729.*vel...                              % prev vel 

               +1.494.*rannum1.*(pbest-pos)...            % independent 

               +1.494.*rannum2.*(repmat(gbest,ps,1)-pos); % social   

       elseif trelea == 1 

        % from Trelea's paper, parameter set 1                      

         vel = 0.600.*vel...                              % prev vel 

               +1.700.*rannum1.*(pbest-pos)...            % independent 

               +1.700.*rannum2.*(repmat(gbest,ps,1)-pos); % social  

       elseif trelea ==3 

        % Clerc's Type 1" PSO 

         vel = chi*(vel...                                % prev vel 

               +ac1.*rannum1.*(pbest-pos)...              % independent 

               +ac2.*rannum2.*(repmat(gbest,ps,1)-pos)) ; % social           



 44 

       else 

        % common PSO algo with inertia wt  

        % get inertia weight, just a linear funct w.r.t. epoch parameter iwe 

         if i<=iwe 

            iwt(i) = ((iw2-iw1)/(iwe-1))*(i-1)+iw1; 

         else 

            iwt(i) = iw2; 

         end 

        % random number including acceleration constants 

         ac11 = rannum1.*ac1;    % for common PSO w/inertia 

         ac22 = rannum2.*ac2; 

          

         vel = iwt(i).*vel...                             % prev vel 

               +ac11.*(pbest-pos)...                      % independent 

               +ac22.*(repmat(gbest,ps,1)-pos);           % social                   

       end 

        

       % limit velocities here using masking 

        vel = ( (vel <= velmaskmin).*velmaskmin ) + ( (vel > velmaskmin).*vel ); 

        vel = ( (vel >= velmaskmax).*velmaskmax ) + ( (vel < velmaskmax).*vel );      

         

       % update new position (PSO algo)     

        pos = pos + vel; 

     

       % position masking, limits positions to desired search space 

       % method: 0) no position limiting, 1) saturation at limit, 

       %         2) wraparound at limit , 3) bounce off limit 

        minposmask_throwaway = pos <= posmaskmin;  % these are psXD matrices 

        minposmask_keep      = pos >  posmaskmin;      

        maxposmask_throwaway = pos >= posmaskmax; 

        maxposmask_keep      = pos <  posmaskmax; 

      

        if     posmaskmeth == 1 

         % this is the saturation method 

          pos = ( minposmask_throwaway.*posmaskmin ) + ( minposmask_keep.*pos ); 

          pos = ( maxposmask_throwaway.*posmaskmax ) + ( maxposmask_keep.*pos );       

        elseif posmaskmeth == 2 

         % this is the wraparound method 

          pos = ( minposmask_throwaway.*posmaskmax ) + ( minposmask_keep.*pos ); 

          pos = ( maxposmask_throwaway.*posmaskmin ) + ( maxposmask_keep.*pos );                 

        elseif posmaskmeth == 3 

         % this is the bounce method, particles bounce off the boundaries with -vel       

          pos = ( minposmask_throwaway.*posmaskmin ) + ( minposmask_keep.*pos ); 

          pos = ( maxposmask_throwaway.*posmaskmax ) + ( maxposmask_keep.*pos ); 

  

          vel = (vel.*minposmask_keep) + (-vel.*minposmask_throwaway); 

          vel = (vel.*maxposmask_keep) + (-vel.*maxposmask_throwaway); 

        else 

         % no change, this is the original Eberhart, Kennedy method,  

         % it lets the particles grow beyond bounds if psoparams (P) 

         % especially Vmax, aren't set correctly, see the literature 

        end 

  

     %PSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSOPSO 

% check for stopping criterion based on speed of convergence to desired  

   % error    

    tmp1 = abs(tr(i) - gbestval); 

    if tmp1 > ergrd 

       cnt2 = 0; 

    elseif tmp1 <= ergrd 

       cnt2 = cnt2+1; 

       if cnt2 >= ergrdep 

         if plotflg == 1 

          fprintf(message,i,gbestval);            

          disp(' '); 

          disp(['--> Solution likely, GBest hasn''t changed by at least ',... 

              num2str(ergrd),' for ',... 

                  num2str(cnt2),' epochs.']);   

          eval(plotfcn); 

         end        

         break 

       end 

    end 
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   % this stops if using constrained optimization and goal is reached 

    if ~isnan(errgoal) 

     if ((gbestval<=errgoal) & (minmax==0)) | ((gbestval>=errgoal) & (minmax==1))   

  

         if plotflg == 1 

             fprintf(message,i,gbestval); 

             disp(' ');             

             disp(['--> Error Goal reached, successful termination!']); 

              

             eval(plotfcn); 

         end 

         break 

     end 

      

    % this is stopping criterion for constrained from both sides     

     if minmax == 2 

       if ((tr(i)<errgoal) & (gbestval>=errgoal)) | ((tr(i)>errgoal) ... 

               & (gbestval <= errgoal))         

         if plotflg == 1 

             fprintf(message,i,gbestval); 

             disp(' ');             

             disp(['--> Error Goal reached, successful termination!']);             

              

             eval(plotfcn); 

         end 

         break               

       end 

     end % end if minmax==2 

    end  % end ~isnan if 

  

 %    % convert back to inertial frame 

 %     pos = pos - repmat(gbestoffset,ps,1); 

 %     pbest = pbest - repmat(gbestoffset,ps,1); 

 %     gbest = gbest + gbestoffset; 

   

  

end  % end epoch loop 

  

%% clear temp outputs 

% evalin('base','clear temp_pso_out temp_te temp_tr;'); 

  

% output & return 

 OUT=[gbest';gbestval]; 

 varargout{1}=[1:te]; 

 varargout{2}=[tr(find(~isnan(tr)))]; 

  

 return 

 


