CERTIFICATION OF APPROVAL

PERSONAL ELECTRIC VEHICLE PROTOTYPE DEVELOPMENT

by

MOHD AIZAT BIN ZAINAL 12368

A project dissertation submitted to the

Mechanical Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(MECHANICAL ENGINEERING)

APPROVE BY,		
 (MR_AZMAN BIN ZAINUDDIN))	

UNIVERSITI TEKNOLOGI PETRONAS MAY 2012

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original
work is my own except as specified in the reference and acknowledgement, and that the
original work contained herein have not been undertaken or done by unspecified sources or
person.

MOHD AIZAT BIN ZAINAL

ABSTRACT

The Personal Electric Vehicle (PEV) is not a new thing or new discovery. The truth is this vehicle is already invented since late 1990s. By using electricity as the main source, PEV can transport one person over trip distance up until 10km. The concept in designing a PEV basically is taken from scooters and cycles. Also, the system architecture of PEV is taken from common electrical vehicle. However, the drive mechanism and the performance of a PEV is still one of the major issues where it is still consider as newbie and it limits the development of this technology. Basically, this project is a continuous work from previous research. The aim of this project is to develop a prototype with facility to test PEV drive mechanism and evaluate their performance based on specification given. In order to complete the objective, the detail design for each part involve in building a PEV is developed so that each part can be analyze. It is also important to consider the material selection used since the PEV prototype will involve series of performance evaluation. At the end of this project, a PEV prototype is developed with facility to test its performance and its drive mechanism.

ACKNOWLEDGEMENT

All praise to Allah, the God of all creation for give me the opportunity to finish this project. A thousand of thank you I wish to my supervisor, Mr Azman bin Zainuddin who has support and guide me whenever I faced the problem regarding this project. As a lecture in the Mechanical Engineering department, he has always been busy with loads of work and meeting. Yet, he never fails to lend a helping hand whenever I need it. I will never forget all the lessons that he had taught me and bear his teachings in mind for my future use.

To my examiner, Mr. Kamal Ariff Bin Zainal Abidin who had been very passionate during evaluating my work as well as give me very useful suggestion on how I should improve my work in future.

To all my friends that has been helping throughout these two semesters in completing this project, thank you very much.

CONTENT

CHAPTER 1 – INTRODUCTION	

1.1 Project Background	1
1.2 Problem Statement	2
1.3 Objectives	3
1.4 Project Scope of Study	4
1.5 Significance of Project	4
CHAPTER 2 – LITERATURE REVIEW	
2.1 SEGWAY Personal Transporter	5
2.2 Personal Electric Vehicle Designed by Syahril Izzat	6
2.3 Personal Electric Vehicle Designed by Zainor Faisal	6
2.4 Other Personal Electric Vehicle.	10
CHAPTER 3 – METHODOLY	
3.1 Brief Description on Methodology	12
3.2 Project Process flow	12
3.3 Gantt Chart.	13
3.4 Tools and Facilities	10
CHAPTER 4 – DESIGN REQUIREMENT	
4.1 Design Theory	14
4.2 Drive System and Steering System	15
4.3 Design Process	16

CHAPTER 5 – RESULT AND DISCUSSION

5.1 Conceptual Design.	26
5.2 Conceptual Design Analysis	28
5.3 Decision Matrix	31
5.4 Calculation For Stability Analysis	32
5.5 Material Selection.	37
CHAPTER 6 – CONCLUSION AND RECOMMENDATION	29
REFERENCESS	30
ATTACHMENT	31

LIST OF FIGURE

Figure 1	Schematic representation of physics of personal electric vehicle	1
Figure 2	General overview of the procedure how people make their decision to buy an electric vehicle.	3
Figure 3	Fish Bone Diagram – Factors Contributed in existing personal electric vehicle (PEV)	4
Figure 4	Segway Personal Transporter	7
Figure 5	PEV proposed by Syahril Izzat	8
Figure 6	PEV proposed by Zainor Faisal	9
Figure 7	Example of commercial product from each segment.	10
Figure 8	Process Flow Chart	12
Figure 9	Gantt Chart for FYP 1	13
Figure 10	Gantt Chart for FYP 2	13
Figure 11	Ackerman theory of turning radius	15
Figure 12	Electric motor performance graph	16
Figure 13	Electric motor model MY1020	22
Figure 14	Battery and charger of 24 V 13 Ah Nimh	23
Figure 15	Example of motor controller and twist grip potentiometer	25
Figure 16	Conceptual design 1	26
Figure 17	Conceptual design 2	27
Figure 18	Drive mechanism used to move the prototype	27
Figure 19	Conceptual Design 1 Analysis	28
Figure 20	Steering mechanism of conceptual design 2	29
Figure 21	Free body diagram of the prototype	33
Figure 22	Free body diagram of the prototype from top view	34
Figure 23	Force analysis	36
Figure 24	Steps and activities performed during prototype development	36

Figure 25	Possible materials that can be used for the PEV prototype development	37
Figure 26	Some of bicycle parts used in the PEV prototype.	40

LIST OF TABLES

Table 1	Specification of MY1020	22
Table 2	Specification of the battery selected	24
Table 3	Conceptual design analysis	30
Table 4	Decision matrix to choose the best conceptual design	32