Estimation of Tire Cornering Stiffness Using Static Method

By Joel Yeo Eng Hsien

Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Engineering (Hons) (Mechanical Engineering)

MAY 2012

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Estimation of Tire Cornering Stiffness Using Static Method

By Joel Yeo Eng Hsien

A project dissertation submitted to the Mechanical Engineering Program Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (MECHANICAL ENGINEERING)

Approved by,

(IR. DR. MASRI B. BAHAROM)

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK

May 2012

CERTIFICATION OF ORIGINALITY

This is to certify that I am accountable for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgement, and that the original work herein has not been undertaken or done by unspecified sources or persons.

(JOEL YEO ENG HSIEN)

ABSTRACT

This paper presents the tire testing apparatus estimating for sideslip angle, lateral forces and cornering stiffness of a tire. This project aims to design, fabricate and test an apparatus to obtain tire cornering stiffness using static method as of the title. The test was manually done using the designed apparatus by measuring the weight on wheel with a weighing scale and the forces required to turn the wheel with a hanging scale, done on the tar road. The estimated results from the apparatus were verified by the results taken from the UTP team 2012 vehicle by the Satellite Data Logger DL2 paired with Race Technology V7 software. It was found that there was a difference of 36% on the result collected using the static apparatus compared to the software data. Additionally, this apparatus presents a lower cost alternative to estimate the cornering stiffness of a tire.

ACKNOWLEDGMENT

All praise and glory I offer to God who has always been faithful and loving to keep me going, and to grant me wisdom and fruitfulness to complete this research victoriously. I owe a tonne-full of thankfulness to my supervisor, Ir. Dr. Masri B. Baharom, my family and my friends. They have been a really great support to me throughout this paper. I hereby would like to thank Stephanie Cristal Daud for assisting me in many ways to come to this point. Last but not least, I would like to show my gratitude to Universiti Teknologi PETRONAS for providing the needed fund, resources and gadget to accomplish this project.

Yours truly, Joel Yeo Eng Hsien

TABLE OF CONTENT

CERTIFICATION	N OF AI	PROVAL.	•	•	•	•	•	i
CERTIFICATION	N OF OI	RIGINALITY						ii
ABSTRACT .								iii
ACKNOWLEDG	MENT							iv
CHAPTER 1:	INTI	RODUCTION						1
	1.1	Background of	f Study					1
	1.2	Problem State	ment					2
	1.3	Objective						2
	1.4	Scope of Study	ý	•	•	•	•	2
CHAPTER 2:	LITH	RATURE REV	IEW					3
	2.1	Sideslip Estim	ation	•				3
	2.2	Cornering Stif	fness Es	timatio	on			4
	2.3	Critical Analys	sis of Li	teratur	e			5
	2.4	Research Mod	el		•		•	6
CHAPTER 3:	МЕТ	HODOLOGY						7
	3.1	Project Phase	1	•				8
	3.2	Project Phase 2	2	•				8
	3.3	Gantt Chart		•				10
	3.4	Key Milestone	s	•				11
	3.5	Tools .		•				11
	3.6	Procedure of U	Jsing Ap	pparatu	IS	•	•	11
CHAPTER 4:	RES	ULT AND DISC	CUSSIO	N				13
	4.1	Results from the	he Tire '	Testing	g Appar	atus		13
	4.2	Result for the	Data Sat	tellite I	Logger	DL2	•	17
	4.3	Verification of	Result	•			•	19
	4.4	Cost .	•	•	•	•	•	20
CHAPTER 5:	CON	CLUSION ANI) REC(OMME	ENDAT	IONS		21
	5.1	Conclusion		•	. –	•		21
	5.2	Recommendat	ions	•	•	•	•	21
REFERENCES								23

LIST OF FIGURES

Figure 1	Sideslip	3
Figure 2	Tire deflect during cornering	6
Figure 3	Research model	6
Figure 4	Methodology	7
Figure 5	Tire testing apparatus in Catia	8
Figure 6	Assembled tire testing apparatus	9
Figure 7	Data Satellite Logger DL2	10
Figure 8	Gantt chart	10
Figure 9	Key milestones	11
Figure 10	Apparatus diagram with force	12
Figure 11	Free body diagram of apparatus	14
Figure 12	Contact patch of 16.6 cm	14
Figure 13	Centre of gravity	18

LIST OF TABLE

Table 1	Testing apparatus results	13
Table 2	Data Satellite Logger DL2 Results	17

LIST OF GRAPH

Graph 1	Cornering Stiffness vs Slip Angle	16
Graph 2	Lateral Force vs Slip Angle	16
Graph 3	Cornering Stiffness vs Cornering Radius	19

ABBREVIATIONS

UTP	Universiti Teknologi PETRONAS
UTP 2012 team	Team gen89 participated in the Shell Eco-Marathon 2012