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ABSTRACT 

The impacts of the dynamic properties of wind and earthquake on the response of a 

newly designed 39-storey reinforced concrete (RC) tall building in Kuala Lumpur, 

Malaysia are investigated. Samples of several types of structural members were chosen 
in a lower level to represent the steel to concrete ratio (AS/A, ) as a technical-economical 

indication of the project. These are two rectangular columns (one at the side 1.000 

x2.200 m and another near the middle 1.000 x l. 600 m), a beam near the middle 

1.000x0.700 m, and a 350 mm shear wall. The commercial structural analysis software, 
ETABS, was applied to simulate the response of the building to a potential local 

earthquake. Structural analysis was based on the British Standard BS8110 using 
Response Spectrum Analysis (RSA). The response of the building to a range of likely 

wind speeds under ultimate load combination was also simulated using the same 

software. Representative responses were then monitored: maximum horizontal 

displacement at the top corner of the building, AS/AC, and peak accelerations. As for the 

wind, equating the maximum roof displacement to that of a hypothetical equivalent 

cantilever beam, a linear relationship for the equivalent modulus of elasticity of the tall 

building, Eeq, is found. It is shown that such parameter could be used for a quick 

calculation of maximum roof displacement of various structural systems for tall 

buildings. Various plots of the response of the structure to earthquake and wind will 

provide for insight into the sensitivity of the design to seismic and wind loading. They 

can be used in the conceptual design of the building where quick technical and 

economical comparison of numerous alternatives is often necessary. The findings could 
disseminate the recent awareness caused by the Sumatra earthquake (December 2004) 

among design engineers of high rise buildings. 
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CHAPTER 1 

INTRODUCTION 

1.1. BACKGROUND OF STUDY 

In line with rapid urbanization in most developing countries, several factors contribute 

to continuous increase of high-rise buildings. They include 

" Growth of urban population and pressure on limited space 

" High cost of land 

" Desire to avoid continuous urban sprawl 

" Need to preserve valuable land 

" Restrictions of local topography 

" Need for business organizations to be close to each other 

" Corporate prestige symbols 

" Business and tourist mobility - need for city center hotels 

" Need to maintain open areas in city centers 

While in many capital cities tall buildings are made of steel, a large majority of tall 

buildings in Malaysia are made of reinforced concrete (RC). This could be explained by 

insufficient production of local steel and abundance of cement and aggregates. 

1.2. PROBLEM STATEMENT 

Most civil engineering structures in Malaysia have been designed with the assumption 

of insignificant earthquakes. A huge tsunami attack caused by a big earthquake offshore 

of Sumatra Island on 26 December 2004 claimed more than 200,000 lives and caused 

astronomical damages in several countries. Bringing about great alertness, design codes 

and practices in Malaysia are being revisited. 
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The detailed history of earthquakes in Malaysia is presented in chapter 2.5. Figure 1.1 

shows seismic maps of the world and South-East Asia. 

Low PA<. aerate High Very high 
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a. Global Seismic Hazard Map 
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b. Seismic Zone Map of South- 
East Asia 

Figure 1.1. Earthquakes in the world and South-East Asia (GSHAP 2002) 

1.3. SCOPE OF STUDY AND OBJECTIVES 

The objectives of this project are: 

" Summarizing the main features of RC tall buildings 

" Outlining the recommendations for earthquake design needed for tall buildings 

in Malaysia in light of the seismic statistics and zone maps. 

" Studying the impacts of various wind loads on the case study building 

" The impacts of a moderate earthquake on the design of an RC tall building in 

terms of 

o Reinforcement requirement (weights to be compared) 

o Concrete consumption 

o Construction cost 

"A summary of the results will then be prepared to be used as a reference in the 

design of high-rise RC buildings subjected to wind and earthquake loadings in 

Malaysia. 
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Implications of building against large earthquakes are of two types: socio-economical 

and technical. Involved in the latter are design aspects, construction techniques, and 

management requirements. The objectives of this study is to investigate the structural 
implications of the design of RC tall buildings against a wide range of wind loading and 

moderate earthquakes (as opposed to no earthquakes traditionally practiced) in 

Malaysia. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. INTRODUCTION TO TALL BUILDINGS 

Ever since the dawn of civilization, tall buildings have fascinated humans. The ancient 

tall buildings were of monumental significance rather than human habitats. However, 

modem tall buildings are primarily constructed as a response to the commercial 
demands, often developed as prestige symbols of corporate organizations. 

Contemporary tall buildings flourished in the late nineteenth century in the United 

States of America. North America continued to lead the construction of tall buildings in 

the world until the late twentieth century. Today, however, Asia has the largest share in 

the distribution of tall buildings with 29.1%, and North America's at 21% (Table 2.1). 

Table 2.1. Tall buildings in regions (2008, reported in Emporis. com) 

REGION COUNTRIES (No. ) PERCENT (%) BUILDINGS (No. ) 

Asia 20 29.1 35,181 

Europe 20 25.7 30,998 

South America 10 21.1 25,452 

North America 17 20.9 25,187 

Oceania 7 2.3 2,753 

Africa 20 1.0 1,228 

TOTAL 94 120,799 
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2.2. STRUCTURAL SYSTEMS OF TALL BUILDINGS 

Buildings are basically divided into three types: steel buildings, reinforced concrete 
buildings, and composite buildings. As mentioned earlier, most of the tall buildings in 

the world have steel structural systems mainly due to its high strength-to-weight ratio 

(Gunel and Ilgin, 2006). However, structural systems of tall buildings in Malaysia are 

either reinforced concrete or composite. 

Numerous methods are available in the literature for classification of structural systems. 

The focus of this report is the structural systems for RC tall buildings. 

Khan (1969) classified structural systems for tall buildings in the form of "Heights for 

Structural Systems". This brought about a new era of skyscraper revolution in terms of 

multiple structural systems (Ali and Moon, 2007). Fazlur Khan's classification for 

concrete buildings is shown is Figure 2.1. 

Figure 2.1. Classification of concrete tall building structural systems by Fazlur Khan 
(Ali and Moon, 2007) 
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Framed buildings: In this type of structure the weight is carried by a skeleton or 
framework. Lateral loading is evenly distributed to each of the frames if they are 

equally stiff. A frame structure must withstand the loads without depending on walls 

and floors. A picture of a reinforced concrete frame building is shown in Figure 2.2. 

Figure 2.2. Reinforced concrete framed building 

Shear walled buildings: A number of parallel shear walls provide resistance to both 

lateral and vertical loads. Shear walls are reliable members for lateral load-taking and 

are, therefore, favorable in design against earthquakes. A shear walled building under 

construction is shown in Figure 2.3. 
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Figure 2.3. A Shear walled building 

Shear walls acting with frames: Framed buildings can be strengthened by shear walls. 
When the occupancy requirements do not favor a pure shear wall system, a combination 

of frame and shear wall will be a good alternative (Nair, 2007). Figure 2.4 shows a view 

of a shear wall system combined with frames. 

:1 GJC 

Figure 2.4. Frame and shear wall combination 
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Framed-tube buildings: In a framed-tube structure, the columns are closely spaced 

around the perimeter of the building while they are connected by beams at every floor 

level. The exterior column spacing usually ranges from 1.25 to 3 meters and the depth 

of the spandrel beams connecting them varies from 60 to 120 cm (Nair, 2006). DeWitt 

Chestnut Apartments was the first building designed by this system. Figure 2.5 shows a 

view of this building. 
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Figure 2.5. DeWitt Chestnut Apartments 

Tube-in-tube buildings: This is a system with framed tube combined with an internal 

and external shear wall core which is helpful in resisting the lateral loads. The inner 

tube is formed by core walls and the outer tube consists of the closely spaced columns 

similar to the framed tube system. One Shell Plaza in Houston, USA (Figure 2.6) is an 

example of tube-in-tube system. 
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Figure 2.6. One Shell Plaza, Houston, Figure 2.7. One Peachtree Center, USA 
USA from Emporis. com from Emporis. coin 

Modular tube buildings: Also called bundled tubes, they are used as a means of 
decreasing the surface area for wind resistance and creating interior space benefits for 

apartment units. One Peachtree Center in Atlanta, USA is an example of concrete 
bundled tube design (Ali, 2001). Figure 2.7 shows a view of One Peachtree Center in 

USA. 
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2.3. EFFECTS OF WIND ON TALL BUILDINGS 

Wind is a complex phenomenon because of the various flow situations caused by 

interaction of wind with structures. As the building goes higher, the wind analysis 

becomes more crucial for the overall design of the building. Several wind 

characteristics and design aspects are presented in this section of the report. 

2.3.1. Wind Speed 

At great heights above the earth's surface, winds are caused by variable solar heating of 

the earth. This upper level wind speed is called the gradient wind velocity. Closer to the 

surface, friction of the air stream over the terrain affects the wind speed. In the latter 

case the wind speed varies from almost zero, at the surface, to the gradient wind speed 

at a height called the gradient height. The gradient height may vary from 500 to 3000 in 

according to Mendis P. et al (2007). 

2.3.2. Design Wind Loads 

The characteristics of wind pressures on a building are a function of (i) the 

characteristics of the approaching wind, (ii) the geometry of the building, and (iii) the 

proximity and length of the upwind terrain (Mendis P. et al, 2007). 

Designing a structure for lateral wind loads takes into account the following criteria 
(Mendis, 2007). 

" Stability against overturning, sliding, and lifting of the building as a whole. 

" Strength of the structural members should be sufficient to avoid failure 

throughout the design life. 

" Serviceability for buildings, where internal and overall deflections should fall 

within the acceptable limits specified in the building codes. 
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2.3.3. Along and Transverse Wind Loading 

The flow pattern generated around a building as a result of wind loading is complicated 
by several factors such as changing speed of the wind and formation of vortices. The 

along-wind loading can be assumed to be the combination of the action of the mean 

wind speed and a variant component caused by wind speed fluctuations. This is the 

basic for the "gust-factor" approach explained in different building codes (Mendis). 

Transverse-wind (cross-wind) loading is caused by the dynamic motion perpendicular 

to the direction of the wind. The effect is more significant for the structures with small 

damping ratios. The most common source of cross-wind vibration is "vortex-shedding". 

Since buildings are not streamlined, the flow is easily separated from the body contour 

creating vortices in different directions. 

Another factor contributing to the transverse excitation is the "incident turbulence". 

This is because of the natural wind properties such as the varying speed and directions 

that induce fluctuating lift and drag forces as well as moments on the building. 

2.3.4. Human Comfort Criteria 

Guidelines on general human perception levels are presented in Table 2.2. 

Table 2.2. Human perception levels (Mendis, et al., 2007) 

Range 
Acceleration 

(m/sect) Effects 
1 < 0.05 Humans cannot perceive motion. 
2 0.05-0.10 Sensitive people can perceive motion; 

hanging objects may move slightly. 
3 0.1 - 0.25 Majority of people will perceive motion; Level of motion may 

affect desk work: long-term exposure may produce motion sickness 

4 0.25-0.4 Desk work becomes difficult or almost impossible; ambulation 
still possible 

5 0.4-0.5 People strongly perceive motion; difficult to walk naturally; 
Standing people may lose balance. 

6 0.5-0.6 Most people cannot tolerate motion and are unable to walk naturally. 
7 0.6-0.7 People cannot walk or tolerate motion. 

11 



8>0.85 Objects begin to fall and people may be injured. 
2.4. EARTHQUAKES AND TALL BUILDINGS 

Sudden release of energy in the Earth's crust causes earthquakes followed by seismic 

waves. During an earthquake, the ground surface moves in all directions. Horizontal 

forces caused by earthquakes are the most damaging to buildings because structures are 

normally designed to withstand vertical gravity loads. 

In order to investigate the potential damage of an earthquake to a particular building, it 

is necessary to establish the nature of the movements that could be induced in the 

building. During an earthquake, buildings behave differently in terms of their own 
dynamic response natures. 

2.4.1. Dynamic Properties of Earthquakes 

The following aspects of ground motion should be considered to determine the potential 

for building damage: 

1. The direction of the motion because movements in different directions produce 

varying effects on a building. 

2. The displacement from the original position. 

3. The acceleration of the motion because it is directly related to the magnitude of the 
imposed load. 

4. The general form of the motion in terms of its duration and frequency. 

Typically, maximum accelerations are the most critical as evident from Newton's 

equation for dynamic force: F= in xa (Force equals mass times acceleration). 

A primary consideration in earthquake design is the magnitude of the earthquake. It 

may be measured by the level of the actual observed damage which is the basis for 

12 



Mercalli method. The levels of damage are reported by drawing a contour map around 

the epicenter in this method. 

Richter scale is used to measure the earthquake intensity at its epicenter. This is a log- 

based scale that assigns a number to each earthquake. Because of the log base, the 

magnitude rises much more rapidly than the numbers indicate (Ambrose and Vergun, 

1999). 

2.4.2. General Design Considerations 

The location of the building is a major consideration in seismic design. The weight of 

the building, the building size, and its natural response to dynamic loading are among 
important considerations. 

Dead load is a stabilizing factor against wind load. It can also be advantageous for 

increasing the damping ratio during an earthquake, but it is mostly disadvantageous as 

the actual force induced by the earthquake are proportional to the mass (weight) of the 

building. 

The building shape should also be considered. Unsymmetrical buildings may need 

extensive bracing to transfer the seismic loads. Stiffness of structural and non- 

structural elements is among the various considerations. Non-structural walls of rigid 

construction connected to bracing structures can be of great concern. 

13 



2.5. EARTHQUAKE HISTORY AND RECORD IN MALAYSIA 

Malaysia is relatively far away from any seismic source zone. The nearest faults are 

about 300 km away from Peninsular Malaysia (Lubukraya, Indonesia to Pulau Ketam, 

Malaysia according to Google Earth) and are located in Sumatra. However, in the past 
170 years, 13 earthquakes of magnitudes between 5.6 and 9.0 on the Richter scale 

originated from Sumatra have been felt in West Malaysia (Rosaidi, 2001). 

In May 1994, residents of Kuala Lumpur felt the tremors caused by an earthquake of a 

magnitude 6.2 on the Richter scale that had its epicenter 570 km away, near Siberut 

Islands (Jichun and Pan, 1995). 

In October 1995, high-rise buildings in Johor Bahru were shaken by a 7.0 Richter 

earthquake that killed 100 people in Sumatra, Indonesia. The maximum observed 

intensity in Johor was estimated at about VI (Strong) on the MM (Modified Mercalli) 

scale (Mansor, Selvanayagam, Adrian, & Suradi, 2007). 

The 1996 earthquake of 5.4 magnitude on the Richter scale which had its epicenter 

about 300 km west of Perak alerted occupants of many high-rise buildings in Penang, 

Perak, Kuala Lumpur and Selangor. The maximum reported intensity was about VI on 
MM scale (Mansor et al., 2007). 

On June 5,2000, occupants of several tall buildings were alarmed by a 7.5 Richter 

earthquake based in Sumatra. According to local newspapers, many people felt the 

tremors and rushed out of their houses. In Johor Bahru, the tremors caused panic among 

residents of Larkin Flats, Lumba Kuda Flats, Bukit Kagar Flats, Sujana Flats and Dwi 

Mahkota Condominium and minor cracks occurred in those buildings (Mansor). 

14 



On November 2,2002, another Sumatran earthquake caused tremors in several cities in 

Peninsular Malaysia such as Penang, Port Klang and Selangor. It put the residents of tall 

buildings in a state of panic and thousands ran away from the buildings (Mansor). 

A year later, on January 22,2003, citizens of Penang, Kuala Lumpur and Kota Bahru 

felt tremors caused by an earthquake of magnitude, Mw 5.8, local newspapers reported 
(Mansor). 

An earthquake having a magnitude of M� - 7.3 occurred on July 25,2004 and caused 

cracks in one apartment in Gelang Patah. The epicenter was located in South Sumatra at 

the longitude of 103.98°E and latitude of 2.41°S. It was more than 400 km away from 

Johor Bahru and 576 km below surface (Mansor). 

The tremendous 9.3 magnitude undersea earthquake that occurred on December 26, 

2004, with an epicenter off the west coast of Sumatra triggered a series of powerful 

tsunamis along the coasts bordering the Indian Ocean. The earthquake was the second 

largest earthquake ever recorded on a seismograph and the waves caused by the 

tsunamis were up to 30 meters high. Killing more than 200,000 people, it was one of the 

deadliest natural disasters in history. Officials described the tsunami as the worst natural 
disaster in Malaysia's history (Star Online, 2004). Penang and Kedah were the worst 

affected areas, where 68 people were killed and more than 100 were injured (WHO, 

2005). 

In the year 2005, there was a significant increase in the number of earthquake 
incidences with 10 major earthquakes ranging from 6.5 to 8.6 on the Richter scale. A 

total of 5 earthquakes with intensities ranging from 6.3 to 7.7 on the Richter scale were 

reported in 2006 (Mansor). 

On March 6,2007, tremors of an earthquake of the magnitude 6.3 which was followed 

by powerful aftershocks and left 70 people dead in Sumatra were felt in Malaysia and 
Singapore, where some office buildings were evacuated. (Star Online, 2007) 
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East Malaysia is moderately active in seismicity. Rosaiedi (2001) reported earthquakes 

of local origin with magnitudes up to 5.8 on the Richter scale. East Malaysia is also 

affected by earthquakes of Southern Philippine, the Straits of Macassar, Sulu Sea and 

Celebes Sea. 

In September 1897, two tremors occurred in Sandakan, Labuan, Kinabatangan, Labuk, 

Sugut and Kudat of Sabah state. It caused fissures on roads and under government 

offices in Sandakan. In May, 1976, minor cracks in at least three buildings were 

observed as a result of weak tremors in Sandakan. Another earthquake of 5.8 magnitude 

on the Richter scale occurred in the same year. In May 1991 an earthquake with a 

magnitude of 5.1 on the Richter scale in Ranau area caused extensive damages to 

buildings and roads. In November, 1994, an earthquake of 5.3 Richter scale hit Tawau, 

Sandakan and Kota Kinabalu and frightened residents of high-rise buildings (Mansor). 

Adnan (2008) developed a microzonation map of Kuala Lumpur City Centre for seismic 

design of buildings. He analyzed the ground response using one-dimensional shear 

wave propagation method using program NERA (Bardet and Tobita, 2001). The results 

of site response analysis at several points were used to develop a contour map of surface 

acceleration and amplification factor for the 500-year and 2500-year return periods. 

The accelerations at the surface of KL city center range between 9% g (90 gal) to 19% g 

(190 gal) for the 500-year return period and between 18 %g to 34 %g for the 2500- 

year return period. Generally the acceleration and amplification factors decrease from 

the west to the east of KL city center (Adnan, 2008). 

Mansor et al (2007) classified ground types of west and east Malaysia according to 

Eurocode 8. Horizontal and vertical design response spectra were then proposed for east 

and west Malaysia. The proposed horizontal design response spectra for East and West 

Malaysia are presented in Figures 2.8 and 2.9. 
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2.6. CONCEPTUAL SEISMIC DESIGN OF BUILDINGS 

This publication by Hugo Bachmann (2003) outlines the art of designing earthquake 

resistant buildings by describing basic principles that are governed by conceptual 

design and the detailing of structural elements and non-structural elements. These 

basic principles are grouped according to the following subjects: 

" collaboration, buildings codes and costs 

" lateral bracing and deformations 

" conceptual design in plan 

" detailing of structural elements 

" foundations and soils 

" non-structural elements and installations 

2.6.1. Basic Principles 

Bachmann (2003) provided 35 principles for the seismic conceptual design of buildings. 

A summary of a number of those principles is presented herewith. 

Architect-Engineer Collaboration: The architect and the engineer should collaborate 

from the beginning because "Serial design" is inefficient. Even the cleverest 

calculations and detailed design cannot compensate for errors of the conceptual seismic 

design. A "parallel design" is therefore much better and considerably more economical. 

Code Provisions: Seismic provisions of the codes should be strictly adhered to. The 

disregard of the seismic provisions of the building codes may result in an inferior 

building. 

Avoid Soft-Story Ground Floors: The fact that bracing elements such as walls which 

are available in the upper floors are substituted by columns in the ground floor attributes 

to collapse of many buildings during earthquakes. This could cause a dangerous sway 

mechanism with plastic deformation at the column ends (Figure 2.10). 
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Figure 2.10. Soft-story ground floors 

Avoid Soft-Story Upper Floors: The lateral bracing should not be weakened or 

omitted in an upper story. This may again cause a dangerous sway mechanism. 

Avoid Asymmetric Bracing: Center of mass of the building must coincide, or be close 

to, its center of resistance. This is to avoid eccentricity and twisting. The bracing 

members should be placed, if possible, along the edges of the building, sufficiently far 

from the center of mass (Figure 2.11). 

Avoid Bracing Offsets: The offsets disturb the direct flow of forces, reduce the 

ductility of the bracing and weaken the resistance. This noticeably reduces seismic 

resistance of the building (Figure 2.12). 
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Avoid Discontinuities in Stiffness: Sudden variations in stiffness and resistance of the 

buildings cause irregularities in the dynamic behavior and distribution of the forces 

(Figure 2.13). 

Figure 2.13. Discontinuities in stiffness 

Avoid Mixture of Columns and Structural Masonry Walls: Reinforce concrete 
frame (combination of slab, column and beam) has a substantially smaller horizontal 

stiffness than the masonry walls. Therefore, the earthquake actions are carried to a great 

extent by the masonry walls (Figure 2.14). 
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Figure 2.14. Mixture of columns and masonry walls 

Match Structural and Non-structural Elements: If the non-structural portions of the 

building are deformation sensitive and are attached to a horizontally soft structure, 

without using joints, any horizontal movement caused by an earthquake may cause 

substantial damages. 

Avoid Short Columns: The shear failure of "short columns" is a frequent cause of 

collapse during earthquakes. Columns under horizontal loads are designed to be stressed 

up to their plastic moment capacity. In case of a short column with a huge moment 

gradient and thus a larger shear force, shear failure often occurs before reaching plastic 

moment capacity (Figure 2.15). 

le 

Figure 2.15. Short columns 
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Avoid Partially Infilled Frames: When parapet walls are infilled into frame structure 

without the addition of joints, the short column phenomenon may occur. This can cause 

shear failure, or - in case of sufficient shear strength -a sway mechanism may develop 

with second order effects (P-A Effect). Figure 2.16 shows a sketch of a partially infilled 

frame. 

Favor Compact Plan Configuration: The dynamic behavior of the building must be 

visualized on plan. In an L-shaped building, the stiffness of two wings may be very 
different. While oscillating differently, the two wings tend to hinder each other. This 

produces a large additional stress on the corners of the wings. The problem can be 

avoided by separating the two wings using joints and making them "dynamically 

independent" (Figure 2.17). 

Make Floor Slabs Rigid: The slabs have to ensure that all the vertical elements 

contribute to the lateral resistance. Slabs made of prefabricated material are not 

recommended in this case. 

Develop a Site Specific Response Spectrum: In certain soils, the local ground motion 

parameters and structural response may differ from values specified by the codes. 

Assess the Potential for Soil Liquefaction: Certain sandy or silty soils saturated with 

water may have sufficient static load bearing capacity. However, when vibrated, they 

will suddenly behave like a liquid (Figure 2.18). 
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CHAPTER 3 

METHODOLOGY 

In order to accomplish the project objectives, the following steps are taken. 

3.1. LITERATURE 

The literature was explored to get an overview of the existing tall buildings, outline the 

main features of earthquake resistant RC tall buildings, and find an appropriate response 

spectrum for a likely earthquake, given the building classification and site soil's 

condition, from the available databases or seismic zone maps in Malaysia (Uniform 

Building Code, 1997). 

Structural systems of tall buildings are investigated and are included in chapter 2 of this 

report. While a brief introduction to tall buildings in general is given in chapter 2, the 

main focus of this report is on RC tall buildings as explained in the introduction. 

3.2. CASE STUDY 

A 39-story high-rise building under construction in Kuala Lumpur is adopted. The 

building is analyzed under different load combinations. Logical combinations of basic 

load cases are constructed using dead, live, wind and earthquake loads. 

Jalan Ampang Building (JA) is a 39-story commercial (office) building with an 

approximate height of 160 meters. The weight of the structure is about 20,000 metric 

tons. The site is located in Ampang Park, Kuala Lumpur and construction started in 

May 2008. 

The structural frame of the building is made of reinforced concrete. All floor levels are 
designed as RC flat slab with RC walls and columns to transfer the vertical loads onto 
the foundation. The lateral stability of the building is taken care of by the lift core walls, 
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staircase core walls and structural frames. A 3D view of the model is shown in Figure 

3.1. 

i_ MMcl; 
; �iilii! tM'! . ii! it 

. ýr--. , -_ 
-r----11i iil1ý 1ý' ý 'ýfýý' 

- __.: _' a 1J/ 441 11 

,, _ ''ý!!: ýiyll; ir -. rý; ' . -. ry, 
-: =: TIM.  Mai! %" ý/ýi'j; ýý Utu, iýý 
.. 

'ýii%-ýiil/ tr'"ý 

Figure 3.1. The JA model in ETABS 

The soil investigation carried out consisted of 9 numbers of 75.3mm boreholes 

advanced by rotary boring machine. The spacing between boreholes varies from 12m to 

30m, which is reasonable, considering that the site lies close to the boundary of possible 
Limestone formation. No bedrock was encountered in the drilling throughout the soil 
investigation works. The cross section of soil profile along four boreholes is shown in 

Figure 3.2. 
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Figure 3.2. Cross Section of Soil Profile along Boreholes 

Standard Penetration Test (SPT) was carried out at 1.5m intervals and the value of N 

was reported together with the number of blow counts for each 75mm penetration. 

Selected disturbed and undisturbed samples of soils at various depths were scheduled 

for laboratory tests to determine the engineering characteristics of the soils and several 

laboratory tests were carried out such as: Natural Moisture Content, Atterberg Limits, 

Particle Size Distribution, One Dimensional Consolidation Test, Direct Shear Box Test, 

etc. 

Soft to medium dense silty sand or sandy silt having SPT `N' varying from 7 to 21 was 

encountered at a depth varying from 1.5m to 12. Om below the existing ground level. 
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Very hard sandy silt having SPT 'N' value more than 50 was encountered at a depth of 

12. Om all the way down to 60. Om below the existing ground level. 

Loose silty sand, stiff silty clay, stiff clayey silt and medium sandy silt were 

encountered at various depths with SPT `N' values no more than 21. 

Plasticity Index (PI) values vary from 8 to 24 for the respective samples. 

The geological location of the site was investigated and is shown in Figure 3.3. 
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Figure 3.3. Geological Map of Selangor 

3.2.1. Design Loadings and Additional Information 

All structural codes suggest guidelines for live loads on buildings. The following 

assumptions are taken in compliance with British Standards. 
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Table 3.1. Substructure 

USAGE/LOCATION Live Load 

(kN/m2) 

Parking 2.5 

Driveway / Ramp 2.5 

Lift Lobby / Staircases / Landing 3.0 

M&E Rooms 7.5 

Table 3.2. Super Structure 

USAGE/LOCATION Live Load 

(kN/m2) 

Parking 2.5 

Driveway 2.5 

Chamber Room 7.5 

Transformer Room 16.0 

Guardhouse 2.5 

Management Room/ Office 2.5 

3.2.1.1. Reinforcement Cover 

Nominal cover is the design depth of concrete cover to all steel reinforcement, including 

links (BS 8110: Part 1,1997, p. 14). The nominal cover should: 

a) be in accordance with bar size and aggregate size for concrete cast against 

uneven surfaces (BS 8110 : Part 1,1997, p. 14); 
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b) protect the steel against corrosion (BS 8110: Part 1,1997, p. 16); 

c) protect the steel against fire (BS 8110 : Part 1,1997, p. 17); 

d) allow the surface treatment such as bush hammering (BS 8110 : Part 1,1997, 

p. 14). 

In order to comply with the BS requirements the following nominal covers are 

considered. 

Cover for reinforced concrete columns = 30mm 

Cover for reinforced concrete beams = 35mm 

Cover for reinforced concrete slabs = 20mm 

Cover for reinforced concrete walls = 25mm 

All concrete faces in contact with water or soil = 35mm 

All other concrete faces = 20mm 

3.2.1.2. Water Proofing 

The open terrace and wet areas shall be protected from leakage by appropriate 

waterproofing system. 

RC retaining walls, wherever required, will be protected from moisture penetration by 

providing an adequate waterproofing system. 

The ground floor slab shall be protected against moisture penetration by providing a 

polyethylene sheet at the base of the slab. 
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3.3. SOFTWARE APPLICATION 

A commercial structural analysis and design program called ETABS (Computers & 

Structures, Inc., 2007) is employed for the analysis and design of the case study 
building under two loading conditions: against no earthquake and against moderate 

earthquake. Figure 3.4 presents a view of a simulation attempt for the dynamic test on a 

prototype tall building using ETABS. 

a. Prototype test of an RC tall building b. Elastic ETABS model 

Figure 3.4. Software simulation of the response of an RC tall building using ETABS 
(Maffei J., 2007) 

3.3.1. Introduction to ETABS 

ETABS is a special purpose analysis and design program developed specifically for 

building systems. ETABS can handle large and complex building models, including a 

wide range of nonlinear behaviors. The following list represents a portion of the types 

of systems and analyses that ETABS can handle: 

  Multi-story commercial, government and health care facilities 

  Parking garages with circular and linear ramps 

  Buildings with steel, concrete, composite or joist floor framing 
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  Buildings subjected to any number of vertical and lateral load cases and 

combinations, including automated wind and seismic loads 

  Multiple response spectrum load cases, with built-in input curves 

  Automated transfer of vertical loads on floors to beams and walls 

  P-Delta analysis with static or dynamic analysis 

  Multiple linear and nonlinear time history load cases in any direction 

  Automated vertical live load reductions, etc. 

Models are created using the graphical user interface. The program offers a few options 
for input and output files such as text, tables and access database files. An example of 

graphical input file is shown in Figure 3.5. 
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Figure 3.5. Graphical input file (Plan view and 3-D) 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

4.1. RESPONSE OF THE BUILDING TO WIND LOADING 

Samples of three structural members are chosen on the ground floor where the 

responses are typically larger: two rectangular columns (one at the side 1.000 x2.200 in 

and another near the middle 1.000 X 1.600 m), a beam near the middle 1.0004.700 in, 

and a 350 mm shear wall at the side that is exposed to the wind. These members are 

shown in Figure 4.1. a. For the ease of reference, Column D1 is called side column and 
Column D3 is referred to as middle column. Three representative responses are then 

monitored: 

0 Maximum horizontal displacement at the top corner of the building 

0 Steel to concrete ratio AS/AC as a technical-economical indication of the project 
0 Peak accelerations (along-wind and across-wind) 
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a. Plan view of the ground floor 
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b. 3D view c. Elevation view 

Figure 4.1. Views of the case study RC tall building in Kuala Lumpur, Malaysia 

The commercial structural analysis and design software ETABS (Computers & 

Structures, Inc. 2007) is utilized to simulate the response of the building under the 

ultimate load condition. In the simulations, the following assumptions are adopted: 

" Ultimate load combination: 1.2 Dead load + 1.2 Live load + 1.2 Wind load 

" Concrete used is grade 50 concrete (fc,, = 50 MPa) with the modulus of elasticity 32 

GPa. 

" Cover to reinforcement in columns 70 mm, in beams 30 to 60 mm, in slabs 20 mm, 
in walls 25 mm 

" The Yield stress of the steel used is fy = 415 MPa. 

" Given the significant stiffness of this wall-sheared frame building, the P-Delta effect 
has been neglected in the analysis. 

" The wind force at each elevation is calculated using the drag force equation and 

velocity distribution as follows: 
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F=0.5C, SpV2A 
(4.1) 

V =V z1 ( 
r 

a 

ýZ 
'ý 

i 
(4.2) 

in which F is the wind force, Cs is the shape coefficient assumed 1.23 for this particular 

configuration of a rectangular face, p is density of air 1.225 kg/m3, V is the wind speed 
in m/s, A is the frontal area of the building, a is an empirical coefficient assumed 0.35 

here, Z,. is the reference elevation usually 10 m above ground surface, and Z is the 

elevation at which the velocity V is sought. Various wind velocities at the reference 

elevation (10 m) are tried: 10,15,20,25 and 30 m/s. The wind force at each floor level 

is computed using the wind velocity at the respective elevation. The forces are 
introduced as the lateral loads combined with the dead and live loads under the ultimate 
load combination. Table I contains the summary of the simulation results for various 

wind speeds. 

Table 4.1. Summary of the simulation results for various wind speed 

Wind Speed (m/s) 10 15 20 25 30 

Max displacement (mm) 389 472 589 737 920 

Middle Column, Axial Load (MN) 47.4 48.1 49.1 50.4 51.9 

Middle Column, Moment (MN. m) 2.7 3.4 4.8 6.1 8 

Middle Column, As (mm) 10600 14810 20660 30870 39977 

Side Column Axial Load (MN) 7.80 7.84 7.89 7.96 8.04 

Side Column Moment (MN. m) 0.97 1.3 1.78 2.21 2.86 

Side Column As (mm2 ) 6400 * 6400 * 6400 * 6400 * 6400 

Top Beam, As(mm) 1970 1990 2012 2041 2077 

Bottom Beam, As (mm) 1563 1570 1581 1594 1611 

Wall, Shear Force (MN) 2.9 2.8 2.7 2.5 2.3 

Wall, Moment (MN. m) 72 91 117 150 191 

Wall, Axial load (MN) 127.3 124.5 120.6 115.5 109.3 

Wall, As/AC 0.25% 0.25% 0.25% 0.54% 1.5% 

Along Wind Acceleration (m/s) 0.075 0.094 0.12 0.151 0.184 

Across Wind Acceleration (m/s`) 0.002 0.007 0.022 0.035 0.055 

*Minimum As is provided 
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4.1.1. Preliminary Observations 

From a comparison of the results with increasing wind speed, a few quick observations 

can be made: 

1. The magnitude of moments for both middle and side columns grows up to three 

times (from 2.7 to 8 for the middle and from 0.97 to 2.86 for the side) 
2. The change in the axial forces of the columns is insignificant as the lateral wind 

forces are not expected to cause serious vertical forces. 

3. Lateral sway of the building has no significant impact on moment and shear 
force of the beam, therefore As shows little change for different wind speeds. 

4. The wall minimum reinforcement for wind speeds as high as 20 m/s at 10 m (52 

m/s at the top floor) shows sufficiency of the minimum steel for the shear walls 

except for extreme wind speeds. 

4.1.2. Maximum Deflections and Story Drifts 

Maximum deflection of the building for various wind speeds, reported in Table 4.1, 

shows a smooth change. Figure 4.2 shows the drift (defined as the ratio of roof 
deflection to the storey height) for all the floors as given directly by the software. As 

the wind forces increase upward, the drift increases with height. The irregularities in 

the curve can be explained by the sudden change in the cross-section at some 

elevations. For example level 6 is the last floor of the podium and represents a jump. 
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Figure 4.2. Drift at each floor when V=20 m/s 

These drifts can be converted accumulatively to show the absolute deflection at each 

level as depicted in Figure 4.3. 
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Figure 4.3. Deflection at each floor when V=20 m/s 

4.1.3. Equivalent Global Eg of the Building 

As a useful exercise, let us regard the building as a cantilever rectangular beam with a 
box shape cross-section 56 in long and 28 m wide under the simultaneous influence of 
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all the lateral wind forces. The second moment of inertia of this section, representing 

an average plan of the building, is I= 82021 m`ý. Figure 4.4 shows the definition sketch 

and basic formula of the deflection of a cantilever beam. In terms of the shape and 

curvature, the curve resembles the deflection in Figure 4.4. 
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Figure 4.4. Deflection of a cantilever beam 

Equating the actual maximum deflection to the one obtained from a detailed calculation 

with all the lateral forces, an equivalent global bulk modulus of elasticity (Eg) for the 

building will result. This exercise was performed for the same range of wind speeds at 

the reference level (10 m). For each wind speed an Eg was found. Figure 4.5 presents 

the variation of Eg with wind speed. This graph, when constructed for each particular 
building, can be used as a handy guide for fast estimation of the maximum displacement 

of the same building under different wind speed. Extending the same exercise for 

various buildings with different classes of structural systems, generalized similar handy 

guides (curves, tables ... ) could be introduced. 
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Figure 4.5. Equivalent Global Eg for various winds 

4.1.4. Wind-Induced Accelerations 

30 

Due to the dynamic nature of wind forces, even if assumed unidirectional and steady, 

the building will experience accelerations, both along the wind and across the wind 

(Mendis et al., 2007). Figure 4.6 depicts these accelerations as calculated using 

empirical formulas, such as those introduced by Taranath (2005). Given the 

categorization of magnitude of the acceleration based on the human perception levels 

(Mendis et al., 2007), the results lie in Class 3 implying `majority of people will 

perceive motion; Level of motion may affect desk work; long-term exposure may 

produce motion sickness. ' 
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Figure 4.6. Wind induced accelerations 
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4.2. RESPONSE OF THE BUILDING TO SEISMIC FORCES 

4.2.1. Response Spectrum Analysis (RSA) 

Response Spectrum Analysis (RSA) is a standard analysis tool in design of structures 

under seismic loads. 

The design spectrum developed by Mansor et al. (Ref. 2.5) was used to monitor the 

response of the building. Representative responses are summarized in Table 3.4. The 

detailed report of the results is given in Appendix. 

Table 3.4. Summary of the results 
Load code SPEC1 SPEC2 SPEC3 UBC1 UBC2 
Max displacement X-direction (mm) 780 120 400 160 140 
Max displacement Y-direction (mm) 240 800 420 1080 1017 
Middle Column, Axial Load (MN) 1.72 8.15 4.16 44.9 32.18 
Middle Column, Moment (MN. m) 3.32 10.7 5.4 7.8 7.5 
Side Column Axial Load (MN) 0.4 0.17 0.9 8.2 6.2 
Side Column Moment (MN. m) 1.98 3.8 1.94 4.6 4.3 
Wall, Axial Load (MN) 21.4 31.3 18.9 149.3 113.5 
Wall, Moment (MN. m) 81.2 243 124 296 281 

In the simulations, the following assumptions are adopted: 

SPEC1: The spectrum applied in X-direction only 

SPEC2: The spectrum applied in Y-direction only 

SPECS: The spectrum applied in both X and Y directions with half intensity 

UBC1: 1.2 (Dead Load) + 0.5 (Live Load) +1 (SPEC2) 

UBC2: 1 (Dead Load) +- 0.9 (SPEC2) 

Uniform Building Code (UBC 1997) requires the designer to use either [1.2 (Dead 

Load) + 0.5 (Live Load) +1 (Seismic Load)] or [1 (Dead Load) +- 0.9 (Seismic Load)] 
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SPEC2 is the most critical for this particular building and is used to construct the 

representative load combinations introduced above. The analysis results show that 

UBCI is the most critical load combination and is therefore used for design purposes. 

Figure 4.7 shows the story drifts in X-direction using UBC 1 load combination. 

Figure 4.7. Story drifts due to UBC1 load combination 

The area of still required for the middle column is As = 38000 mm2 and that of the side 

column is 9000 mm2. Comparing the results with those of the original design (with 

consideration of no earthquake), As is about 40 % higher. However by enlarging the 

sections this amount could well be reduced. 

4.2.2. Time History Analysis (THA) 

Time History Analysis (THA) is being conducted on the case study building. The 8.5 

M, y (Moment Magnitude Scale) earthquake in Southern Sumatra on 12 September 2007 

is scaled down and used to monitor the responses of the building using ETABS. 

The graph shown in Figure 4.8 is being manually digitized. The points obtained from 

the graph will then be given to ETABS to run the analysis. The author hopes to finish 

the analysis before the presentation of this dissertation. 
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Figure 4.8. Time-acceleration graph of 2007 Sumatran earthquake 

4.3. PROBLEMS AND CHALLENGES 

The overall progress of the project has been reasonably smooth. However, a few 

challenges and problems have been encountered and the measures to rectify them were 

taken. 

Since the model is huge and complicated, the processing time required is too long (8 to 

12 hours per single run). In addition to that, the output files are gigantic (7 Gigabytes 

altogether per single run). 

Browsing through literature met minor difficulties in several occasions. Since the 

earthquake records in Malaysia are not widely available, most of the records presented 
in this report are obtained indirectly from the works of other researchers. 
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CHAPTER 5 

CONCLUSION 

Design of buildings against earthquakes has never been widely practiced in Malaysia. 

However, the notorious tsunami in December 2004 offshore of Sumatra alerted 

structural engineers as well as high-rise dwellers. 

An RC tall building near the city centre of Kuala Lumpur, Malaysia, was adopted to 

investigate the impacts of wind and earthquake on such buildings. The structure is a 
framed shear-walled 39-story RC tall office building with 160 m height weighing about 
20,000 metric tons. Commercial structural software, ETABS, was employed to monitor 

responses of a few selected structural members under several loading combinations. A 

series of wind speeds from 10 to 30 m/s at a reference level of 10 m were assumed to 

blow to the face of the building with maximum frontal area and a published response 

spectrum was used to monitor the response of the building to seismic forces. The 

following conclusions can be made from the present study: 

The overall design of the building is considered safe against wide range of wind speeds 

up to 30 m/s at an elevation 10 m above the ground. Maximum deflection at the top, 

forces in representative structural members (two columns, a beam and a shear wall), 

wind-induced accelerations, and the required reinforcement were monitored. Given the 

variation of wind velocity along the vertical, the building can withstand winds of 150 

km/hr. However, accelerations for high wind speeds are undesirable for serviceability 

purposes. 

Equating the top deflection with that obtained from a hypothetical equivalent cantilever 
beam, an equivalent bulk modulus of elasticity has been introduced for the whole 
building corresponding to each wind speed. The values could be used for a quick 

estimation of the maximum lateral deflection of the building for various wind speeds 

through application of simple formulas of beam deflection. 
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The analysis of the response of the structure to seismic forces was done using a 

response spectrum developed for West Malaysia. The critical direction of the building 

was subject to the loading and several load combinations were introduced to the 

software. Two representative columns were designed to determine the area of steel 

required. It is concluded that a 40 % increase is expected if the member sizes are to 

remain the same. However, the representative shear wall has to be redesigned using a 
bigger section. 
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APPENDICES 

Load Combination Dead Load Live Load Seismic Load 

SERV 1 1 0 

1 UBC 1 1.2 0.5 1x SPEC I 

1 UBC2 1.2 0.5 1x SPEC2 

1UBC3 1.2 0.5 1x SPEC3 

2UBC 1 +- 0.9 0 1x SPEC I 

2UBC2 +- 0.9 0 1x SPEC2 

2UBC3 +- 0.9 0 1x SPEC3 

EQDL1 1 0 1x SPEC1 

EQDL2 1 0 1x SPEC2 

EQDL3 1 0 1x SPEC3 
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Eq. Eq. 
Story Force Height Force height 

39 122.0 157.95 
38 119.3 152.95 
37 111.9 147.95 
36 109.4 143.15 736.9 143.4929 
35 93.4 138.35 
34 91.4 134.15 
33 89.4 129.95 
32 87.4 125.75 
31 104.4 121.55 
30 101.9 117.35 
29 99.3 113.15 764.1 111.05 
28 96.7 108.95 
27 94.1 104.75 
26 91.5 100.55 
25 88.8 96.35 
24 86.0 92.15 
23 83.3 87.95 
22 80.5 83.75 
21 77.6 79.55 
20 74.7 75.35 671.1 75.35 
19 71.8 71.15 
18 68.8 66.95 
17 65.7 62.75 
16 62.6 58.55 
15 59.5 54.35 
14 56.2 50.15 

13 52.9 45.95 263.8 45.95 
12 49.4 41.75 
11 45.9 37.55 
10 42.2 33.35 
9 38.4 29.15 
8 34.5 24.95 
7 21.6 20.75 
6 19.4 17.75 216.8 16.67 
5 17.0 14.75 
4 14.5 11.75 
3 15.4 8.75 
2 11.0 4.85 
1 2.7 0.65 

Total 

Sample spreadsheet to calculate Eg for different wind loads 

Deflection 

0.0190465 
0 
0 
0 
0 
0 
0 

0.0129904 
0 
0 
0 
0 
0 
0 
0 
0 

0.0057692 
0 
0 
0 
0 
0 
0 

0.0009057 
0 
0 
0 
0 
0 
0 

0.0001046 

0.0388164 
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Eq. Eq. 
Story Force Height Force height Deflection 

39 122.0 157.95 
38 119.3 152.95 
37 111.9 147.95 
36 109.4 143.15 736.9 143.4929 0.0190465 
35 93.4 138.35 0 
34 91.4 134.15 0 
33 89.4 129.95 0 
32 87.4 125.75 0 
31 104.4 121.55 0 
30 101.9 117.35 0 
29 99.3 113.15 764.1 111.05 0.0129904 
28 96.7 108.95 0 
27 94.1 104.75 0 
26 91.5 100.55 0 
25 88.8 96.35 0 
24 86.0 92.15 0 

23 83.3 87.95 0 
22 80.5 83.75 0 
21 77.6 79.55 0 
20 74.7 75.35 671.1 75.35 0.0057692 

19 71.8 71.15 0 
18 68.8 66.95 0 
17 65.7 62.75 0 
16 62.6 58.55 0 
15 59.5 54.35 0 
14 56.2 50.15 0 
13 52.9 45.95 263.8 45.95 0.0009057 
12 49.4 41.75 0 
11 45.9 37.55 0 
10 42.2 33.35 0 
9 38.4 29.15 0 
8 34.5 24.95 0 
7 21.6 20.75 0 
6 19.4 17.75 216.8 16.67 0.0001046 
5 17.0 14.75 
4 14.5 11.75 
3 15.4 8.75 Total 0.0388164 
2 11.0 4.85 
1 2.7 0.65 

Sample spreadsheet to calculate Eg for different wind loads 
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