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ABSTRACT 
 

 

An analytical solution for the first order reversible reaction was derived using the flow 

theory approach. Reversible reactions are the chemical reactions that results in 

an equilibrium mixture of reactants and products. The usage of flow graph theory was 

simpler and more direct in solving the exact solution which then will eliminate the 

classical integration, Laplace transform and eigenvalue methods. The flow graph was 

based the image of reaction stoichiometry and the ratio of consumption and formation 

flow graph was used to find an analytical solution of the reaction system. In this report, 

the analytical solutions for the two species and three species reaction system were 

derived and verified with the numerical integration of the governing ordinary differential 

equations by using MATLAB software.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Chemical_reaction
http://en.wikipedia.org/wiki/Chemical_equilibrium
http://en.wikipedia.org/wiki/Reactant
http://en.wikipedia.org/wiki/Product_(chemistry)


v 

 

ACKNOWLEDGEMENT 

 
 

 

In the name of Allah, the Most Gracious and the Most Merciful 

 

Alhamdulillah, all praises and thanks in Almighty Allah S.W.T for His Blessing in 

giving the author strengths and sufficient time in completing this project. Special 

appreciation goes to my supervisor, Dr. Periyasamy Balasubramanian from the Chemical 

Engineering Department Universiti Teknologi PETRONAS for his endless supervisions 

and advice for the whole two semesters. Special thanks to the Coordinator Chemical 

Department, Dr. Nurhayati Mellon for guiding and smoothing all the requirements that 

the author needs to fulfill throughout the Final Year Project. Not forgotten, the author 

would like to thank all her colleagues, technician and housemate who have contributed 

directly and indirectly throughout the final year project for their kindness. Last but not 

least, deepest gratitude to the author’s family, Hasan Bin Muda and Salmah Bt Rani for 

their support, understanding and encouragement throughout this project. Thank you very 

much. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

TABLE OF CONTENTS 

 

CERTIFICATION OF APPROVAL       ii 

CERTIFICATION OF ORIGINALITY      iii 

ABSTRACT          iv 

ACKNOWLEDGEMENT        v 

LIST OF FIGURES                    viii 

LIST OF TABLES          viii 

NOMENCLATURE         ix 

        

CHAPTER 1:  INTRODUCTION 

1.1 Background Study     1 

1.2 Flow Graph Theory     2 

1.3 Problem Statement     3 

1.4 Objective and Scope of Work    4 

1.5 Relevancy and Feasibility of Work   4 

 

CHAPTER 2:  LITERATURE REVIEW 

   2.1 Literature Review and Theory   5 

   2.2  Model Equations for Reversible Reaction System 7 

  

CHAPTER 3:  METHODOLOGY 

3.1 Methodology      9 

3.2 Gantt Chart      10 

3.3  Key Milestone      11 

3.4 Hardware/Tool     11 

       

CHAPTER 4:  RESULT 

4.1 Analytical Solution For The Two Species  

            Reacting System     12 



vii 

 

               4.1.1 Consumption Flow Graph    13 

`     4.1.2 Formation Flow Graph   15 

 

   4.2 Analytical Solution For The Three Species  

                                                Reacting System     18 

4.1.1 Consumption Flow Graph    19 

`    4.1.2 Formation Flow Graph   20 

  

CHAPTER 5:  CONCLUSION       25 

  

REFERENCES         26 

  

APPENDICES         28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

 

 

LIST OF FIGURES 
  

Figure 1: Example of Flow Graph of Two Species in Reversible Reaction   2 

Figure 2: The Methodology of Analytical Solution for the Reaction System  

Through Flow Graph Theory Approach     9 

Figure 3: Example of MATLAB       11 

Figure 4: The Consumption Flow Graph for Two Species Reacting System  13 

Figure 5: The Formation Flow Graph for Two Species Reacting System  

(Reactant S1)         15 

Figure 6: The Formation Flow Graph for Two Species Reacting System  

(Product S2)         16 

Figure 7: Concentration-Time Curves for Two Species Reacting System  17 

Figure 8: Kinetic Model For Three Species Reacting System   18 

Figure 9: The Consumption Flow Graph For Three Species Reacting System 19 

Figure 10: The Formation Flow Graph for Three Species Reacting System  

(Reactant S1)         20 

Figure 11: The Formation Flow Graph for Three Species Reacting System 

 (Product S2)         21 

Figure 12: The Formation Flow Graph for Three Species Reacting System 

 (Product S3)         22 

Figure 13: Concentration-Time Curves for Three Species Reacting System  24 

 

 

LIST OF TABLES 

 
Table 1: Gantt Chart  Throughout FYP I & FYP II     10 

Table 2: Project Milestone        11 

Table 3: Hardware/Tools        12 

 

 

 

 



ix 

 

 NOMENCLATURES 
 

cs    = vector of molar concentration of the species si (i varies from 1 to Ns) 

F1    = label for the initial feed fraction of the species 1 in the formation flow graph 

K   =matrix form of the kinetic constants (h
-1

) 

      = kinetic constant for the formation of product j from the reactant i by virtue of 

chemical reaction (h
-1

)  

     number of species for a chemical reaction 

     = label for the formation of final product from the reactant    in the formation and 

consumption flow graph 

Rk   = matrix form of coefficients of the kinetic equations 

      = rate of reaction for the species 1 

      = reaction time (h) 

      = symbol for reacting species 1 

      = sum of kinetic constants (h
-1

) 

ΔC  = determinant of consumption flow graph 

Δ    = determinant of formation flow graph for species 1 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background  

 

In the chemical process industry, desired product is produced from a variety of starting 

materials through a succession of either physical or chemical treatment steps profitably. 

The raw materials undergo a number of physical treatments to put them in the form 

which they can be reacted chemically with a certain rate of reaction (Levelspiel, 1999). 

 

A reversible reaction is a common reaction that has been used in industry in order to 

optimize the production of desired product (Bursten, 2003). This reaction proceeds in 

both directions forward and backward simultaneously. The reverse and forward reactions 

will occur at the same rate and then, it achieves equilibrium. In this project, the main 

objective of the work is the derivation of analytical solution for a reversible reaction 

with two and three species. 

 

There are two methods that can be used to solve the first order of reversible reaction 

which are the analytical method and numerical method. The main advantage of the 

numerical method is the differential equations are easy to write and has been applied in 

the specialized software, however, numerical method always gives the solutions with an 

approximation and this may cause some errors. Other than that, the process also reach 

convergence slower compared to the analytical solution. According to Bhusare et al 

(2010), analytical solution offers explicit mathematical description of without using 

numerical method and it can be calculated by using classical integration, Laplace 

transform, eigenvalue methods, flow graph theory and so on. The analytical solution 

provides the solution with the higher accuracy. Then, it is important to obtain the 

suitable analytical solution in calculating the kinetics constant and characteristics of the 
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reaction. In this project, the flow graph theory has been applied to derive the exact 

solution for the first order reversible system which then eliminates the usage of other 

methods. A flow graph is graphical diagram which represents the reaction stoichiometry. 

It consists a network which nodes (system variable) are connected by an edge either 

outgoing or ingoing which acts as a signal multiplier.  

 

1.2 Flow Graph Theory 

 

Flow graph theory is one of the methods that used in finding the analytical solution for a 

process of linear differential equations. It is a graphical diagram that models logic 

patterns by using connective functions and transitions. The model will be explained the 

relations and reaction mechanism of the systems. In finding the analytical solution of the 

reaction, the flow graph represents the reaction stoichiometry. Then, it will be drawn 

based on a set of simultaneous linear algebraic equations or a linear algebraic or a linear 

differential equations system, which are written starting from a chemical reactions 

included into a mechanism which normally consists of the reactants and products.  

 

 

 

 

 

 

 

     

  Figure 1: Example of Flow Graph of Two Species in Reversible Reaction  

 

From Figure 1, the „a‟, ‟b‟ and ‟c‟ are the edges. The edge is connected two nodes and 

the gain of the edge is the transmittance. The transmittance can be expressed in terms of 

transfer function between two nodes. “A” and “B” are the internal nodes. The internal 

node has both ongoing and outgoing edges. For the reversible reaction, the reactant and 

product usually have the internal nodes instead of the input node or output node. It is 

B A 

𝐼1 

a 

b

a 
c

a 
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because in the reversible reaction, the reactant and product are constantly reacting and 

being produced.  Input node (known as source) has only outgoing edge which is usually 

represented the reactant species. Meanwhile, the output node has only the ongoing edges 

as I1. 

 

The main function of the flow graph is to determine the ratio of formation and 

consumption flow graph through the derivation of main determinant of the system. The 

flow graph is used to represent the evolution of a physical system and to obtain the 

relationships between the system variables. The flow graph theory will helps in 

obtaining the kinetics characteristics of chemical reaction scheme and the concentration 

of the species or reactant in the reactions. It is also does not required to write the 

homogenous or non-homogenous linear differential equations which is more complex.  

 

1.3 Problem Statement 

 

Solving the analytical solution for the kinetic equations of chemically reacting system is 

important in optimizing the formation of products from reactants. Other than that, it also 

can describe the kinetics of chemical reactions and the oscillations in reacting system. 

However, it is complicated to solve the analytical solution by writing the homogenous or 

non-homogenous linear differential equations especially for the reaction systems with 

more number of species (Socol at el, 2009). Researchers have derived the analytical 

solution for the two and three species reaction systems by using Laplace transform, 

numerical integration and eigenvalue methods. Flow graph theory is simple method that 

utilizes the determinant concept to derive an analytical solution for the reacting species. 

This method eliminates the usage of other chemical methods such as Laplace transform, 

eigenvalue problem and so on. Thus, it has been proposed to demonstrate the 

applicability of the flow graph theory for deriving analytical solution of the reversible 

reaction systems. 

 

 

 

 

 

 



4 

 

1.4 Objectives and Scope of Work 

 

The objectives of this work are: 

1. To derive an analytical solution for the kinetic equations of the two species 

reacting system using flow graph theory approach. 

2. To derive an analytical solution for the kinetic equations of the three species 

reacting system using flow graph theory approach. 

In this research, the flow graph theory approach will be applied in finding the 

consumption and formation flow graph which then leads to the derivation of analytical 

solution for the kinetics equation. 

 

1.5 Relevancy and Feasibility of Work 

 

Based on the studied that has been done by Bhusare et al, 2010, analytical solution is 

more accurate compared to the numerical solution due as the numerical solution usually 

will give an approximation which may lead to error. Then, kinetic modeling of analytical 

solution for the first order reversible reaction system through flow graph theory 

approach is important in chemical process industry nowadays as it can control and 

optimize the selectivity and activity of feedstock which produce the desired product 

profitably. Other than that, the information on the kinetic rate and constants is also 

important in order to improve the yield and selectivity.   
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Literature Review and Theory 

 

In the literature, researchers had developed explicit mathematical expressions for the 

first order reversible reactions using various techniques such as Laplace transforms, 

eigenvalue methods, and so forth. In 1971, a general method for the analytical solution 

of the first order reversible reactions was proposed using eigenvalue method (Chu, 

1971). Later, the analytical solution for the two and three species reversible reacting 

system was derived using eigenvalue method (Pogliani et al, 1996), approximation 

method (Chrastil et al,1993), and Laplace transforms (Korobov, 2011). 

According Socol and Baldea (2006), in solving the homogeneous and non-homogeneous 

differential equation systems, the application flow graph theory is much simpler and 

direct compared to the employment of Laplace transform. Laplace transform is classical 

method for determining the solution for the kinetic equations. Laplace transforms deals 

with the convolution integral for non-homogeneous systems. In many cases, it is very 

simple operation and also the classical method requires integrals when the input function 

is complicated one (Bhusare et al, 2010). The flow graph is simpler as the analytical 

solution can be solved by defining the consumption and formation determinant between 

the system variables. It is defined by Socol et al (2009) that the consumption determinant 

is the main determinant of the system while the formation determinant is the determinant 

from the flow graphs indicate a gain of the chosen variable starting from an input mode.  

 

Other than that, the determinants can be defined starting with the reaction mechanism. 

The flow graph theory can be obtained rightly from a reaction mechanism. Besides that, 

from the journal entitled „A New Paradigm in Kinetic Modeling of Complex Reaction 
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Systems‟, it stated that the flow graph theory in chemical kinetics eliminates the usage of 

Laplace transform in order to find the solution for the system which arise as a result of 

species mole balance in a constant density batch reactor/ideal plug flow reactor (Bhusare 

et al, 2010). 

 

Besides that, in the complex pharmacokinetic (PK) model, the analytical solution 

through the flow graph theory can directly obtained by inspection of the graphical 

representation of the model. Pharmacokinetic analysis is the analysis that involves the 

complex drug absorption and disposition. The analytical solution also can be obtained 

for the linear differential equation systems by using the secular equation and eigenvalues 

method, constant variation method and classical integration. However, it is more 

complicated compared to the flow graph theory (Bursten, 2003). 

 

There are mainly two types of chemical reactions which are reversible and irreversible 

reactions. The reversible reaction is important as the reactants will be used up until zero 

reactants in the process. The examples of reversible reactions are 

1)                

- The hydrogen and oxygen burn to become water and can be converted back 

by electrolysis. 

2)                           

-     Formation of sodium carbonate can be reversed. 

3)                      

- The conversion of the phosphoric solution into dihydrogen phosphate. 

 

Reversible reaction will optimize the production and reduce the cost for the systems. The 

information on the kinetics constants will helps in controlling the activity of the 

feedstock and the selectivity of the products in order to reduce the formation of the 

byproducts (Bursten, 2003). 
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2.2  Model Equations for Reversible Reaction System 

A general stoichiometry of the first order reversible reaction system
 
(Connors, 1990) can 

be represented as 

 
,

,

j i

i j

k

i jk
s s

 

Where,      is the kinetic constant for the formation of product j from the reactant i by 

virtue of chemical. 
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In a matrix K, the subdiagonal and superdiagonal elements represent the kinetic 

constants for the forward and reverse reactions, respectively.  Each column represents 

the kinetic constants for all possible parallel reactions from the reactant.  It is assumed 

that the reaction occurring in a batch reactor is similar as in an ideal plug flow reactor as 

the unsteady state mole balance in a batch reactor is similar to that of steady state mole 

balance in an ideal plug flow reactor when the volume change due to chemical reaction 

is neglected. The vector form of kinetic equations for the first order reversible reactions 

can be represented as 

sks cRc                

Where, cs is a vector of molar concentration of the species si (i varies from 1 to Ns), and 

Rk is a matrix form of coefficients of the kinetic equations and is given by 
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The properties of matrix Rk are:  

(i) Sum of each column of the matrix is zero. 

(ii) Sum of all the kinetic constants for the disappearance of reactant i is 

represented by the diagonal elements, and 

(iii) Subdiagonal and superdiagonal elements represent the kinetic constants for 

the forward and reverse reactions, respectively.  

Then, a general exact solution is derived by using flow graph theory approach and 

therefore, it is decided to use this approach for the simple chemical reaction schemes 

such as two and three species reacting systems. 
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CHAPTER 3 

METHODOLOGY 

3.1 Methodology 

The methodology involved in this project work as given below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The Methodology of Analytical Solution for the Reaction System through         

Flow Graph Theory Approach. 

This methodology can be refer from the journal entitled ‟New Method of Finding the 

Analytical Solutions Directly on the Base on The Reaction Mechanism (Socol et al, 

2009)‟, „A New Paradigm in Kinetic Modeling of Complex Reaction Systems (Bhusare 

et al 2010)‟ and „A New Approach of Flow Graph Theory Applied in Physical 

Chemistry (Socol et al, 2006)‟.  

 

Flow Graph Theory 

Reaction Schemes 

Derivation of 

Analytical Solution 

Verification 
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3.2 Gantt Chart 

 

Table 1: Gantt Chart  Throughout FYP I & FYP II

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Briefing from the coordinator 

First Meeting With Supervisor

Preliminary Research Work

Compilation and Submission of Extended

Proposal Defense

Derivation Of Analytical Solution

Proposal Defense

Interim Draft Report

Submission of Interim Draft Report 

Compilation and Submission of Interim

Report

Project Work Continues

Briefing from the Coordinator

Submission of Progress Report

Project Work Continues                                         

Pre-SEDEX

Submission of Draft Report

Compilation And Submission of Dissertation

(Soft Bound)

Compilation And Submission Technical Paper

Oral Presentation 

Submission of Project Dissertation (Hard

Bound)

Activity
Week No/ Date

M
ID

 S
E

M
E

S
T

E
R

 B
R

E
A

K

S
E

M
E

S
T

E
R
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E
A

K

M
ID

 S
E

M
E

S
T

E
R

 B
R

E
A

K
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3.3 Project Milestone 

 

The milestone of this work is shown in the table below: 

No.  Activities Timeline 

1 Derivation of analytical solution for two species 

reacting system using the flow graph theory. 

FYP I 

2 Derivation of analytical solution for three species 

reacting system using the flow graph theory. 

FYP II 

Table 2: Project Milestone 

 

3.4 Hardware/ Tools 

 

No Name Description  

1. MATLAB  

  

-To verify the analytical solution of the 

reaction. 

Table 3: Hardware/Tools 

 

Matrix Laboratory (MATLAB) is one of the programming languages which apply the 

application of algorithm, the matrix manipulations. It is able to perform the analytical 

solutions for the mathematics, science and engineering problems. Other than that, 

MATLAB is widely used as it is able to process image and signal, control design, 

communications, financial modeling and analysis, communications and computational 

biology. It is because MATLAB is faster in solving the technical computing problems 

compared to the other programming language such as C++, C and Fortran. 

 

Figure 3: Example of MATLAB 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Analytical Solution For The Two Species Reacting System 

 

The stoichiometry of the two species reacting system which taken place in a batch 

reactor is given by  

 

 

S1 S2.                

 

Kinetic models represent the molecular interactions in the mixture that occur within the 

reaction. It involves the broken of chemical bonds and reformation of the new 

compound. It offers the best accuracy and reliability. Firstly, to describe the reversible 

reaction, a kinetic model will be constructed in order to characterize the reaction 

mechanisms using the system linear differential equation. The mechanism composes of a 

few of reaction pathways and the rate coefficients for each reaction pathway. Besides 

that, the mechanism also consists of the information on the reverse rate coefficients and 

its thermodynamic properties. 

It is assumed that the reaction occurs in the constant-volume batch reactor. The rate of 

reaction for the reactant, S1 and product, S2 are (Frost, 1961) 

        1 1   1      

       1 1   1      . 

 

 

 

 

 

𝑘  1 

𝑘1   
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 The mole balance equation for the reactant S1 and product, S2 are 

    
  

     1 1   1      

    
  

    1 1   1       

 

The analytical solution for the above-mentioned kinetic equations can be written as  

   ∑     p   

  

  1

      

Where, i=1,2,……   and    is the number of species for a chemical reaction. 

 

4.1.1 Consumption Flow Graph  

The determinant of the systems can be determined using matrixes, consumption flow 

graph and formation flow graph. Determinant suggests on the evolution of the species 

involved in the reaction as a function of time. The consumption determinant can be 

calculated based on the consumption flow graph and is represent as 

      

                 

 

 

 

Figure 4: The Consumption Flow Graph for Two Species Reacting System (Vlase, 2008) 

The consumption determinant for the above-mention flow graph is given by 

               

Δ C =       |

   1         1  

    1  1        
|  .             

 

𝑆1  

 

𝑘1   

𝑃1 𝑃  

𝑘𝑠    𝑘𝑠    

𝑘  1 

𝑆1  
 

𝑆  
 

𝑆1  
 

𝑆  
 

𝑆  
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The values of   are determined by making Δ C =0. The resulting expression is show 

below. 

Δ C= (   1          1             1 1                                   

If            the expression for the Δ C is 

    (   1   1  )     

Then, the ɤ values are 

 1   ;       1   1   or  1     1   1  ;     0. 

Assume that the consumption determinant is not equal to zero. 

Δ (    ∏   
  1
   

        . 

 

The consumption determinant can be defined as the main determinant in the system 

which is the image of equivalent mechanism. It describes on the loss in all variables 

values and a gain of the output values as the substances is transforming to the final 

product. Meanwhile, the formation flow graph explains on the formation that occurs 

throughout the system and a gain of a variable starting from the input node which is the 

source (F).  
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4.1.2 Formation Flow Graph 

The formation flow graph is represented from the consumption flow graph with the 

consideration the interest species being a target one and by adding a new source input. 

i) The formation flow graph for the reactant S1 can be represented as 

 

 

 

 

 

 

Figure 5: The Formation Flow Graph for Two Species Reacting System (Reactant S1) 

Then, the determinant for the formation flow graph is given by: 

               

Δ     =       |

 1    1  

  1        
|  .           

Where      = 0, 

This result 

Δ      1 =  1        ). 

It results in: 

 1 1  
      1 

    1 
 
 1    1    1 

     1 
 

 1   
        

      
 
 1    1      

  1     
  

 

 

𝑆1  
 

𝑘1   

𝑘  1 

F1

Typ   quation h r  𝑆1   

𝑃  

𝑘𝑠    

𝑆   
 

𝐹 
 

𝑆  
 

𝑆1  
 

𝑆  
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i) The formation flow graph for the product S2 can be represented as 

 

 

 

 

 

 

Figure 6: The Formation Flow Graph for Two Species Reacting System (Product S2) 

The determinant for the formation flow graph is given 

                               

Δ       =          |

   1        

    1  
|  .     

This results the following expression 

Δ        = 1     1.        

Then, the constant 

   1  
      1 

    1 
 
 1      1 

     1 
 

     
      1 

    1 
 
 1      1 

  1     
  

The analytical solution for the reactant S1 and product S2  

       
 1  

(   1   1  )
  1      1  p(     1   1    ) 

       
 1    1 

(   1   1  )
     p (    1   1    )  

 

𝑘1   

𝑃1 

𝑘  1 

𝑆1   

   

𝑆1  
 

F 

𝑆1  
 

𝑆   
 

F1

Typ   quation h r  
𝑆1  
 

𝑆   
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The time evolution of molar concentration S1 and S2 are show in Figure 7 for the initial 

concentration of S1 is 1      ⁄  and the kinetic constants    1 and  1   are 1.2 and 0.3 

respectively. 

 

Figure 7: Concentration-Time Curves for Two Species Reacting System 

 

Where: 

Num = numerical solution, 

Anal = analytical solution. 

 

From the graph in Figure 7, it can be seen that the analytical solution is verified in the 

numerical integration of the kinetic equation using ODE45 solver. The ODE45 solver 

will solve the numerical solution by defining the initial value separately and the range 

for which the differential equations are solved within the function. Meanwhile, in order 

to find the analytical solution, the analytical values will be put manually. Then, it was 

observed that both solutions are consistent. 
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4.2 Analytical Solution For The Three Species Reacting System 

 

The stoichiometry for the three species reacting system can be represented as: 

 

 

 

 

 

 

 

 

 

 

           Figure 8: Kinetic Model For Three Species Reacting System 

 

It was assumed that the reaction occurs in the constant-volume batch reactor. The rate of 

disappearance of reactant S1 and production S2 and S3 are 

     (   1     1)      1        1      

       1     ( 1       )             

       1             ( 1       )     
 

The mole balance equations for the species S1, S2 and S3 are 

    
  

  (   1     1)      1        1      

    
  

    1     ( 1       )             

    
  

    1             ( 1       )    
  

The analytical solution for the three species reacting system can be represent: 

       ∑      p(    ) 

  

  1

 

𝑆1 
 

𝑘1   

𝑘  1 
𝑘    

𝑘  1 

𝑘    𝑘1   

𝑆  
 

𝑆  
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Where     =
        

        
;           . 

 

4.2.1 Consumption Flow Graph 

    

The consumption flow graph theory for the three species reacting system is developed 

by adding the formation of the final products with the zero kinetic constants. It is shown 

in Figure 9. 

 

 

 

 

 

 

 

 

 

 

          

  Figure 9: The Consumption Flow Graph For Three Species Reacting System 

The consumption determinant for the three species reacting system is 

 

 

ΔC=             

   1     1     1    1  
    1  1              
    1       1         

    . 

 

After expanding the determinant, the following expression is obtained with 

rearrangement 

Δ C =      (   1   1      1   1            )       1 1    1   1   

     1      1        1      1          1        1 1      1       . 
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The roots of the equation are 

Δ C =       (   1   1      1   1            )       1 1    1   1   

     1      1        1      1          1        1 1      1        

 1=0;    
  √     

 
;    

  √     

 
. 

 

Where         and       . 

4.2.2 Formation Flow Graph 

The formation flow graph of the reactant S1 is depicted in Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: The Formation Flow Graph for Three Species Reacting System (Reactant S1) 

The determinant for the above mentioned formation flow graph is  

 

 

Δ       =             
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It results  

Δ       =  1     
       ). 

Where    1    1            ; 

   1   1        1    1      . 

 

The formation flow graph of the product S2 is shown in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: The Formation Flow Graph for Three Species Reacting System (Product S2) 

The determinant for the formation flow graph is  
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It results 

Δ       = 1        1  ). 

Where  =   1 1      1        1    . 

 

The formation flow graph of the product S2 is depicted in Figure 12. 

 

 

 

 

 

 

 

 

 

 

 Figure 12: The Formation Flow Graph for Three Species Reacting System (Product S3) 

The determinant for the above mentioned formation flow graph is 

 

 

 Δ   =             

   1     1     1   1  
    1  1          

    1       
      . 

 

It results 

Δ       =  1        1  ). 

Where      1        1 1      1       

Finally, the analytical solution for species S1, S2 and S3 are;  
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        1  (
 

    
 

   1    

         
  p       

     1  
         

  p      ) 

 

        1  (
 

    
 

   1    

         
  p       

     1  
         

  p      )  

 

Where 

 1=0;    
  √     

 
 ;    

  √     

 
 

           1   1      1   1                  1     1; 

          1 1    1   1        1      1        1      1          1     
   1 1      1             

   1    1            ; 

   1   1        1    1       

 =   1 1      1        1     

     1        1 1      1    . 

 

 

 

Then, three expressions are solved to determine how the molar concentration of the 

species S1, S2 and S3 change with respect to time with the following parameters. Initial 

concentration of S1 is 1       . The kinetics constant values are  1   = 1.2,    1 = 0.12, 

     = 0.56,      = 0.01,    1 = 0.25 and  1   = 0.05. 

 

The time evolution of molar concentration of the species S1, S2 and S3 are shown in 

Figure 13. 
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Figure 13: Concentration-Time Curves for Three Species Reacting System 

 

Where: 

Num = numerical solution, 

Anal = analytical solution. 

 

From the graph in Figure 13, it can be seen that the analytical solution is verified in the 

numerical integration of the kinetic equation using ODE45 solver which is available in 

the MATLAB software. The ODE45 solver will solve the numerical solution by defining 

the initial value separately and the range for which the differential equations are solved 

within the function. Meanwhile, in order to find the analytical solution, the analytical 

values will be put manually. Then, it was observed that both solutions are consistent 
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CHAPTER 5 

CONCLUSION 

 

In this paper, the analytical solutions for the first order reversible reaction systems are 

derived using flow graph theory approach. This method is demonstrated for the two and 

three species reacting systems. It is more simpler as it is only solving the consumption 

and formation determinants instead of writing the homogeneous or non-homogeneous 

linear differential equations. Flow graph theory eliminates the usage of Laplace 

transforms and eigenvalue methods for the analytical solution of simple first order 

reversible reaction systems. Then, it is verified by the ODE45 that the analytical solution 

is consistent with the numerical solution for the two and three species reacting series. 
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APPENDICES 

 
 

APPENDIX 1: MATLAB CODING FOR THE TWO SPECIES REACTING 

SERIES 

 

% first order reversible reaction system A<--->B 

clc % clear the command window 

clear all % clear the previous work space 

global k 

k = [1.2 0.3]; 

c0 = [1 0]; 

tspan =[0:0.2:5]; 

% Numerical solution 

[t,c]=ode45(@rever_firsteq,tspan,c0); 

figure(1); 

plot(t,c,'k') 

xlabel('t in h') 

ylabel('c in mol/m^3') 

hold on 

figure(2); 

plot(t,c(:,1),'k') 

xlabel('t in h') 

ylabel('cA in mol/m^3') 

hold on 

figure(3); 

plot(t,c(:,2),'k') 

xlabel('t in h') 

ylabel('cB in mol/m^3') 

hold on 

% analytical solution 

[nr, nc]=size(tspan); 

for i = 1: nc 
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    i 

   cA(i) = (c0(1)/(k(1)+k(2)))*(k(2)+k(1)*exp(-(k(1)+k(2))*tspan(i))); 

    cB(i) = ((c0(1)*k(1))/(k(1)+k(2)))*(1-exp(-(k(1)+k(2))*tspan(i))); 

end 

figure(1); 

plot(t,cA,'*k') 

plot(t,cB,'dk') 

figure(2); 

plot(t,cA,'*k') 

figure(3); 

plot(t,cB,'dk') 

output = [t c cA' cB'] 
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APPENDIX 2: MATLAB CODING FOR THE THREE SPECIES REACTING 

SERIES 

 

% first order reversible reaction system A<--->B<---->C, A<---->C 

clc % clear the command window 

clear all % clear the previous work space 

global k 

k = [1.2 0.12 0.56 0.01 0.25 0.05]; 

c0 = [1 0 0]; 

tspan =[0:0.1:5]; 

% Numerical solution 

[t,c]=ode45(@rev_threecom_eq,tspan,c0); 

% output =[t c] 

figure(1); 

plot(t,c,'k') 

xlabel('t in h') 

ylabel('c in mol/m^3') 

hold on 

figure(2); 

plot(t,c(:,1),'k') 

xlabel('t in h') 

ylabel('cA in mol/m^3') 

hold on 

figure(3); 

plot(t,c(:,2),'k') 

xlabel('t in h') 

ylabel('cB in mol/m^3') 

hold on 

figure(4); 

plot(t,c(:,3),'k') 

xlabel('t in h') 



31 

 

ylabel('cC in mol/m^3') 

hold on 

% analytical solution 

[nr, nc]=size(t); 

t 

calp = k(2)+k(3)+k(4)+k(6); 

cbet = k(2)*k(6)+k(2)*k(4)+k(3)*k(6); 

ceps = k(1)*k(6)+k(1)*k(4)+k(4)*k(5); 

cdel = k(1)*k(3)+k(5)*k(2)+k(5)*k(3); 

a = calp+k(1)+k(5); 

b = cbet+ceps+cdel; 

cgam1 = 0; 

cgam2 = (a+realsqrt(a^2-4*b))/2; 

cgam3 = (a-realsqrt(a^2-4*b))/2; 

for i = 1: nr 

    cA(i) = c0(1)*((cbet/(cgam2*cgam3))+((calp*cgam2-(cgam2)^2-cbet)/... 

        (cgam2*(cgam3-cgam2)))*exp(-cgam2*t(i))+ ... 

        (((cgam3)^2-calp*cgam3+cbet)/(cgam3*(cgam3-cgam2)))*... 

        exp(-cgam3*t(i))); 

    cB(i) = c0(1)*((ceps/(cgam2*cgam3))+((k(1)*cgam2-ceps)/(cgam2*... 

        (cgam3-cgam2)))*exp(-cgam2*t(i))+ ... 

        ((ceps-k(1)*cgam3)/(cgam3*(cgam3-cgam2)))*... 

        exp(-cgam3*t(i))); 

    cC(i) = c0(1)*((cdel/(cgam2*cgam3))+((k(5)*cgam2-cdel)/(cgam2*... 

(cgam3-cgam2)))*exp(-cgam2*t(i))+ ... 

        ((cdel-k(5)*cgam3)/(cgam3*(cgam3-cgam2)))*... 

        exp(-cgam3*t(i)));   

end 

figure(1); 

plot(t,cA,'*k') 

plot(t,cB,'dk') 
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plot(t,cC,'ok') 

figure(2); 

plot(t,cA,'*k') 

figure(3); 

plot(t,cB,'dk') 

figure(4); 

plot(t,cC,'pk') 

output = [t c cA' cB' cC'] % first order reversible reaction system A<--->B<---->C, A<--

-->C 

clc % clear the command window 

clear all % clear the previous work space 

global k 

k = [1.2 0.12 0.56 0.01 0.25 0.05]; 

c0 = [1 0 0]; 

tspan =[0:0.1:5]; 

% Numerical solution 

[t,c]=ode45(@rev_threecom_eq,tspan,c0); 

% output =[t c] 

figure(1); 

plot(t,c,'k') 

xlabel('t in h') 

ylabel('c in mol/m^3') 

hold on 

figure(2); 

plot(t,c(:,1),'k') 

xlabel('t in h') 

ylabel('cA in mol/m^3') 

hold on 

figure(3); 

plot(t,c(:,2),'k') 

xlabel('t in h') 
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ylabel('cB in mol/m^3') 

hold on 

figure(4); 

plot(t,c(:,3),'k') 

xlabel('t in h') 

ylabel('cC in mol/m^3') 

hold on 

% analytical solution 

[nr, nc]=size(t); 

t 

calp = k(2)+k(3)+k(4)+k(6); 

cbet = k(2)*k(6)+k(2)*k(4)+k(3)*k(6); 

ceps = k(1)*k(6)+k(1)*k(4)+k(4)*k(5); 

cdel = k(1)*k(3)+k(5)*k(2)+k(5)*k(3); 

a = calp+k(1)+k(5); 

b = cbet+ceps+cdel; 

cgam1 = 0; 

cgam2 = (a+realsqrt(a^2-4*b))/2; 

cgam3 = (a-realsqrt(a^2-4*b))/2; 

for i = 1: nr 

    cA(i) = c0(1)*((cbet/(cgam2*cgam3))+((calp*cgam2-(cgam2)^2-cbet)/... 

        (cgam2*(cgam3-cgam2)))*exp(-cgam2*t(i))+ ... 

        (((cgam3)^2-calp*cgam3+cbet)/(cgam3*(cgam3-cgam2)))*... 

        exp(-cgam3*t(i))); 

    cB(i) = c0(1)*((ceps/(cgam2*cgam3))+((k(1)*cgam2-ceps)/(cgam2*... 

        (cgam3-cgam2)))*exp(-cgam2*t(i))+ ... 

        ((ceps-k(1)*cgam3)/(cgam3*(cgam3-cgam2)))*... 

        exp(-cgam3*t(i))); 

    cC(i) = c0(1)*((cdel/(cgam2*cgam3))+((k(5)*cgam2-cdel)/(cgam2*... 

        (cgam3-cgam2)))*exp(-cgam2*t(i))+ ... 

        ((cdel-k(5)*cgam3)/(cgam3*(cgam3-cgam2)))*... 
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        exp(-cgam3*t(i)));   

end 

figure(1); 

plot(t,cA,'*k') 

plot(t,cB,'dk') 

plot(t,cC,'ok') 

figure(2); 

plot(t,cA,'*k') 

figure(3); 

plot(t,cB,'dk') 

figure(4); 

plot(t,cC,'pk') 

output = [t c cA' cB' cC'] 


