Optimization of High Content Sour Gas Treating Unit using Amine Solution

By

Nur Syafiqah binti Abdul Manan (12148)

Dissertation submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons) (Chemical Engineering)

SEPTEMBER 2012

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak DarulRidzuan

CERTIFICATION OF APPROVAL

Optimization of High Content Sour Gas Treating Unit using Amine Solution

By

Nur Syafiqah binti Abdul Manan

A project dissertation submitted to the Chemical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CHEMICAL ENGINEERING)

Approved by,

Dr. Khashayar Nasrifar

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK

September 2012

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

NUR SYAFIQAH ABDUL MANAN

ABSTRACT

The removal of sour gas or acid gas such as hydrogen sulfide ,carbon dioxide and carbonyl sulfide from gas and liquid hydrocarbon streams always know as sweetening process is a vital process used for natural gas treatment. Although there is already an established treatment process widely used in industry since 1960's to 70's which is known as amine treatment this process is still becoming an issue for improvement. The purpose of this paper is to further research on the removal of high content sour gas by using the established amine treatment. With the used of HYSYS simulator this project will involve the development of the conventional amine treatment units, the evaluation on the efficiency of the treatment unit, and the analysis on the best parameter and specifications in both plant operation and amine solutions for maximum efficiency of CO_2 removal. From the study, it is shown that the performance of acid gas removal can be increased and advantageous by increasing the amine concentration if and only if the concentration does not exceed the corrosion limits apart from increasing the contactor pressure. MEA shows the best performance in acid gas removal followed by DEA and MDEA solvent. In improving the single amine performance, mixtures of amines is identified to be one of the best alternatives in increasing CO_2 absorption by using DEA/MDEA mixture.

ACKNOWLEDGEMENT

First and foremost, I would like to extend my sincere gratitude to my supervisor A.P Dr.Khashayar Nasrifar for all the guidance, assistance and knowledge shared throughout the year.

Last but not least, a million thanks to my parent and colleagues for supporting me to successfully completing this Final Year Project within allocated time.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL	i
CERTIFICATION OF ORIGINALITY	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES AND FIGURES	vii

CHAPTER 1:	INTRODUCTION	
	1.1 Background	1
	1.2 Problem Statement	2
	1.3 Aims and Objectives	2
	1.4 Scopes of study	3
CHAPTER 2:	LITERATURE REVIEW	
	2.1 Sour Gas	5
	2.2 Sour Gas Treatment	6
	2.3 Alkanolamine Solvent Chemistry	11
	2.4 Selection of process Solution	14
CHAPTER 3:	METHODOLOGY	
	3.1 Research Methodology	17
	3.2 Project Activities	18
	3.3 Project Tools	18
	3.4 Gantt Chart	19

CHAPTER 4:RESULT AND DISCUSSION4.1 Simulation of Sour Gas Treating Unit204.2 Data validation234.3 Amine Concentration244.4 Effect of increasing pressure274.5 Amine Mixture29CHAPTER 5:CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion	30
5.2 Recommendations	31

REFRENCES	
APPANDICES	

LIST OF FIGURES

Figure 1.1 : World production and consumption of natural gas	1
Figure 1.2 Natural Gas consumption per capita in 2011	2
Figure 2.1 Natural gas treatment	7
Figure 2.2 Typical amine process unit.	10
Figure 2.3 Structural formulae of Alkanolamine used in gas treating	12
Figure 4.1 Hysys fluid package window	20
Figure 4.2 Components selection window	21
Figure 4.3 Amine contactor column window	21
Figure 4.4 Amine contactor and regenerator column window	22
Figure 4.5 Process flow diagram	22
Figure 4.6 Trending of acid gas removal and loading	26
Figure 4.7 Performance of different type of amine solution in removing acid gases	27
Figure 4.8.1 Effect of increasing pressure on MEA sweetening unit	27
Figure 4.8.2 Effect of increasing pressure on DEA sweetening unit	28
Figure 4.8.3Effect of increasing pressure on MDEA sweetening unit	28
Figure 4.9 Mixed amine performance	29
Figure A.1 The contactor column environment	34
Figure A.2 Distillation column environment	35

LIST OF TABLES

Table 2.1 Typical Composition of natural gas	5
Table 2.2 Natural gas feed streams	6
Table 2.3 Pipeline specification	7
Table 2.4 Preferred areas of application for each process type	9
Table 2.5Properties of common aqueous amine solvent for acid gas treating	16
Table 4.1 Case study	23
Table 4.2 Validation test result	24
Table 4.3 Amine Solvent concentration	24
Table B.1 Material streams datasheet for DEA 30%, 4% CO ₂	36
Table B.2 Composition datasheet for DEA 30%, 4% CO ₂	37

CHAPTER 1

INTRODUCTION

1.1 Background

Natural gas is one of the world highest demand of energy resources. Recent study in 2012 has shown that the world natural gas consumption grew by 2.2 % while the gas production grew by 3.1%.Natural gas found underground is not exactly the same with gas transported and consumed in homes. It comes associated with variety of other trace compounds and gases and must first be purified to meet the purity specification before being consumed by public. Figure 1.1 shows the trend of production and consumption of world natural gas by region.

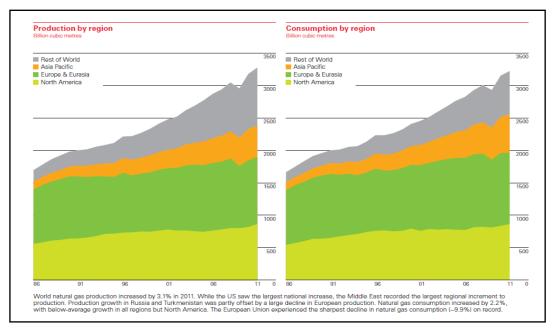


Figure 1.1 World production and consumption of natural gas.

Reproduced from ref [9]

As for every country in the world, the natural gas consumption varies widely from each other. (Figure 1.2). Some country with large own reserves tend to more generously handle the raw material natural gas, while some country with scarce or lacking resources are more economical. This however, is enough to show on how the market demand welcome more improvement and technologies for higher natural gas processing efficiency.

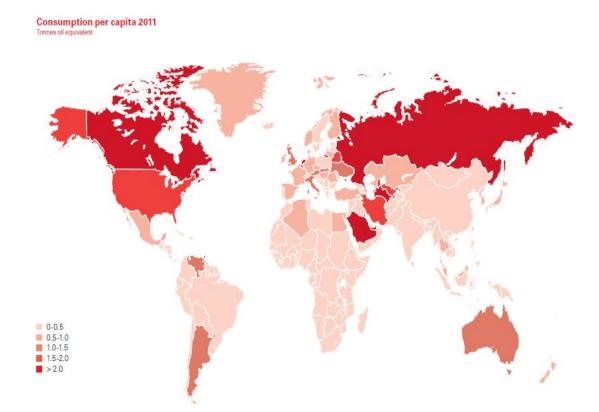


Figure 1.2 Natural Gas consumption per capita in 2011. Reproduced from ref [9]

1.2 Problem Statement

Natural gas can account between 1% to 99% of non hydrocarbon gases (CO₂, N₂, H₂S) from overall composition. Diverse areas including South China Sea, Gulf of Thailand, Central European Pannonian basin, Australian Cooper-Eromanga basin, Colombian Putumayo basin, Ibleo platform, Sicily, Taranaki basin, New Zealand andNorth Sea South Viking Graben encountered high carbon dioxide concentration.

 CO_2 composition can reach as high as 80% in certain natural gas wells such as in Natuna production field in Indonesia.

High CO_2 concentration in the natural gas composition is the main problem focused in this project. With the used of the conventional amine treatment unit which had established since 1960's and 1970's the efficiency of removing the high content acid gases still becoming an issues in the industry.

This paper will present briefly on the removal of high content carbon dioxide from the natural gas resource . HYSYS software will be used in this project to study on the effectiveness of the conventional sour gas treatment and the problems identified from the simulation.

1.3 Aims and Objectives

The aims and objectives of this projects are :

- a) To develop the flow sheet of the conventional amine treatment units by using HYSYS simulator.
- b) To evaluate the efficiency of the conventional gas treatment unit in removing high content CO₂ using various amine solutions .
- c) To analyze on the best parameter and specifications in both plant operation and amine solutions for maximum efficiency of CO₂ removal.

1.4 Scope of study

The main focus of this project will be on sour gas treating unit by using amine solution for high content CO_2 removal. By using HYSYS software as the simulator, the efficiency of the treatment unit is analyze and best suited parameter and specification in both plant operation and amine solutions are identified. The detail scope of study is as followed :

- a) To study on the previous journals and related article
- b) To identify the conventional amine treatment process flow and units

- c) To construct the flow sheet by using HYSYS
- d) To evaluate the efficiency of the treatment unit.
- e) To analyze on process optimization by varying the input variables
- f) To document the findings of project

CHAPTER 2

LITERATURE REVIEW

2.1 Sour Gas

The source of natural gas commonly exists in mixtures of hydrocarbons, water vapor , hydrogen sulfide (H_2S), carbon dioxide (CO_2), helium, nitrogen and other compounds. It is often the case that heavier natural gas, rich in higher hydrocarbons can be found in deep reservoirs and vice versa. The typical composition of natural gas can be obtain as in Table 2.1 below.

Components	Typical	Extreme	
Methane	80-95	50-95	% Mol. Frac
Ethane	2-5	2-20	% Mol. Frac
Propane	1-3	1-12	% Mol. Frac
Butane	0-1	0-4	% Mol. Frac
C ₅ Alkanes and higher	0-1	0-1	% Mol. Frac
hydrocarbons			
Carbon Dioxide CO ₂	1-5	0-99	% Mol. Frac
Nitrogen, N ₂	1-5	0-70	% Mol. Frac
Hydrogen Sulfide, H ₂ S	0-2	0-6	% Mol. Frac
Oxygen, O ₂	0	0-0.2	% Mol. Frac
Helium	0-0-1	0-1	% Mol. Frac
Other inert gases	traces		% Mol. Frac

Table 2.1 Typical composition of natural gas. Reproduced from ref [14]

Hydrogen Sulfide and Carbon dioxide presence in quiet a significant amount in the natural gas which is commonly called as 'Sour Gas' because of the rotten smell provided by the sulfur content [1]. Gas with H_2S content more than 5.7 milligrams per meter cubic of natural gas (4 ppm H_2S by volume) is usually considered sour[2].

 H_2S can be extremely corrosive to equipment, harmful and even lethal to breath which make it undesirable[22].CO₂ on the other hand, combines with water to form carbonic acid which is also corrosive and unmarketable for concentration more than 2% to 3%[15,16] The removal of this contaminants will allowed the gas to be marketable, suitable and reduces the gas volume to be transported apart from increasing the calorific value of sold gas stream [3,11]. Table 2.2 shows some of the available information of the natural gases as the feed streams which required a treatment process .

	Case 1	Case 2	Case 3
	A Natural gas	A Natural gas	A Natural Gas
	from Canada (from Miskar Field	from western
	Alberta)	Tunisia	Colorado
Components	Mole percent	Mole percent	Mole percent
Helium	0	0	0
Nitrogen	3.2	16.903	26.1
Carbon dioxide	1.7	13.588	42.66
Hydrogen Sulfide	3.3	0.092	0
Methane	77.1	63.901	29.98
Ethane	6.6	3.349	0.55
Propane	3.1	0.96	0.28
Butane	2	0.544	0.21
Pentane	3	0.63	0.25

Table 2.2 Natural gas feed streams. *Reproduced from ref.* [4]

2.2 Sour Gas Treatment

Natural gas treatment is usually takes place on the basis of thermal process engineering in there steps as shown in Figure 2.1. The first step serves the preparation of the crude gas for it processing followed by the central process whereby the pretreated natural gas is separated into a light and heavy fraction in the third step. The light fraction always contains methane and nitrogen ,sometimes even lighter hydrocarbons. It is either be compresses to pipeline pressure or liquefied and use as LNG for further use. [14]

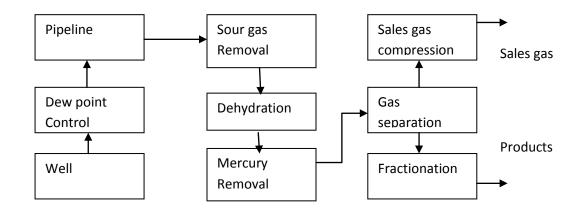


Figure 2.1Natural gas treatment. Reproduced from ref. [14]

The removal of sour gas or acid gas such as hydrogen sulfide ,carbon dioxide and carbonyl sulfide from gas and liquid hydrocarbon streams always know as sweetening process is a vital process which constitutes about 70% of the processes used for treating natural gas [4,5]. This process is a part of the first step in natural gas treatment which is very important especially with the increase of stringent environmental consideration and higher sulfur and carbon dioxide content in natural gas and crude oil. It is also very important in meeting the tightly controlled pipeline specifications (Table 2.1) and CO₂ requirement of 2 volume % in sale natural gas.[5,11,14]. Table 2.3 shows the pipeline specification required in industry.

Table 2.3 : Pipeline specification. Reproduced from ref. [14]

Component	CO ₂	Total Water	H_2S	Total C3+ content
Specification	< 2%	< 120 ppm	< 4ppm	950-1050 Btu/scfDew point : -20 ⁰ C

A numbers of ways are available today to accomplish the removal of acid gases. These processes have been developed in years in the aim of optimizing the capital and operating cost, meet gas specification and environmental purpose. The primary operation of gas purification and preferred area of application for each process type is shown in figure 2.4 below and can be classified as followed [8,13] :

- Absorption Processes (Chemical and Physical absorption)
- Adsorption Process (Solid Surface)
- Physical Separation (Membrane, Cryogenic Separation)
- Hybrid Solution (Mixed Physical and Chemical Solvent)

Absorption

Refers to the transfer of a component of a gas phase to a liquid phase in which it is soluble. The reverse of this process is known as stripping, the transfer of a component from a liquid phase in which it is dissolved to a gas phase. It is a widely used process in industry and the single most important operation of gas purification process.

Adsorption

Adsorption involved the selective concentration of one or more components of a gas at the surface of micro porous solid. It consist of an adsorbate, the mixture of adsorbed component and adsorbent which is the microprous solid. Both the adsorbate and adsorbent of are weakly hold compared to those of chemical bonds. The raise of temperature and reduction of partial pressure can generally releasing (desorbed) the absorbate. Desorption is however not possible for adsorbed components which chemically react with the solid. (chemisorptions)

Membrane permeation

It is a relatively new technology of gas purification. Polymeric membranes is used to separate gases by selective permeation of one or more gaseous components from one side of the membrane barrier to the other side . Table 2.4 Preferred areas of application for each process type.

Type of process	Acid gas		Plant Size	Partial Pressure	Sulfur Capacity
Absorption in Alkaline Solution	Α	Α	Н	L	Н
Physical Absorption	Α	А	Н	Н	Н
Absorption/ Oxidation	Α	-	Н	L	L
Dry Sorption/ Reaction	Α	-	L	L	L
Membrane Permeation	Α	Α	L	Н	L
Adsorption	Α	Α	L	L	L
Methanation	-	Α	L	L	-

Reproduced from ref.[13]

A : ApplicableH : HighL : Low*Dividing line between high and low is roughly20 MMscfd for plant size, 100 psia for partialpressure and 10 tons/day for sulfur capacity.

2.2.1 Factors for process selection

Every single process is ideal only for certain application. In optimizing the purification, selection of the most ideal process becomes an important issue. Thus, in selecting the process, the following factors should be considered [5] :

- Feed parameter such as composition, pressure, temperature and nature of the impurities
- Acid/ Sour gas percent in the feed
- Content of $C3^+$ in the feed gas and the size of the unit
- Process economics, reliability, versatility and environmental constraints.

2.2.2 Amine treatment Process

In industry, the most widely employed gas treating process is known as 'amine process' which is a chemical solvent process by using various alkanolamines to removed the gases [5]. Almost 95% of the process is used in U.S for gas sweetening operations [3] .Alkanolamine solvent such as monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamin (MDEA) and diglycolamine (DGA) [5,16,17,18] are utilize as solvent which react with the acid gas constituents to form a chemical complex or bond which subsequently reversed in the regenerator at elevated temperatures and reduced acid gas partial pressures releasing the acid gas and regenerating the solvent for reuse. Figure 2.2 below shows the typical process flow of the amine treatment units.

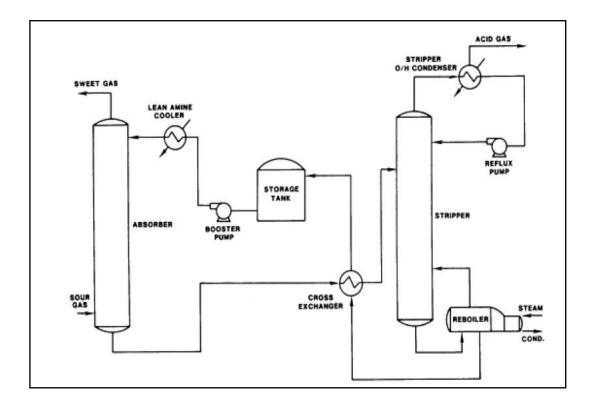


Figure 2.2 Typical amine process unit. Reproduced from ref. [5]

Sour gas is introduced at the bottom of the absorber and the gas is contacted counter currently with aqueous amine solution absorbing the acid gas, leaving sweet gas at the top stream for further processing. Rich amine from the bottom of the absorber is heated by flowing through lean/rich heat exchanger with lean solution from the bottom of the stripping column. The rich amine is then fed to the stripping column at the same point near the top and is stripped at low pressure removing the absorbed acid gases , dissolved hydrocarbons and some water. Lean amine from the stripper on the other hand, is sent back to the absorber through lean/rich heat exchanger decreasing its temperature. After partial cooling in the lean/rich exchanger, lean amine is further cooled by heat exchanger with water or air, and fed into the top of the absorber with the help of booster pump to increase the pressure greater than the absorber columns.[5,6,17,21,23].

2.3 Alkanolaminesolvent chemistry

Acid gases will dissociated to form weak acids in water or an aqueous solution. This property suited hydrogen sulfide (H₂S) and carbon dioxide (CO₂) to be called as acid gases. An acid-base complex, a salt, is formed when the acid gas containing H₂S and CO₂ react counter currently with the aqueous alkanolamine solution. In stripper, the acid-base complex is reversed when rich amine is stripped by steam, to release the acid gas at the top of the column and the amine solution is regenerating for reuse. [5]

Alkanolamines are classified as primary, secondary, or tertiary according to the degree of substitutional on the central nitrogen (number of carbons bonded directly to nitrogen atom) [5,7,21]. The alkanolamines consist of at least one hydroxyl group and one amino group.[5]

Primary amines refer to amines with one carbon bonded to a nitrogen atom, such as MEA and DGA and are generally the most alkaline. Secondary amines represent by DEA and DPA have two carbons bonded to a nitrogen atom while tertiary amines such as TEA and MDEA represent three carbon atoms bonded to a nitrogen

atom[5,7]. Figure 2.3 below shows the structural formulae of Alkanolamine used in gas treating unit [13].

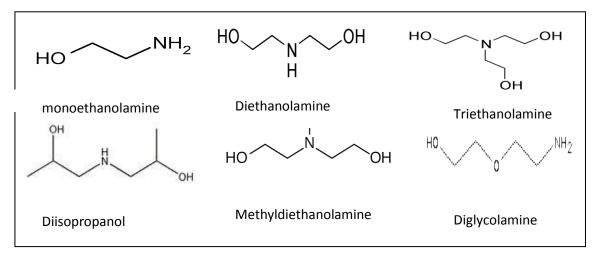


Figure 2.3 Structural formulae of Alkanolamine used in gas treating

2.3.1 Ganeral Chemistry

The absorption of acid gases into aqueous amine solution can be described by the following chemical reactions :

Description	Reaction
Ionization of water	$H_2O = H^+ + OH^+$
Dissociation of carbon dioxide	$\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} = \mathrm{HCO}_3^- + \mathrm{H}^+$
Dissociation of bisulfide	$H_2S \rightarrow H^+ + HS^-$

A soluble acid-base complex, a salt is formed in the treating solution when a gas stream containing acid gases, H_2S/CO_2 contacted by an aqueous amine solution. The reaction between the gases is exothermic and liberating a considerable amount of heat. H_2S will react instantaneously with amine solution regardless of the structure via a direct proton transfer to form amine hydrosulfide as shown in the equation below.

$$R_1R_2R_3N + H_2S \rightarrow R_1R_2R_3NH + HS$$

A more complex reaction will occur between the amine and CO_2 via two different reaction mechanism. For the first mechanism, CO_2 hydrolyses to form carbonic acid in water which slowly dissociates to bicarbonate and undertakes an acid-base reaction with amine to yield the equation as followed [4,17,19] :

$$CO_2 + H_2O \rightarrow H_2 CO_3$$
 (carbonic acid)

$$H_2CO_3 \rightarrow H^+ + HCO_3^-$$
 (bicarbonate)

 $H^+ + R_1R_2R_3N \rightarrow R_1R_2R_3NH^+$

 $CO_2 + R_1R_2R_3N \rightarrow R_1R_2R_3NH + HCO_3$

This mechanism is slow kinetically because of the carbonic acid dissociation step to bicarbonate is relatively slow. For the second reaction mechanism, a labile hydrogen in amine molecular structure is required.

$$CO_{2} + R_{1}R_{2}NH \longrightarrow R_{1}R_{2}N + HCOO^{-}$$

$$R_{1}R_{2}N + HCOO^{-} + R_{1}R_{2}NHR_{1} \longrightarrow R_{2}NCOO^{-} + R_{1}R_{2}NH_{2}$$

$$CO_{2} + 2 R_{1}R_{2}NHR_{1} \longrightarrow R_{2}NH_{2} + R_{1}R_{2}NCOO^{-}$$

This second reaction mechanism for CO_2 is called as carbamate formation due to the formation of amine salt of a substituted carbamic acid and may only occur in primary and secondary amine. A carbamate intermediate is formed when CO_2 reacts with one primary or secondary amine which then reacts with a second amine to form amine salt. This mechanism is rapid, much faster than the first CO_2 hydrolysis reaction. The significantly different kinetics characteristics which occur by the two mechanism result in great impact on the relative absorption rates of H₂S and CO_2 among different alkanolamines. [11,12,25].

2.4 Selection of process Solution

Various available alkanolamine solution can be choose in conducting the treatment process depending on the pressure and temperature conditions at which the gas to be treated is available, its composition with respect to major and minor constituents, and the purity requirement of the gas[13,5,21]. Consideration should also be given to whether simultaneous H_2S and CO_2 removal or selective H_2S absorption is required. [13, 5, 24]

Monoethanolamine (MEA)

MEA is a well established solution used in gas treating application and the subject of tremendous amount of literature. However, it use has declined in recent years and is no longer the predominant gas treating alkanolamine.

The use is preferable for the treatment of gas stream containing low concentration of CO_2 and H_2S with no minor contaminants such as COS and CS_2 . This is more suitable especially for treatment at low pressure and maximum removal of H_2S and CO_2 . MEA with low molecular weight on the other hands will result in high solution capacity at moderate concentration. However, it is more corrosive than solution of most other amines, particularly if the amine concentration exceed 20% and the solution are highly loaded with acid gas [5,13]. It also produce undesirable high heat of reaction with CO_2 and H_2S which lead to higher energy requirements for stripping in MEA system [5,13,16].

Diethanolamine

DEA is a less reactive secondary amine than MEA and the reaction products are not particularly corrosive [16, 20]. Stream with appreciable amounts of COS and CS_2 besides H_2S and CO_2 can be treated successfully such as in refinery gas stream. It is suitable for low-pressure operations as vaporization losses are quiet negligible. A study by Sociate Nationale des Petroles d' Aquitaine (SNPA) of France recognized that relatively concentrated DEA solutions (25%-30%) can absorb acid gases up to stoichiometric molar ratios as high as 0.70 to 1.0 Mole of acid gas per mole of DEA provided that the partial pressure of the acid gases in the feed gas to the plant is sufficiently high.

The disadvantages of this solution is that the reclaiming of contaminated solutions may require vacuum distillation and undergoes numerous irreversible reactions with CO_2 , forming corrosive degradation products, and for that reason, DEA may not be the optimum choice for treatment of high content CO_2 . [5,13]

Diglycolamine (DGA)

This solvent in many aspect similar to MEA . However DGA low vapor pressure permits its use in relatively high concentrations, typically 40-60 % which result in lower circulation rates and steam consumption compare to MEA [19]. Treatment of low pressure associated gas in Saudi Arabia is proven to be effective by using DGA as it can operate at high ambient temperature and can produce sweet gas at moderate pressure[13].

Methyldiehtanolamine (MDEA)

MDEA is the solvent with selective absorption of hydrogen sulfide in the presence of carbon dioxide[20]. This is especially for the case whereby the ratio of carbon dioxide to hydrogen sulfide is very high. However with proper design , selective solvents can yield H_2S concentration as low as 4 ppmv in the treated gas while permitting a major fraction of CO_2 to pass through unabsorbed. Due to the low vapor pressure, it can be used in concentrations up to 60% in aqueous solution without evaporation losses. Apart from that it is, resistance to thermal and chemical degradation , non corrosive and has low specific heat and heats of reaction with H_2S and CO_2 . [13, 5,25]

Table 2.5Properties of common aqueous amine solvent for acid gas treating.

Solvent	Monoethanolamine	Diethanolamine	Digylcolamine	Methyl diethanol amine
Acronym	MEA	DEA	DGA	MDEA
Normally capable of meeting H ₂ S specification (Kidnay and Parrish, 2006)	yes	yes	yes	yes
Removes COS, CS ₂ , mercaptans (Kidnay and Parrish, 2006)	partial	partial	partial	partial
50 ppm CO ₂ for cryogenic plant feed (Kidnay and Parrish, 2006)	no, 100 ppm possible	yes, 50 ppmv in SNEA-DEA	no, 100 ppm possible	no, pipeline quality only
Solvent degradation concerns (components) (Kidnay and Parrish, 2006)	yes - COS, CO ₂ , CS ₂ , SO2, SO3, mercaptans	some - COS, CO ₂ , CS ₂ , HCN, mercaptans	yes - COS, CO ₂ ,CS ₂	no
Solution concentrations, normal range wt% (GPSA Engineering Data Book, 2004)	15-25	30-40	50-60	40-50
Acid gas pickup, mole acid gas / mole amine (GPSA Engineering Data Book, 2004)	0.33-0.40	0.20-0.80	0,25-0,38	0,20-0.80
Rich solution acid gas loading, mol/mol amine normal range (GPSA Engineering Data Book, 2004)	0.45-0.52	0.21-0.81	0.35-0.44	0.20-0.81
Lean solution acid gas loading, mol/mol normal range (GPSA Engineering Data Book, 2004)	0.12	0.01	0.06	0.005-0.01
Stripper reboiler normal range, °C (GPSA Engineering Data Book, 2004)	107-127	110-127	121-132	110-132
Approximate integral heats of absorption of CO ₂ , kJ/ mol Kohl and Nielsen, 1997	84.4	71.6	83,9	58.8

Reproduced from ref [12].

CHAPTER 3

METHODOLOGY

This chapter will cover a detail explanation on the methodology to ensure this project to be successfully completed in achieving its objectives.

3.1 Research Methodology

In conducting this project, a few methodology are identified to be carried out. The methodology identified are as followed :

3.1.1 Case study

Conduct a through study on the background, current condition and environmental interactions of the existence gas treating unit by using various amine solution by referring to numbers of related articles and journals to be summarize in a literature review.

3.1.2 Analysis

Collect and analyze classes of data which consist of the composition data of high content CO_2 in natural gas stream, the operating parameter and related variables which will affect the efficiency of the treatment unit. A case study referring to the literature has been used as a reference in constructing a basic conventional amine treatment flow sheet. The work progress of the flow sheet development is shown in **Appendix A**.

3.1.3 Evaluation

Determine whether the outcome of the stimulated process meet the prescribed hypothesis

3.2 Project Activities

Proposal preparation

- · Do research on related journals and articles
- Understand on the objectives and scope of study of the project

Project study

- HYSYS simulator familiarization
- Suitable data findings for gas with high CO₂ content.

Designing

- Construct flowsheet of the process (Appendix A)
- Test on the convergence of the simulation

Data analyzing

- Optimizing process for maximization of CO₂ capture by adjusting the variables.
- Discuss and propose framework for the application in industrial case study.

Report writing

• Report the findings of the whole study and outcomes of the project

3.3 Project Tools

Process simulator enable various process alternatives and variable modification to be evaluated easily in a shorter time. The output of the process plant will be simulated in response to changes in the input variable.

In CO_2 capture process, HYSYS process simulator is selected as the detailed mechanism of CO_2 absorption into amine solvent are complex. This is because HYSYS can offer a good user –interface and reliable property packages for simulation of such complex process.

3.4 Gantt Chart

No	Detail / Week	1	2	3	4	5	6	7		8	9	10	11	12	13	14	15
Final	Year Project I		<u> </u>		•		<u> </u>										
1	First meeting with coordinator and supervisors																
2	Preliminary research work																1
3	Submission of Extended proposal Defence																
4	Proposal Defence																
5	Project Study and Designing (Simulation work)								4								
6	Submission of Interim Draft Report								oreak								
7	Submission of Interim Report								Mid semester break								
Final	Year Project II	<u>.</u>	<u>.</u>	-	-	-	<u>.</u>	<u>.</u>	seme		<u> </u>	<u>.</u>	<u>_</u>			<u> </u>	
1	Data Analyzing (Simulation work)								Mid								
2	Submission of Progress Report																
3	Pre-EDX																
4	Submission of Draft Report																
5	Submission of Dissertation (Soft Bound)																
6	Submission of Technical Paper																
7	Oral Presentation																
8	Submission of Dissertation (Hard Bound)																

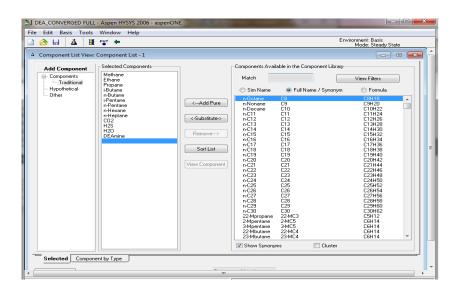
Suggested Mileston

CHAPTER 4

RESULT AND DISCUSSION

4.1 Simulation of Sour Gas Treating Unit

The simulation work for amine gas sweetening plant is conducted by using Aspen HYSYS software. An aqueous amine solution is used as an absorbent to remove acid gases from sour gas stream. In this project, different amine solution which are diethanolamine (DEA), monoethanolamine (MEA), diglycolamine (DGA) and methyldiethanolamine (MDEA) are used in different range of concentration.


A gas stream composition and conditions are first added for a case study and suitable Hysys fluid package is chosen. In this case, Amine Pkg is used based on the literature studied.

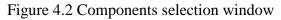

Set Up Parameters Binary Coeffs StabTest Phase Order Rxns Tabular Notes	Property Package Selection Knone> Amine Pkg Antoine ASME Steam Aspen Properties Braun K10 BWRS Chao Seader Chien Null Clean Fuels Pkg CDMT hermo Pkg Component List Selection Component List - 1	Property Package Filter All Types Code Seader Models Vapour Press Models Miscellaneous Types Launch Property Wizard	Thermodynamic Models for Aqueous Amine Solutions Kent-Eisenberg I-Mather Vapor Phase Model Ideal Non-Ideal
	Set Up Parameters Bin	ary Coeffs StabTest Phase O	rder Rxns Tabular Notes

Figure 4.1 Hysys fluid package window

The component of the fluid is selected from the component lists provided in HYSYS simulator. Then, the simulation environment is entered and proceeded with the construction of other required equipments. In removing undesirable impurities such

solid particles and liquids a gas separator is used before the absorber. In the absorber also known as gas contactor, some specifications such as temperature, pressure and amine concentration is specified followed by the installation of rich-lean heat exchanger.

	COL1 Fluid Pkg: Basis-1 / Amine Pk	g - LM Sub-Flowsheet Tag COL1	
Design Connections Monitor Specs	Top Stage Inlet		0∨hd Vapour Dutlet sweet gas >
Specs Summary Subcooling Notes	DEA to CONT	Num of 68.60 bar	nal Side Draws Stream Type Draw Stage Stream >>
	Stage Numbering Top Down Bottom Up Edit Trays		Bottoms Liquid Outlet
Design Param	eters Side Ops Rating Workshe	et Performance Flowsheet Reac	tions Dynamics
Delete	Column Environment Run	Reset Converged	🔽 Update Outlets 🔲 Ignored

Figure 4.3 Amine contactor column window

Connections Monitor Specs Specs Summary	Condenser Energy Stream		O Total ● Partial ● Full Reflux Delta P ACID GAS O O1724 bar Ovhd Vapour Outlet
Subcooling			Г
Notes	Inlet Streams Inlet Stream Inlet Stage REGEN FEE 7_Mair << Stream >>	2 P cond Num of Stages n = 18 P reb 2.172 bar	Optional Side Draws Stream Type Draw Stage <
	Stage Numbering Top Down Bottom Up Edit Trays		a P Bottoms Liquid Outlet

Figure 4.4 Amine contactor and regenerator column window

In regenerating the amine solution, a regeneration column is installed to strip off the acid gases from amine solution which leave at the top of the column with some specifications which are the top temperature, reboiler duty, reflux ratio and overhead vapor rate. The regenerated amine solvent leave the column, flowing through the richlean heat exchanger to exchange heat with the CO2 enriched amine

A few others equipment such as water make up, cooler and pump are installed to maintain back the amine solution at acceptable concentration and parameters values because of water and amine losses with sweet gas.

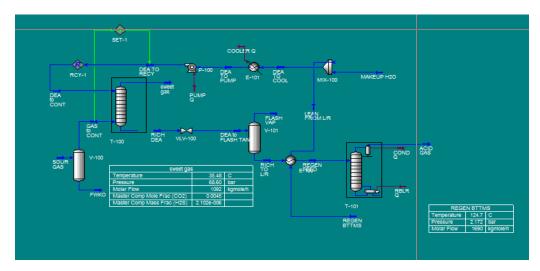


Figure 4.5 Process flow diagram

4.2 Data Validation

In the designing phase, scheduled to be conducted before data analysis, a full process flow of amine sweetening plant is first constructed by using a specific case study as shown in table 4.1.

Parameter	Value
Molar Flow	25 MMSCFD
Temperature	86 F
Pressure	1000 psia
CO ₂	0.0413
H ₂ S	0.0172
C1	0.8706
C2	0.0394
C3	0.0093
iC4	0.0026
nC4	0.0029
iC5	0.0014
nC5	0.0012
nC6	0.0018
nC7	0.0072
H ₂ O	0.005
DEA Concentration	30 %

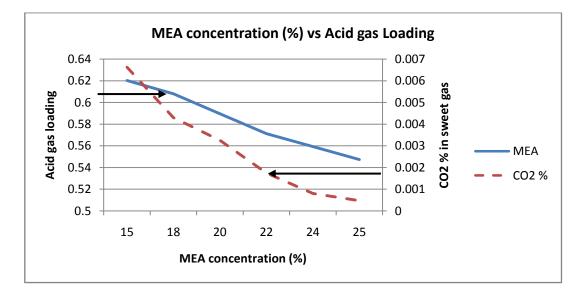
Based on the data obtained, for DEA 30% concentration, it can be observed that the CO2 concentration decrease up to 0.5 mole percent concentration in the sweet gas after the treatment process with acid gas loading of 0.379 .

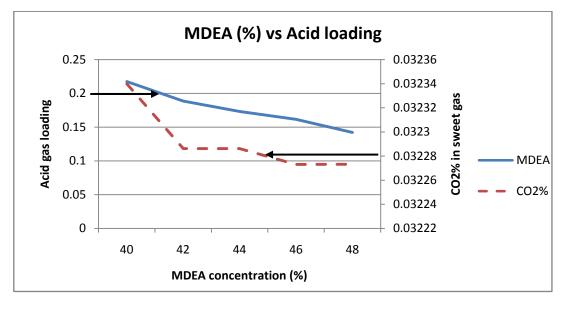
The validation of this convergence flow however need to be tested by comparing the simulated result with a previous study. The validation test result obtained is as followed

	P.Lars, 2011 (11)	Simulated Result
Flow (kmol/h)	1183	1180.63
Temperature (°C)	33.7	33.3
Pressure (bar)	89.5	89.5
Acid gas loading	0.62	0.65
(mole acid gas/mole amine)		

Table 4.3 Validation test result

With an acid gas loading of 0.65 for the simulated result and 0.62 for the study done by P. Lars, 2011, the result shows an acceptable tolerance which indicate the validity of the flow sheet constructed for simulation process. The difference results in the mole fraction of acid gases may because of a few different in specifications specified in both studies.


4.3 Amine concentration


:

In order to investigate the effect of different amine concentration on the removal of high content acid gas, three different type of amine , DEA, MDEA and MEA are used and simulated at different suggested range of concentration as shown in table 4.4.

Amine Solvent	Concentration (%)
MEA	15-25
MDEA	30-40
MEA	40-50

The acid gas concentration in the sweet gas results for 6% acid gas feed concentration as a function of amine solvent concentration, wt% percent are identified. The simulated result of the study are transformed into plotted graph as shown in Figure 4.1, holding the other variables constant :

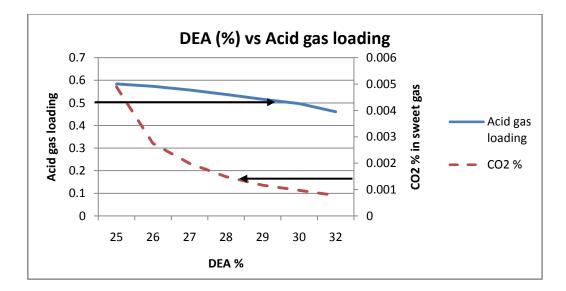


Figure 4.6 Trending of acid gas removal and loading

From figure 4.6, CO_2 concentration left in sweet gas decreased with increasing amine concentration for all amine solution used. For all amines studied, the CO_2 concentration in sweet gas are well within the required specification except for MDEA which is a selective solvent to H_2S with the presence of CO_2 .

In general, this result is in accordance with a study done by Lunsford.K.M and Bullin.J.A on Optimization of Amine Sweetening Acid. In achieving higher acid gas removal, higher amine solvent concentration is required. But in most particular case, this is not a viable option as high primary and secondary amine concentrations may cause severe corrosive problems in rich-lean amine heat exchanger and reboiler.

A study is also done to see the performance of different type of amine holding the amine concentration and carbon dioxide at constant as shown in figure 4.7. MEA is leading with the highest acid gas loading followed by DEA and MDEA. As the secondary amine, a less reactive DEA and selective MDEA, shows a lower acid gas loading compared to the primary amine, MEA.

Figure 4.7 Performance of different type of amine solution in removing acid gases.

4.4 Effect of increasing pressure

Several assumed operation pressures are identified and the whole simulated results are shown as followed :

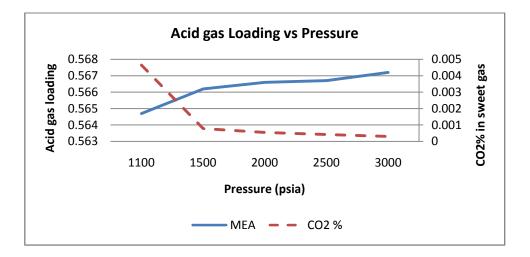


Figure 4.8.1 Effect of increasing pressure on MEA sweetening unit (20 plates absorber)

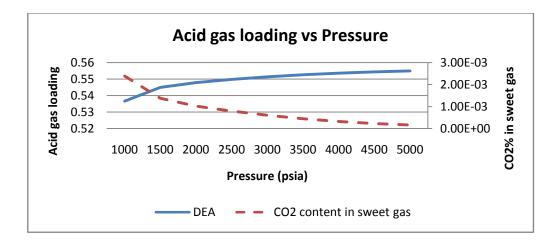


Figure 4.8.2 Effect of increasing pressure on DEA sweetening unit (20 plates absorber)

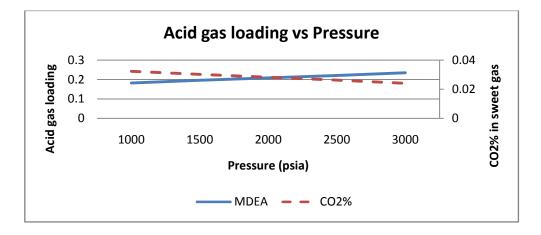


Figure 4.8.2 Effect of increasing pressure on MDEA sweetening unit (20 plates absorber)

From the above trends, it can be seen that an increase in pressure result in the increase in rich amine loading (moles of acid gases/moles of amine) thus effecting the sweetening process performance. Suitable operating pressure is important for removing significant amount of carbon dioxide, CO_2 from the feed natural gas apart from leading to a decrease in lean amine circulation rate and energy consumption by process.

4.5 Amine mixture

The increase in concentration for a single amine especially MDEA cannot easily achieved the CO_2 specification. Mixed amine is explored by using mixture of 40% MDEA 10% DEA, with all the other process variables in constant.

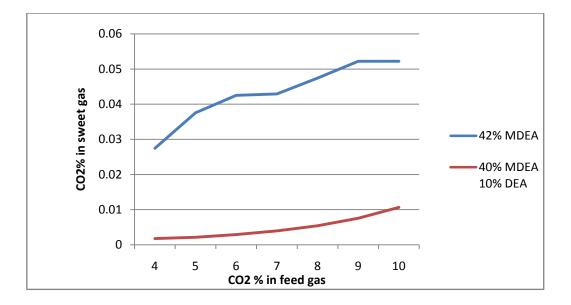


Figure 4.9 Mixed amine performance

Based on figure 4.9, the use of MDEA solvent alone shows a significant different in acid gas removal compared to the used of amine mixture. The CO₂ specification is successfully achieved in the sweet gas by using 40% MDEA 10% DEA with only 0-1 % CO₂ concentration in the sweet gas. The use of MDEA alone shown to be incapable to meet the specifications while the increase in DEA amine concentration will increase CO₂ pickup but together with the probability of exceeding corrosions limits.

Thus in improving the plant performance, the use of amine mixture is found to be one of the best alternative. By using MDEA as the based solvent, the only amine mixture to be considered is secondary amine (DEA). This amine increase the CO_2 absorption and have higher heat of absorption apart from having less tendency of corrosive when mixed.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In natural gas processing, the ultimate aim is to produce quality product which meet the product specification and as economically as possible. HYSY process simulator is used in analyzing the conventional amine treating unit with regard to amine concentration, contactor pressure and the used of amine mixture.

The performance of acid gas removal can be increased and advantageous by increasing the amine concentration if and only if the concentration does not exceed the corrosion limits. MEA shows the best performance in acid gas removal followed by DEA and MDEA solvent. For all the amine solvent especially the selective amines such as DEA and MDEA, the contactor pressure can be increased accordingly to result in further decrease of CO_2 concentration in sweet gas.

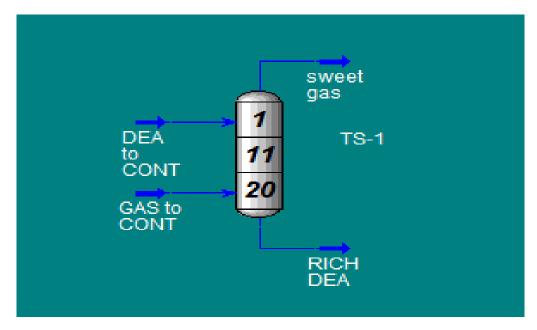
In improving the single amine performance, mixtures of amines is identified to be one of the best alternatives in increasing CO_2 absorption for DEA and MDEA as the based solution. Apart from meeting the CO_2 and H_2S specification, the use of DEA/MDEA amine mixture lead to lower reboiler sizes, circulation rates, and duties which is economically more efficient.

From this study it can be concluded that, the use of conventional amine treatment unit is considered practical for high content acid gas considering the feed composition of the acid gas to meet the gas processing plant maximum allowable concentration in consideration of process optimization and used of mixed amine.

5.2 Recommendations

In achieving higher acid gas removal, the used of higher amine concentration, contactor pressure and mixture of amine with different consideration is proved. However, the performance of the amine mixture by different mixture concentration is recommended to be further studied and monitored. With an assumed CO_2 feed concentration, 10% at maximum, which is in line with the maximum allowable acid gas concentration in gas processing plant and considered as high content acid gas, this process should be studied more considering higher concentration of CO_2 .

The used of conventional amine treatment units is practical for certain limit of acid gas concentration to be economically efficient. As an alternative in achieving product specification, various other method can also be further studied in finding the most efficient treatment process.


REFERENCES

- [1] *Processing Natural Gas : Sulfur and Acid Gas Rmoval*, retrieved from NaturalGas.org : <u>http://www.naturalgas.org/index.asp</u>
- [2] Sour Gas Corrosion/H₂S corrosion, retrieved from :<u>http://www.tantaline.com/Sour-Gas-Corrosion-/-H2S-Corrosion-490.aspx</u>
- [3] *Amine Treating: Amine Gas Sweetening and Amine Unit*, retrieved from :<u>http://www.newpointgas.com/amine_treating.php</u>
- [4] Bea H.K, Kim S.Y, Lee B (2010) .Simulation of C02 removal in split flow gas sweetening process. *Koren J ChemEng*28(11), 643-648.
- [5].Mitra S, Gas sweetening by amines. India :Petrofac Engineering ltd
- [6] Lunsford K.M , Bullin J.A, (1996) , Optimization of amine sweetening units. Proceeding of 1996 AlChe Spring National Meeting, NY : American Institute of Chemical Engineers.
- [7]*Amine Structure and synthesis*, retrieved from :<u>http://chemistry2.csudh.edu/rpendarvis/aminbassyn.html</u>
- [8]Ebenezer A.E ,*Removal of Carbon Dioxide from Natural Gas for LNG Production* (2005).
- [9] *BP Stastatical Review of World Energy June 2012 (2012)*, retrieved from http://www.bp.com/sectionbodycopy.do?categoryId=7500&contentId=7068481
- [10] Halim I, Srinivasan R, Simulation-Optimization Framewor for Efficient CO₂ Capture Using Amine Absorption. Singapore : Institute of Chemical and Engineering Sciences (ICES)
- [11] Peters L, Hussain A, Follmann M, Melin T, Hagg M-B (2011) CO₂ Removal from natural gas by employing amine Absorption and Membrane Technology – Atechnical and economic analysis. *Chemical Engineering Journal* (172), 952-960.
- [12] Rufford T.E, Smart S, Watson G.C.Y, Graham B.F., Boxall. J, Diniz da Costa J.C, May E.F, The Removal of CO₂ and N₂ from natural gas : A review of Conventional and emerging process technologies.
- [13] Kohl A, Nielson R (1997), Gas Purification (5 th Edition), Houstan, Texas: Gulf Publishing Company.

- [14] Haring H-W (2008), Industrial Gases Processing. Munchen, Germany : WILEY-VCH.
- [15]Aliabad Z, H, Mizraei S (2009), Removal of CO₂ and H₂S Using Aqueous Alkanol Amine Solution. World Academy of Science, Engineering and Technology.
- [16]Rodriguez. N, Mussati.S, Scenna.N (2011) Optimization of post combustion CO₂ process using DEA-MDEA mixtures. *Chemical Engineering Research and Design* (89),1763-1773.
- [17]Frediksen.S.B, Jens.K, Eimer.D (2010), Theoretical evaluation of the probability to form and emit harmful components from the aqueous amine solution MEA, MDEA, AMP, PZ and some of their mixtures. Norway.
- [18]R. Idem, M. Wilson, P. Tontiwachwuthikul, A. Chakma, A. Veawab, A. Aroonwilas and D. Gelowitz, *Ind. Eng. Chem. Res.*, **45**, 2414(2006).
- [19] T. Ball and R. Veldman, *Chem. Eng. Prog.*,**87**, 67 (1991).
- [20]Wang.R, Li.D.F, Liang.D.T (2003), Modeling of CO₂ capture by three typical amine solutions in hollow fiber membrane contactors. *Chemical Engineering and* processing : Process Intensification (43), 849-856.
- [21]Kucka. L, Muller. I, Kening. E.Y, Gorak.A (2003), On the modeling and simulation of sour gas absorption by aqueous amine solutions. *Chemical Engineering Science* (58), 8571-8578.
- [22] Jones D.S.J , Pujado P.R (2006) , Handbook of Petroleum Processing. Springer.
- [23]Erayanmen W.A, (2010, August), Optimizing Acid Gas Removal from Natural Gas Using Amine Mixtures. Paper presented at Annual SPE International Conference and Exhibition, Tinapa-Calabar, Nigeria
- [24]Polasek. J, Bullin.J.A,(1994) Selecting Amines for Sweetening Units, Bryan Research & Engineering, Inc., Bryan, Texas.
- [25]Abedini.R, Abedini.A, Zanganeh.I (2010) Investigation of Mixed Amine Solution in gas sweetening plant. *Journal of Natural Gas Science and Engineering* (2), 36-40.
- [26] Hypotech (2003) ,HYSYS 3.2 Tutorials & Application. USA , Aspen Technology,Inc.
- [27] Abdul Hamid.M.K ,*HYSYS :An Introduction to Chemical Engineering Simulation*. UniversitiTeknologi Malaysia, Johor, Malaysia.

APPANDICES

APPANDIX A

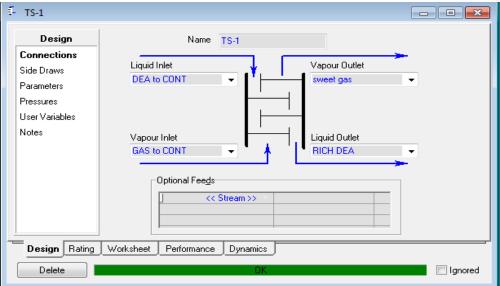
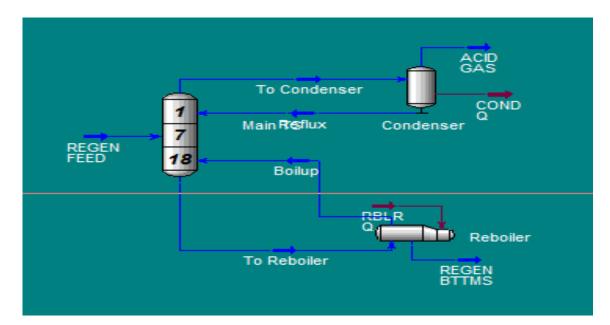



Figure A.1 The contactor column environment

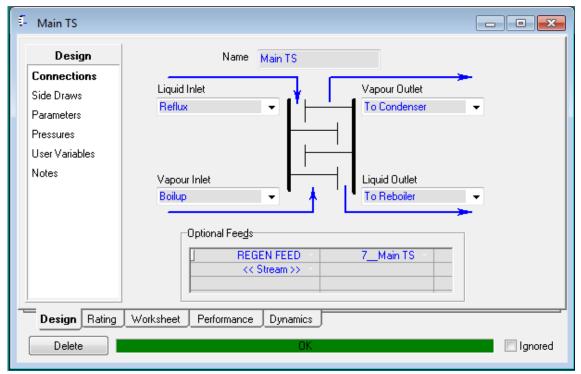


Figure A.2 Distillation column environment

APPENDIX B (Sample of Datasheet)

STREAM	DEA to CONT	SOUR GAS	GAS to CONT	FWKO	awaat aaa	RICH DEA	DEA to FLASH TANK	FLASH VAP	RICH TO L/R
			CONT	-	sweet gas			FLASH VAP	
Vapor fraction	0	0.99053727	1	0	0.999869345	0	9.44E-04	1	0
Temperature (C)	34.39623296	30	30	30	34.61868244	61.74096511	61.69612436	61.69612436	61.69612436
Pressure (bar)	68.60285291	68.9475909	68.9475909	68.9475909	68.60285291	68.94759087	6.205283178	6.205283178	6.205283178
Molar Flow (kgmole/h)	1723.668693	1245.17706	1233.39428	11.7827774	1159.974183	1797.088788	1797.088788	1.697174676	1795.391613
Mass flow (kg/h)	43146.09401	24212.5977	23685.0542	527.543504	20703.96212	46127.18611	46127.18611	30.66239148	46096.52372
Liquid Volume (m3/h)	41.95770178	69.6988519	68.8974234	0.80142849	65.18394179	45.67118342	45.67118342	9.05E-02	45.58065337
Heat flow (kcal/h)	-10784349.9	4084711.39	4058960.63	25750.7568	3937793.193	-10664200	-10664199.96	5784.797073	-10669984.76
STREAM	REGEN FEED	REGEN BTTMS	LEAN FROM L/R	ACID GAS	MAKEUP H2O	DEA TO COOL	DEA TO PUMP	DEA TO RECY	
Vapor fraction	1.11E-04	0	0	0.99997328	0	0	0	0	
Temperature (C)	93.33333333	124.968608	93.5683791	82.0297983	25	92.69367237	32	34.39622307	
Pressure (bar)	5.515807269	2.17184911	1.4823732	1.89605875	1.482373204	1.482373204	1.137635249	68.60285291	
Molar Flow (kgmole/h)	1795.391613	1696.01624	1696.01624	99.3753756	27.65245496	1723.668693	1723.668693	1723.668693	
Mass flow (kg/h)	46096.52372	42647.9288	42647.9288	3448.59489	498.1617546	43146.09058	43146.09058	43146.09058	
Liquid Volume (m3/h)	45.58065337	41.4585316	41.4585316	4.12212176	0.499167066	41.95769867	41.95769867	41.95769867	
Heat flow (kcal/h)	-9396280.6	-7019031.7	-8292735.9	278303.753	-225410.623	-8518146.52	-10873881.03	-10784351.05	

Table B.1 Material streams datasheet for DEA 30%, 4% CO_2

	DEA to		GAS to				DEA to FLASH		
STREAMS	CONT	SOUR GAS	CONT	FWKO	sweet gas	RICH DEA	TANK	FLASH VAP	RICH TO L/R
		0.87059294	0.87745297	0.15250067	0.93157425				
C1	3.46E-52	9	8	3	4	9.14E-04	9.14E-04	0.874992966	8.82E-05
C2	5.19E-54	3.94E-02	3.95E-02	2.50E-02	4.20E-02	3.15E-05	3.15E-05	3.03E-02	2.90E-06
С3	1.17E-56	9.31E-03	9.26E-03	1.51E-02	9.84E-03	5.07E-06	5.07E-06	4.96E-03	3.90E-07
i-C4	2.99E-67	2.60E-03	2.55E-03	8.17E-03	2.71E-03	9.52E-08	9.52E-08	1.00E-04	6.16E-10
n-C4	3.15E-67	2.90E-03	2.82E-03	1.18E-02	3.00E-03	1.01E-07	1.01E-07	1.06E-04	6.53E-10
i-C5	2.52E-65	1.40E-03	1.31E-03	1.07E-02	1.40E-03	5.75E-08	5.75E-08	6.03E-05	5.21E-10
n-C5	2.04E-65	1.20E-03	1.11E-03	1.13E-02	1.18E-03	4.68E-08	4.68E-08	4.91E-05	4.23E-10
n-C6	2.71E-51	1.80E-03	1.48E-03	3.54E-02	1.57E-03	4.54E-07	4.54E-07	4.46E-04	3.31E-08
				0.25953071					
n-C7	8.51E-63	7.21E-03	4.80E-03	4	5.10E-03	1.95E-07	1.95E-07	2.04E-04	2.38E-09
CO2	9.59E-04	4.14E-02	4.16E-02	1.52E-02	5.12E-04	2.92E-02	2.92E-02	3.17E-02	2.91E-02
H2S	1.93E-05	1.72E-02	1.73E-02	1.44E-02	4.45E-08	1.19E-02	1.19E-02	2.47E-02	1.18E-02
	0.9187765			0.44082008		0.88106898			
H20	12	5.01E-03	8.45E-04	2	1.16E-03	2	0.881068982	3.24E-02	0.881871253
DEA	8.02E-02	0	0	0	3.27E-08	7.70E-02	7.70E-02	4.04E-07	7.70E-02
	REGEN	REGEN	LEAN FROM		MAKEUP	DEA TO			
STREAMS	FEED	BTTMS	L/R	ACID GAS	H2O	COOL	DEA TO PUMP	DEA TO RECY	
C1	FEED 8.82E-05	BTTMS 3.52E-52	L/R 3.52E-52	1.59E-03	H2O	COOL 3.46E-52	3.46E-52	3.46E-52	
C1 C2	FEED 8.82E-05 2.90E-06	BTTMS 3.52E-52 5.28E-54	L/R 3.52E-52 5.28E-54	1.59E-03 5.24E-05	H2O 0	COOL 3.46E-52 5.19E-54	3.46E-52 5.19E-54	3.46E-52 5.19E-54	
C1 C2 C3	FEED 8.82E-05 2.90E-06 3.90E-07	BTTMS 3.52E-52 5.28E-54 1.19E-56	L/R 3.52E-52 5.28E-54 1.19E-56	1.59E-03 5.24E-05 7.04E-06	H2O 0 0	COOL 3.46E-52 5.19E-54 1.17E-56	3.46E-52 5.19E-54 1.17E-56	3.46E-52 5.19E-54 1.17E-56	
C1 C2	FEED 8.82E-05 2.90E-06 3.90E-07 6.16E-10	BTTMS 3.52E-52 5.28E-54 1.19E-56 3.04E-67	L/R 3.52E-52 5.28E-54 1.19E-56 3.04E-67	1.59E-03 5.24E-05 7.04E-06 1.11E-08	H2O 0 0 0 0	COOL 3.46E-52 5.19E-54 1.17E-56 2.99E-67	3.46E-52 5.19E-54 1.17E-56 2.99E-67	3.46E-52 5.19E-54 1.17E-56 2.99E-67	
C1 C2 C3 i-C4 n-C4	FEED 8.82E-05 2.90E-06 3.90E-07 6.16E-10 6.53E-10	BTTMS 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67	L/R 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67	1.59E-03 5.24E-05 7.04E-06 1.11E-08 1.18E-08	H2O 0 0 0 0 0	COOL 3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67	
C1 C2 C3 i-C4 n-C4 i-C5	FEED 8.82E-05 2.90E-06 3.90E-07 6.16E-10 6.53E-10 5.21E-10	BTTMS 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65	L/R 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65	1.59E-03 5.24E-05 7.04E-06 1.11E-08 1.18E-08 9.41E-09	H2O 0 0 0 0 0 0 0	COOL 3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65	
C1 C2 C3 i-C4 n-C4 i-C5 n-C5	FEED 8.82E-05 2.90E-06 3.90E-07 6.16E-10 6.53E-10 5.21E-10 4.23E-10	BTTMS 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65	L/R 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65	1.59E-03 5.24E-05 7.04E-06 1.11E-08 1.18E-08 9.41E-09 7.64E-09	H2O 0 0 0 0 0 0 0 0	COOL 3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65	
C1 C2 C3 i-C4 n-C4 i-C5 n-C5 n-C6	FEED 8.82E-05 2.90E-06 3.90E-07 6.16E-10 6.53E-10 5.21E-10 4.23E-10 3.31E-08	BTTMS 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65 2.76E-51	L/R 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65 2.76E-51	1.59E-03 5.24E-05 7.04E-06 1.11E-08 1.18E-08 9.41E-09 7.64E-09 5.97E-07	H2O 0 0 0 0 0 0 0 0 0 0 0	COOL 3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51	
C1 C2 C3 i-C4 n-C4 i-C5 n-C5	FEED 8.82E-05 2.90E-06 3.90E-07 6.16E-10 6.53E-10 5.21E-10 4.23E-10	BTTMS 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65	L/R 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65	1.59E-03 5.24E-05 7.04E-06 1.11E-08 1.18E-08 9.41E-09 7.64E-09 5.97E-07 4.30E-08	H2O 0 0 0 0 0 0 0 0	COOL 3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65	
C1 C2 C3 i-C4 n-C4 i-C5 n-C5 n-C5 n-C6 n-C7	FEED 8.82E-05 2.90E-06 3.90E-07 6.16E-10 6.53E-10 5.21E-10 4.23E-10 3.31E-08 2.38E-09	BTTMS 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65 2.76E-51 8.65E-63	L/R 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65 2.76E-51 8.65E-63	1.59E-03 5.24E-05 7.04E-06 1.11E-08 1.18E-08 9.41E-09 7.64E-09 5.97E-07 4.30E-08 0.50999944	H2O 0 0 0 0 0 0 0 0 0 0 0	COOL 3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51 8.51E-63	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51 8.51E-63	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51 8.51E-63	
C1 C2 C3 i-C4 n-C4 i-C5 n-C5 n-C6	FEED 8.82E-05 2.90E-06 3.90E-07 6.16E-10 6.53E-10 5.21E-10 4.23E-10 3.31E-08	BTTMS 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65 2.76E-51	L/R 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65 2.76E-51	1.59E-03 5.24E-05 7.04E-06 1.11E-08 1.18E-08 9.41E-09 7.64E-09 5.97E-07 4.30E-08 0.50999944 9	H2O 0 0 0 0 0 0 0 0 0 0 0	COOL 3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51	
C1 C2 C3 i-C4 n-C4 i-C5 n-C5 n-C6 n-C7 CO2	FEED 8.82E-05 2.90E-06 3.90E-07 6.16E-10 6.53E-10 5.21E-10 4.23E-10 3.31E-08 2.38E-09 2.91E-02	BTTMS 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65 2.76E-51 8.65E-63 9.74E-04	L/R 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65 2.76E-51 8.65E-63 9.74E-04	1.59E-03 5.24E-05 7.04E-06 1.11E-08 1.18E-08 9.41E-09 7.64E-09 5.97E-07 4.30E-08 0.50999944 9 0.21372775	H2O 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COOL 3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51 8.51E-63 9.59E-04	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51 8.51E-63 9.59E-04	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51 8.51E-63 9.59E-04	
C1 C2 C3 i-C4 n-C4 i-C5 n-C5 n-C5 n-C6 n-C7	FEED 8.82E-05 2.90E-06 3.90E-07 6.16E-10 6.53E-10 5.21E-10 4.23E-10 3.31E-08 2.38E-09 2.91E-02 1.18E-02	BTTMS 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65 2.76E-51 8.65E-63	L/R 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65 2.76E-51 8.65E-63	1.59E-03 5.24E-05 7.04E-06 1.11E-08 1.18E-08 9.41E-09 7.64E-09 5.97E-07 4.30E-08 0.50999944 9 0.21372775 9	H2O 0 0 0 0 0 0 0 0 0 0 0	COOL 3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51 8.51E-63 9.59E-04 1.93E-05	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51 8.51E-63	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51 8.51E-63	
C1 C2 C3 i-C4 n-C4 i-C5 n-C5 n-C5 n-C6 n-C7 C02 H2S	FEED 8.82E-05 2.90E-06 3.90E-07 6.16E-10 6.53E-10 5.21E-10 4.23E-10 3.31E-08 2.38E-09 2.91E-02 1.18E-02 0.8818712	BTTMS 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65 2.76E-51 8.65E-63 9.74E-04 1.96E-05	L/R 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65 2.76E-51 8.65E-63 9.74E-04 1.96E-05	1.59E-03 5.24E-05 7.04E-06 1.11E-08 1.18E-08 9.41E-09 7.64E-09 5.97E-07 4.30E-08 0.50999944 9 0.21372775 9 0.27461889	H2O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COOL 3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51 8.51E-63 9.59E-04 1.93E-05 0.91877653	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51 8.51E-63 9.59E-04 1.93E-05	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51 8.51E-63 9.59E-04 1.93E-05	
C1 C2 C3 i-C4 n-C4 i-C5 n-C5 n-C6 n-C7 CO2	FEED 8.82E-05 2.90E-06 3.90E-07 6.16E-10 6.53E-10 5.21E-10 4.23E-10 3.31E-08 2.38E-09 2.91E-02 1.18E-02	BTTMS 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65 2.76E-51 8.65E-63 9.74E-04	L/R 3.52E-52 5.28E-54 1.19E-56 3.04E-67 3.20E-67 2.56E-65 2.07E-65 2.76E-51 8.65E-63 9.74E-04	1.59E-03 5.24E-05 7.04E-06 1.11E-08 1.18E-08 9.41E-09 7.64E-09 5.97E-07 4.30E-08 0.50999944 9 0.21372775 9	H2O 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COOL 3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51 8.51E-63 9.59E-04 1.93E-05	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51 8.51E-63 9.59E-04	3.46E-52 5.19E-54 1.17E-56 2.99E-67 3.15E-67 2.52E-65 2.04E-65 2.71E-51 8.51E-63 9.59E-04	

Table B.2 Composition datasheet for DEA 30%, 4% CO₂