
 

 

 

 

Final Year Project    

Final Report 

Development of a Robust Wireless Sensor Mesh 

and Multi-hop Network 

 

 

 

 

 

 

 

 

 

Supervisor : Dr. Micheal Drieberg 

 

Ahmad Muhaimin bin Mohd Taib 

Electrical and Electronic Engineering 

11872 



i 

 

ABSTRACT 

 

Wireless networking has evolved rapidly since the first wireless device was invented. 

Throughout those years, researchers and engineers are struggling to apply the 

knowledge of wireless networking in useful ways in real life. Wireless Sensor 

Network (WSN) has been used in many applications, from habitat surveying to 

critical monitoring. Reliability of the WSN plays a major role in deciding whether it 

should be used or not in critical applications instead of using traditional wireless 

technology or wired networking. This project is solely a research and development of 

routing algorithm for WSN by using an existing source and straight away finding its 

weak point in order to apply further improvisation. The existing routing algorithms 

used are the XMESH and Ad-Hoc On-Demand Vector Routing (AODV). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

ACKNOWLEDGEMENTS 

 

My very first acknowledgements go to Universiti Teknologi Petronas, Final 

Year Project coordinator and anyone involved for allowing me to be able to conduct 

this great project that gave me a new experience about Wireless Communication. 

I would like to express my very great appreciation to all the persons in 

Electrical and Electronics Engineering Department for their valuable and 

constructive suggestions during the planning and development of this project.  

I would like to express my deep gratitude to Dr. Micheal Drieberg, my Final 

Year Project’s supervisors, for his patient guidance, enthusiastic encouragement and 

useful critiques of this research work. His willingness to spend his valuable time so 

generously has been very much appreciated. This project will not be able to be 

completed without his assistance by my side. 

I would also like to extend my thanks to my family for support in terms of 

encouragement and finance thus allowing me to finish this project and research. I am 

also indebted with my friends in UTP for helping me conducting certain experiment 

that is hard to be done alone. 

 

 

 

 

 

 

 

 



iii 

 

Table of Contents 

 

ABSTRACT ........................................................................................................................ i 

ACKNOWLEDGEMENTS................................................................................................. ii 

Table of Contents ............................................................................................................... iii 

List of Figures ..................................................................................................................... v 

List of Tables ...................................................................................................................... v 

CHAPTER 1 ....................................................................................................................... 1 

INTRODUCTION .............................................................................................................. 1 

1.1 Background ......................................................................................................... 1 

1.2 Problem Statement ............................................................................................... 2 

1.3 Objectives and scope of study .............................................................................. 3 

CHAPTER 2 ....................................................................................................................... 4 

LITERATURE REVIEW AND THEORY .......................................................................... 4 

2.1 Wireless Sensor Network (WSN) ......................................................................... 4 

2.1.1 Node’s Components ..................................................................................... 5 

2.1.2 Wireless Sensor Network (WSN) Topologies ............................................... 7 

2.1.3 WSN Applications ......................................................................................10 

2.2 Wireless Mesh Network ......................................................................................11 

2.3 Recommended Design and Requirement .............................................................12 

CHAPTER 3 ......................................................................................................................13 

METHODOLOGY.............................................................................................................13 

3.1 Research Methodology .......................................................................................13 

3.1.1 Project Planning ..........................................................................................14 

3.1.2 Research and Analysis.................................................................................14 

3.1.3 Development of the Project .........................................................................14 

3.1.4 System Analysis and Improvement ..............................................................14 

3.1.5 Integration and Testing ................................................................................15 

3.2 Project Activities ................................................................................................15 

3.3 Key Milestone ....................................................................................................16 

3.4 Gantt Chart .........................................................................................................17 

3.5 Tools ..................................................................................................................18 

3.6  Project’s Preparation...............................................................................................21 

3.6.1  Installing the required software (Moteworks and XMESH) ................................21 

3.6.2 Hardware Parts Assembly ...................................................................................23 



iv 

 

3.6.3 Programming the Device using Moteworks .........................................................24 

3.6.4 Programming the TinyOS in Linux Environment ................................................27 

CHAPTER 4 ......................................................................................................................29 

RESULTS AND DISCUSSION .........................................................................................29 

4.1 Data Gathering and Analysis ..................................................................................29 

4.2.1 Wireless Sensor Network with XMESH Algorithm .............................................31 

4.2.2 Visualizing the programmed nodes through MoteView .......................................32 

4.2.3 Analysis of XMESH routing in Moteworks .........................................................35 

4.3 Prototype ................................................................................................................38 

4.3.1 Ad-Hoc On-Demand Vector(AODV) Routing Implementation............................38 

4.3.2 Adding Battery’s Factor in the AODV ................................................................40 

CHAPTER 5 ......................................................................................................................42 

5.1 Conclusion .............................................................................................................42 

5.1 Recommendation ....................................................................................................42 

REFERENCES ..................................................................................................................43 

APPENDIX .......................................................................................................................45 

 

 

 

 

 

 

 

 
 

 



v 

 

List of Figures 

 

Figure 1 Simple node's component illustration ..................................................................... 6 

Figure 2 Star topology (Source: Ref [8]) .............................................................................. 7 

Figure 3 Hybrid-star/mesh topology (Source: Ref [8]) ......................................................... 8 

Figure 4 Full-mesh topology (Source: Ref [8]) .................................................................... 9 

Figure 5 Wireless Mesh Topology (Source: [11]) ...............................................................11 

Figure 6 Research Methodology .........................................................................................13 

Figure 7 IRIS Mote (Source : MEMSIC datasheet) .............................................................18 

Figure 8 MTS420CC (Source: MEMSIC datasheet) ...........................................................19 

Figure 9 MIB520CB (Source: MEMSIC datasheet) ............................................................19 

Figure 10 Two additional USB Serial Ports ........................................................................22 

Figure 11 Assembled gateway ............................................................................................23 

Figure 12 IRIS and MIB520 ...............................................................................................24 

Figure 13 Prebuilt Library ..................................................................................................25 

Figure 14 "dmesg" terminal result ......................................................................................28 

Figure 15 Open Field Test ..................................................................................................29 

Figure 16 Range vs Transmission Power ............................................................................30 

Figure 17 Choosing the sensorboard in Xmesh ...................................................................26 

Figure 18 Shell tools in Programmer's Notepad ..................................................................27 

Figure 19 MoteConfig ........................................................................................................32 

Figure 20 Connecting to WSN using Moteview ..................................................................33 

Figure 21 Moteview test .....................................................................................................33 

Figure 22 Moteview Health Data ........................................................................................34 

Figure 23 Xmesh Problem 1 ...............................................................................................35 

Figure 24 Xmesh Problem 2 ...............................................................................................36 

Figure 25 XMeshBin Directory ..........................................................................................37 

Figure 26 MATLAB Graph ................................................................................................34 

Figure 27 AODV's ".platform" modification .......................................................................38 

List of Tables 
 

Table 1 Key Milestone for FYP I........................................................................................16 

Table 2 Key Milestone for FYP II ......................................................................................16 

Table 3 Gantt chart .............................................................................................................17 

Table 4 IRIS’s Radio Transmission Open Field Range …………………………………….25 

 

 

file:///D:/Google%20Drive/EE%20Final%20Final/FYP2/Draft%20Report/%5bDraft%5d%20Progress%20Report%20(Repaired).docx%23_Toc342656240


 

  1 

 

CHAPTER 1 

INTRODUCTION 
 

 

1.1 Background 

 

Wireless sensor network (WSN) gives additional approach to wireless 

networking. It generally means a network that comprises bunch of nodes that 

work together to achieve one objective that is to provide the base station its 

sensor data as well as maintaining the network. The nodes have its own 

sensor to detect physical or environmental changes, for example coordinates, 

temperature, vibration, humidity, and accelerometer [1]. 

Wireless mesh network (WMN) is a network that consists of two or 

more devices that can organize themselves by automatically create its own 

network and finding an alternative route when there is a node failure which is 

called self-organized and self-healing system. A node is merely an electronic 

device in a network that can receive, transmit or as intermediate path of data 

communication [2]. A wireless mesh network may consist of mesh router and 

mesh network, the mesh router contain the gateway and other routing 

information in supporting the mesh network, whereas the mesh client is 

merely an endpoint node [3]. 

“Robust Wireless Sensor Mesh” in this project title means the 

combination of wireless mesh network (WMN) and wireless sensor network 

(WSN) to produce a networking system that can transmit critical data 

regardless of the situation to the base station. It also need to be a low-powered 

device and cost effective system where the system does not need major care 

or service, it can organize and heal itself if there are minor device failure. 

 

 



 

  2 

 

1.2 Problem Statement 

 

Sensors are needed in order to measure environmental changes and physical 

changes of surroundings or specific substances. Distributing sensor devices in a wide 

area will be challenging for some cases involving narrow space, tough geographical 

texture and wide area of sensor implementation. Standard wireless networking such 

as Wireless Local Area Network (WLAN) or just normal Radio Frequency may not 

be appropriate to be applied in some cases such as natural disaster monitoring 

situation. WLAN needs a centralized router to function properly and consumes a lot 

of power. The old wireless technology cannot provide wide coverage except by 

placing the router/gateway everywhere that will cost a lot to manage and install. 

 Although researchers and manufacturers nowadays did a good job in 

developing Wireless Sensor Network to be applied in various areas including the 

above cases, still there are so many problems involved with this new technology due 

to its reserved and limited resource and power. Reliability or may be called “robust” 

of the system is toughly being criticise, packet data dropping, data aggregation and 

fault tolerance are the main concern [4]. Previous study has reported that in some 

wireless sensor network designed, the increase of hop and distance for end-to-end 

communication from a node to the base station cause a rapid increase in packet drop 

[5]. High latency also reduces the functionality of the system as data is needed 

almost in real time for some applications. The limited power source and increase in 

the number of sensor nodes will absolutely worsen the above problems in field 

application compared to theory. 

 

 

 

 

 

 



 

  3 

 

1.3 Objectives and scope of study 

 

 The main objective of this project is to produce or develop a wireless sensor 

networking that is “robust”, which means it is reliable and it can work in a rough 

environment where the system will organize itself for any situation without the need 

of human interaction. It needs to be able to adapt to a new environment almost 

instantly where a new sensor node may be installed without reconfiguration.  A long 

lifetime is a must as the sensor may be placed on a variety of geographical texture, so 

power source is precious. 

 Scope of studies will involve wide scope of communication system such as 

network protocol, networking standard, signal processing, device interfacing and 

network layer. Study of wireless communication is a must to be able to understand 

how the system works and implementing it. In deploying a working Wireless Sensor 

Network (WSN), knowledge of C language programming is needed to be able to 

program a microprocessor or microcontroller which may be used in the project 

design. In improving the WSN, the routing protocol used, XMesh, need to be fully 

understood to alter the existing protocol in making the system better. Experimenting 

with different parameter of the devices such as transmission power, data interval, 

duty cycle and radio frequency will require the programming skill and basic network 

system understanding. 

 

 

 

 

 

 

 



 

  4 

 

CHAPTER 2 

LITERATURE REVIEW AND THEORY 

 

 Distributed sensors network is used everywhere from monitoring the natural 

disaster occurrence to just measuring temperature in multiple room of a building. 

Take temperature measurement for example, in a secured laboratory building where 

some place need to be in a certain temperature, distributed sensor network plays an 

important role to monitor all the rooms temperature. Wireless sensor network (WSN) 

can be constructed in many ways, most of the times they use mesh networking 

topology for it to be easily managed and cost effective. For natural disaster, landslide 

can be predicted by measuring the vibration and movement of soil, a wired sensor 

system will not be effective for long time monitoring as the connection cable may be 

accidentally broken. WSN will solve the problems by introducing wireless 

transmission for sensors to communicate without sacrificing much the size, power 

and cost requirement. Mesh networking is a type of network topologies where the 

wireless devices in the system do not just communicate with a central backbone 

device, they can communicate with each other and also forwarding data towards one 

another to achieve a single large network, also called mesh cloud. Using mesh 

topology on the WSN system will create a lot of advantages over the old system. 

 

2.1 Wireless Sensor Network (WSN) 

 

Wireless Sensor Network (WSN) is basically a bunch of nodes (motes) that 

are distributed over a wide area which they can pick up the surrounding physical 

changes via their equipped sensors and communicate with each other in sending the 

sensor’s data to a base station or monitoring station. They use wireless technology as 

the communication medium to ease the transmitting of data without the need of 

connection cables. The nodes are limited in term of resources including power, 

transmission, memory and size. The wide diversity of application in real life such as 

military, home, industry, environmental and also health make it attractive to be 

researched and improved [6]. 



 

  5 

 

2.1.1 Node’s Components 

 

Nodes can be either identical or different, it depends on the system topology 

that is being used. A node may consist the following: 

1. Sensor device – an electrical circuit that can detect analog 

measurement of real world environmental and physical changes, 

then converting it to digital signal for further processing [7]. 

2. Transceiver – wireless transmitter combined with receiver, its main 

job is receiving signal from other nodes and hand it over to CPU to 

be processed. Data from CPU is taken and transmitted to other 

nodes. 

3. Central Processing Unit (CPU) – usually a low-powered 

microcontroller or microprocessor board. It is commonly included 

with its own constraint memory and cache onboard for program 

storage and Random Access Memory (RAM) to be used by the 

processor. This unit serve as the main part in processing the data 

acquired from the transceiver and sensor board for further task. 

4. Gateway board – An interface board that allow the CPU to interact 

with other kind of devices, supposedly a monitoring computer or an 

internet gateway to send data to the server. 

5. Power storage – mostly batteries for powering up the Sensor board, 

Transceiver and CPU. It is ranged from 2 to 6 volts and all kind of 

battery including dry-cell, alkaline, rechargeable cell. 



 

  6 

 

 

 

 

For full-mesh topologies, all the nodes are identical except for the base 

station that needs a gateway to interact with human monitoring devices or server. 

Figure 1 shows the basic illustration of component inside a node with additional 

gateway. Batteries are powering the three main components of the nodes, in some 

design, the gateway also need to be powered too. The sensor board may contain one 

or multiple type of sensor(s), for example, Global Positioning System (GPS), 

humidity, temperature, accelerometer, movement, ambient light, vibration and so on 

depending on the application requirement. 

 

 

 

 

 

 

 

Transceiver 

CPU 
Sensor 

Board 
Gateway 

Monitoring 

server (PC) 

Batterie

s 

Figure 1 Simple node's component illustration 



 

  7 

 

2.1.2 Wireless Sensor Network (WSN) Topologies 

 

 In designing or building the Wireless Sensor Network (WSN), there are three 

main topologies that can be used. 

 

Figure 2 Star topology (Source: Ref [8]) 

 

1. Star network 

As shown in Figure 2, a centralized node is located usually at the centre of a 

network surrounded by endpoint node as the sensor node. All the sensor nodes are 

only able to transmit its sensor’s data to the central node without being able to 

perform as intermediate node for data relaying. So generally the star topology is a 

single-hop network that can be operated within 30-100 meters from the centralized 

node (gateway) [8]. The main advantage of this type of network is that the 

endpoint/sensor nodes require least amount of power where the main gateway 

required being line-powered. The major disadvantage is that the coverage is not that 

good compared to other topologies with same amount of power and cost used. 

 

 

 

 

 



 

  8 

 

2. Hybrid-star network 

This type of network comprises multiple centralized nodes/gateways that are 

connected to each other. Behind each gateway, there are sensor nodes that that will 

sense the change of physical and environment. These sensor nodes will be able to 

communicate not only with its existing parent gateway, it can also pair up with other 

gateways in case of any gateway failure as in Figure 3. 

 

 

Figure 3 Hybrid-star/mesh topology (Source: Ref [8]) 

  

If the design can support multiple line-powered routers among the distribution of 

devices, then this type of network is suitable as it is a simple hierarchical network. 

The endpoint nodes just do a simple task of gathering the sensor data and 

transmitting the data to the router, where the router then perform its communication 

task. The advantages of this network is the extended lifetime of the sensor nodes 

which can be battery-powered despite the router need to be active all the time to 

route data [9]. 

 

 

 

 

 

 



 

  9 

 

3. Full mesh network 

 

It is a network where all nodes are identical, they can acts as sensor nodes, 

gateway and also as an intermediate node. 

 

 

Figure 4 Full-mesh topology (Source: Ref [8]) 

 

The devices communicate with one base gateway by multi-hop to one another, this 

vastly increase the coverage availability, theoretically infinite coverage. It is a self 

forming and self healing because of the multiple routes available in case one is 

broken [9]. When one node is faulted, the network will reconfigure itself to find 

another route/path for the data to be transmitted to the gateway or another node. This 

topology commonly needs one base station, in Figure 4, the Gateway acts as the base 

station for server monitoring. 

 

 

 

 

 

 

 

 



 

  10 

 

2.1.3 WSN Applications 

 

 WSN has wide areas of application in real life situation, some of it may be 

critical and some may be not. These are some example of applications that are 

already being implemented. 

 

1. Chemical monitoring – it has been deployed in some cities to measure the 

concentration of poisonous substances that may endanger the citizen. The 

WSN will be an advantage as it will easily covered wide areas in a city and 

making them easily tested by moving the nodes to different areas [10]. 

2. Greenhouse monitoring – the environment parameter inside a greenhouse 

need to be carefully monitored such as the suitable temperature and humidity 

3. Landslide warning – the detection of vibration and movement at the possible 

occurrence of landslide can give the surrounding resident an early warning 

before a landslide can occur. 

4. Patient health monitor – the use of WSN will make it easy for medical 

institution to apply the wireless centralised monitoring system of critical 

patients. 

5. Restricted area monitoring – military or government can use the WSN 

technology to monitor intrusion of personnel into a restricted zone or areas by 

detecting movement of people near the fence. 

6. Habitat survey – monitoring of an endanger species in its habitat can easily be 

done by placing nodes with the required sensors. The less maintenance, high 

latency, long lifetime system may be used for this application. 

7. Infrastructure monitoring and analysing – massive infrastructure such as long 

bridge, underground tunnel and tall building are able to be constantly 

monitored wirelessly despite of having personnel to do the visual inspection 

of the infrastructure. 

 

 

 



 

  11 

 

2.2 Wireless Mesh Network 

 

 Wireless mesh network (WMN) is a wireless technology that has evolved to 

become a key for future networking. It is now an alternative technology that replaced 

standard wireless networking to play an important role for critical application and 

99.9% uptime requirement. Using the Full-mesh topology in SECTION 2.1, Wireless 

Mesh Network can be fully utilized to its extent to achieve a high reliability 

networking system. 

 

Figure 5 Wireless Mesh Topology (Source: [11]) 

The system is self-forming, they can automatically form a network whenever 

there are bunch of node in their neighbourhood that has the same group 

identification. They communicate between them without the need of human 

configuration.  

The communication does not limited to point-to-point line of sight, it can be 

more than one hopping for a device to communicate with one another. This greatly 

increase coverage without the need to increase transmit power of wireless signal, it is 

called end-to-end communication, one device that resides in bottom-end can 

communicate with the one at the top-end through multi-hopping technique that will 

find the intermediate node to forward the data. For example in Figure 1, the right-

sided device send all the information to the base station at the left, for data to arrive 



 

  12 

 

at the base station, it need to through multiple intermediate device that also act as a 

normal node. 

The technology is designed in such a way that it can heal itself when 

undesired situation occurred. Let say that after the network is established properly, 

when there is one node fail to operate, the other node that depend on the faulty node 

to communicate can re-established a new network through other available path. 

This multi-hop design will greatly reduce power consumption as the node 

does not need to transmit a long range wireless signal in order to send data to a far 

away node. As a result, a wide coverage can be achieved through lower transmission 

power [12].  

 

2.3 Recommended Design and Requirement 

 

In choosing the correct topologies and design for Robust Wireless Mesh Sensor 

Network that we will apparently use it for critical purpose, these are the design keys 

that we will be using: 

 

1. Reliability – the network need to be nonetheless fault tolerant, the failure of any 

device/node will not affect the any other node [9]. The message/data need to be 

guaranteed to be delivered to its destination regardless of the situation. Network 

congestion is highly needed to be avoided [8]. 

2. Scale of the network – the scalability of network must be wide to compensate 

with the random placement of sensor in tough geographical area [8]. 

3. Flexibility – modification of network can be easily configured such as removal 

and addition of new sensors without the need of reconfiguration. The sensor also 

can be easily movable to a new destination [9]. 

4. All the sensors must be battery-powered as power source in a tough environment 

cannot be guaranteed. Although solar energy source may be implemented. 

5. The latency – message need to be delivered in an acceptable time period to the 

monitoring base station. 

 

 



 

  13 

 

CHAPTER 3 

METHODOLOGY 

 

In general, research methodology refers to a set of procedures used to conduct a 

research project. In here, the methodology includes: 

 Research Methodology 

 Project Activities 

 Key Milestone 

 Gantt Chart 

 Tools 

3.1 Research Methodology 

 

Flowchart for the research methodology planned is shown in Figure 6. 

 

 

Figure 6 Research Methodology 

 

Project Planning 

Research and Analysis 

Development of Project 

System Analysis and 
Improvement 

Integration and Testing 



 

  14 

 

3.1.1 Project Planning 

Project planning is done by allocating task that are going to be done within 

the given time period. Careful planning is important to make sure this project 

can be carried out perfectly and meeting the requirement. A Gantt chart has 

been drawn which consist of several milestone and project activities so that 

the time will be allocated in the right way. 

3.1.2 Research and Analysis 

For this phase it involve the review of related journals, books, research papers 

and developers forum to increase the familiarity, better understanding and 

also to get a clear view about the research scope that will be carried out. The 

main information resources are from the ACM Digital Library and also 

IEEE.org. The existing survey and experiment done on the scope of the 

project is a vital source to analyze the system that will be developed later on. 

The existing system will be studied in order to find the weakness or certain 

features that they are lacking off so that it can be improved and tailored the 

new system based on the requirement. 

3.1.3 Development of the Project 

The project will be developed according to the default setting acquired from 

the hardware’s manufacturer. This will involve hardware interfacing and 

programming to achieve a standard goal for Wireless Sensor Network. 

3.1.4 System Analysis and Improvement 

The developed system is to be thoroughly studied and analysis is to be done 

to further understand how the system works in real environment. Thus further 

improvement can be done to really meet or exceed the requirement of the 

system. The system can possibly be narrowed down or specially designed for 

specific application. 

 

 

 



 

  15 

 

3.1.5 Integration and Testing 

After the improved system and code has been done and implemented, it will 

be tested again multiple times in the field with different quantities and situation. This 

is to see whether the system meet their requirement and expectation or not. The 

system will be carefully monitored for any inconsistencies. 

 

3.2 Project Activities 

 

In the beginning of the project, everything is focused on the theoretical 

reading and understanding the project scope. In this stage, critical analysis of the 

existing features of Wireless Sensor Network need to be done in order to find the 

features that has not being develop yet and also meet the requirement based on most 

applications. 

The Wireless Sensor Network then will be developed using the hardware 

available to achieve a basic working WSN. To begin, there are always many tutorials 

on the internet as guidance in order to understand how the whole process works 

provided on the net and forum. The manuals given by the manufacturer will help a 

lot in the programming part. The devices are programmed accordingly until it meets 

the minimum requirement of a basic system. 

Next phase will be the testing phase of the deployed system earlier. This 

includes the observation of the system for its latency, reliability, error-free and power 

consumption. Then, using the results, more research may be required to improve the 

characteristic of the deployed system. Continue developing the system, part by part 

and testing the features so that its meet the targeted requirement and also running as 

it supposed to be. The whole process need to be repeated while developing more 

other part until all the requirements are satisfied or reaching the time constraint 

given. 

After completing the development and improvement phases, the system needs 

to undergo a thorough test in the field to see its true reliability and robustness for 

final report of the working system. If required, the system may be redevelop or 

reconfigure when there are still time available. 



 

  16 

 

3.3 Key Milestone 

 

Below are the key milestone that need to be achieved for the project development 

throughout both of the semester of Final Year Project 1 (FYP I) and Final Year 

Project 2 (FYP II). 

Semester 1 

Table 1 Key Milestone for FYP I 

Milestone Week 

Project Planning Week 6 

General Research Week 9 

Programming Study Week 11 

Development of basic WSN Week 13 

 

Semester 2 

Table 2 Key Milestone for FYP II 

Milestone Week 

Analysis on the deployed basic WSN Week 5 

Improvement on the deployed system Week 9 

Testing on the improved system Week 12 

Final system integration Week 14 

 

 

 

 

 

 

 

 



 

  17 

 

3.4 Gantt Chart 

Table 3 Gantt chart 

Phase 
FYP 1 FYP 2 

Weeks 

 1 2 3 4 5 6 7 8 9 
1

0 

1

1 

1

2 

1

3 

1

4 

1

5 
1 2 3 4 5 6 7 8 9 

1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1 
Project 

Planning 
                              

2 
General 

Research 
                              

3 

Study of 

Programming 

Language 

                              

4 

Development 

of basic 

WSN 

                              

5 

Analysis on 

the deployed 

basic WSN 

                              

6 Improvement 

on the 

deployed 

system 

                              

7 Testing on 

the improved 

system 

                              

8 Final system 

integration 

                              

 

 

 

 

 

 

 



 

  18 

 

3.5 Tools 

 

The tools that need to be used in this project will involve several hardware and 

software. These are the hardware: 

 

1. XM2110CA – 2.4GHz IRIS OEM Reference Board 

This is the main board from MEMSIC Inc. that functions as the CPU and 

transceiver in a single board.  

 

Figure 7 IRIS Mote (Source : MEMSIC datasheet) 

 

2. MTS 420CC – Weather Sensor Board with Light, Temperature, Humidity, 

Barometric Pressure, Seismic and GPS. 

This device manufactured by MEMSIC Inc. can be interfaced with the IRIS 

Mote above to function as a sensor node. It wide varieties of sensors in one 

board make it applicable for many applications. 

 



 

  19 

 

 

Figure 8 MTS420CC (Source: MEMSIC datasheet) 

 

 

 

Figure 9 MIB520CB (Source: MEMSIC datasheet) 

 

 

3. MIB520CB – USB PC Interface Board 

The board is also from MEMSIC Inc., designed as plug-and-play with other 

MEMSIC’s board to add the gateway function in the node. This board will 

allow the node to interface with PC via USB connection to be programmed or 

acts as a base station. 

 



 

  20 

 

 

All the software needed can be obtained from the MEMSIC itself, including the 

programming software, monitoring program and also manuals. The software 

products that will be used are: 

 

1. Moteworks 

It is a software which enables user to compile code and build it into the 

hardware. It includes all the libraries that may be used to compile the code. It 

uses NesC compiler which is the extension of C language. This language will 

then being implemented in the operating system of the hardware used, 

TinyOS [13]. 

 

2. Cygwin 

Linux virtual platform for Windows, it is needed for TinyOS compiling and 

pprogramming tools to run normally. 

 

3. Xsniffer 

Monitor the basic mote’s network parameter. Xsniffer is compatible with 

MEMSIC’s OEM hardware. 

 

4. Moteview 

Moteview is an interfacing software that connects with the database and 

motes for easy and interactive mote monitoring at the “end-user” side. This 

package is included with other tools such as Xserve (command line tools that 

Moteview GUI run in background to capture packet through the serial 

interface). 

 

 

 

 

 

 

 



 

  21 

 

3.6  Project’s Preparation 

 This project was started with the hardware’s assembling and configuration. 

Through the hardware manual, the devices can be assembled easily by mean of plug-

and-play. To be accurate, there were three types of devices, the processor and RF 

module (mote), the sensor boards and lastly the interface board as described in the 

Tools (SECTION 3.5) above. 

 

3.6.1  Installing the required software (Moteworks and XMESH) 

 

 The first basic things to do was installing the given software by MEMSIC, 

two major packages were given: 

- Moteworks 

- Moteview 

Initially, it is compulsory for users who are going to use the software given 

by MEMSIC to have Windows XP SP3 or older operating system for the software to 

works. Thus installing one is a need. After installing both software, there are 

problems that usually rise after that, you can solve it by installing and reinstalling 

various version of .NET Framework from Microsoft’s website. Usually the programs 

will run properly with .NET Framework 1.1 given in the manufacturer’s CD.  

These are the additional component for the software to work and all of these 

were given in the installation CD. 

• PostgreSQL 8.0 database service 

• PostgreSQL ODBC driver 

• Microsoft .NET 1.1 framework 

As we are purchasing the USB type of interface gateway, MEMSIC’s 

MIB520CB, it needs an additional driver for the board to working properly. This 

driver will convert the USB port in a PC to serial interface port, to be precise, two 

serial ports. To check whether the driver was working properly or not, go to 

 Start>Control Panel> Device Manager 

Check under Ports (COM & LPT), make sure there were two additional USB Serial 

Port as in Figure 10 below. In this case, they were COM3 and COM4. 



 

  22 

 

 

Figure 10 Two additional USB Serial Ports 

Please be noted that the some of the programs cannot be run unless the 

interface board is already connected. Actually, I have tried running the software 

before connecting the interface board, it gives an unknown error then the software 

terminated. I thought that the software was not installed correctly but after the 

problem was solved when the software was run while the device connected. 

 

 

 

 

 

 

 

 

 

 



 

  23 

 

3.6.2 Hardware Parts Assembly 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gateway base can be assembled by connecting the main RF/CPU board (IRIS) to the 

interface board, in this case, the IRIS with the USB Interface board. Figure 11,12 and 

13 show the assembled boards. 

 

 

Figure 12 Assembled gateway 

Sensors Module Wireless Radio 
Module 

Gateway 
Board 

Figure 11 Hardware Configuration 



 

  24 

 

 The sensor node can be deployed by connecting an IRIS with a sensor board. 

In Figure13, the sensor board used was MTS420CC. 

 

Figure 13 IRIS and MIB520 

 

3.6.3 Programming the Device using Moteworks 

 

 Four icons will showed up at the desktop after the software packages were 

installed. They were Xniffer 1.0, PN2, MoteConfig 2.0 and Moteview 2.0F. These 

were the main program that will be used for the software. 

 In order to program a certain code into the processor on the board, there are 

actually lot of things to be done before the codes are transferred to the processor, all 

of them are commands in linux (Cygwin). Thanks to the software provided by 

MEMSIC, it is now simplified by just writing the code, compile and build to binary 

and fusing them onto the processor’s memory. 

 The first step is to open the PN2 (Programmers Notepad 2), it is a software in 

windows that are indirectly connected with Cygwin platform to do the compilation of 

codes. The language of the TinyOS operating system is mostly the same as C-

embedded language, information can be search in the manual given and from the 

Internet. 

 MEMSIC has provided its own library and test code for TinyOS in deploying 

the Mesh Sensor Network, which they called it XMesh. Inside the Cygwin Project 

Files, the code are prebuilt there as in Figure 14, 

 



 

  25 

 

Using the provided library, these code is written to make the devices function 

as a gateway/base station that will monitor the other nodes and acquire data from 

them and also forwarding packets. This code uses the default device parameter 

declared in a file called “MakeXbowlocal”. Some of the important parameter in it 

are: 

- Radio Channel 

- RF Power Level 

- Group ID 

 

Figure 14 Prebuilt Library of Motework 

 

Without changing those basic device parameters, this code will perform at its 

basic level of Mesh networking with default parameters. The sensorboard application 

can be chosen from the left pane in the Programmer’s Notepad as in Figure 15. 



 

  26 

 

 

Figure 15 Choosing the sensorboard in Xmesh 

 

To build and install the code into device, a command parameter needs to be 

executed. The command line (linux shell) can be access using the Programmer note 

program or through Cygwin itself. The command can be executed directly through 

the software by going to Tools>Shell or by pressing F6. The basic command syntax 

is as below: 

To install into IRIS using the USB Interface MIB520  

make iris install,<node id> MIB520,com<x> 

Where <x> is the lower USB serial port number that we saw from the Device 

Manager earlier. 

Example (Figure 16), 

make iris install,1 MIB520,com3 

 



 

  27 

 

This will build the code and then transfer it into the device through MIB520 COM 

port 3. 

 

Figure 16 Shell tools in Programmer's Notepad 

 

 

3.6.4 Programming the TinyOS in Linux Environment 

  

The necessity to use TinyOS in Linux comes in handy when the programmer 

wants to compile the nesC application with Java for communication purpose. 

Furthemore, in the analysis later in this project, the author decided to use TinyOS 

2.1.0 instead of Moteworks programming environment as the manufacturer did not 

provide enough source code to alter the routing protocol on network layer. 

The TinyOS tools provide the easiest way to communicate the mote with PC 

through Serial or USB port., and most of these communication tools uses Java in its 

compilation. Cygwin can also be used when compiling nesC and Java but a lot of 

problems may arise depending on your luck. 

 The easiest way to use a machine with Linux and Java installed is to use a 

preconfigured VMWare image provided by the TinyOS Community. This image file 

and the setup instruction can be referred in [14]. 

 After installing and running the pre-configured Linux XUBUNTOS by going 

through the guideline in [14], connect a mote to test its connection. The author used 

MIB520 programming board which has USB-to-Serial converter. Invoking motelist 

will return no result. In order to solve this problem, another method can be used, 

open a terminal and type : 

 ~$ dmesg 

The result of dmesg is shown in Figure 17. 

 

 



 

  28 

 

 The mote connected can be seen as ttyUSBn (e.g. ttyUSB0 and ttyUSB1), n 

can be different depending on port usage. Thus to address the port used in Linux, 

/dev/ttyUSBn need to be used instead of COMn. Noted that in the Figure 17, there are 

two USB port used. 

 

Figure 17 "dmesg" terminal result 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  29 

 

CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Data Gathering and Analysis 

 

 The first analysis conducted is to find the approximate range of the 

mote’s radio. The overview of the experiment is as in Figure 18. 

 

Figure 18 Open Field Test 

 The devices are placed in a field with no obstruction to interfere 

with the device’s radio. The results are shown in Table 4. 

Table 4 IRIS’s Radio Transmission Open Field Range 

Transmission Power (dBm) Range (m) 

-17 11.4 

-12 32.2 

-9 47.6 

-7 67 

-5 70 

-4 70 

-3 74 

-2 79 

-1 80 

0 81 

0.7 85 

1.3 96 

1.8 120 

2.3 163 

2.8 193 

3.2 241 
 



 

  30 

 

The overview of the results then is shown by plotting the graph of Range vs 

Transmission Power as in Figure 19. 

 

Figure 19 Range vs Transmission Power 

 

These ranges are crucial for further experiment of the device as to test a working 

multi-hop network with mesh topology, the nodes are required to be in a certain 

range for specified transmission power. 

 

 

 

 

 

 

 

 

 

 

 

0

50

100

150

200

250

300

-17-12 -9 -7 -5 -4 -3 -2 -1 0 0.7 1.3 1.8 2.3 2.8 3.2

Range(m) vs Transmission Power (dBm) 

Range(m) vs Power (dBm)



 

  31 

 

4.2 Modelling and Experimentation 

 MEMSIC has already provided their basic working Multi hop Mesh Network 

that includes its own routing protocol called Xmesh. This routing algorithm is mainly 

used because it is more reliable compared to other routing protocols. 

 Generally explain, Xmesh uses a different method in calculating the route 

paths to the base station instead of traditional distance vector routing cost metric used 

by other algorithm. Distance vector routing is basically a hop count, which means 

that a node will send its data to the base station through the shortest path by means of 

the least hop required. While Xmesh uses its owh cost metric, called Minimum 

Transmission (MT), it takes account of link quality in the calculation to avoid 

excessive use of energy as transmission of data through low quality link will require 

more power [15]. 

 Xmesh can be built and flashed into the mote through the Programmer’s 

Notepad of Moteworks or MoteConfig. 

 

4.2.1 Wireless Sensor Network with XMESH Algorithm 

 

Deployment of XMESH routing algorithm can be done with ease. This next 

code will control the sensor components inside the sensor board and communicate 

them with the CPU to be transmitted to nearby node with the same group ID. 

Base station can be programmed using the provided code in:  

Moteworks>apps>xmesh>XmeshBase 

Another approach in compiling XMesh into the mote can be done by using the 

provided MoteConfig program and the Xmesh binary file can be found in: (Figure 20) 

C:\Program Files\Crossbow\Moteview\Xmesh 



 

  32 

 

 

Figure 20 MoteConfig 

 

4.2.2 Visualizing the programmed nodes through MoteView 

 

Moteview was used to test the programmed node as it is a software that 

enable us to monitor the data that the base station received. Moteview functions by 

communicating with the database and the linux environment platform. The data from 

the base station comes into the database through Xserve, a program in Cygwin linux 

serve as the interface between device and database. This Xserve will then insert 

strings of data into the database. The database used is PostgreSQL and it is installed 

in Microsoft Windows whereas the Xserve is built under Cygwin linux. 

Double clicking the Moteview icon in the desktop will open the program. The 

interface board need to be connected all the time during this time. Click “Connect to 

WSN” icon in the program, then these setting as in Figure 21 is introduced to connect 

to the base station. 



 

  33 

 

 

Figure 21 Connecting to WSN using Moteview 

 

These parameters are for MIB520 with the second virtual USB Serial Port is 

COM4. By clicking the “Tick” symbol on top right of the software, the monitoring 

will begin. Figure 22 below shows the programs functioning in recording the data 

from base station. 

 

Figure 22 Moteview test 



 

  34 

 

The output message at the bottom shows the query derived from the database 

and it is updated in the table field. The experiment is repeated for two (2) motes that 

are placed further apart to introduce Mesh/Hop configuration. The results are as in 

Figure 23. 

 

 

Figure 23 Moteview Health Data 

 

As in Figure 21, some packets are forwarded (9.7%) by Node 1. This means that 

Node 2 is hopping through the Node 1 to reach the base station. The value 9.7% 

means that 9.7% of packets sent by Node 1 to the base station is the packets from 

Node 2 that are being forwarded. 

 

 

Figure 24 MATLAB Graph 

 



 

  35 

 

 Instead of using the Moteview, the author has written a code in MATLAB 

that can read the data in the database and visualize it in the MATLAB way as in 

Figure 24. This code generally extract the data from the PostgreSQL database and plot 

it right away. As the matter does not concern much in this project, the development 

of the MATLAB code stop there. 

 The main advantage of using MATLAB instead of the given Moteview is the 

developer can extract anything he wants from the database. As in Moteview, only 

one type of sensor modules can be used for all the motes to properly parse the data 

sinked into the BaseStation. The MATLAB code can be referred in Appendix A 

 

 

4.2.3 Analysis of XMESH routing in Moteworks 

 

After going through the provided Xmesh code provided, there are no 

evidence found that can provide a way to look into the Xmesh Routing Algorithm. 

This means that the manufacturer did not provide all the source code of the Xmesh. 

The author then proceeds to change the programming method from using the 

provided Moteworks to the legacy TinyOS 2.x. 

This problem can be seen by checking the wiring interfaces/components in 

the nesC code and its usage. 

 

Figure 25 Xmesh Problem 1 

  

Figure 25 shows that Send interface is used to send data to lower layer (network 

layer) for further network routing process. The lower layer source code can be found 

in $TOSROOT/tos.  



 

  36 

 

 

 

Figure 26 Xmesh Problem 2 

 

Figure 26 further shows that the Send interface used by the main code is wired to 

MULTIHOPROUTER component, while this component can nowhere be founded in 

the TOS libraries. 

 

 Further research by the author has confirmed this matter, an email from Giri 

Baleri, a Crossbow individual itself stated that the source code of the Xmesh Routing 

is only available for Enterprise users. The email can be find here [16]. 

 

 In the source code’s directory tree of the author, there is XMeshBinary 

directory exists, this confirm that the version that the author got is the standard 

version. 



 

  37 

 

 

Figure 27 XMeshBin Directory 

 

 In the XMeshBin directory in Figure 27, we can see that the network layer of 

XMesh is controlled by this binary (compiled) file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  38 

 

4.3 Prototype 

 

 As the previous concern matters, XMesh network routing protocol cannot be 

altered from the given manufacturer programming environment. The author decides 

to use another alternative as purchasing the Enterprise Edition of the source code will 

be cost consuming and the possibilities of getting one is low as Crossbow Inc. no 

longer support the XMesh, MEMSIC does. The author has also written an email to 

the MEMSIC about the matters, but no reply given. 

 

4.3.1 Ad-Hoc On-Demand Vector(AODV) Routing Implementation 

 

 The alternative method decided by the author is to implement AODV routing 

in the legacy TinyOS-2.x programming environment. Installing TinyOS-2.x in Linux 

(XUbuntu) will provide the programming environment. The author has also tried 

using TinyOS in Cygwin but some problems arise concerning Java-TinyOS 

compilation. The method used in installing TinyOS-2.x in Linux has been described 

in SECTION 3.6.4. 

 

Figure 28 AODV's ".platform" modification 

 

 AODV implementation and documentation can be obtained from a 

documentation website of a PhD Candidate, [17]. Its source code was published 

under the GNU License.  



 

  39 

 

After obtaining the source code, it then can be copied to  $TOSROOT/tos and 

$TOSROOT/apps. Some adjustments need to be done before being able to install the 

sample application on a mote, the adjustment is described below. 

1. Go to $TOSROOT/tos/platform/<your platform>. In the author’s case, it is 

$TOSROOT/tos/platform/iris. 

2. Edit the .platform file (the file may be hidden, editing the option of file 

manager will show the file) 

3. Add a new line with the new code as in Figure 28. 

 

The implementation continues by installing the given example of application 

layer’s code named as AODV25nodeTest. Several adjustments in the code were done 

to make it working. There are several error inside the code, discovered by the author 

through Leds debugging. The cause of the error possibly from the written code itself 

or it is because of different version of TinyOS used, noted that the author used 

TinyOS-2.1.0. The adjustments are listed below: 

1. In AODV_M.nc file, the use of function “add_route_table()” by the variable 

“added” in “ReceiveRREQ.receive()” event. The “added” need to be removed 

from IF statement as it will return boolean FALSE. The add_route_table need 

to be added inside the IF statement, not in the boolean operation. Refer to 

Appendix B.1. 

2. In AODV_M.nc file, the “p=msg” should be removed as the event need to be 

returned with message_t* format. Signalling the event alone is enough. If this 

correction not been done, the mote will actually receive the sent packet and 

data, but the function SubReceive.receive will be corrupted after some time. 

The author discovered this by watching using Leds debug that the mote only 

receive data in upper layer for 2-3 packet only. Refer to appendix B.2. 

The motes then are able to send data to each other after the above corrections.  

 

 

 

 

 

 



 

  40 

 

4.3.2 Adding Battery’s Factor in the AODV 

 

 The idea is to add a certain factor of battery’s remaining power inside the 

AODV routing algorithm. The justification of this is the forwarding mote that has 

less remaining battery’s power will be able to hold longer thus being able to send its 

own sensor data to the base station. 

 It is advisable to read the documentation of AODV Routing Algorithm [17] to 

understand the following explanation. This routing technique will allow overall 

motes in a network to stay alive as well as decreasing the rate of battery replacement 

due to motes that are in the middle and forwarding a lot of packets. The user will 

mostly receive all the critical sensor data in a control room. 

 The battery’s power of a mote will be sensed for every certain period and the 

request of route will be added with Minimum remaining Battery in a Transmission 

(MBT). The explanation can be simplified with Figure 29. 

 

 

Figure 29 Minimum remaining Battery in a Transmission 

 

 The example scenario describe that Node 1 need to transmit data to Node 4 

and there is no route path yet in its routing table. Node 1 will transmit 

RouteRequest(RREQ) with 100% MBT as the sender node should not affect the 

MBT as the node need to receive data packet nevertheless. The RREQ will be 

broadcast to all neighbour motes. Node 4 then will reply all request back to Node 1. 

Node 1 will then filter the RREP, which one has the highest MBT to be stored in its 



 

  41 

 

routing table. Please note that the situation should has more route path (e.x. Node 1-

2-6-4), but it is excluded in the Figure 29. 

 

 This routing technique has been implemented with AODV by the author. The 

following steps described the implementation on the source code, the network layer 

source code of AODV can be found in $TOSROOT/lib/ADOV : 

1. Wire the needed components-interface in AODV.nc, another Timer and 

BatteryVoltage sensor. Declare the needed interface in AODV_M.nc. 

2. The new Timer functions as to periodic the sensor reading of the battery’s 

voltage. Start the Timer in AODV_M.nc. 

3. When the Timer fired, the sensor will be read, the data is calculated and store 

in a local variable. 

4. Update the structure of RREQ, RREP and Route Table. 

5. For first RREQ send by the requester, the MBT should be 100%. 

6. The RREQ that is being received and not for it (forwarding RREQ), the 

forwarder node should update the MBT as necessary. As well as updating its 

routing table with the received MBT from the last sender node. 

7. During the route table updating function (add_route_table), the function 

should check whether the existing route path need to be replaced. 

8. Change other required function for proper execution of code. 

9. Refer to APPENDIX C for further clarification of code. 

 

 

 

 

 

 

 

 

 

 

 

 



 

  42 

 

CHAPTER 5 

RECOMMENDATION AND CONCLUSION 

 

5.1 Conclusion 

 

 The project is running smoothly and within the time scope and schedule. The 

basic working network has been implemented though Moteworks. The MATLAB 

interface can be used for further process of data received from the node as it provides 

flexibility. Ad-Hoc On Demand Vector Routing has been implemented on IRIS 

motes with some adjustment from GNU Licensed code. The battery factor 

modification in AODV has been implemented, but during this report writing, it has 

not been thoroughly tested for comparison with other routing algorithm. 

 

5.1 Recommendation 

 The development of WSN and Mesh networking need to done in a Linux 

environment such as Xubuntos that has been compiled for TinyOS development. The 

usage of Cygwin and Windows has many disadvantages and problems.  

 

Further studies should be started with TinyOS, not some other routing 

algorihtm given by any manufacturer for better understanding and flexibility. 

Altering the code and library will be the further steps in improving the system 

dynamically. 

 

 

 

 

 

 

 

 



 

  43 

 

REFERENCES 

[1] P. Clare Loren, J. Pottie Gregory, and R. Agre Jonathan, "Self-Organizing Distributed 

Sensor Networks," in Proc. SPIE Aerosense99, CA, 1999. 

[2] Microsoft. (2009) msn. [Online]. encarta.msn.com 

[3] F. Akyildiz Ian and Wang Xudang, "A Survey on Wireless Mesh Networks," in IEEE 

Radio Communications, 2005, p. S23. 

[4] Teo Cheng Kiat Amos, "Performance Evaluation of a Routing Protocol in Wireless 

Sensor Network," Naval Postgradute School, Monterey, CA, Master's Thesis NSN 7540-

01-280-5500, 2005. 

[5] W. Davis Tyler, Liang Xu, Navarro Miguel, Bhatnagar Diviyansh, and Liang Yao, "An 

Experimental Study of WSN Power Effieciency: MICAz Networks with XMesh," 

International Journal of Distributed Sensor Networks, vol. 2012, October 2011. 

[6] Akyildiz LF., Su W, Sankarasubramaniam Y., and Cayirci E, "Wireless Sensor 

Networks: A Survey," Communication Magazine, vol. 40, no. 8, pp. 102-114, August 

2002. 

[7] V. Biradar Rajashree, Patil V.C., Sawant Dr. S. R., and Mudholkar Dr. R. R., 

"Classification and Comparison of Routing Protocols in Wireless Sensor Networks," 

Ubiquitous Computing Security Systems, no. Special, August 2009. 

[8] MEMSIC Inc., Xmesh User Manual. Milpitas: MEMSIC, Inc., 2010. 

[9] Baleri Giri, Guidelines for WSN Design and Deployment.: Crossbow Technology, Inc. 

[10] Yajie Ma, Mark Richards, Moustafa Ghanem, Yike Guo, and John Hassard, "Air 

Pollution Monitoring and Mining Based on Sensor Grid in London," Sensors for Urban 

Environmental Monitoring, vol. 8, no. Special, 2008. 

[11] Dust Networks. [Online]. 

http://www.dustnetworks.com/technology/networkintelligence/ 

[12] Nageswara Rao S. Siva, Krishna Y.K Sundara, and Rao K. Nageswara, "A Surve: 

Routing Protocols for Wireless Mesh Networks," International Journal of Research and 

Reviews in Wireless Sensor Networks (IJRRWSN), vol. 1, no. 3, pp. 43-47, September 

2011. 

[13] MEMSIC, Inc., Moteworks User Manual.: MEMSIC, Inc., 2010. 

[14] Kevin Klues. [TinyOS Wiki] Running a XubunTOS Virtual Machine Image in VMware 

Player. [Online]. 

http://docs.tinyos.net/tinywiki/index.php/Running_a_XubunTOS_Virtual_Machine_Ima

ge_in_VMware_Player 



 

  44 

 

[15] Amos Teo, Gurminder Singh, and John C. McFaclien, "Evaluation of the XMesh 

Routing Protocol in Wireless Sensor Networks," 2006. 

[16] Giri Baleri. (2007) [Tinyos-help] missing XMeshRouter file? [Online]. 

http://mail.millennium.berkeley.edu/pipermail/tinyos-help/2007-June/026203.html 

[17] Junseok Kim. (2011, April) AODV implementation on TinyOS-2.x. [Online]. 

http://www2.engr.arizona.edu/~junseok/AODV.html 

[18] Krishnendu Chakrabarty Yi Zou, "Sensor deployment and target localization in 

distributed sensor networks," ACM Transactions on Embedded Computing Systems 

(TECS), vol. 3, no. 1, pp. 61-91, February 2004. 

[19] Chi-Tsun Cheng. (2011, September) tdoa-localization-iris, GoogleCode. [Online]. 

http://tdoa-localization-

iris.googlecode.com/files/TinyOS%202x%20Installation%20Procedures.pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  45 

 

APPENDIX 

 

APPENDIX A.1 

 

MATLAB-M files : 

s = dos('base_read.bat &'); 

keeplooping = true; 

while keeplooping 

conn = 

database('task','tele','tiny','org.postgresql.Driver','jdbc:postgre

sql://localhost:5432/'); 

setdbprefs('DataReturnFormat','numeric') 

xnodeid = 1; 

nodeid = num2str(xnodeid); 

xday = 15; 

if xday < 10 

    day = ['0',num2str(xday)]; 

else 

    day = num2str(xday); 

end 

 

xmonth = 10; 

if xmonth < 10 

    month = ['0',num2str(xmonth)]; 

else 

    month = num2str(xmonth); 

end 

 



 

  46 

 

xyear = 2012; 

year = num2str(xyear); 

curs = exec(conn, ['SELECT EXTRACT(HOUR FROM 

result_time),EXTRACT(MINUTE FROM result_time),EXTRACT(SECOND FROM 

result_time),humid,accel_x,accel_y FROM mts420_results WHERE 

EXTRACT(DAY FROM result_time)=''', day,'''','AND EXTRACT(MONTH FROM 

result_time)=''', month,'''','AND EXTRACT(YEAR FROM 

result_time)=''', year,'''','AND nodeid=''', nodeid,'''']); 

curs = fetch(curs); 

hour = curs.Data(:,1); 

minutes = curs.Data(:,2); 

seconds = curs.Data(:,3); 

humid = curs.Data(:,4); 

accel_x = curs.Data(:,5); 

accel_y = curs.Data(:,6); 

 

n = length(humid); 

nyear = (xyear * ones(1,n))'; 

nmonth = (xmonth * ones(1,n))'; 

nday = (xday * ones(1,n))'; 

 

xdate = datenum(nyear,nmonth,nday,hour,minutes,seconds); 

%plot(humid) 

subplot(2,2,[1 3]); plot(xdate,humid) 

title('Humidity') 

datetick('x','HH:MM:SS','keepticks') 

subplot(2,2,2); plot(xdate,accel_x) 

title('X-acceleration') 

datetick('x','HH:MM:SS','keepticks') 

subplot(2,2,4); plot(xdate,accel_y) 



 

  47 

 

title('Y-acceleration') 

datetick('x','HH:MM:SS','keepticks') 

 

pause(1); 

end 

close(curs) 

close(conn) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  48 

 

 

APPENDIX A.2 

 

BATCH file (used by MATLAB to run Xserve) 

@echo off 

echo off 

c: 

cd\ 

cd Program Files\Crossbow\MoteView\xserve2\bin 

xserve -s=COM4 -b=57600 -l -xmlfile=XmlStream.xml -xmlp -

xmlport=9005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  49 

 

 

APPENDIX B.1 

 

 

 

 

 

 

 

APPENDIX B.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  50 

 

 

APPENDIX C 

AODV.nc wiring modified code: 

 

 

 

 

 

AODV_M.nc interface wiring modified code: 

 

 

 

 

AODV.h modified code: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  51 

 

 

Add_route_table function in AODV_M.nc : 

 

 

 

 

 

 

 

 

 

 

 

 

Function declaration in AODV_M.nc : 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  52 

 

 

ReceiveRREP function in AODV_M.nc : 

 

 

 

 

 

 

 

 

 

 

 

 

ReceiveRREQ function in AODV_M.nc 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  53 

 

 

SendRREQ function in AODV_M.nc : 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer in AODV_M.nc : 

 

 

 

 


