UNIVERSITI
TEKNOLOGI
PETRONAS

Final Year Project

Final Report

Development of a Robust Wireless Sensor Mesh

and Multi-hop Network

Supervisor : Dr. Micheal Drieberg

Ahmad Muhaimin bin Mohd Taib
Electrical and Electronic Engineering
11872

ABSTRACT

Wireless networking has evolved rapidly since the first wireless device was invented.
Throughout those years, researchers and engineers are struggling to apply the
knowledge of wireless networking in useful ways in real life. Wireless Sensor
Network (WSN) has been used in many applications, from habitat surveying to
critical monitoring. Reliability of the WSN plays a major role in deciding whether it
should be used or not in critical applications instead of using traditional wireless
technology or wired networking. This project is solely a research and development of
routing algorithm for WSN by using an existing source and straight away finding its
weak point in order to apply further improvisation. The existing routing algorithms
used are the XMESH and Ad-Hoc On-Demand Vector Routing (AODV).

ACKNOWLEDGEMENTS

My very first acknowledgements go to Universiti Teknologi Petronas, Final
Year Project coordinator and anyone involved for allowing me to be able to conduct
this great project that gave me a new experience about Wireless Communication.

I would like to express my very great appreciation to all the persons in
Electrical and Electronics Engineering Department for their valuable and
constructive suggestions during the planning and development of this project.

I would like to express my deep gratitude to Dr. Micheal Drieberg, my Final
Year Project’s supervisors, for his patient guidance, enthusiastic encouragement and
useful critiques of this research work. His willingness to spend his valuable time so
generously has been very much appreciated. This project will not be able to be
completed without his assistance by my side.

I would also like to extend my thanks to my family for support in terms of
encouragement and finance thus allowing me to finish this project and research. I am
also indebted with my friends in UTP for helping me conducting certain experiment

that is hard to be done alone.

Table of Contents

A B S T R A T i ettt ettt e et e e e b bt e e e ba e e e e aabeeaeaaa i
ACKNOWLEDGEMENTS.... oottt e ii
TaDIE OF CONLENTSeiieiiei ettt s e i
LISE OF FIQUIES ...ttt ettt en Y
LISE OF TADIES ... %
CHAPTER L.ttt ettt e e sttt e e e bbb e e e e anbb e e e e s enbbeaesannreeeeann 1
INTRODUGCTION ..ottt et e e et e e st e e e s nbn e e e e snbaeeeas 1
1.1 BACKGIOUNG ...ttt 1
1.2 Problem STatEMENT.......coouiiieieeie e 2
1.3 Objectives and SCOPE OF STUYccruviiiiiiieiie i 3
CHAPTER 2.ttt ettt et e e st e e e et b e e e s anbbe e e e e enbaeeeeanbeaeeanns 4
LITERATURE REVIEW AND THEORY ...oiiiiiiiieiiiiiie st 4
2.1 Wireless Sensor NEtWOrk (WSN)coiviiiiiiiiiiieiie e 4
211 NOAE’S COMPONEIILSeevvreeiieesiieee ittt et ettt st e st e e e e 5
2.1.2 Wireless Sensor Network (WSN) Topologiescccvvevveeeviee i 7
2.1.3 WSN APPHICALIONSoeeiiieeciie e 10

2.2 Wireless Mesh NEIWOIKccoiiiiiiiiiiiiciice e 11
2.3 Recommended Design and ReQUIFEMENTccceevveeiiiieiiieeesiee e 12
CHAPTER 3. ottt ettt ettt bb e st e st e e ssbeeeeneas 13
METHODOLOGYottt sttt et e bt e ettt e et e e nnnee e e 13
3.1 Research Methodologycccooiiiiiiiiiii e 13
3.1.1 Project Planningcocveeiiiiiiiic e 14
3.1.2 Research and ANAIYSIS.........coiviiiiiiiiie e 14
3.1.3 Development 0f the PrOjJECTccviiiiiiiiie e 14
3.1.4 System Analysis and IMpProvement..........ccccceeviei e 14
3.15 INtegration and TESTING.......ccoiiiiiee e 15

3.2 ProjECt ACHIVITIES ..viiiiiiiiie ettt et 15
3.3 KBY MIlESIONE ... 16
34 GANEE CRAIT.....eiiiiiiice e 17
3.5 TO0IS e 18
3.6 Project’s Preparation..........cc.cieiiiiiiiiiiiiiiee ittt 21
3.6.1 Installing the required software (Moteworks and XMESH)ccccoooiiinenne. 21
3.6.2 Hardware Parts ASSEMDIYoeviiiiiii e 23

3.6.3 Programming the Device using MOteWOrKSccooieiiiiiiiiciicceeeec e 24

3.6.4 Programming the TinyOS in Linux ENVIronmentcccocoeiieiiiiiieiieneniens 27
CHAPTER 4.ttt ettt e et e e ettt e e e e bb e e e e ibeeaeaans 29
RESULTS AND DISCUSSION ..ottt ittt e e 29
4.1 Data Gathering and ANAIYSIScouiiiiiiieiieiii e 29

4.2.1 Wireless Sensor Network with XMESH Algorithm ..., 31

4.2.2 Visualizing the programmed nodes through MOteVIeWccccovvveiieineiiinennn. 32

4.2.3 Analysis of XMESH routing in MOtEWOIKSccccveiiiiiiiiieiiieiesee e 35
4.3 PrOOTYPE ... e 38

4.3.1 Ad-Hoc On-Demand Vector(AODV) Routing Implementation...............ccccceeu.e. 38

4.3.2 Adding Battery’s Factor in the AODVccccoiiiiiiiiiiiiiciccee e 40
CHAPTER 5.ttt e ettt e e st e e e e snbbeeeesnbaeeeann 42
5.1 CONCIUSTON ..ttt ettt ettt 42
51 RECOMMENUATIONeiiiiiiiici e 42
REFERENCES ...ttt ettt e et e e e st e e e s bt e e e e s nnbeeeeennenes 43
APPENDIX L. et e e e e e raaa e 45

List of Figures

Figure 1 Simple node's component HHUSEratioN.............oooveiiiiiiie e 6
Figure 2 Star topology (Source: REF [8]).....ccvviuiiiieiiiiiieiie e 7
Figure 3 Hybrid-star/mesh topology (Source: Ref [8])ccvviiiiiiiiiiiiiiieseeeee e 8
Figure 4 Full-mesh topology (Source: Ref [8])ccveiiiiiieiiiiieiiiece e 9
Figure 5 Wireless Mesh Topology (SOUICE: [11]) ...vevveiiuierieiiiiiieniie e 11
Figure 6 Research Methodologycueiiiiiiiiieiie e 13
Figure 7 IRIS Mote (Source : MEMSIC datasheet)cccevviiiienieniiieiienic e 18
Figure 8 MTS420CC (Source: MEMSIC datasheet)cccevviiiieiiiiiieiiienec e 19
Figure 9 MIB520CB (Source: MEMSIC datasheet)ccccooviiieiieiiieiiieic e 19
Figure 10 Two additional USB Serial POItSccooiiiieiiiiiieiic s 22
Figure 11 ASSEMDIE QATEWAYcivviiiieiieiieiii ettt 23
Figure 12 IRIS and MIBS520oiiiiiiiiieiie e 24
Figure 13 PreDUilt LIDIaryc.oooiiiiioieie s 25
Figure 14 "dmesg" terminal FeSUILcooviiiiiiiiiie s 28
FIgure 15 OPen FIeld TEST.....cuieiiiiiiiiieiie sttt 29
Figure 16 Range VS TranSmiSSION POWETccuoiuiiiiiiiieiie et 30
Figure 17 Choosing the sensorboard in Xmeshcccoiiiiiiiiiiiiii e 26
Figure 18 Shell tools in Programmer's NOtepadcccveiieiiiienieiieeieecee e 27
Figure 19 MOtECONFIGii ettt e s 32
Figure 20 Connecting to WSN USING MOLEVIEWcccvieiiiiiiiiec e 33
FIQUIE 21 IMIOTEVIBW TEST... . ivee ettt e e et e e et e e snbe e e nnaeeenes 33
Figure 22 Moteview Health Data...........ccccocviiiiiiiiii e 34
Figure 23 Xmesh Problem L.........oooiiii e e 35
Figure 24 Xmesh ProbIem 2.........ooiiii et 36
Figure 25 XMeShBIN DIFECIOMYcccviiiiiec it 37
Figure 26 MATLAB Graph......cccviiiii ettt 34
Figure 27 AODV's ".platform" modification...........c.ccccovveiiiiiiiic e 38
List of Tables

Table 1 Key MileStone fOr FYP L.....coiiiiic et 16
Table 2 Key Milestone for FYP Ilcuoiiiiii et 16
Table 3 GaNtE CNAIT.........ooiiiiiii e 17
Table 4 IRIS’s Radio Transmission Open Field Range ..., 25

file:///D:/Google%20Drive/EE%20Final%20Final/FYP2/Draft%20Report/%5bDraft%5d%20Progress%20Report%20(Repaired).docx%23_Toc342656240

1.1

CHAPTER 1

INTRODUCTION

Background

Wireless sensor network (WSN) gives additional approach to wireless
networking. It generally means a network that comprises bunch of nodes that
work together to achieve one objective that is to provide the base station its
sensor data as well as maintaining the network. The nodes have its own
sensor to detect physical or environmental changes, for example coordinates,

temperature, vibration, humidity, and accelerometer [1].

Wireless mesh network (WMN) is a network that consists of two or
more devices that can organize themselves by automatically create its own
network and finding an alternative route when there is a node failure which is
called self-organized and self-healing system. A node is merely an electronic
device in a network that can receive, transmit or as intermediate path of data
communication [2]. A wireless mesh network may consist of mesh router and
mesh network, the mesh router contain the gateway and other routing
information in supporting the mesh network, whereas the mesh client is

merely an endpoint node [3].

“Robust Wireless Sensor Mesh” in this project title means the
combination of wireless mesh network (WMN) and wireless sensor network
(WSN) to produce a networking system that can transmit critical data
regardless of the situation to the base station. It also need to be a low-powered
device and cost effective system where the system does not need major care

or service, it can organize and heal itself if there are minor device failure.

1.2 Problem Statement

Sensors are needed in order to measure environmental changes and physical
changes of surroundings or specific substances. Distributing sensor devices in a wide
area will be challenging for some cases involving narrow space, tough geographical
texture and wide area of sensor implementation. Standard wireless networking such
as Wireless Local Area Network (WLAN) or just normal Radio Frequency may not
be appropriate to be applied in some cases such as natural disaster monitoring
situation. WLAN needs a centralized router to function properly and consumes a lot
of power. The old wireless technology cannot provide wide coverage except by
placing the router/gateway everywhere that will cost a lot to manage and install.

Although researchers and manufacturers nowadays did a good job in
developing Wireless Sensor Network to be applied in various areas including the
above cases, still there are so many problems involved with this new technology due
to its reserved and limited resource and power. Reliability or may be called “robust”
of the system is toughly being criticise, packet data dropping, data aggregation and
fault tolerance are the main concern [4]. Previous study has reported that in some
wireless sensor network designed, the increase of hop and distance for end-to-end
communication from a node to the base station cause a rapid increase in packet drop
[5]. High latency also reduces the functionality of the system as data is needed
almost in real time for some applications. The limited power source and increase in
the number of sensor nodes will absolutely worsen the above problems in field

application compared to theory.

1.3 Objectives and scope of study

The main objective of this project is to produce or develop a wireless sensor
networking that is “robust”, which means it is reliable and it can work in a rough
environment where the system will organize itself for any situation without the need
of human interaction. It needs to be able to adapt to a new environment almost
instantly where a new sensor node may be installed without reconfiguration. A long
lifetime is a must as the sensor may be placed on a variety of geographical texture, so

pOWer source is precious.

Scope of studies will involve wide scope of communication system such as
network protocol, networking standard, signal processing, device interfacing and
network layer. Study of wireless communication is a must to be able to understand
how the system works and implementing it. In deploying a working Wireless Sensor
Network (WSN), knowledge of C language programming is needed to be able to
program a microprocessor or microcontroller which may be used in the project
design. In improving the WSN, the routing protocol used, XMesh, need to be fully
understood to alter the existing protocol in making the system better. Experimenting
with different parameter of the devices such as transmission power, data interval,
duty cycle and radio frequency will require the programming skill and basic network

system understanding.

CHAPTER 2

LITERATURE REVIEW AND THEORY

Distributed sensors network is used everywhere from monitoring the natural
disaster occurrence to just measuring temperature in multiple room of a building.
Take temperature measurement for example, in a secured laboratory building where
some place need to be in a certain temperature, distributed sensor network plays an
important role to monitor all the rooms temperature. Wireless sensor network (WSN)
can be constructed in many ways, most of the times they use mesh networking
topology for it to be easily managed and cost effective. For natural disaster, landslide
can be predicted by measuring the vibration and movement of soil, a wired sensor
system will not be effective for long time monitoring as the connection cable may be
accidentally broken. WSN will solve the problems by introducing wireless
transmission for sensors to communicate without sacrificing much the size, power
and cost requirement. Mesh networking is a type of network topologies where the
wireless devices in the system do not just communicate with a central backbone
device, they can communicate with each other and also forwarding data towards one
another to achieve a single large network, also called mesh cloud. Using mesh

topology on the WSN system will create a lot of advantages over the old system.

2.1 Wireless Sensor Network (WSN)

Wireless Sensor Network (WSN) is basically a bunch of nodes (motes) that
are distributed over a wide area which they can pick up the surrounding physical
changes via their equipped sensors and communicate with each other in sending the
sensor’s data to a base station or monitoring station. They use wireless technology as
the communication medium to ease the transmitting of data without the need of
connection cables. The nodes are limited in term of resources including power,
transmission, memory and size. The wide diversity of application in real life such as
military, home, industry, environmental and also health make it attractive to be

researched and improved [6].

2.1.1 Node’s Components

Nodes can be either identical or different, it depends on the system topology

that is being used. A node may consist the following:

1.

Sensor device — an electrical circuit that can detect analog
measurement of real world environmental and physical changes,
then converting it to digital signal for further processing [7].
Transceiver — wireless transmitter combined with receiver, its main
job is receiving signal from other nodes and hand it over to CPU to
be processed. Data from CPU is taken and transmitted to other
nodes.

Central Processing Unit (CPU) - wusually a low-powered
microcontroller or microprocessor board. It is commonly included
with its own constraint memory and cache onboard for program
storage and Random Access Memory (RAM) to be used by the
processor. This unit serve as the main part in processing the data
acquired from the transceiver and sensor board for further task.
Gateway board — An interface board that allow the CPU to interact
with other kind of devices, supposedly a monitoring computer or an
internet gateway to send data to the server.

Power storage — mostly batteries for powering up the Sensor board,
Transceiver and CPU. It is ranged from 2 to 6 volts and all kind of

battery including dry-cell, alkaline, rechargeable cell.

Transceiver]

<

Sensor

Board] h Gateway]
Vo1
Monitoring

server (PC)

Figure 1 Simple node's component illustration

For full-mesh topologies, all the nodes are identical except for the base
station that needs a gateway to interact with human monitoring devices or server.
Figure 1 shows the basic illustration of component inside a node with additional
gateway. Batteries are powering the three main components of the nodes, in some
design, the gateway also need to be powered too. The sensor board may contain one
or multiple type of sensor(s), for example, Global Positioning System (GPS),
humidity, temperature, accelerometer, movement, ambient light, vibration and so on

depending on the application requirement.

2.1.2 Wireless Sensor Network (WSN) Topologies

In designing or building the Wireless Sensor Network (WSN), there are three
main topologies that can be used.

d Gateway
* Endpoint

Figure 2 Star topology (Source: Ref [8])

1. Star network

As shown in Figure 2, a centralized node is located usually at the centre of a
network surrounded by endpoint node as the sensor node. All the sensor nodes are
only able to transmit its sensor’s data to the central node without being able to
perform as intermediate node for data relaying. So generally the star topology is a
single-hop network that can be operated within 30-100 meters from the centralized
node (gateway) [8]. The main advantage of this type of network is that the
endpoint/sensor nodes require least amount of power where the main gateway
required being line-powered. The major disadvantage is that the coverage is not that

good compared to other topologies with same amount of power and cost used.

2. Hybrid-star network
This type of network comprises multiple centralized nodes/gateways that are

connected to each other. Behind each gateway, there are sensor nodes that that will
sense the change of physical and environment. These sensor nodes will be able to
communicate not only with its existing parent gateway, it can also pair up with other

gateways in case of any gateway failure as in Figure 3.

.
.
.
.
. .
. .
. .
. .
* H . .~
. ' . i
o L . o
* . . o
s, o . B
., . . '
.. P . L
2 b Gateway
.
. !
N . Oy
* I d . Router
.~ .)
. . .
" X .
. v .
.
o, 4 Endpoint
.
.
.
)

Figure 3 Hybrid-star/mesh topology (Source: Ref [8])

If the design can support multiple line-powered routers among the distribution of
devices, then this type of network is suitable as it is a simple hierarchical network.
The endpoint nodes just do a simple task of gathering the sensor data and
transmitting the data to the router, where the router then perform its communication
task. The advantages of this network is the extended lifetime of the sensor nodes

which can be battery-powered despite the router need to be active all the time to

route data [9].

3. Full mesh network

It is a network where all nodes are identical, they can acts as sensor nodes,
gateway and also as an intermediate node.

.~
.
.
.
- .-
- M .
.~ H .
. H B
. o
- . -
%, oA ¢
> Gateway

; Router

Figure 4 Full-mesh topology (Source: Ref [8])

The devices communicate with one base gateway by multi-hop to one another, this
vastly increase the coverage availability, theoretically infinite coverage. It is a self
forming and self healing because of the multiple routes available in case one is
broken [9]. When one node is faulted, the network will reconfigure itself to find
another route/path for the data to be transmitted to the gateway or another node. This
topology commonly needs one base station, in Figure 4, the Gateway acts as the base

station for server monitoring.

2.1.3 WSN Applications

WSN has wide areas of application in real life situation, some of it may be
critical and some may be not. These are some example of applications that are
already being implemented.

1. Chemical monitoring — it has been deployed in some cities to measure the
concentration of poisonous substances that may endanger the citizen. The
WSN will be an advantage as it will easily covered wide areas in a city and
making them easily tested by moving the nodes to different areas [10].

2. Greenhouse monitoring — the environment parameter inside a greenhouse
need to be carefully monitored such as the suitable temperature and humidity

3. Landslide warning — the detection of vibration and movement at the possible
occurrence of landslide can give the surrounding resident an early warning
before a landslide can occur.

4. Patient health monitor — the use of WSN will make it easy for medical
institution to apply the wireless centralised monitoring system of critical
patients.

5. Restricted area monitoring — military or government can use the WSN
technology to monitor intrusion of personnel into a restricted zone or areas by
detecting movement of people near the fence.

6. Habitat survey — monitoring of an endanger species in its habitat can easily be
done by placing nodes with the required sensors. The less maintenance, high
latency, long lifetime system may be used for this application.

7. Infrastructure monitoring and analysing — massive infrastructure such as long
bridge, underground tunnel and tall building are able to be constantly
monitored wirelessly despite of having personnel to do the visual inspection

of the infrastructure.

10

2.2 Wireless Mesh Network

Wireless mesh network (WMN) is a wireless technology that has evolved to
become a key for future networking. It is now an alternative technology that replaced
standard wireless networking to play an important role for critical application and
99.9% uptime requirement. Using the Full-mesh topology in SECTION 2.1, Wireless
Mesh Network can be fully utilized to its extent to achieve a high reliability

networking system.

o . .~
. W

Figure 5 Wireless Mesh Topology (Source: [11])

The system is self-forming, they can automatically form a network whenever
there are bunch of node in their neighbourhood that has the same group
identification. They communicate between them without the need of human

configuration.

The communication does not limited to point-to-point line of sight, it can be
more than one hopping for a device to communicate with one another. This greatly
increase coverage without the need to increase transmit power of wireless signal, it is
called end-to-end communication, one device that resides in bottom-end can
communicate with the one at the top-end through multi-hopping technique that will
find the intermediate node to forward the data. For example in Figure 1, the right-

sided device send all the information to the base station at the left, for data to arrive

11

at the base station, it need to through multiple intermediate device that also act as a

normal node.

The technology is designed in such a way that it can heal itself when
undesired situation occurred. Let say that after the network is established properly,
when there is one node fail to operate, the other node that depend on the faulty node
to communicate can re-established a new network through other available path.

This multi-hop design will greatly reduce power consumption as the node
does not need to transmit a long range wireless signal in order to send data to a far
away node. As a result, a wide coverage can be achieved through lower transmission

power [12].

2.3 Recommended Design and Requirement

In choosing the correct topologies and design for Robust Wireless Mesh Sensor
Network that we will apparently use it for critical purpose, these are the design keys

that we will be using:

1. Reliability — the network need to be nonetheless fault tolerant, the failure of any
device/node will not affect the any other node [9]. The message/data need to be
guaranteed to be delivered to its destination regardless of the situation. Network
congestion is highly needed to be avoided [8].

2. Scale of the network — the scalability of network must be wide to compensate
with the random placement of sensor in tough geographical area [8].

3. Flexibility — modification of network can be easily configured such as removal
and addition of new sensors without the need of reconfiguration. The sensor also
can be easily movable to a new destination [9].

4. All the sensors must be battery-powered as power source in a tough environment
cannot be guaranteed. Although solar energy source may be implemented.

5. The latency — message need to be delivered in an acceptable time period to the

monitoring base station.

12

CHAPTER 3
METHODOLOGY

In general, research methodology refers to a set of procedures used to conduct a
research project. In here, the methodology includes:

e Research Methodology
e Project Activities

e Key Milestone

e Gantt Chart

e Tools

3.1 Research Methodology

Flowchart for the research methodology planned is shown in Figure 6.

Project Planning

Research and Analysis

Development of Project

System Analysis and
Improvement

Integration and Testing

Figure 6 Research Methodology

13

3.1.1 Project Planning

Project planning is done by allocating task that are going to be done within
the given time period. Careful planning is important to make sure this project
can be carried out perfectly and meeting the requirement. A Gantt chart has
been drawn which consist of several milestone and project activities so that
the time will be allocated in the right way.

3.1.2 Research and Analysis

For this phase it involve the review of related journals, books, research papers
and developers forum to increase the familiarity, better understanding and
also to get a clear view about the research scope that will be carried out. The
main information resources are from the ACM Digital Library and also
IEEE.org. The existing survey and experiment done on the scope of the
project is a vital source to analyze the system that will be developed later on.
The existing system will be studied in order to find the weakness or certain
features that they are lacking off so that it can be improved and tailored the

new system based on the requirement.
3.1.3 Development of the Project

The project will be developed according to the default setting acquired from
the hardware’s manufacturer. This will involve hardware interfacing and

programming to achieve a standard goal for Wireless Sensor Network.
3.1.4 System Analysis and Improvement

The developed system is to be thoroughly studied and analysis is to be done
to further understand how the system works in real environment. Thus further
improvement can be done to really meet or exceed the requirement of the
system. The system can possibly be narrowed down or specially designed for

specific application.

14

3.1.5 Integration and Testing

After the improved system and code has been done and implemented, it will
be tested again multiple times in the field with different quantities and situation. This
is to see whether the system meet their requirement and expectation or not. The

system will be carefully monitored for any inconsistencies.

3.2 Project Activities

In the beginning of the project, everything is focused on the theoretical
reading and understanding the project scope. In this stage, critical analysis of the
existing features of Wireless Sensor Network need to be done in order to find the
features that has not being develop yet and also meet the requirement based on most
applications.

The Wireless Sensor Network then will be developed using the hardware
available to achieve a basic working WSN. To begin, there are always many tutorials
on the internet as guidance in order to understand how the whole process works
provided on the net and forum. The manuals given by the manufacturer will help a
lot in the programming part. The devices are programmed accordingly until it meets

the minimum requirement of a basic system.

Next phase will be the testing phase of the deployed system earlier. This
includes the observation of the system for its latency, reliability, error-free and power
consumption. Then, using the results, more research may be required to improve the
characteristic of the deployed system. Continue developing the system, part by part
and testing the features so that its meet the targeted requirement and also running as
it supposed to be. The whole process need to be repeated while developing more
other part until all the requirements are satisfied or reaching the time constraint

given.

After completing the development and improvement phases, the system needs
to undergo a thorough test in the field to see its true reliability and robustness for
final report of the working system. If required, the system may be redevelop or

reconfigure when there are still time available.

15

3.3 Key Milestone

Below are the key milestone that need to be achieved for the project development
throughout both of the semester of Final Year Project 1 (FYP 1) and Final Year
Project 2 (FYP 1I).

Semester 1

Table 1 Key Milestone for FYP |

‘ Milestone Week
Project Planning Week 6
General Research Week 9
Programming Study Week 11
Development of basic WSN Week 13
Semester 2

Table 2 Key Milestone for FYP 11

‘ WHES G Week
Analysis on the deployed basic WSN Week 5
Improvement on the deployed system Week 9
Testing on the improved system Week 12
Final system integration Week 14

34 Gantt Chart

Table 3 Gantt chart

FYP 1 FYP2
Phase
Weeks
1 1
708 1 7 8
3 5
Project
Planning
General
Research
Study of

Programming

Language

Development
of basic
WSN

Analysis on
the deployed
basic WSN

Improvement
on the
deployed

system

Testing on
the improved

system

Final system

integration

17

3.5 Tools

The tools that need to be used in this project will involve several hardware and

software. These are the hardware:

1. XM2110CA —2.4GHz IRIS OEM Reference Board
This is the main board from MEMSIC Inc. that functions as the CPU and

transceiver in a single board.

v
RoHS
COMPLIANT

Figure 7 IRIS Mote (Source : MEMSIC datasheet)

2. MTS 420CC — Weather Sensor Board with Light, Temperature, Humidity,

Barometric Pressure, Seismic and GPS.
This device manufactured by MEMSIC Inc. can be interfaced with the IRIS

Mote above to function as a sensor node. It wide varieties of sensors in one

board make it applicable for many applications.

18

Figure 8 MTS420CC (Source: MEMSIC datasheet)

Figure 9 MIB520CB (Source: MEMSIC datasheet)

MIB520CB — USB PC Interface Board
The board is also from MEMSIC Inc., designed as plug-and-play with other

MEMSIC’s board to add the gateway function in the node. This board will
allow the node to interface with PC via USB connection to be programmed or

acts as a base station.

19

All the software needed can be obtained from the MEMSIC itself, including the
programming software, monitoring program and also manuals. The software

products that will be used are:

1. Moteworks
It is a software which enables user to compile code and build it into the
hardware. It includes all the libraries that may be used to compile the code. It
uses NesC compiler which is the extension of C language. This language will
then being implemented in the operating system of the hardware used,
TinyOS [13].

2. Cygwin
Linux virtual platform for Windows, it is needed for TinyOS compiling and

pprogramming tools to run normally.

3. Xsniffer
Monitor the basic mote’s network parameter. Xsniffer is compatible with
MEMSIC’s OEM hardware.

4. Moteview
Moteview is an interfacing software that connects with the database and
motes for easy and interactive mote monitoring at the “end-user” side. This
package is included with other tools such as Xserve (command line tools that
Moteview GUI run in background to capture packet through the serial

interface).

20

3.6 Project’s Preparation

This project was started with the hardware’s assembling and configuration.
Through the hardware manual, the devices can be assembled easily by mean of plug-
and-play. To be accurate, there were three types of devices, the processor and RF
module (mote), the sensor boards and lastly the interface board as described in the
Tools (SECTION 3.5) above.

3.6.1 Installing the required software (Moteworks and XMESH)

The first basic things to do was installing the given software by MEMSIC,
two major packages were given:

- Moteworks
- Moteview

Initially, it is compulsory for users who are going to use the software given
by MEMSIC to have Windows XP SP3 or older operating system for the software to
works. Thus installing one is a need. After installing both software, there are
problems that usually rise after that, you can solve it by installing and reinstalling
various version of .NET Framework from Microsoft’s website. Usually the programs
will run properly with .NET Framework 1.1 given in the manufacturer’s CD.

These are the additional component for the software to work and all of these
were given in the installation CD.

* PostgreSQL 8.0 database service
* PostgreSQL ODBC driver
* Microsoft .NET 1.1 framework

As we are purchasing the USB type of interface gateway, MEMSIC’s
MIB520CB, it needs an additional driver for the board to working properly. This
driver will convert the USB port in a PC to serial interface port, to be precise, two
serial ports. To check whether the driver was working properly or not, go to

Start>Control Panel> Device Manager

Check under Ports (COM & LPT), make sure there were two additional USB Serial
Port as in Figure 10 below. In this case, they were COM3 and COM4.

21

£ Device Manager

File Action Wiew Help

M &S 2 &

- =) LRUGZ-P
E Batteries
j Cornputer
g Disk drives
v_'@ Display adapters
iy DWDICD-ROM drives
&8 Human Inkerface Devices
=) ICE ATAJATAPI controllers
‘z» Kevyboards
") Mice and other painting devices
i Monitars
B8 Metwork adapters
- réyi Parts M &
Printer Port (LPT1)
=B serial Part (COM3)
' UsB Serial Port (COM4)
., sound, video and game controllers

¥
¥ System devices
+ Universal Serial Bus contrallers

] o s O s O s s O O e B

Figure 10 Two additional USB Serial Ports

Please be noted that the some of the programs cannot be run unless the
interface board is already connected. Actually, 1 have tried running the software
before connecting the interface board, it gives an unknown error then the software
terminated. | thought that the software was not installed correctly but after the
problem was solved when the software was run while the device connected.

22

3.6.2 Hardware Parts Assembly

Sensors Module Wireless Radio

Gateway

Figure 11 Hardware Configuration

Gateway base can be assembled by connecting the main RF/CPU board (IRIS) to the
interface board, in this case, the IRIS with the USB Interface board. Figure 11,12 and
13 show the assembled boards.

Figure 12 Assembled gateway

23

The sensor node can be deployed by connecting an IRIS with a sensor board.
In Figurel3, the sensor board used was MTS420CC.

Figure 13 IRIS and MIB520

3.6.3 Programming the Device using Moteworks

Four icons will showed up at the desktop after the software packages were
installed. They were Xniffer 1.0, PN2, MoteConfig 2.0 and Moteview 2.0F. These
were the main program that will be used for the software.

In order to program a certain code into the processor on the board, there are
actually lot of things to be done before the codes are transferred to the processor, all
of them are commands in linux (Cygwin). Thanks to the software provided by
MEMSIC, it is now simplified by just writing the code, compile and build to binary
and fusing them onto the processor’s memory.

The first step is to open the PN2 (Programmers Notepad 2), it is a software in
windows that are indirectly connected with Cygwin platform to do the compilation of
codes. The language of the TinyOS operating system is mostly the same as C-
embedded language, information can be search in the manual given and from the
Internet.

MEMSIC has provided its own library and test code for TinyOS in deploying
the Mesh Sensor Network, which they called it XMesh. Inside the Cygwin Project
Files, the code are prebuilt there as in Figure 14,

24

Using the provided library, these code is written to make the devices function
as a gateway/base station that will monitor the other nodes and acquire data from
them and also forwarding packets. This code uses the default device parameter
declared in a file called “MakeXbowlocal”. Some of the important parameter in it
are:

- Radio Channel
- RF Power Level

- Group ID

© 3 File Edt Wew Todls Window Help
P A2 b T i) | % [0} |NesC-Ting0$
= [[Z) Crossbow Motetworks -~
=5 Motetorks
=) apps
#-{5) bin
+-{5) examples
+-{) general
+-|53) tutorials
H-|5) xmesh
=13 =sensor
*-|LJ) »SensorMDAL00
*-[J) wIensorMDAs00
*-[J) #FensorMDAZZD
*-F) ®oensorMDA3ZS
+-L3) ®5ensortMDAS00
-3 ®5ensorMEP410
-3 ®5ensorMEPS10
*-L5) ©5ensorMTS101
*-LJ) WIensorMT3300
*-[J) WIensorMT3400
*-Z) ®SensorMTS410
=13 ®oensorMTS4200C
&=l Makefile
== Makefile. component
& README
5. TestMTS420cc.nc
B TestMTS4200cM,ne
F:j appFeatures.h
F:j sensorboardapp.h
*-{[J) ®oensortTS450
+) ¥SensorMTS510
&l mMakefile
Makgxbowlocal
+-1L5) make
#-{5) tools
=+ tos
[Z] README.bxt
[Z] license.bxt 2

I &] Projects | Bl Text Clips

Figure 14 Prebuilt Library of Motework

Without changing those basic device parameters, this code will perform at its
basic level of Mesh networking with default parameters. The sensorboard application
can be chosen from the left pane in the Programmer’s Notepad as in Figure 15.

25

I

() Mew Project Group
=I-[[3) Crosshow MoteWorks
=150 MoteWarks
=I5 appPs
-5 bin
+-{[Q) examples
+-15) general
-5 tutorials
=) ®mesh
H-{5) *MDALOD
H-{5) *MDALDOCE
+-|5) *MDAI00
H-{5) WMDAZ00_D
H-{5) *MDAZZ0
H-5) "MDAZIES
H-{5) WMDASO0
+-5) *MEP410
+-5) *MEPS10
#-3) ¥MeshBase
H-{5) *M5P410
H-{5) WMT5101
#-|5) *MT3300
H-5) WMTS300CE
H-{5) *MTS310
+-|5) *MT5310CE
H-{5) *MTS400
H-{5) ¥MTS410
H-|5) "MT3420
=5 WMTS420CC
) build
= 1
Bl Makefile
&= Makefile. component
L]

=l README
0. XMTS420CC. nc
B HMTS420M.nc
E1 appFeatures.h
@ appPacket.h
[Z] sensorboardapp.h
H-{5) *MTS450

+-5) ¥MT3510
&= Makefile
B Makefile.iris
=l Makefila rica

! KMTS420M.nc XMTS42I]EE.nc|

S 1

I & Projects | Bl Text Clips

=1

¥ Copyright (c) 2004-2007
¥ 411 rights reserwved.

* gee Ticense.txt file inc
H

H

$Id: xMTS420CC. ne,w 1.1,
“/

B
¥ wsensor multi-hop applic
H

Bauthor alan Broad, Dawi
*

#include "appFeatures.h”
includes sensorboardapp;

configuration »MTS420CC
{

IT,/,/ this module does not pro
¥

implementation
=ht _
components Main, Ser
IntersemaPressura, Micaw
GenericCommPromiscuous
MULTIHOPROUTER , XMT 54 2 0N
ADCC, voltage,Accel, T:
WCommandZ, Bcast,
E#if FEATURE_UART_SEND
HPLPOwerManagemeantm,
F#endif
El#ifdef mTs420
UARTGpsPacket,
F#endif
LEDS_COMPOMENT
Timerc;

Main.stdControl —» =MT:
Main.stdControl -» Quel
Main.stdControl —» MUL]
Main.stdControl —» Comn
Main.stdControl —» Time

Figure 15 Choosing the sensorboard in Xmesh

To build and install the code into device, a command parameter needs to be
executed. The command line (linux shell) can be access using the Programmer note
program or through Cygwin itself. The command can be executed directly through
the software by going to Tools>Shell or by pressing F6. The basic command syntax

is as below:

To install into IRIS using the USB Interface MIB520

make iris install, <node /d>MIB520,com <x>

Where <x> is the lower USB serial port number that we saw from the Device

Manager earlier.

Example (Figure 16),

make iris install,1 MIB520,com3

26

This will build the code and then transfer it into the device through MIB520 COM
port 3.

Tiool Parameters

Parameters:

make iris install, 1 mib520, com3|

[Ok H Cancel]

Figure 16 Shell tools in Programmer's Notepad

3.6.4 Programming the TinyOS in Linux Environment

The necessity to use TinyOS in Linux comes in handy when the programmer
wants to compile the nesC application with Java for communication purpose.
Furthemore, in the analysis later in this project, the author decided to use TinyOS
2.1.0 instead of Moteworks programming environment as the manufacturer did not
provide enough source code to alter the routing protocol on network layer.

The TinyOS tools provide the easiest way to communicate the mote with PC
through Serial or USB port., and most of these communication tools uses Java in its
compilation. Cygwin can also be used when compiling nesC and Java but a lot of
problems may arise depending on your luck.

The easiest way to use a machine with Linux and Java installed is to use a
preconfigured VMWare image provided by the TinyOS Community. This image file
and the setup instruction can be referred in [14].

After installing and running the pre-configured Linux XUBUNTOS by going
through the guideline in [14], connect a mote to test its connection. The author used
MIB520 programming board which has USB-to-Serial converter. Invoking motelist
will return no result. In order to solve this problem, another method can be used,
open a terminal and type :

~$ dmesg

The result of dmesg is shown in Figure 17.

27

The mote connected can be seen as ttyUSBn (e.g. ttyUSBO and ttyUSB1), n
can be different depending on port usage. Thus to address the port used in Linux,
/dev/ttyUSBn need to be used instead of COMn. Noted that in the Figure 17, there are
two USB port used.

Figure 17 ""dmesg" terminal result

28

CHAPTER 4
RESULTS AND DISCUSSION

4.1 Data Gathering and Analysis

The first analysis conducted is to find the approximate range of the
mote’s radio. The overview of the experiment is as in Figure 18.

Base Station Range IRIS Mote

Figure 18 Open Field Test

The devices are placed in a field with no obstruction to interfere
with the device’s radio. The results are shown in Table 4.

Table 4 IRIS’s Radio Transmission Open Field Range

Transmission Power (dBm) Range (m)
-17 11.4
-12 32.2
-9 47.6
-7 67
-5 70
-4 70
-3 74
-2 79
-1 80
0 81
0.7 85
1.3 96
1.8 120
2.3 163
2.8 193
3.2 241

29

The overview of the results then is shown by plotting the graph of Range vs
Transmission Power as in Figure 19.

Range(m) vs Transmission Power (dBm)
300

250

200 //
150 / = Range(m) vs Power (dBm)
50 /

-17-12-9 -7 -5 -4 -3 -2 -1 0 0.71.31.82.32.83.2

Figure 19 Range vs Transmission Power

These ranges are crucial for further experiment of the device as to test a working
multi-hop network with mesh topology, the nodes are required to be in a certain
range for specified transmission power.

30

4.2 Modelling and Experimentation

MEMSIC has already provided their basic working Multi hop Mesh Network
that includes its own routing protocol called Xmesh. This routing algorithm is mainly
used because it is more reliable compared to other routing protocols.

Generally explain, Xmesh uses a different method in calculating the route
paths to the base station instead of traditional distance vector routing cost metric used
by other algorithm. Distance vector routing is basically a hop count, which means
that a node will send its data to the base station through the shortest path by means of
the least hop required. While Xmesh uses its owh cost metric, called Minimum
Transmission (MT), it takes account of link quality in the calculation to avoid
excessive use of energy as transmission of data through low quality link will require
more power [15].

Xmesh can be built and flashed into the mote through the Programmer’s
Notepad of Moteworks or MoteConfig.

4.2.1 Wireless Sensor Network with XMESH Algorithm

Deployment of XMESH routing algorithm can be done with ease. This next
code will control the sensor components inside the sensor board and communicate
them with the CPU to be transmitted to nearby node with the same group ID.

Base station can be programmed using the provided code in:
Moteworks>apps>xmesh>XmeshBase

Another approach in compiling XMesh into the mote can be done by using the
provided MoteConfig program and the Xmesh binary file can be found in: (Figure 20)

C:\Program Files\Crossbow\Moteview\Xmesh

31

£ MoteConfig
File Settings Help

Local Program l R emate Pragram

Select File to be Uploaded:
C:\Pragram Filez\Crozsbow'MoteViswsmeshhinisvhMeshB ase'MeshB aze_M2110_hp.exe Select..

Platform HMesh

Type 2110 RadioBand |2420 MHz

Tope #MESHZ HP

Addresses

NODE ID 2 El: [Hex [Auto Ine Route Update: ,35— Sec

GROUPID 125 El: [~ Hex

. Packet Size 55 Bytes
Radio

- A7
FiF Power |15 J | d&m Payload Size 48 Bytes
RFCharnel [CHAWNEL_20 =] [2450 pHZ

Fead Fuses Clear Text Wiew Details Program [~ OTAPR Enable Stop

Mode 1D: 1 -~
Group ID: 125

Packet Size: 55

Base Station: 1

HMesh Power: 144

CPU Clack: N/,

#hesh Flags: NAA

#hesh Route Update: 36000

#hesh Health Update: NAA

Frequency: 14

RF Pawer: O v

Crogshaw Inc. 2006 Platform: M2110 Device: mib520; Port coma

Figure 20 MoteConfig

4.2.2 Visualizing the programmed nodes through MoteView

Moteview was used to test the programmed node as it is a software that
enable us to monitor the data that the base station received. Moteview functions by
communicating with the database and the linux environment platform. The data from
the base station comes into the database through Xserve, a program in Cygwin linux
serve as the interface between device and database. This Xserve will then insert
strings of data into the database. The database used is PostgreSQL and it is installed

in Microsoft Windows whereas the Xserve is built under Cygwin linux.

Double clicking the Moteview icon in the desktop will open the program. The
interface board need to be connected all the time during this time. Click “Connect to
WSN” icon in the program, then these setting as in Figure 21 is introduced to connect

to the base station.

32

£ Connect to WSN

jhode | Gate

et
\‘L.)i'h‘s. 3. Select
wode Int
@ Se
Gateway Ba
Database

WY | Database | Sensor Board

EBX

Gateway

orEes Bea |MIBS2D v|
Hal Part |com4 v|
ud Rate |5?600 v|

<

Sensor Board

hdvanced Server Settings ...

<z Back l l Mext =» l

[one

Figure 21 Connecting to WSN using Moteview

These parameters are for MIB520 with the second virtual USB Serial Port is

COMA4. By clicking the “Tick” symbol on top right of the software, the monitoring

will begin. Figure 22 below shows the programs functioning in recording the data

from base station.

7 MoteView 2.0

Fle Settings Tooks Linits Help

e /0B ed

g ELE

EEX

Nodes

[] Name
Oe o Gateway
Oog o Node 1
O& 2 Node 2

Data | Command | Chats | Health | Hitog

Scalterplot | Topology

f2012

3:02:00 P

calibration info updated.

< BT
7/31/2012 252:32 PM Current Time: 7/3142012 30200 PM
Server Messsges | Error Messaze:
Guery: INSERT into 420 resuls sl tine nodeidparert, 0 taoschl jaasehi accel s accel v Houis Mins e Latiadedk e ks (] a
(0.1,0,402,1968,7204,31773,16943 65462 65461 ,453,420,0,0,0,0,0.0.00,0) I
L e taoschl) faoscht accel_y,accel yHours Minu e Laltudech ived) vales (nov
0 65435.456.449,0,0,0.0.0.0.000)
v

(Charts: Done

Database: localhost, mtsdz0_resuits MIB520; COMARS7600

Figure 22 Moteview test

33

The output message at the bottom shows the query derived from the database
and it is updated in the table field. The experiment is repeated for two (2) motes that
are placed further apart to introduce Mesh/Hop configuration. The results are as in
Figure 23.

Data | Command | Charts | Health | Histogram | Scatterplot | Topology

Node Health
Id & health_pkts node_pkts arded dropped retries battery power_sum board_id quality_tx quality_rx path_cost parent_rssi Time

4 1 2,59 % 89,18% 9,7% 1,12% 0,18% 2,6v 0 mAHr 134 100 % 100 % 4 12 05/11/2012 22:58:00
2 2,88 % 98,49% 0% 1,51 % 27,96 % 2,6v 0 maAHr 134 100 % 100 % 4 1 05/11/2012 22:58:04

Figure 23 Moteview Health Data

As in Figure 21, some packets are forwarded (9.7%) by Node 1. This means that
Node 2 is hopping through the Node 1 to reach the base station. The value 9.7%
means that 9.7% of packets sent by Node 1 to the base station is the packets from
Node 2 that are being forwarded.

File Edit WView Insert Tools Desktop ‘Window Help

DEde | h|RQATORA- 2| 08| 0D

Hurnidity #-acceleration
2700 T T T T 900
800
2600 B
700
2600 H B 00 \/”
2400 B SDD! |
400
2300 B 00) . .)
4AM TAM SAM 12PM 2PM 4PM
22001 B
f-acceleration
ok 1000
800 '
2000 B
B00
1900 B T R
400
1800 B 500
1700 ; ; : : 0 : ; . :
4AM FAM OAM 12PM 2FPM 4FPM 4AM TAM 9AM 12PM 2PM 4PM

Figure 24 MATLAB Graph

34

Instead of using the Moteview, the author has written a code in MATLAB
that can read the data in the database and visualize it in the MATLAB way as in
Figure 24. This code generally extract the data from the PostgreSQL database and plot
it right away. As the matter does not concern much in this project, the development
of the MATLAB code stop there.

The main advantage of using MATLAB instead of the given Moteview is the
developer can extract anything he wants from the database. As in Moteview, only
one type of sensor modules can be used for all the motes to properly parse the data
sinked into the BaseStation. The MATLAB code can be referred in Appendix A

4.2.3 Analysis of XMESH routing in Moteworks

After going through the provided Xmesh code provided, there are no
evidence found that can provide a way to look into the Xmesh Routing Algorithm.
This means that the manufacturer did not provide all the source code of the Xmesh.
The author then proceeds to change the programming method from using the
provided Moteworks to the legacy TinyOS 2.x.

This problem can be seen by checking the wiring interfaces/components in

the nesC code and its usage.

README.txt | XMT5420CC.nc XMTS420Mnc ™ |

258 | if (call senduarT.send(TOS_UART_ADDR, sizeof(xpatamsg), msg_radio) !'= SUCCESS)
259° [{

260 atomic sending_packet = FALSE;

261 call powerMgrenable();

ek g }

263 | }

264 else

265 -d#endif

266 // send the RF packet!

267 if (call HEE. send(BASE_STATION_ADDRESS,MODE_UPSTREAM,msg_radio, sizeof(xpatamsg)) != SUCCESS)
268 [

269 | i call Leds.yellowon();

27008 | i atomic

ok (=

272 sending_packet = FALSE;

273 main_state = START;

274k }

275 }

276 return;

277

Figure 25 Xmesh Problem 1

Figure 25 shows that Send interface is used to send data to lower layer (network
layer) for further network routing process. The lower layer source code can be found
in $TOSROOT/tos.

35

README.ExE XMTS420CC.nc | XMTS420M.nc *

88

89 [H#ifdef mMTS420

90 S/ wiring for gps

91 XMTS420M. GpsControl —> UARTGpsPacket;

92 S XTS420M. GpsSend —-> UARTGpsPacket;

93 XMTS420M. GpsReceive —> UARTGpsPacket;

94 XMTS420M. GpsCmd —> UARTGpsPacket.Gpscmd;

95 #endif

96 r

97 /4 wiring for Xmesh components

98 HXMTS420M. XCommand —> XCommandC;

99 XMTS420M. XEEControl —> XCommandC;

100 XMTS420M. RouteControl —> MULTIHOPROUTER;

101 XMTS420M. Send —> MULTIHOPROUTER.MhopSend [AM_MULTIHOP_MSG] ;
102

103 MULTIHOPROUTER. Receivemsg[AM_>MULTIHOP_MSG] —-> Comm.ReceiveMsg[AM_MULTIHOP_MSG];
104 MXMTS420M. HealthMsgGet —> MULTIHOPROUTER;

105

106 XMTS420M. health_packet —> MULTIHOPROUTER.health_packet;
107 -}

108

Figure 26 Xmesh Problem 2

Figure 26 further shows that the Send interface used by the main code is wired to
MULTIHOPROUTER component, while this component can nowhere be founded in
the TOS libraries.

Further research by the author has confirmed this matter, an email from Giri
Baleri, a Crossbow individual itself stated that the source code of the Xmesh Routing

is only available for Enterprise users. The email can be find here [16].
In the source code’s directory tree of the author, there is XMeshBinary

directory exists, this confirm that the version that the author got is the standard

version.

36

Projects
P # {3 SlottedSend
#{3) SlottedSendRF230
13 TimeSync
#{[3) ¥Heartbeat
#-{) XJoin
#{) XLib
=13 XMeshBin
¥ BoundaryM.nc
¥ shimLayerM.nc
¥ xMeshBinaryRouter.nc
- ¥B ¥MeshC.nc
=) ¥Mesh_m2100.0
=) ¥Mesh_m2110.0
=) ¥Mesh_m9100.0
=) ¥Mesh_mica2.o
=) ¥Mesh_micaz.o
- |= libgce.a
{3 ¥MeshTelosbBin
#{3) platform
i) radio L3
i) sensorboards
#-{3) system v

FY %!

111

Figure 27 XMeshBin Directory

In the XMeshBin directory in Figure 27, we can see that the network layer of
XMesh is controlled by this binary (compiled) file.

37

4.3 Prototype

As the previous concern matters, XMesh network routing protocol cannot be
altered from the given manufacturer programming environment. The author decides
to use another alternative as purchasing the Enterprise Edition of the source code will
be cost consuming and the possibilities of getting one is low as Crossbow Inc. no
longer support the XMesh, MEMSIC does. The author has also written an email to
the MEMSIC about the matters, but no reply given.

4.3.1 Ad-Hoc On-Demand Vector(AODV) Routing Implementation

The alternative method decided by the author is to implement AODV routing
in the legacy TinyOS-2.x programming environment. Installing TinyOS-2.x in Linux
(XUbuntu) will provide the programming environment. The author has also tried
using TinyOS in Cygwin but some problems arise concerning Java-TinyOS
compilation. The method used in installing TinyOS-2.x in Linux has been described
in SECTION 3.6.4.

%l/chips/atml281/adc
%l/chips/atml281/timer
%l/chips/atml128

%l /chips/atml28/adc

%l /chips/atml28/pins
%I /chips/atml28/spi

%1 /chips/atml28/1i2c

%I /chips/atml28/timer
SI/1lib/timer
%l/1lib/serial

%I /1lib/power
%I/1lib/diagmsqg
%1/1ib/AODV

Figure 28 AODV's ".platform' modification

AODV implementation and documentation can be obtained from a
documentation website of a PhD Candidate, [17]. Its source code was published
under the GNU License.

38

After obtaining the source code, it then can be copied to $TOSROOQOT/tos and

$TOSROOT/apps. Some adjustments need to be done before being able to install the

sample application on a mote, the adjustment is described below.

1.

Go to $TOSROOT/tos/platform/<your platform>. In the author’s case, it is
$TOSROOT/tos/platform/iris.

Edit the .platform file (the file may be hidden, editing the option of file
manager will show the file)

Add a new line with the new code as in Figure 28.

The implementation continues by installing the given example of application

layer’s code named as AODV25nodeTest. Several adjustments in the code were done

to make it working. There are several error inside the code, discovered by the author

through Leds debugging. The cause of the error possibly from the written code itself

or it is because of different version of TinyOS used, noted that the author used

TinyOS-2.1.0. The adjustments are listed below:

1.

In AODV_M.nc file, the use of function “add route table()” by the variable
“added” in “ReceiveRREQ.receive()” event. The “added” need to be removed
from IF statement as it will return boolean FALSE. The add_route_table need
to be added inside the IF statement, not in the boolean operation. Refer to
Appendix B.1.

In AODV_M.nc file, the “p=msg” should be removed as the event need to be
returned with message_t* format. Signalling the event alone is enough. If this
correction not been done, the mote will actually receive the sent packet and
data, but the function SubReceive.receive will be corrupted after some time.
The author discovered this by watching using Leds debug that the mote only

receive data in upper layer for 2-3 packet only. Refer to appendix B.2.

The motes then are able to send data to each other after the above corrections.

39

4.3.2 Adding Battery’s Factor in the AODV

The idea is to add a certain factor of battery’s remaining power inside the
AODV routing algorithm. The justification of this is the forwarding mote that has
less remaining battery’s power will be able to hold longer thus being able to send its
own sensor data to the base station.

It is advisable to read the documentation of AODV Routing Algorithm [17] to
understand the following explanation. This routing technique will allow overall
motes in a network to stay alive as well as decreasing the rate of battery replacement
due to motes that are in the middle and forwarding a lot of packets. The user will
mostly receive all the critical sensor data in a control room.

The battery’s power of a mote will be sensed for every certain period and the
request of route will be added with Minimum remaining Battery in a Transmission

(MBT). The explanation can be simplified with Figure 29.

RREQ RREQ (forward) RREQ (forward)
MBT = 100% MEBT = 50% MEBT = 50%
Mode 1 Node 2 Node 3 Node 4

QO —/— 0 ——0 —— ©

Remaining : 50% Remaining : 80%
RREQ(forward)
MBT = 60%

e e —— O |
MBT = 100% RREQ(forward)

MBT = 20%
Node 5 Node 6

Remaining 60% Remaining 20%

Figure 29 Minimum remaining Battery in a Transmission

The example scenario describe that Node 1 need to transmit data to Node 4
and there is no route path yet in its routing table. Node 1 will transmit
RouteRequest(RREQ) with 100% MBT as the sender node should not affect the
MBT as the node need to receive data packet nevertheless. The RREQ will be
broadcast to all neighbour motes. Node 4 then will reply all request back to Node 1.
Node 1 will then filter the RREP, which one has the highest MBT to be stored in its

40

routing table. Please note that the situation should has more route path (e.x. Node 1-
2-6-4), but it is excluded in the Figure 29.

This routing technique has been implemented with AODV by the author. The

following steps described the implementation on the source code, the network layer
source code of AODV can be found in $TOSROOT/lib/ADOV :

1.

Wire the needed components-interface in AODV.nc, another Timer and
BatteryVoltage sensor. Declare the needed interface in AODV_M.nc.

The new Timer functions as to periodic the sensor reading of the battery’s
voltage. Start the Timer in AODV_M.nc.

When the Timer fired, the sensor will be read, the data is calculated and store
in a local variable.

Update the structure of RREQ, RREP and Route Table.

For first RREQ send by the requester, the MBT should be 100%.

The RREQ that is being received and not for it (forwarding RREQ), the
forwarder node should update the MBT as necessary. As well as updating its
routing table with the received MBT from the last sender node.

During the route table updating function (add_route_table), the function
should check whether the existing route path need to be replaced.

Change other required function for proper execution of code.

Refer to APPENDIX C for further clarification of code.

41

CHAPTER 5
RECOMMENDATION AND CONCLUSION

5.1 Conclusion

The project is running smoothly and within the time scope and schedule. The
basic working network has been implemented though Moteworks. The MATLAB
interface can be used for further process of data received from the node as it provides
flexibility. Ad-Hoc On Demand Vector Routing has been implemented on IRIS
motes with some adjustment from GNU Licensed code. The battery factor
modification in AODV has been implemented, but during this report writing, it has
not been thoroughly tested for comparison with other routing algorithm.

5.1 Recommendation
The development of WSN and Mesh networking need to done in a Linux
environment such as Xubuntos that has been compiled for TinyOS development. The

usage of Cygwin and Windows has many disadvantages and problems.

Further studies should be started with TinyOS, not some other routing
algorintm given by any manufacturer for better understanding and flexibility.
Altering the code and library will be the further steps in improving the system

dynamically.

42

REFERENCES

[1] P. Clare Loren, J. Pottie Gregory, and R. Agre Jonathan, "Self-Organizing Distributed
Sensor Networks," in Proc. SPIE Aerosense99, CA, 1999.

[2] Microsoft. (2009) msn. [Online]. encarta.msn.com

[3] F. Akyildiz lan and Wang Xudang, "A Survey on Wireless Mesh Networks," in IEEE
Radio Communications, 2005, p. S23.

[4] Teo Cheng Kiat Amos, "Performance Evaluation of a Routing Protocol in Wireless
Sensor Network," Naval Postgradute School, Monterey, CA, Master's Thesis NSN 7540-
01-280-5500, 2005.

[5] W. Davis Tyler, Liang Xu, Navarro Miguel, Bhatnagar Diviyansh, and Liang Yao, "An
Experimental Study of WSN Power Effieciency: MICAz Networks with XMesh,"
International Journal of Distributed Sensor Networks, vol. 2012, October 2011.

[6] Akyildiz LF., Su W, Sankarasubramaniam Y., and Cayirci E, "Wireless Sensor
Networks: A Survey," Communication Magazine, vol. 40, no. 8, pp. 102-114, August
2002.

[7] V. Biradar Rajashree, Patil V.C., Sawant Dr. S. R., and Mudholkar Dr. R. R,
"Classification and Comparison of Routing Protocols in Wireless Sensor Networks,"
Ubiquitous Computing Security Systems, no. Special, August 20009.

[8] MEMSIC Inc., Xmesh User Manual. Milpitas: MEMSIC, Inc., 2010.
[9] Baleri Giri, Guidelines for WSN Design and Deployment.: Crossbow Technology, Inc.

[10] Yajie Ma, Mark Richards, Moustafa Ghanem, Yike Guo, and John Hassard, "Air
Pollution Monitoring and Mining Based on Sensor Grid in London," Sensors for Urban
Environmental Monitoring, vol. 8, no. Special, 2008.

[11] Dust Networks. [Online].
http://www.dustnetworks.com/technology/networkintelligence/

[12] Nageswara Rao S. Siva, Krishna Y.K Sundara, and Rao K. Nageswara, "A Surve:
Routing Protocols for Wireless Mesh Networks," International Journal of Research and
Reviews in Wireless Sensor Networks (IJRRWSN), vol. 1, no. 3, pp. 43-47, September
2011.

[13] MEMSIC, Inc., Moteworks User Manual.: MEMSIC, Inc., 2010.
[14] Kevin Klues. [TinyOS Wiki] Running a XubunTOS Virtual Machine Image in VMware
Player. [Online].

http://docs.tinyos.net/tinywiki/index.php/Running_a_XubunTOS_Virtual_Machine_Ima
ge_in_VMware_Player

43

[15] Amos Teo, Gurminder Singh, and John C. McFaclien, "Evaluation of the XMesh
Routing Protocol in Wireless Sensor Networks," 2006.

[16] Giri Baleri. (2007) [Tinyos-help] missing XMeshRouter file? [Online].
http://mail.millennium.berkeley.edu/pipermail/tinyos-help/2007-June/026203.html

[17] Junseok Kim. (2011, April) AODV implementation on TinyOS-2.x. [Online].
http://www2.engr.arizona.edu/~junseok/AODV.html

[18] Krishnendu Chakrabarty Yi Zou, "Sensor deployment and target localization in
distributed sensor networks," ACM Transactions on Embedded Computing Systems
(TECS), vol. 3, no. 1, pp. 61-91, February 2004.

[19] Chi-Tsun Cheng. (2011, September) tdoa-localization-iris, GoogleCode. [Online].

http://tdoa-localization-
iris.googlecode.com/files/TinyOS%202x%20Installation%20Procedures.pdf

44

APPENDIX

APPENDIX A1

MATLAB-M files :

s = dos('base_read.bat &');
keeplooping = true;

while keeplooping

conn =
database('task', 'tele', 'tiny', 'org.postgresql.Driver', 'jdbc:postgre
sql://localhost:5432/");

setdbprefs('DataReturnFormat', "numeric')
xnodeid = 1;

nodeid = num2str(xnodeid);

xday = 15;

if xday < 10

day

['0',num2str(xday)];
else

day

num2str(xday);

end

xmonth = 10;
if xmonth < 10

month

['0',num2str(xmonth)];
else

month

num2str(xmonth);

end

45

Xyear = 2012;

year = num2str(xyear);

curs exec(conn, ['SELECT EXTRACT(HOUR FROM

result _time), EXTRACT(MINUTE FROM result time),EXTRACT(SECOND FROM
result_time),humid,accel_x,accel_y FROM mts420 results WHERE
EXTRACT (DAY FROM result_time)=''"', day,'''','AND EXTRACT(MONTH FROM
result_time)=''"', month,'''','AND EXTRACT(YEAR FROM
result_time)=""", year,'''','AND nodeid="""', nodeid,'''']);

curs = fetch(curs);

hour

curs.Data(:,1);
minutes = curs.Data(:,2);

seconds

curs.Data(:,3);
humid = curs.Data(:,4);

accel x = curs.Data(:,5);

accel y = curs.Data(:,6);

n = length(humid);

nyear = (xyear * ones(1,n))’';
nmonth = (xmonth * ones(1,n))’';

nday = (xday * ones(1,n))’;

xdate = datenum(nyear,nmonth,nday,hour,minutes, seconds);
%plot(humid)

subplot(2,2,[1 3]); plot(xdate,humid)

title('Humidity"')

datetick('x"', '"HH:MM:SS"', "keepticks")

subplot(2,2,2); plot(xdate,accel x)
title('X-acceleration')

datetick('x"', 'HH:MM:SS"', "keepticks")

subplot(2,2,4); plot(xdate,accel y)

46

title('Y-acceleration')

datetick('x"', '"HH:MM:SS", "keepticks")

pause(1l);
end
close(curs)

close(conn)

47

APPENDIX A.2

BATCH file (used by MATLAB to run Xserve)

@echo off

echo off

c:

cd\

cd Program Files\Crossbow\MoteView\xserve2\bin

xserve -s=COM4 -b=57600 -1 -xmlfile=XmlStream.xml -xmlp -
xmlport=9005

48

685
686
687
688
689
650
651
692
683
694
685
686
697
698
689
700
7m

APPENDIX B.1

/*added = add_route_table(aodv_hdr-=seq, acdv_hdr-=src, src, aocdv_hdr-=hop };#*/

cached = add_rreq_cache(acdv_hdr-=seq, aodv_hdr-=dest, acdv_hdr-=src, aodv_hdr-=hop);

* 1f the destination of the RREQ 1s me, the node will send the RREP *

/*1t [aodv_hdr-=dest == me &added) {*/ |
t{aody hdr-=dest == me) {
add_route_table(aodv_hdr-=seq, aodv_hdr-=src, srec, acdv_hdr-=hop); |
rrep_aodv_hdr-=>seq = acdv_hdr-=>seq;
rrep_aodv_hdr->dest = aodv_hdr-=>dest;
rrep_aodv_hdr-=src = aodv_hdr-=src;

rrep_aodv_hdr-=hop = 1;
sendRREP(src, FALSE);
return p_msg;

APPENDIX B.2

fArFFE R SUbRacelve Events Aottt

eventSubRﬂceive receive(message_t* p_msg,
void* payload, uintg8 t len)} {

uinte_t 1i;
aodv_msg_hdr* aodv_hdr = (aodv_msg_hdr#*) (p_msg-=data);

dbg("AODV", "%s\t ACDV: SubRecelve.receive() dest: %d src:%mdyn”,
sim_time_stringl), aodv_hdr-=dest, aodv_hdr-=src);

1f(aodv_hdr-=dest == call AMPacket.address()) {
dbg("A0DV", "%s\t AODV: SubReceive.receive() deliver to upper layeryn",
sim_time_string(});

r{ 1=0;i<len;i++) {
i p_app_msg_-=datali] = aodv_hdr-=datali];

b

J*p_msg =*/

signal Receive.receive[aodv_hdr-=appl(p_app_msg_, p_app_msg_-=>data, len - ACDV_MSG HEADER LEN };
Felse {

am_addr_t nexthop = get_next_hop(aodv_hdr->dest);

dbg("AODV", "%s\t AODV: SubReceive.receive() deliver to next hop:%x\n",
it isim_time_string(), nexthop);
/* If there is a next-hop for the destination of the message,

the message will be forwarded to the next-hop. */

1f (nexthop !'= INVALID_NODE_ID) {

i forwardMsG(p_msg, nexthop, len);

49

25
26
27
28
29
30
31
32
ZE
34
=F)
36
37

17
18
19
20
21
22
23
24
25
26

10
11
12
13
14
bl
18
17
18
19
20
21
22
=z
24
&=
25
27
28
29
30
e
32
Zg)
34
35
36
37
38
39
40
41
42
43
a4
45
45
a7
43

APPENDIX C

AODV.nc wiring modified code:

N

implementation {

components AODV_M, RandomC, ActiveMessageC, LedsC,|new VoltageC() as BatteryVv;

sSplitControl = ACDV_M.SplitControl;
AMSend = AODV_M. AMSend;
Receive = ACDV_M.Receive;

components new TimerMil[[1C() as Battery Timer;
AODV_M.BatteryTimer -= Battery_Timer;
AODV_M.ReadBattery -= BatteryV;

AODV_M.nc interface wiring modified

uses {

interface Read<uintlf_t> as ReadBattery; |
interface oplitControl as AMControl;
interface Timer<TMilli= as ACDVTimer;
interface Timer<TMilli= as RREQTimer;

| iinterface Timer<tMilli> as BatteryTimer;||
intertace Leds;

interface Random;

interface AMPacket:

AODV.h modified code:

B typedef nx_struct {

nx_uints_t seq;
nx_am_addr_t dest;
nx_am_addr_t src;
nx_uints_t hop;
nx_ulnts_t mbt ;
aodv_rreq_hdr;

r
=

B typedef nx_struct {

nx_uints_t seq;
nx_am_addr_t dest;
nx_am_addr_t src;
nx_ulnts_t hop;
nx_uints_t mbt;
aodv_rrep_hdr;

r
-

typedef nx_struct {
nx_am_addr_t dest;
nx_am_addr_t src;
} aodv_rerr_hdr;

B typedef nx_struct {
nx_am_addr_t dest;
nx_am_addr_t src;
nx_uints_t app;
nx_uint8 t datal1l;
aodv_msg_hdr;

r
=

B typedef struct {

uints_t seq;
am_addr_t dest;
am_addr_t next;
ulnts_t hop;
uints_t mbt;
uints_t ttl;

50

code:

Add _route_table function in AODV_M.nc :

465 772
466 bool add_route_table(uint8_t seq, am_addr_t dest, am_addr_t nexthop, uint8_t hop, uints_t mby) {
467 uints t 1;
488 uint8_t id = AODV_ROUTE_TABLE SIZE;
489
470 dbg("AODV_DBG", "%s\t AODV: add_route_table() seq:%d dest:%d next:%d hop:%din",
471 isim_time_string(), seq, dest, nexthop, hop);
472 for(1=0 ; 1 < AODV_ROUTE TABLE_SIZE-1 ; i++) {
473 1f(route_table [1].dest == dest) {
474 fid = 1;
475 i break;
476
477 1f(route_table_[1].dest == INVALID NODE ID) {
478 i break;
479 1
480 }
481
482 1f(1d != AODV_ROUTE TABLE SIZE) {
483 if(route_table_[id].next == nexthop) {
484 if(route_table_[id].seq < seq || route_table_[id].hop = hop) {
485 : route_table_[id].seq = seg;
486 ‘route_table_[id].hop = hop;
487 i route_table_[id].mbt = mbt;
488 i //route_table_[id].ttl = ©;
489 : return TRUE;
490 }
491
492 1if(route_table_[id].mbt < mbt && route_table_[id].hop == hop) {
483 route_table_[id] .next = next;
494 route_table_[1d].seq = seq;
485 route_table_[id].mbt = mbt;
496
457 else 1f(1 != AODV_ROUTE TABLE_SIZE) {
4g8 route_table_[1].seq = seq;
499 route_table_[1].dest = dest;
500 route_table_[i].next = nexthop;
501 route_table_[i1]l.hep = hop;
502 route_table [1].mbt = mbt;
503 f/route_table_[1].ttl = o;
S04 return TRLUE;
Function declaration in AODV_M.nc :
&7 AODV_ROUTE_TABLE route_table [AODV_ROUTE TABLE SIZE];
68 AODV_RREQ_CACHE rreq_cache_[AODV_RREQ CACHE SIZE];
59
76 bool sendrRREQ(am_addr_t dest, bool forward };
71 task void resendRREQ();
72
73 bool sendRREP(am_addr_t dest, bool forward);
74 task void resendRREP();
7o
76 bool sendRERR(am_addr_t dest, am_addr_t sre, beool forward);
77 task void resendRERR();
78
79 error_t forwardMSG(message_t* msg, am_addr_t nextHop, uint8 t len);
20 voild resendmsc();
81
82 uintd_t get_rreq_cache_index(am_addr_t src, am_addr_t dest };
83 bool is_rreq_cached(aodv_rreq_hdr* msg);
84 bool add_rreq_cache(uint8_t seq, am addr_t dest, am_addr_t src, uints_t hop,);
85 void del_rreq_cache(uint8 t id);
86 task void update_rreq_cache();
87
28 uint8 t get_route_table_index(am_addr_t dest };
89 bool add_route_table(uint8 t seq, am_addr_t dest, am_addr_t nexthop, uintg_t hop,):
20 void del_route_table(am addr_t dest);
=1} am_addr_t get_next_hop(am_addr_t dest);
o2
93 #1f AODV_DEBUG
94 void print_route_table();
95 void print_rreq_cache();
96 #endif
97
=t} command error_t SplitControl.start{) {
99 foint 1;
100

51

/'
7
/

594
695

697
598
699
700
701
702
703
704
705
706
707
708

710
711
712
713
714
715
716
717
718
718
720
721
722
723
724
725
726

1f{ aodv_hdr-=src

i i add_route_table(aodv_hdr-=seq, aodv_hdr-=dest, src, aodv_hdr-=hop, |aodv_hdr-=mbt|);

ReceiveRREP function in AODV_M.nc :

RecelveRREP.receive: If the source address of the RREP 1s me, 1t means
the route to the destination is established. Or, the node forwards
the RREP to the next-hop node.

oid* payload,
)(p msg-=>data) ;

uint8 t len) {

aodv_| rrep_| “hdr# rrep_ aodv hdr = (aodu _rrep_hdr*) (p_rrep_msg_-=>data);
am_addr_t src = call AMPacket . source(p_msg) ;
dbg (" AcDV",

"%S\t AODV RecelveRREP.receive() src: %d dest: %d \n",
sim_time_string(), aodv_hdr->src, aodv_hdr-=>dest);
call AMPacket.address()) {

else { // not to me

am_addr_t dest = get_next_hop(aodv_hdr-=src);
if(dest != INVALID_NODE ID) {

// forward RREP
rrep_aodv_hdr-=seq
rrep_aodv_hdr-=>dest
rrep_aodv_hdr-=src aodv_hdr-=src;

_ rrep aodv_hdr-=hop aodv_hdr-=hop++;
1f (rrep_aodv_hdr->mbt > battpercent) {
rrep_aodv_hdr-=mbt = battpercent;

I else 1

rrep_aodv_hdr-=mbt = aodv_hdr-=mbt;

1

rrep_aodv_hdr-=mbt = aodv_hdr-=mbt;
add_route_table(acdv_hdr-=seq, aodv_hdr-=dest, src, aodv_hdr-=hop, acdv_hdr-=mbt };
sendRREP(dest, TRLE);

aodv_hdr- =seq;
aodv_hdr-=dest;

return p_msg;

ReceiveRREQ function in AODV_M.nc

/* add the route information into the route table */
add_route_table(aodv_hdr-=seq, src, src, 1, 100);

/*added = add_route_table(aodv_hdr-=seq, acdv_hdr-=src, src, aodv_hdr-=hop);*/

cached = add_rreq_cache(aodv_hdr-=seq, aodv_hdr-=dest, aodv_hdr-=src, aedv_hdr-=hop, faodv_hdr-=mbt|);

/% 1f the destination of the RREQ is me, the node will send the RREP #/
/*1f(aodv_hdr-=dest == me &Gadded) {#*/

1f (aodv_hdr-=dest == me) {
add_route_table(aocdv_hdr-=seq, aodv_hdr-=src, srec, aodv_hdr-=hop,).'
rrep_aodv_hdr-=seq = aodv_hdr-=seq;

aodv_hdr-=>dest;

aodv_hdr-=src;

rrep_aodv_hdr-=dest
rrep_aodv_hdr-=src
rrep_acdv_hdr- =hop 1;
rrep_aodv_hdr-=mbt aodv_hdr-=>mbt; |
sendRREP(src, FALSE);

return p_msg;

// not for me

1f(!rreq_pending_ && aodv_hdr-=src != me && cached } {
// Torward RREQ
rreq_aodv_hdr-=seq
rreq_aodv_hdr-=dest
rreq_aodv_hdr-=src aodv_hdr-=src;

rreq_acdv_hdr- =hop aodv_hdr-=hop + 1;

rreq aodv_hdr-=mbt = aodv hdr-=mbt; |

call RREQTimer.stop();

call RREQTimer.startoneShot{ (call Random.rand16() % 7) * 10);

aodv_hdr-=seq;
aodv_hdr-=>dest;

return p_msg;

52

SendRREQ function in AODV_M.nc :

== Start Page | |AODV25nodeTest.nc | [|AODV25SnodeTestM.ne | JAODVnc ||]AODV M.nc %

151 // sendRREQ: This broadcasts the RREQ to find the path from the source to
152 // the destination.
1EE P R R
154 bool sendRREQ(am_addr_t dest, bool forward) {
155 acdv_rreq_hdr* acdv_hdr = (aedv_rreq_hdr*)(p_rreq_msg_-=datal;
156
157 //dbg("A0ODYV", "%s\t AODV: sendRREQ() dest: %d\n", sim_time_string(), dest);
158
158 if(rreq_pending_ == TRUE)} {
160 return FALSE;
161 }
162
163 1f(forward == FALSE) { // generate the RREQ for the first time
164 aodv_hdr-=seq = rreq_seq_++;
165 aodv_hdr-=dest = dest;
168 aodv_hdr-=src = call AMPacket.address(];
167 aodv_hdr-=hop =1;
168 aodv_hdr->mbt = 100;
159 add_rreq_cache(acdv_hdr-=>seq, aodv_hdr-=dest, acdv_hdr-=src, 0, 100);
170 else { // forward the RREQ and update the MBT if necessary
171 aodv_hdr-=hop++;
172 1f (aodv_hdr-=mbt = battpercent){
173 aodv_hdr-=mbt = battpercent;
174 T
175
176 1
177
178 if (tsend_pending_) {
178 1f(ecall SendRREQ.send(TOS_BCAST_ADDR, p_rreq_msg_,
180 ODV_RREQ_HEADER LEN) == SUCCESS) {
181 dbg (" A0DV", "Ss\t AODV: sendRREQ()\n", sim_time_string());
182 send_pending_ = TRUE;
183 return TRUE;
184
185
188
187 rreq_pending_ = TRLE;
188 rreq_retries_ = AODV_RREQ_RETRIES;
189 return FALSE;
190
[<T
. .
Timer in AODV_M.nc
127 command error_t SplitControl.stop() {
128 call AMControl.stop();
129 return SUCCESS;
130
131
132
133 event void AMControl.startDone(error_t e) {
134 ¢ if (e == succEss) {
135 : call AODVTimer.startPeriodic(AODV DEFAULT_PERICD);
138 call BatteryTimer.startPeriodic (5128); |
137 i signal SplitControl.startDonele];
138) else {
139 : i call aMcontrol.start();
140 ([
141 }
874
875 event void BatteryTimer.fired(]{
876 1f (call BatteryRead.read() != SUCCESS) {
877 call report_problem();
878 I
879
880
881 event void BatteryRead.readDone(error_t result, uintlé_t data) {
882 1f (result != SUCCESS)
883 [N
884 battpercent = (uintS_t)OxA0;
885 report_problem();
886 N
887 maxbatteryvolt = (uintl6_t)2600;
888 ADCconvert = (uintl6_t){{uint32_t)1100 * (uint32_t)1024 / (uint32_tldata);
889 battpercent = (uintg_t) ((uintlé_t)ADCconvert / (uintl6_t)maxbatteryvolt * 100);
850
891

53

