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ABSTRACT 

Distillation is a process that is commonly used in industries for separation purpose. A 

distillation column is a multivariable system which shows nonlinear dynamic 

behavior due to its nonlinear vapor-liquid equilibrium. In order to gain better product 

quality and lower energy consumption of the distillation column, an effective model 

based control system is needed to allow the process to be operated over a certain 

operating range. In control engineering, System Identification is considered as a well 

suited approach for developing an approximate model for the nonlinear system. In this 

study, System Identification technique is applied to predict the top and bottom 

product composition by focusing the temperature of the distillation column. The 

process in the column is based on the distillation of a binary mixture of Isopropyl 

Alcohol and Acetone. The experimental data obtained from the distillation column 

was used for estimation and validation of simulated models. During analysis, different 

types of linear and nonlinear models were developed and are compared to predict the 

best model which can be effectively used for designing the control system of the 

distillation column. Among the linear models such as; Autoregressive with 

Exogenous Input (ARX), Autoregressive Moving Average with Exogenous inputs 

(ARMAX), Linear State Space (LSS) model and Continuous Process Model were 

developed and compared with each other. The results of this comparison reveals that 

the perf01mance of LSS model is efficient and hence it was further used to improve 

the modeling approach and compared with other nonlinear models. A Nonlinear State 

Space (NSS) model was developed by the combination of LSS and Neural Network 

(NN) and is compared solely with NN and ANFIS identification model. The 

simulation results show that the developed NSS model is well capable of defining the 

dynan1ics of the plant based on the best fit criteria and residual performance. In 

addition to this, NSS model predicted the best statistical measurement of the nonlinear 

system. This approach is helpful for designing the efficient control system for online 

separation process of the plant. 
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ABSTRAK 

Penyulingan merupakan proses yang banyak digunakan oleh industri, untuk bertujuan 

pengasingan. Menara penyulingan; iaitu sistem yang mempunyai pelbagai 

pembolehubah berupaya menggambarkan perilaku dinamik tidak linear yang 

disebabkan oleh hubungan keseimbangan antara gas dan cecair. Dalam usaha untuk 

menghasilkan produk yang berkualiti tinggi dan mengurangkan penggunaan tenaga 

oleh menara penyulingan, satu model sistem kawalan diperlukan untuk memastikan 

proses yang beroperasi pada tahap operasi tertentu. Dalam kejuruteraan kawalan, 

teknik 'system identification' dikenalpasti sebagai satu pendekatan yang bagus dalam 

membangunkan model ramalan untuk system tidak linear. Dalam kajian ini, 'system 

identification' digunakan untuk meramal komposisi produk dibahagian atas dan 

bawah dengan mengambil kira suhu menara penyulingan. Proses pengasingan yang 

dijalankan adalah berdasarkan pada campuran Isopropyl Alcohol dan Acetone. Data 

eksperimen yang diambil daripada menara penyulingan digunakan untuk membuat 

ramalan dan pengesahan kepada model simulasi. Semasa menganalisa, beberapa jenis 

model 'linear' dan model bukan 'linear' dibina dan dibuat perbandingan untuk 

meramal model terbaik yang boleh digunakan untuk mereka sistem kawalan menara 

penyulingan yang efektif. Antara model-model linear seperti AR.X, ARMAX, model 

Linear State Space (LSS) dan model 'Continuous Process' dibina dan dibuat 

perbandingan antara satu sama lain. Hasil daripada perbandingan yang menunjukkan 

bahawa prestasi model LLS yang sangat efisyen, ia diadaptasi untuk memperbaiki 

model dan seterusnya dibandingkan dengan model-model tidak linear. Model 

Nonlinear State Space (NSS) yang dibina merupakan hasil gabungan antara LSS dan 

Neural Network dan seterusnya dibandingkan dengan model NN dan ANFIS. Hasil 

simulasi menunjukkan bahawa model ini berjaya mendefinasikan dinamik kepada 

'plant' berdasarkan kepada criteria terbaik dan 'residual performance'. Sebagai 

tambahan, model NSS membuat anggakan pengukuran statistik yang terbaik untuk 

sistem tidak linear. Pendekatan ini sangat berguna untuk merangka satu sistem 

kawalan bagi proses pengasingan yang efisyen. 
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1.1 Introduction 

CHAPTER I 

INTRODUCTION OF STUDY 

The System Identification (SI), analysis and simulation has always remained an 

important field and pursued with vigor interest since early 1960s. The precedent 

literature shows a number of approaches and techniques that can be utilized for the 

System Identification. It can be as simple as a 'blind' approach using the concept of 

black box model and can be as complicated as applying techniques on top of an 

Artificial Neural Network [ 1]. The models of a real system have a fundamental 

importance in virtually all disciplines and can be useful for system analysis. It makes 

it possible to predict or simulate a system's behaviour. In the field of engineering, 

models are required for the design of new process and as well as for the analysis of 

existing process. The advance techniques for designing of controllers, optimization, 

supervision, fault detection and diagnosis components are also based on models of 

processes [2]. 

In control engineering, it is usually observed that the developed linear models are 

being used in different applications. However, in most of the cases, systems are of 

real time, ill-defined and uncertain in nature. Thus, system modelling by using 

primitive approaches is inappropriate for system modelling. Industrial plants and 

complex systems consist of different properties. They may be ill-defined and mostly 

non-linear systems. Moreover, the operations of such continuous process plants 

always involve various optional priority criteria such as product yield, cost, 

concentration and reliability [3, 4]. 

Continuous process operates at a stationary state for a very long period of time. 

In each steady state operating point the process functions at an equilibrium condition 



where the deviation of material composition is small, and the process conditions such 

as temperatures, pressures and flow rates are kept as constant as possible or within 

zone limits. In general, a continuous process can be effectively controlled using linear 

process models, at least for each mode (operating point). This is because any 

nonlinear function can be well approximated by a linear function around an 

equilibrium, which explains the success of linear model-based control technologies 

for continuous processes. The area where linear models are less or non-effective is 

during process start-up and shut-downs where nonlinear behaviour of the process 

becomes dominant (5]. 

The distillation columns are good examples of nonlinear processes. A distillation 

process is used to separate a given compound into products of higher value. The 

separation process is basically to vaporize the feed and draw the products from 

different locations (trays) of the column at different temperatures. The value of the 

products depends on their quality (purity). This makes quality control very important 

in operating a column. The operation must also be profitable and meet production 

goals. The role of distillation control is to meet these tightly interrelated objectives 

(5]. 

The nonlinear behaviour, ill-conditioned nature, hydraulic limits, separation 

limits, heat transfer limits, pressure constraint and temperature checks causes 

complications in designing the control system for the distillation column [6]. The 

designing of an effective control system is a prerequisite for sustainable processes as 

it improves product quality, process safety, product yield and reduces energy 

consumption. Therefore, this study focuses on developing multivariable linear and 

nonlinear models to represent the true nature of a binary distillation column for 

designing effective control strategy. 
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1.2 Problem Statement 

Earlier researchers have revealed that controlling the dynamic process of a distillation 

column is a challenging task [7]. The use of model based control strategies such as 

Internal Model Control (IMC) and Model Predictive Control (MPC) have explicitly 

embedded a process model in the control algorithm. They show better responses in 

controlling distillation columns against the primitive methods because of their ability 

to satisfy strict performances and requirement [6, 8]. 

There are several modelling techniques that are used for the distillation column 

which can be categorized under fundamental and empirical modelling. The 

fundamental modelling techniques are based upon the basic elementary principles of 

the system such as mass, energy and momentum balance which are globally valid and 

are usually accurate with providing comprehensive process understanding. 

Nevertheless, primary models are complex for controller design and the process 

features for primary models developed are based on suppositions which possibly 

could be sometimes inaccurate [6, 9]. Empirical modelling techniques are based upon 

input output data measurement of the physical system. Such models are also 

considered as "black box" models due to the absence of its priori physical knowledge. 

The collected input-output data from the physical plant is considered as the most 

valuable information of its operation. Such models explain the practical relationship 

between the system inputs and outputs. Empirical models also represent the nonlinear 

relationship accurately in the area shown by the data although if the unmeasured 

disturbances are presented in the experiment. The results of the models not only 

depend upon precision of the measured values but also the relationship between the 

condition to be observed and the condition where the measurement has been 

performed [6, 10]. 

Nowadays, the requirement for process industries is fast and efficient modelling. 

Therefore, fundamental modelling is not attractive due to high manpower cost and 

long development time. Thus, empirical modelling may offer an attractive option for 

Malaysian process industries. Current practice in the process industries is to use 

sequence of single variable open loop testing's. These tests are performed manually. 

The advantage of these testing methods is that the operator will be able to analyze 
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different step responses and can observe the behaviour of the system. The data from 

this single step tests may not contain fine process information about the multi variable 

system and these step signals do not stimulate enough dynamic information of the 

process. These issues can be rectified by the use of automatic multivariable test. In an 

open loop multivariable test many Manipulated Variables (MY) are perturbed using 

some test signals such as Pseudo Random Binary Signal (PRBS) signals [ 11]. 

1.3 Research Objectives 

Process modelling is an important element for optimized control performance. 

Therefore, it is essential to investigate various modelling techniques that are suitable 

for multivariable steady processes. The primary aim of this research is supported by 

the following objectives; 

I. Performing experimental work over a binary distillation column for collecting 

real plant data. A PRBS type structured input behaviour is given as input to the 

distillation column. 

2. Evaluating linear system identification models, Autoregressive with Exogenous 

Inputs (ARX), Autoregressive Moving Average with Exogenous Inputs 

(ARMAX), Linear State Space (LSS) model and Continuous time Process 

Model and carrying out analysis using residual and correlation tests in 

application for online process control system. 

3. Evaluating nonlinear models such as Neural Network (NN), Nonlinear State 

Space (NSS), Adaptive Neuro Fuzzy Inference System (ANFIS) models and 

carrying out analysis using residual and correlation tests in application for online 

process control system. 

4. Examine comparative analysis between the linear and nonlinear models and 

predict the best model to be used for online applications. 
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1.4 Scope of Research 

In this study, linear and nonlinear models are developed using SI technique and are 

compared. Linear and nonlinear modelling approaches are compared by measuring 

the best fit of the model, cross-correlation analysis and by observing the residual 

performance. For nonlinear identification, Neural Network based approach is more 

focused. All models in present case are developed completely based on the 

experimental data collected from an Advanced Process Control (APC) distillation 

column pilot plant, which will be discussed later in the upcoming chapter. All the 

models are developed using MA TLAB/Simulink software. 

1.5 Thesis Organization 

This thesis is divided into six chapters 

Chapter 2 provides the literature review on SI. It covers the linear and nonlinear 

methods such as intelligent techniques which have been used in the application of SI 

for modelling a highly nonlinear system such as distillation column. Some reviews 

related to this research are tabulated. 

Chapter 3 explains the concept of distillation process. It outlines the experimental 

procedures which have been carried out on the plant using SI technique for data 

collection and the responses are shown. 

Chapter 4 shows the result obtained for linear SI. Multivariable identification 

models are evaluated with each other. Autoregressive Exogenous input model (ARX), 

Autoregressive Moving Average with Exogenous input (ARMAX), Linear State 

Space (LSS) model and Continuous Process Model are compared and evaluated. 

Chapter 5 shows the result obtained for nonlinear SI. It discusses Standard Neural 

Network approach using two different learning algorithms which are Gradient Decent 

with Momentum (GDM) and Lavemberg-Marquardt (LM). A new developed 
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Nonlinear State Space (NSS) model which is the combination of Linear State Space 

(LSS) model and Neural Network (NN) model and Adaptive Neuro-Fuzzy Inference 

System (ANFIS) models are also evaluated by comparing each other. 

Chapter 6 concludes the research findings with discussion over the results and 

some recommendations for future work. 
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2.1 Introduction 

CHAPTER 2 

SYSTEM IDENTIFICATION 

System Identification (SJ) is an approach of modelling a system. It is a method to 

construct mathematical models for physical and dynamic systems based on 

experimental data. Based on an experimental procedure, a system is given certain 

input and the output response is measured. From the collected data of the input -

output measured sequences, a model can be determined and its dynamic behaviour 

can be analyzed. 

In this chapter, the concept of system identification is explained. Further, Linear 

system identification model and nonlinear system identification models are 

discussed. Some view over the applications of system identification over distillation 

column is also presented. 

2.2 System Identification: Theory & Techniques 

The dynamic behaviour of a system or process in time or frequency domain can be 

described by using mathematical expression. This mathematical expression is also 

called as an approximate mathematical model of the system and can be obtained 

based on basic fundamental theories from physics, chemistry and mathematics. But 

in many cases such mathematical models are excessively complicated and impossible 

to obtain in reasonable time due to its complex nature and process [II). 



A common method to obtain an approximate mathematical model of a complex 

system starts by measuring the behaviour of the system with its external influences 

(system inputs) and then by determining a mathematical relationship of these 

influences with the system response (system outputs) without measuring the internal 

process of the complex system. This technique is known as System Identification. 

Therefore, System Identification can also be said to be an approach of developing 

approximate mathematical models of a system by means of input output data while 

performing an experimental process [II]. System Identification approach can be used 

for both linear and for nonlinear systems. Figure 2.1 summarizes many branches of 

active research work in this field. Further detail is described in section 2.2.1 and 

section 2.2.2. 

The use of system identification in control engmeenng has been a popular 

alternative to physical modelling for obtaining model descriptions of given physical 

system. Applications of fundamental laws from mechanics, thermodynamics, 

chemistry etc, are often quite complex and time consuming tasks especially if large 

scale engineering systems are considered [ 12]. 
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Methods 
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Stochastic Deterministic Fuzzy 
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Least Square Stochastic Volterra Wiener or 
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Model Set Generalized 
Validation t-~ Membership Method t-

Iterative ID I 
Control t-

Figure 2.1: Various Methods of System Identification [13]. 
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2.2.1 System Identification Procedure 

The fom1ation of an approximate mathematical model by means of input/output 

measurement involves four steps as explained below. Figure 2.2 shows the summary 

of the identification procedure. 

2.2.1.1 Experimental Test 

An experimental work is performed on the system and a set of input-output data is 

collected. The experiment has to be well designed which requires the ability to 

determine the input and output signals to be measured involving the sampling 

interval, which means systems characteristics are well reflected in the observed data. 

Thus, to capture useful data for system identification, it is essential to have some 

priori information or physical knowledge about the system. 

A good identification test plays an important role in a successful identification. 

Current practice in the process industries is to use sequence of single variable open 

loop testing's. These tests are performed manually. The advantage of these testing 

methods is that the operator will be able to analyze different step responses and can 

observe the behaviour of the system. The disadvantages of these tests are that it costs 

high time and manpower. The data from this single step tests may not contain fine 

process information about the multivariable system and these step signals do not 

stimulate enough dynamic information of the process. These issues can be rectified by 

the use of automatic multivariable test. In an open loop multivariable test many 

Manipulated Variables (MY) are perturbed using some test signals such as PRBS 

signals [12]. 

Identification tests can also be done in closed loop operations with Control 

Variables (CV) under feedback control loop. Advantages of the closed loop tests can 

be; 

I. Reducing the disturbance to the process operation and eliminate product off­

specification. When a multivariable open loop test is used, some CVs may 
10 



float away and the operator needs to interfere in order to avoid product 

qualities from off specification. In closed loop test, however one can specify 

the amplitude of the set point movement and the controller will help to keep 

the CV s within their operation range [ 12]. 

2. Better model for control can be obtained using closed loop test. Under the CV 

variance limitations, the control performance degradation caused by model 

errors will be less if the closed loop test are carried out. High purity 

distillation columns are often ill-conditioned where top and bottom 

temperatures have strong relation [ 12]. 

The controller is used to keep important CV s within their operation restrictions 

during the identification tests. It can be done by using one or several PID control 

loops or other existing MPC controller in the plant. When testing the distillation 

column, it is often sufficient to control the top and bottom temperature using two PID 

controllers [ 12]. 

2.2.1.2 Model Structure 

A set of selected models is obtained by identifying the properties. A suitable model is 

searched within this set. This is one of the most theoretical and difficult part of system 

identification. A model with some unknown physical parameters is constructed from 

basic physical laws and other well-established relationships. In other case linear 

models may be employed without reference to the physical background of the system. 

Since these models do not essentially imitate the information about the structure of 

the system, they are referred to as black box models. One of the most challenging 

issues is to find a good model structure, or to amend model orders, based on the input­

output data. 

2.2.1.3 Parametric Estimation 

When the data is available and the model set is determined, the next step is to find the 

best model. The evaluation of the quality of the model is naturally considered upon 
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the performance of the model while attempting to regenerate a set of new measured 

data which has not been used in the development of the model. This is considered the 

identification method. For model parameter estimation, an error criterion (loss 

function) is specified. Often the sum of the squares of some error signals (residuals) is 

used as the criterion. The values of the parameters are detem1ined by minimizing the 

loss function [II]. 

2.2.1.4 Model Validation 

This step is to examine if the estimated model is adequately good for the intended use 

of the system. First of all, a check is performed to see if the model is in accordance 

with the prior knowledge of the system. Then, a check if the model can fit the 

experimental data well, preferably by using a data sequence that has not been used in 

estimating the model. The final validation of the model is the application of the model 

(13]. 

2.2.2 Types of Models 

There are three types of models which are common m the field of system 

identification [ 14]: 

I. Black Box Model: A system which is analyzed exclusively in terms of its input­

output and transfer characteristics without knowing its internal working. No 

priori knowledge of the system is available. The mathematical representation of 

black box model depends completely on the input sequence provided and the 

output is observed 

2. White Box Model: It is the opposite of the black box model. The systems inner 

concept is available for examination. White box sometimes is also known as a 

glass box or a clear box. The mathematical representation of the model is 

dependable on the inner information available 

3. Grey Box Model: In a grey box model some of the mechanisms describing the 

behaviour of the system are known, but are not fully represented in the model. 
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Grey box model specifies moderately known physical factors or a few 

limitations of the system 

Priori Knowledge 

Experiment 

Design 

~ 

Dala 

Choose Model 

Set 

Choose Criterion 
ofFil 

+ 
Calculale Model L 

Not Ok: Re,ise 
Validate 
Model 

+ 
Ok: Use il 

Figure 2.2: System Identification Procedure [II]. 

2.2.3 Linear System Identification 

Linear system identification often refers completely to the identification of linear 

dynamic systems. It can be distinguished into parametric and non-parametric 

methods. Parametric models are capable of describing the process behaviour 

accurately with finite numbers of parameters such as the use of differential or 

difference equation model. These parameters often have a direct connection to 

physical measurements of the process such as mass, volume, composition, 

temperature etc. Nonparametric models generally requrre an infinite number of 
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parameters to describe the process. One example of nonparametric model IS an 

impulse response model [14]. 

Furthermore parametric methods determine a relatively small number of 

parameters. Usually these parameters are optimized according to some objectives. 

Parameter estimation is one typical example of parametric method. Parametric 

methods can also be used for determination of approximate non-parametric models 

whose number of parameters has been reduced to finite number. Finite Impulse 

Response (FIR) model is a good example of such cases [14]. In this thesis, parametric 

methods are discussed in the subsequent sections. 

2.2.3.1 Autoregressive with Exogenous input (ARX) Model 

The ARX model is by far the most widely applied linear model in industries. Its 

parameters can be obtained by linear least square technique since the prediction error 

is linear in the parameters [14]. Equation 2.1 is the ARX model equation. Based on 

this equation, the ARMAX model block diagram is shown in Figure 2.3. 

y[k] = B(q) u[k]+-1-e[k] 
A(q) A(q) (2.1) 

where y(k) is the model output, u(k) is the input to the model, A(q) and B(q) are the 

model polynomials and e(k) is the noise. 

e(k) 1 

I 
+ --

A(q) 
y(k) 

u(k) --+I~ I B( q) r--1 _ ____,j 

Figure 2.3: ARX Model. 
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2.2.3.2 Autoregressive Moving Average with Exogenous (ARMAX) Input Model 

The ARMAX is the second most popular linear model after the ARX model. 

Compared to ARX model, ARMAX model is more flexible because it possesses an 

extended noise model. The identification method for ARMAX is similar to ARX 

model which is the prediction error method. Equation 2.2 is the ARMAX model 

equation [14]. Based on this equation, the ARMAX model block diagram is shown in 

Figure 2.4. 

y[k] = B(q) u[k]+ C(q) e[k] 
A(q) A(q) 

(2.2) 

where y(k) is the model output, u(k) is the input to the model, A(q), B(q) and C(q) are 

the model polynomials and e(k) is the noise. 

e(k) C(q) 

u(k) 
cp 

I 
--
A(q) 

B(q) 

y(k) 

Figure 2.4: ARMAX Model. 

2. 2. 3. 3 Linear State Space Model 

The Linear State Space (LSS) model presents an absolute image of the system, 

especially for MlMO systems against polynomial models. This is for the reason that 

the state space models are comparable to primary principle models. Nonlinear 

optimization is not involved in the identification process, therefore the initial guess is 

not necessarily to be considered while estimating the model [14]. Furthermore, 

adjusting the parameters for state space models are easier. The order or the number of 

states of the model is only selected. It also can determine the order by analyzing the 
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singular values of the information matrix. The matrices are obtained based on the 

following two equations: 

x(k + 1) = Ax(k) + Bu(k) (2.3) 

y(k) = Cx(k) + Du(k) (2.4) 

x(k) is the state vector, y(k) is the system output, u(k) the system input. A, B, C and D 

are the system matrices. The dimension of the state vector x(k) is the only setting 

needed to provide for the state-space model. From equation 2.3 and 2.4, the linear 

state space model block diagram is shown in Figure 2.5. 

u(k) x(k+ I} 1 x(k) y(k) 
B • c 'y • z 

A -
D 

Figure 2.5: LSS Model Block Diagram. 

2. 2. 3. 4 Continuous Process Model 

Continuous Process Models are basic models which can be identified for any dynamic 

system. It is simple to perform and although it is the least general method, it provides 

adequate models for many applications. The form of the model is as follows, with 

X( s) as the input and Y ( s) denoting as the output; 

For 1" order process model, the equation is given as: 

Y(s) Kl' 
--=--
X(s) n-+1 

(2.5) 
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For 2"d order process model, the equation is given as: 

Y(s) Kl' 
= __,-,,.----.!...--

X(s) r 2s 2 +2~1:1'+1 
(2.6) 

For 3'd order process model, the equation is given as: 

Y(s) Kl' 
=------~-------

X(s) (r3s + l)(r2s + l)(r1s +I) 
(2.7) 

where Kp is the process gain, r is the time constant and ~ is damping ratio with respect 

to the input of the system. 

2.2.4 Nonlinear System Identification 

Modelling and identification of nonlinear dynamic systems is a difficult task because 

nonlinear processes are distinctive in the sense that they do not share many properties. 

A major goal for any nonlinear system modelling and identification scheme is 

universal: that is, the capability of describing a wide class of structurally different 

systems [14). Figure 2.6 shows the task of nonlinear system identification. 

n 

+ }· 

Process + 

UP 

e + 

I -

1' } 

.Model 

I 
Figure 2.6: System Identification Model [15). 
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The concept of linear and nonlinear system identification is merely similar. In 

nonlinear system identification as shown in Figure 2.6 the model is adapted in order 

to represent the process behaviour. Process and model are fed with the same input !:!. = 
[ u 1 u2 ... up] T, and their outputs y and y' are compared with the yielding the error 

signal e, which can be utilized for adapting the model. Note that the process output is 

usually disturbed by noise n [ 14]. 

Artificial Intelligence has played a significant role in nonlinear system 

identification. The application of Fuzzy Logic and Neural Network has a vast 

contribution for modelling not only linear but nonlinear systems. Fuzzy is mainly a 

rule based modelling technique while neural network updates its weights during 

computation. A similar concept is used by Adaptive Neuro Fuzzy Inference System 

(ANFIS) for updating its computational weights while being evaluated by the defined 

rules. In this study, three different nonlinear approaches have been discussed, the 

Artificial Neural Network, ANFIS technique and the Nonlinear State Space Model. 

2. 2. 4.1 Artificial Neural Network 

Artificial Neural Network (ANN) is a very common topic in the study of system 

identification. Due to its nonlinear computation, ANN provides a very much accurate 

measurement of a process system by means of its input-output data measurement. In 

terms of the ANN structure, it can be described in two: the Feed forward Network and 

the Recurrent Network. 

Feedforward networks are very commonly used networks. An example of 

Feedforward network is the Multilayer Perceptron (MLP). Feedforward networks 

perform forward mappings between the input and output space which correlate the 

output and input of the identified mappings [ 16]. 

Training algorithm plays a very important role in computing the weights of the 

neural network in order to reduce the error as much as possible against the target data. 

The error of a particular arrangement of the network can be established by running 

several training algorithms through the network and later comparing the actual output 

generated with the target outputs. Throughout the training process, the weights of the 
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network are iteratively adjusted in order to minimize the network performance 

function (17, 18]. The most common error function is the Mean Squared Error (MSE) 

where the individual errors of the output units on each case are squared and summed 

together. The mean square error is defined by the following equation: 

N 2 

EN(B) = l:(Y;- y(B,x;)) (2.8) 
i·l 

where X; is the input, Y; is the target output, y(B,xJ is the network output and e is the 

parameter (weight). 

A good approximation for the parameter B is that it minimizes the Mean Square 

Error (MSE). The MSE is reduced by updating B along the negative gradient of the 

MSE and this is given as follows: 

(2.9) 

In equation (2.9), the matrix R may change the search direction from the negative 

gradient direction to a more positive one. The function of parameter J.l is an optimize 

based MSE criteria. 

There are numbers of learning algorithm available for training a neural network. 

The very basic learning algorithm is the back-propagation learning algorithm in which 

the weights are updated according to the delta rule or also known as gradient decent. 

This algorithm is further upgraded with the addition of a constant value of momentum 

called as "Alpha (a)" for a faster convergence of the network output with respect to its 

weight update. This is shown by the following equation: 

D.w=axx xo 
' ' 

(2.1 0) 

Where x; is the input to the particular neuron, O; is the error gradient and a is the 

momentum. If equation (2.9) is to be updated from equation (2.1 0), than it can be said 

that R=D.w. 

Other learning algorithm such as Quasi-Newton, Resilient Back-propagation as 

well as conjugate gradient decent are much faster and advance training algorithms 
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used in training the neural network. One another type of learning algorithm is the 

Lavemberg Marquardt (LM). As stated in [21], LM is an advanced non-linear 

optimization algorithm. Similar to as back-propagation network algorithm, LM is 

used to train the weights in a network. LM presumes that the basic function being 

modelled by the neural network is linear. Upon this computational approach, the 

minimum is settled closely in a single step. The computed minimum is evaluated and 

if the error is minor, the weights are shifted to a new point. Upon each generation this 

procedure is reiterated [22]. LM therefore negotiates between gradient descent 

approach and the linear model. It only makes the move when the error needs to be 

improved. When necessary the gradient decent model is used adequately in a small 

step to pledge a simple move [22]. LM uses the update equation: 

(2.11) 

where cis the vector of case errors, and Z is the matrix of partial derivatives of these 

errors with respect to the weights: if equation (2.9) is to be updated from equation 

(2.11), than it can be said that R=D.w. 

Neural Network has been used by several researchers for the purpose of process 

identification. Due to its computational algorithms, ANN provides a close 

approximate model for systems especially when there is a presence of highly 

nonlinear behaviour. This makes it easier to design controllers, observers or even 

proper analysis can be performed for system enhancement. 

2.2.4.2 Nonlinear State Space Model 

The linear state-space model (LSS) presents an absolute image of the system, 

especially for MIMO systems against polynomial models. This is for the reason that 

the state space models are comparable to primary principle models. Nonlinear 

optimization is not involved in the identification process; therefore the initial guess is 

not necessarily to be considered while estimating the model. Furthermore adjusting 

the parameters for state space models are easier. The order or the number of states of 

the model is only selected. It also can determine the order by analyzing the singular 

values of the information matrix [23]. 
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Since a LSS model is capable of representing a dynamic system, therefore the n'h -

order multi input multi output (MJMO) time invariant nonlinear dynamic system can 

be written as follows (23]: 

x(k +I)= <P[(x(k ), u(k )] 

y(k) = 'l'[(x(k)] 

(2.12) 

(2.13) 

where <ll and '¥ are static nonlinear mappings. If the system is linear, than the linear 

state space model can be written as follows: 

x(k +I)= Ax(k) + Bu(k) 

y(k) = Cx(k) + Du(k) 

(2.14) 

(2.15) 

where x(k)is the state vector, y(k)is the system output, u(k)is the system input. A, B, 

C, D, are the system matrices. The aspect of the state vector x(k) is the only setting 

needed to provide for the state-space model. 

As explained in [23) in equation 2.12 and 2.13, <ll(.) and '¥(.) are arbitrary 

functions which may or may not be linear. Therefore neural network is being used to 

approximate these mappings. <ll (.) maps the system states x(k) and input u(k) into the 

new state x(k+l) while'¥(.) transforms the state x(k) into the outputy(k). When using 

neural network to identify the system described by equation 2.13 and 2.12, two 

important assumptions are considered: (I) all the system states are measureable; (2) 

the system is stable. Based on these two important assumptions, Figure 2. 7 shows the 

block structure of the nonlinear state space model. Significance of this block structure 

is for system identification as explained in chapter 6. 

21 



X (k) 

x(k+1) x{k} y(k) 

u(k ) <!> z·l ljJ 

+ + 
I' 

1 \, 1 \, 

- -

Neural x'(k+1) Neural 
y'(k ) 

Network Network 

I 2 

Figure 2.7: Identification Based on Measurable System States [23]. 

2.2.4.3 Adaplive Neuro-Fuzzy Inference Sys/em (ANFIS) 

Neuro-Fuzzy networks are fuzzy models that are not exclusively designed by special 

understanding but are at least partially estimated from data. The relationship between 

fuzzy models and neural network forces the data-driven out by fuzzy modelling. 

Usually, the fuzzy model is structured in neural network architecture and learning 

techniques which are already established in the neural network framework are applied 

over the neuro-fuzzy networks [14]. Figure 2.8 shows the network architecture for the 

ANFIS modeL 

Figure 2.8: Adaptive Network Based Fuzzy ModeL 
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ANFIS combines the least squares estimators and the gradient decent method 

[ 19,20]. Training algorithm of ANFIS composes a forward pass and a backward pass 

in each epoch. All through the forward pass, the ANFIS network receives a training 

set of input. Neurons outputs are computed on the layer-by-layer basis and the rules 

significant values are computed by least square estimation [I 9]. 

ANFIS is designed in several layers. It has an input and output layer and three 

hidden layers that represent functions and fuzzy rules [I 9]. Function of each layer of 

ANFIS as shown in Figure 2.8 for the case of distillation column is explained as 

below; 

1. Layer I is the input layer. Each neuron in this layer conveys external crisp signals 

directly to the next layer. That is; 

Y<'l = u<'l 
' ' 

(2.16) 

where u/'! is the input of layer I and y/'J is the output of input neuron i in the layer. In 

case of 2 inputs for the distillation column, u/1! can be written as 

flow rate 

flow rate 

11. Layer 2 is where the input signal computes with a membership/activation 

function. This process is known as fuzzification. The neurons can have any form 

of activation function, i.e. for a bell type activation function, it can be stated as; 

y)'l = ( (2) - J'h; 
l+ u, a, 

c, 

(2.17) 

where uPl is the input for layer 2, yp> is the output of layer 2, a1, b, and c1 are the 

parameters for control. 

111. Layer 3 is the rule layer. Neuron in this layer corresponds to a single Sugeno-type 

rule [ 19]. The output of neuron i in this layer 3 is obtained as; 
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k 

Y<'l = ll uP> 
' J' 

)=\ 

(2.18) 

Following are examples of rules used for the identification of distillation column 

• If (reflux) is (MFI) and (steam) is (MF2) than (Top Temperature) is (MF3) 

• If(reflux) is (MFl) and (steam) is (MF3) than (Top Temperature) is (MF2) 

• If (reflux) is (MF2) and (steam) is (MF3) than (Top Temperature) is (MFI) 

IV. Layer 4 is the normalization. The output of neuron i in this layer is determined as; 

(2.19) 

where u/4
) is the input and y,'4l is the output oflayer 4. 

v. Layer 5 known as defuzzification layer. This is where fuzzy techniques are 

applied to be part of neural network structure. The defuzzification neuron 

calculates the weighted consequent as; 

(2.20) 

where k;o, kn and ka are set of consequent parameters of rule i. 

VI. Layer 6 represents a single summed neuron. All the defuzzified neurons are 

summed and the ANFIS outputy is obtained by following equation 

n 

y= L;u,[k;o+knu1+k,2u2] (2.21) 
i•l 

ANFIS is nowadays widely being used not only for identifications but for 

different types of applications such as fault diagnosis, pattern recognition, medical 

diagnosis, control systems etc. In this study, ANFIS is used for system identification 

of a dynamic system, which is considered as a black box. 
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2.2.5 Multivariable Modelling 

System Identification modelling techniques are also performed m multivariable 

approach. Process Industries are places where huge applications of multivariable 

systems can be found. Mostly these multivariable systems are nonlinear. Distillation 

Columns are good examples of multivariable process. Several variables in distillation 

columns are related to each other's process. Therefore single variable modelling is not 

much likely to be acceptable. Figure 2.9 shows an overall MIMO process system. 

Ul Yl 

PROCESS 
U2 Y2 

Figure 2.9: MIMO Process Block Diagram. 

A Multi-Input Multi-Output (MIMO) can be decomposed into several Multi-Input 

Single-Output (MISO) one for each output. Modelling a system with several inputs 

may always be in different order with more than single output. Dividing MIMO 

systems into MISO systems makes it easier to analyze the system. Figure 2.10 shows 

a decomposed structure of Figure 2.9 into MISO process structure. 

Ul 

PROCESS Yl 

PROCESS Y2 
U2 

Figure 2.10: MISO Process Block Diagram. 
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2.3 A Review of System Identification Techniques in the Application of 

Distillation Columns 

Several authors have discussed in their publications over the application of system 

identification for Distillation Columns. Some works were performed over continuous 

binary distillation columns; some are on batch type distillation column. Some 

application of ARX, ARMAX, and Linear State Space models over binary distillation 

column are summarized in the Table 2.1. 

From Table 2.1 the study performed in (24], identification and temperature based 

control of a nonlinear distillation column was examined. Numbers of ARX models 

were created and based on different model validation tests best one was selected. The 

best nonlinear polynomial ARX model was used in nonlinear model predictive control 

with including the effects of nonlinear disturbance models. The controller performed 

well for set point tracking and rejecting the disturbance. Comparative analysis has 

been performed with the ARX model within the predictive control algorithm. 

Unsatisfactory response was observed from the performance of the linear model 

against the nonlinear model for the system until the parameters of the linear model are 

recursively updated for prediction errors. 

From Table 2.1 the study performed in (25], a nonlinear ARX model (NARX) was 

developed for identifying a distillation column. The studies on the nonlinear dynamic 

characteristics of the distillation column using the experimentally validated first 

principle model have proven the need of nonlinear model for the distillation column. 

The study on the regressors of the NARX model has concluded that it has the 

capability of capturing the nonlinearity of the process. 

From Table 2.1 the study performed in [26], an advanced technique of 

orthonormal basis filters is used in development of ARX model. Simulation studies on 

a staged binary distillation column have been performed. In the simulation studies, 

servo and regulatory performance of the models are analyzed. Proposed models are 

compared with conventional ARX and ARMAX models. The modelling approach 

proposed in this work can be used to identify higher order models linked with single 
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unit operations. The developed models needed further modification to take into 

account the structural appearance of the system. 

Table 2.1: System Identification Techniques Applied over Distillation Column 

Distillation 
Model Column Type of Model Discussion Ref. 

Process 
• Simulation based model 
• Considered top & bottom temperature of 

Methanol- the process column 

Ethanol NARX • Candidate models were generated and [24] 
promising ones were selected based on 
different model validation tests 

• The study of effect of each regressor in 
>< the NARX model on nonlinearity of the 

"' Binary mixture has concluded that the <( process 
of Methanol- NARX regressors of the past outputs having [25] 

water more effect on nonlinearity of the 
process compare to input regressors 

Simulation • An advanced technique using 
work/ Reparametrized Onhonormal basis filters in [26] 

Methanol- ARX development of ARX model 
Water 

• Concept of GMC was used to identify 
the model for the process plant 

• Experimental data was used to develop 
the model and was compared with 

Binary mixture another developed linear model 
of Methanol- NARMAX • The result obtained from the study is [27] 

water that the developed NARMAX model 
performed much better than the linear 

>< model terms of control 
<( • The modelling approach manages to 
~ Not stated Quasi-ARMAX capture the nonlinearity and the [28] 
<( directionality of the process 

• A set of data was used to tune the 
parameters of a NARMAX structure 
implemented by using MLPs with 
appropriate lagged inputs 

Gasoline/butane 
NARMAX • Dynamic nonlinear models were 

[29] 
model introduced to describe the relationship 

between a number of input variables and 
the estimated quantities 

~ 
• A linear time varying state space model 

" was developed and tested 
eli " Ethanol/ I- Time varying • Comparing the model predictions with <.> - " propanol, linear state [30] " 0. rigorous simulations, the state space <U(/J 
.!: ethanol/water space model was able to predict the plant ..J 

behavior accurately 
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From Table 2.1 the study performed in [27], concept of general model control 

(GMC) was used to develop the NARMAX model using experimental data and was 

applied for control purpose of the distillation column. GMC action based on 

NARMAX model performed successfully. Developed model was also compared to a 

linear model and has performed better in case of load disturbances for feed mole 

fraction and temperature. 

From Table 2.1 the study performed in [28], a quasi-ARMAX model was 

developed for the purpose of modelling a multivariable nonlinear process. A binary 

distillation column was used as a case study. The developed model was capable of 

capturing the dynamics of the nonlinear plant. A nonlinear model predictive controller 

is presented for the control of the nonlinear process. The controller uses the quasi­

ARMAX model for prediction and manages to perform a suitable control of the 

distillation column at different operation points. 

From Table 2.1 the study performed in [29], a general procedure based on neural 

soft sensors has been proposed for real time estimation of variables obtained with 

large and unknown measuring delays and has been applied to estimate the 

concentrations of the top and bottom products in a debutanizer distillation column. 

Dynan1ic nonlinear models were introduced to illustrate the relationship between a 

number of input variables and the estimated quantities. 

From Table 2.1 the study performed in [30], a linear time-varying state-space 

model has been developed and tested. The developed model was able to analyze the 

process plants behaviour. The results showed that for the same sampling period, the 

predictions are higher. It has been observed that the main disadvantage of the linear 

state space model is that it demands the knowledge of full state of the system. This 

issue could be solved if an observer is applied to it. The developed model is simple 

enough for studying the controllability and observability of the system, designing and 

implementation for an online control system. 
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Several researchers have performed system identification techniques usmg 

different nonlinear algorithms. ANFIS and Neural Network techniques have been the 

most widely used for modelling highly nonlinear systems such as Distillation 

Columns. Table 2.2 and Table 2.3 show few reviews of ANFIS and Neural Network 

identification approach of a Distillation Column. 

Table 2.2: ANFIS Techniques Applied in Distillation Column 

Distillation 
Source of 

No Discussion Reference 
Column Process 

data 

o The study is aimed to estimate 
the compositions in the multi-
component distillation column 
from temperature measurements 

o From the input -output data of 
I Not mentioned Simulation the rigorous plant simulation [3 I] 

ANFIS estimator is trained and 
from several simulation runs for 
different architectures of ANFIS 
estimator the estimator 
performance is optimized 

• Estimators structures 
verification & generation 

C,-C4 : i-butane, n-
capabilities are good in feed 
flow changes [32] 

2 butane, 1- Experimental 
pentane o Triangular structures are better 

than Gaussian 
o Varying feed flow, initial liquid 

composition values both in the 
column, boiler and condenser 
along with input values for the 
control actions were imposed on 

3 Methanol-Water Simulation the model 
o As the model's dynamic will be 

[33] 

modified with the unknown 
perturbations, the ANFIS model 
will be updated with real plant 
response 

29 



Table 2.3: Neural Network Techniques Applied in Distillation Column 

Type ofNN 
Distillation 

model/ 
Column 

Source of 
Discussion 

Training 
Process 

data 
Aleorithm 

buthylacetate- • Developed inverse dynamic model 
buthylalcohol Experimental • Model applied to neural controllers 

water successfully 

Propane/butane/ • Model assessed against conventional 
n-pentane/i- Experimental method 

pentane/hexane • Model outer perfom1ed 

Ethyl Benzene/ 
• Using input/output data of 2 present & 

Methyl-Ethyl-
Industrial past MPC model 

benzene/di-
ethyl-Benzene • Result showed good improvement 

Feed-forward I Butadiene-
• Using multipoint inputs to the NN model 

GDM I ,3/ethyl 
• NN soft sensors model became the based acetylene/cis- Experimental 

scheme inferential control & managed butene- & simulation 
2/butadiene- to strengthen the practicability of 

1,2/C5 controller 

• The NN model developed could 
Crude oil Experimental represent & describe the process 1/0 

relation 
• Rigorous model data used for training & 

testing 
5 mixture Simulation • Comparative analysis showed the ANN 

was in good agreement with results of 
simulations 

Binary and • Several NN models developed with 

multi- Simulation 
different numbers of hidden layers 

• Model developed compared against component 
steeoest decent BP Algorithm 

• Filter based NN 

Feed-forward I Not mentioned Industrial 
• Model compared to Linear model 

LM • NN was able to accurately predict the 
dynamic steo resoonse 

• Comparison between MISO & MIMO 
ANN model 

Methanol-
Experimental • Data used based on developed general 

Water code of I" Principle model that can be 
used for binal)' & multi-component 
systems 

From Table 2.2 the study performed in [31], two types of approaches are 

analyzed and compared, Extended Kalman Filter (EKF) and ANFJS. Using input­

output data of a plant ANFIS network is trained and several simulation iterations 

were performed to obtain the optimize performance. Models were applied to an open 

loop control system where ANFIS performed better than the other developed 

approach. 
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From Table 2.2 the study performed in (32], ANFlS structures are trained and 

tested to gather one of the components of the top and bottom product compositions. 

The estimator's structures verification and generalization competencies are good 

enough especially in feed flow rate changes. Triangular structures are observed to be 

better than Gaussian structures that are used in membership functions (MF). Selected 

model of ANFlS is compared with NN and it has been observed that the ANFIS 

estimator performed better. 

From Table 2.2 the study performed in (33], the design of the composition 

ANFIS is to use in conjunction with ANFIS-GA for dual control of the distillation 

column. Simulation based work has been carried out where the model performance 

was satisfactory. The performance of the control structure was verified for set-point 

and disturbance rejection. 

From Table 2.3 the study performed in (34], feed-forward neural network 

approach was to develop an inverse dynamic model of a buthylacetate­

buthylalcohol-water distillation column. The nonlinear dynamic relationship 

between the top product and the reflux flow rate was chosen as the inverse model. A 

distillation column plant input-output data was used as the training data and back­

propagation learning algorithm was used to amend the weights of the network. 

Several input variables are used for the network. The reflux flow rate was selected as 

the output for the NN model. The inverse model was applied to the neural controller 

and the results showed successful controlling action. 

From Table 2.3 the study performed in (35], three layered feed-forward neural 

network was used to model an 17 tray distillation column. Simulation data was used 

to train the neural network via back-propagation as learning algorithm. The 

performance of the neural controller was evaluated and compared with a 

conservative temperature control loop and neural inferential controller. It has been 

observed that the neural controller outperformed against the other controllers in 

terms of the transient and steady state response. 
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From Table 2.3 the study performed in [36], neural network model was developed 

for a multi-component high purity distillation column. A 52 valve trays industrial 

column was considered as a case study. A neural network with two hidden layers 

was used to construct the model. The training data was collected from an off-line 

experiment and back-propagation was used as learning algorithm. Results of the NN­

MPC showed an enormous improvement in the control of the system over the linear 

MPC algorithm. 

From Table 2.3 the study performed in [37], the neural network model was used 

for industrial distillation technology to develop a soft-sensor model. A three-layer 

back-propagation neural network model was developed which consisted of five input 

and two output variables. For the training data, 239 group data was collected from 

the plant data. The NN soft sensor model became the based scheme in inferential 

control and it managed to strengthen the probability of the controller. 

From Table 2.3 the study performed in [38], the feed-forward neural network 

approach was used to build the operating model of a crude oil distillation unit 

(CDU). The CDU consisted of 44 trays distillation column. The neural network 

model with one hidden layer was used in order to predict the oil product qualities 

with respect to the system input variables. The neural network was trained using 232 

sets of experimental data which was collected from the CDU operating system and 

back-propagation training algorithm was used to train the network. It has been 

observed that the neural network model was able to represent and describe the CDU 

process for the input and output relations. 

From Table 2.3 the study performed in [39], ANN was used to model a 14 tray 

distillation column. The model was used to estimate five variable composition of the 

plant. The neural network model consisted of five layers with 116 input neurons, 10 

output neurons and 34 neurons in all the three hidden layers. The output consists of 

liquid compositions and vapor compositions. Data gained from rigorous model is 

used for training and testing a neural network model. The training process was done 

by employing the back-propagation training algorithm. The comparison was done 

between the ANN based estimator and a semi rigorous model which showed that the 
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predictions made by the neural network was in good agreement with the results of 

the simulation. 

From Table 2.3 the study performed in (40], aNN estimator was developed based 

on the LM learning algorithm and tested for 14 trays of binary and a multi­

component mixture process. The training data was obtained from the simulation of 

mathematical modeling. The neural network models consisted of networks with ll 

and 12 inputs for the binary process system and 116 and 19 inputs for the multi­

component system. The output consisted of 4 and l 0 neurons for the binary and 

multi-component systems respectively. The neural network was trained with the LM 

algorithm which was more accurate as compared to the Steepest Descent Back­

Propagation algorithm. 

From Table 2.3 the study performed in (41], filter-based neural network model 

was developed. This model is relatively similar to multilayer perceptron architecture. 

The data for the model was gained from an actual distillation column plant and 

Lavemberg-Marquardt algorithm was used to train the neural networks. Four 

variables which are the column feed, cooling water temperature, column vent and 

reboiler were chosen as inputs to the model. The output from the model was the 

column pressure. Developed NN model was compared with a linear model to 

examine the performance. It was found that the neural network model developed was 

able to precisely predict a dynamic step response of the system. 

Based on Table 2.1, it can be observed that there are several nonlinear techniques 

used for the distillation column which possess a nonlinear behaviour by nature. 

Linear models are not much considered for system identification of nonlinear 

systems. Further observing Table 2.2, not a consistent model has been observed 

using ANFlS modelling structure and yet representing a MIMO system by MISO 

system is yet undiscovered. From Table 2.3, several NN structures are presented by 

researchers and it has been observed that no specific model has been observed to 

represent the best defined structure of a nonlinear system such as the distillation 

column. 
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One common analysis has been done is that most of the researchers construct the 

models based upon simulation data and developing the model using first order 

principles (model estimation). Furthermore, verifying the models using either 

simulation data by which the complete model tends to be a simulation based model 

or verify by experimental data (model validation). Some approaches do follow the 

sequence of performing model estimation and model validation by using completely 

experimental data. One most important point observed is that while the collection of 

data point from the plant, the standard input signal in system identification to be used 

is the PRBS which has not been properly practiced. PRBS input tends to show 

critical changes in the plant. The importance of experimental data using PRBS as 

input has been explained in section 2.2.1 of chapter 2. 

One another analysis which has been observed is that for the purpose of control of 

a distillation column is based upon several inputs from the plant process column. 

Since all the dynamic effects of the inputs are interlinked with each other in the 

process column, therefore to make an easy control strategy for the plant is just to 

observe the main two data point which are simply be the two main inputs of the 

process column. Since these two input points are the nearest and are the most 

effective variables to the top and bottom temperature of the distillation process 

column. 

Consequently, the present study will focus on the standard structure of system 

identification by using PRBS input on a multi variable scale over the two main input 

variables which are the reflux flow rate and the steam flow rate. These two variables 

are the most effective to the top and bottom temperature changes of the distillation 

process column. The standard system identification approach will be applied over a 

newly commissioned industrial sized binary distillation column and several linear 

and nonlinear models will be analysed. 
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2.4 Summary 

In this chapter, a precedent literature is discussed about the concept of system 

identification. From basic understanding to intelligent techniques which have been 

used in the application of system identification for modelling a highly nonlinear 

system such as distillation column have been discussed. Linear system identification 

techniques have been explained and few reviews have been shown in tabular form 

which has been used for modelling distillation columns. Nonlinear system 

identification discussion in this chapter is mainly focused over the technique of 

neural networks and Adaptive Neuro Fuzzy Inference System. Comparatively neural 

network has been applied more for modelling a distillation column. This is due to the 

different computational algorithms which can be used for modelling a nonlinear 

system. Few literatures are discussed as well. 

Although different techniques are used for modelling but it is still not clearly 

defined that which model is the only best to be used for a particular process. The 

major factor to be analyzed for modelling a system either linear or nonlinear is the 

residual of the model against the physical system. If the residual of the developed 

model is equally or well distributed among a limited range, therefore the model is 

considered a well developed model. Thus a proper analysis can be performed. 
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3.1 Introduction 

CHAPTER3 

EXPERIMENTAL SETUP AND PROCEDURE 

The process of distillation is frequently used to extract desired component from a 

chemical mixture. Among its type, the binary distillation is the process of separation 

between two mixtures from a component. This process takes place in a closed 

process columns where numbers of trays are placed inside. There are many types of 

distillation columns used in the process industry. In continuous distillation columns, 

the distillation column continually separates an incoming chemical mixture. 

In this chapter, the concept of distillation column and the available process 

variables are explained. The concept of a process variable selection in distillation 

column is also discussed. The Advanced Process Control (APC) Continuous 

Distillation Column pilot plant which has been used for experimental work is 

modelled and explained. Plant descriptions and operating conditions are also shown 

in tabular form. SI procedure which has been applied for collection of the input -

output data is discussed. The last section of this chapters shows the experimental 

input-output results collected from the plant which were used for system 

identification. 

3.2 Distillation Column Process 

Distillation Columns are widely used in industrial applications, especially in gas 

plants to make the distillation more efficient. Distillation Columns are specially 

designed columns in a tall cylindrical shaped column called as process column. This 



process column is internally fitted with numbers of trays horizontally to achieve 

efficient separation of a liquid feed which is inserted at one or various point of the 

process column [43]. 

There are two types of distillation column which are batch column and continuous 

column. For a Batch type distillation column the input feed to the column is 

introduced batch-wise. This means that the some amount of input feed is inserted in 

the process column, once the distillation process is completed a new fresh feed is sent 

for another round of distillation. 

Another type of distillation column is the continuous distillation column. In 

continuous distillation column the input feed stream is continuously sent in the 

process column and the distillation is in continuous process. No interruption occurs in 

the process unless there is a problem in the surrounding process units. Continuous 

distillation columns are the most common type of distillation column. Continuous 

distillation column can be further classified into two: Binary and Multi-component. In 

Binary process, the input feed contains only two components whereas in multi­

component feed contains more than two components [44]. In this work, the study is 

over Continuous Binary Distillation Column. Figure 3.1 shows a process flow 

diagram of a continuous binary distillation column. 
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Figure 3.1: Process Flow Diagram of Distillation Column. 

As shown in Figure 3.1, a continuous binary distillation column is divided into 

five parts which are the reflux, the rectifying section, the input feed, the stripping 

section and the rebolier. In the reflux is the condensed vapour collected from the top 

of the process column which is collected as the top product and also been recycled 

back to the column. The top section of the process column is the rectifying section. 

Here the rising vapour from the bottom passing through the trays, contacts the liquid 

flowing across them. Input feed point is where the fresh input feed is coming into the 

column. 

Near the bottom of the process column is the reboiler. In this section the liquid is 

reheated or turned into vapour phase and feedback to the process column. At the 
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bottom of the process column is called the stripping section. Here the reheated liquid 

in vapour form rises upward through the trays and contacts the down flowing liquid. 

The operational process is as a binary mixture of liquid feed enters at one or more 

points in the process column which contains a series of stacked trays. The liquid flows 

over the plates and moves down the column. The liquid flowing over the plates comes 

in contact number of times with the vapour moving upwards. This is the most 

essential process in the distillation column. The bottom of the distillation column 

consists of a large volume of higher boiling point liquid. Some of the liquid flow is 

vaporized and fed back to the column and some are collected as the output product. 

This is the boil up process. Vapour at the top of the process column is stored in a 

condenser in liquid form. Ratio of the liquid is sent back into the process column 

which is known as the reflux and the remaining is the top collected distillate product 

[ 46]. 

3.2.1 Process Variables in Distillation Column 

When a process plant is designed there are always some objectives to be considered. 

In the view of process control system, there are seven control objectives which are the 

followings:-

• Safety 

• Environment Protection 

• Equipment Protection 

• Smooth operation and production rate 

• Product Quality 

• Profit 

• Monitoring and Diagnostic 
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Process variables in a distillation column like temperature, pressure, flowrates and 

compositions should be monitored and controlled. These process variables inside 

distillation system affects one another, whereby a change in one process variables will 

result changes in other process variables. Therefore for controlling a distillation 

column, it is necessary for looking to all the variables but not only focusing to one 

variable. Each of the process variables has its own control loop and each of these 

control loops keeps track of the associated process variables. 

3.2.2 Control & Manipulated Variable Selection for Distillation Column 

Pressure is often considered as the prime distillation column variable, as it affects 

temperature, condensation, vaporization, composition, volatilities and almost any 

other process that takes place inside the column. Column pressure control is often 

integrated with the condenser control system. Increasing or decreasing the water flow 

rate will change the temperature of the condensing in the column. This in tum 

changes the pressure in the column (45). 

Temperature is one of the important variables to be controlled in the process 

column. Online analyzers are rarely used for measuring the composition of the top 

and bottom of the product. This is because of its installation cost is very high. 

Composition if often regulated indirectly using temperature (at constant pressure in 

the column, there is a direct relationship of the temperature and composition for a 

binary mixture) [ 46]. 

Top product composition is regulated by adjusting the reflux flow and for bottom 

product composition the vapour flow is adjusted. Product composition can be 

controlled by fixing the process columns temperature. The top temperature controller 

manipulates the reflux flow and the bottom temperature manipulates the steam flow. 

The advantage of this control scheme is that it has a faster closed loop response and 

provides a better disturbance rejection [ 4 7]. 
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3.2.2.1 Single Product Control 

In this control strategy, the composition of one product is controlled while the 

composition of the other product is allowed to change. 90% of the distillation columns 

in industries are in use of single product control strategy instead of dual composition 

control, in which the top and bottom product compositions are controlled. 

It is easy to use single composition control than dual composition control. The 

selection between single and dual composition control depends on the tradeoffs 

between the supplementary cost related with dual composition (maintenance for the 

controllers, analyzers cost, additional instrument costs, etc) and the financial 

advantage of dual composition (a rise in product recovery and reducing service costs) 

[49]. Moreover single composition control are mostly used for multiple staged 

distillation columns where the top product is collected and the bottom product is sent 

to another process column connected in series for further distillation process while 

dual composition are mostly used in binary distillation processes. 

3. 2. 2. 2 Dual Product Control 

Dual product control configuration is mostly applied in binary distillation columns 

where the top and bottom product requires its independent control loop. The choice of 

the proper configuration for dual product control is a more difficult problem than for 

single product control because there are more feasible approaches and the analysis of 

performance is more complex. The most commonly used control configuration is the 

reflux/stean1 configuration because it provides good dynamic response, it is the least 

sensitive to feed disturbances and is the easiest to implement [49). 

On the other hand, the reflux/top and vapour/bottom configuration is in general the 

least affected by disturbance and has good dynamic response but still there is no clear 

choice for the best configuration for dual composition control of distillation columns. 

For the cases when the overhead product is more important, reflux flow control is 

usually the best to be used. When the bottoms product is more important, steam flow 

is proper to be controlled [ 49). 
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Experimental work has been carried out for constant feed rate and feed 

composition intended for variation in reflux flow and steam flow. The pressure in the 

column is maintained at a constant value of I bar by controlling the cooling water 

flow rate to the condenser placed at the top side of the column. The liquid levels in the 

reflux drum and bottom of the process column are controlled by changing the flow 

rates of top and bottom product. The reflux and steam flow rates are varied by 

changing the set points value of the respective controllers in a PRBS sequence. In this 

study, for system identification the signals of the reflux flow rate (FR) and steam flow 

rate (Fsr) controllers are used as the input data where as the temperature signals 

measured at tray I (T1) and tray 14 (T14) are taken as the output signals. 

The inputs to the distillation column considered are the incoming reflux flow rate 

(U 1) and the steam flow rate at the reboiler (U2). The outputs are the process column 

top temperature (Y1) and the bottom temperature (Y2). Figure 3.2 and Figure 3.3 

shows the overall pilot plant (continuous binary distillation column) used for this 

study. 

3.3 Advanced Process Control (APC) Distillation Column Pilot Plant 

In this research study, the distillation column being used for experimental data 

collection and which is being modelled is a physical pilot plant located in the 

Chemical Engineering department of Universiti Teknologi PETRONAS. This 

continuous binary distillation column has a total number of 17 stages, considering the 

over head as the 1st stage and the reboiler located at the bottom of the column as the 

17th stage. The feed to the column is at the 7'h tray counting from the top. The feed to 

the tank is a mixture of Isopropyl Alcohol (IPA) and Acetone, while the outputs are 

the separation of both the IP A and the acetone concentration. Acetone is being 

collected as the top product and IP A being collected as the bottom product. Sampling 

points along with RTD sensors are available at every tray location, flow meters are 

installed in all flow lines such as the feed line and products steam lines and the reflux 

line. Differential pressure measuring devices are connected across the stripping and 

rectifying section of the process column and a pressure sensor on the top of the 
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column. Suitable sized control valves are connected in all flow lines. A Distributed 

Control System (DCS) is set up for data acquisition and control of the plant. Table 3.1 

shows the dimensions and operating conditions of the distillation column. 

Table 3.1: Dimensions & Operation Condition of Distillation Column 

Description Value 

Height 5.5 Ill 

Diameter 0.15 Ill 

Number of trays 15 trays 

Type of tray Bubble Cap 

Feed Tray 7 

Tray Spacing 0.35 Ill 

Operating Conditions Value 

Feed Flow rate 0.151tlmin 

Reflux Flow rate 0.5 It/min 

Steam Flow rate 20 kg/min 

Distillate Flow rate 0.3 It/min 

Bottom Product Flow rate 0.2 It/min 

Feed Composition 0.1824 

Column Bottom Temperature 80.5 'C 

Column Top Temperature 72.7 'C 

Column Pressure 1.013 bar 

The values given in Table 3.1 were selected based on trial and error approach. This 

is because the APC plant is a new setup and has different specifications such as height 

and pipe line sizing. Before the real experiment was conducted step changes were 

given into the plant and changes were observed. The best magnitude effects were 

analysed and were used for actual experimental setup. 
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Figure 3.2: Distillation Column Unit. 
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(b) Steam Input Valve 

(a) Reboiler Unit (c) Reflux Input Valve 

Figure 3.3: Reboiler Unit with Two Inputs Valves 
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3.4 System Identification Experiment over APC Distillation Column 

System Identification experiment over the APC plant was conducted based upon the 

following approach as shown in Figure 3.4. An experimental setup was performed and 

approximately 4000 data's were collected. The collected data was divided into two for 

estimation of model and model validation. Several linear and nonlinear models were 

developed. Performance measurement was analysed by observing the best fit, sum of 

squared prediction error and cross correlation tests. The residual distribution of each 

model was also analysed. 
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Figure 3.4: SJ Approach over APC Plant. 
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For the system identification experiment, the input sequences are intended as a 

low frequency PRBS generated from MA TLAB with band of 0 to 0.04 with level 

magnitude from ISkg/h to 22kg/h for steam and magnitude of 0.4lt/min to O.Slt/min 

for reflux flow rates, respectively. The sequence of the PRBS was followed 

accordingly and the reflux and rebolier valves were manipulated. The magnitude for 

the input levels are chosen such that maximum excitation is obtained while allowing 

easy process running of the distillation column. Figure 3.5 and Figure 3.6 shows the 

experimental input data sequence for the plant. 
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Figure 3.5: Input signal of Reflux Flowrate (U 1). 

The input signals are an exact structure of the PRBS signal. Four thousand data 

points are collected with a sampling interval of 5 seconds from the APC plant. The 

first two thousand data points are used for model identification and the remaining data 

points are used for validation. The reflux flow signal is in a refined behaviour while 

the steam flow is very noisy. This is because steam itself has a very fluctuating 

behaviour. 
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Figure 3.6: Input signal of Steam Flowrate (U2). 

Figure 3.7 and Figure 3.8 shows the output temperature response of the continuous 

distillation column. The top temperatur value varies in range from 72°C to 79°C and 

for botton temperature, it varies in range between 80°C to 83°C. 
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Figure 3.7: Output Signal for Top Temperature (Y 1). 
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Figure 3.8: Output Signal for Bottom Temperature (Y2). 

3.5 Residual and Error Analysis 

The models are analyzed by using different types of techniques such as best fit, sum 

of squared prediction error, root mean square error and cross-correlation. These 

techniques help to verify the best output and provide finn basis for a superlative 

model selection. Sriniwas [23) and Ljung [50] also used these techniques for common 

error analysis and justify their best selected model. The brief descriptions of each of 

these techniques are mentioned below; 

3.5.1 Best Fit 

One of the important characteristic for selecting the best modelling technique is by 

comparing the percentage of the output variation which is the percentage of 

comparison between the model output with the measured output. A higher percentage 

number means a better model. For N number data, the best fit criterion of a model is 

defined as: 
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where y is the mean of the measured output. 

3.5.2 Sum of Squared Prediction Error 

Measuring the predictive ability of the model is another way of selecting the best 

model. The sum of squared prediction error is computed as; 

N 

SSPE='L,(y-j/1)
2 (3.2) 

j .. J 

where y is the actual output and y is the predicted output from the evaluated model. 

3.5.3 Root Mean Square Error 

RMSE gives the variance measurement of the residual which shows a complete fit of 

the model to the actual data. RMSE is a good measure of how exactly the developed 

model calculate the response. RMSE is an important measurement for the fit if the 

main purpose of modelling is for prediction. It can be computed as follows; 

N 112 

~)y- y)' 
RMSE = .J MSE = -'-'1

""-
1 
--

N 
(3.3) 

where y is the actual output, y is the model output and N is the number of data 

points. 
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3.5.4 Cross-Correlation 

Moreover for the independent test which is considered by analyzing the cross 

correlation, a good model has residuals uncorrelated with past inputs. Verification of 

cross correlation specifies that the model does not illustrate how part of the output 

relates to the consequent input. For instance, a peak outside the confidence interval 

for lag r shows that the output y(k) that originates from the input u(k-r) is not 

appropriately described by the model [48]. This test is observed by estimating the 

cross correlation function of the residual error as follows; 

N Jf R .. (r)=- L,e(k)u,(k-r) 
N '"' 

(3.4) 

where N is the number of the data samples of the residual error, e(k) is the error 

sequence, u,(k)is the input. 

The whiteness also known as auto-correlation test does not provide a complete 

validation of the model because the whiteness does not guarantee that the 

parameterization was chosen appropriately. However when inconsistent estimation 

occurs the model cannot be validated and is thus rendered an outline [48). 

3.6 Summary 

In this chapter the concept and the dynamics of a continuous binary distillation 

column is explained. Types of process variables and its selection of a suitable control 

strategy is also discussed. Explaining the Advanced Process Control Pilot Plant and 

its description are given. System identification approach over the physical pilot plant 

and the capturing of the data are shown. 

PRBS form of signal was used for the two inputs and the output response from the 

distillation column was captured. The reflux input magnitude was adjusted between 

the ranges of 0.4lt/min to 0.8lt/min and for the steam input the range was selected 
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between 18kg!hr to 22kglhr. Maximum excitation of the process was observed under 

smooth operation of the process column. The PRBS signal used as inputs showed a 

significant output observation for the top and bottom temperature of the process 

column. Four thousand data was captured from the process and are used for 

identification. Two thousand data are used for model estimation and the rest for model 

validation. Linear and Nonlinear models are developed using the real data collected 

from the plant which are discussed in chapter 4 and chapter 5. 
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CHAPTER4 

MULTIVARIABLE LINEAR SYSTEM IDENTIFICATION 

4.1 Introduction 

In this chapter results for system identification of linear models are shown and 

discussed. Estimation and validation errors for top and bottom temperature of the 

distillation column are given and are discussed. Moreover, error analysis of the linear 

models is also tabulated and discussed. Evaluations among the models are based upon 

the best-fit criteria and sum of squared predicted error. Prediction error response, 

histogram distribution response and Cross-Correlation Response (CCR) with respect 

to the two inputs for every model order are shown. All the developed linear model 

equations are given in Appendix B. 

4.2 Linear System Identification 

There are two categories of linear system identification models, parametric & non­

parametric models. In the parametric system identification a standard structure for the 

model is assumed and the weights of the model are adjusted based on the observation 

for the system. Meanwhile in the non-parametric system identification, no standard 

structure for the model is assumed. In this chapter parametric models are used for 

identification of the distillation column. Linear models used for identification are the 

ARX, ARMAX, linear state space model and continuous-time process model. The 

evaluation of each models are measured up to 3'd order. Estimation and validation of 

the models are completely based on the experimental data. Models are observed based 



on the best fit criteria and prediction mean square error. Further analysis is done by 

observing the histogram distribution and cross correlation test from the two inputs. 

4.2.1 First Order Models 

System identification for the top and bottom temperature of the distillation column is 

performed for the 1st order of ARX model of structure 110, ARMAX model of 

structure Ill 0, Linear State Space and continuous time process model. Results for 

both top and bottom temperature are shown from Figure 4.1 to Figure 4.4. 

I st Order Top Tempenarurc OUtput Estinuuion 
80~--~,----.,----.-----.-----.-----.-----.-----.r=~~~~~ 
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79 

73 

--ARX 
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72o~--~,~oo~---.~oo~--~~~--~,oo~--~,ooo~--~,7.,oo~--~,.~oo~--~,~~--~.~.oo~--~,~ooo· 
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Figure 4.1: I" Order Top Temperature Output Estimation. 
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Figure 4.2: ! 51 Order Top Temperature Output Validation. 
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Figure 4.3: I 51 Order Bottom Temperature Output Estimation. 
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Figure 4.4: I 51 Order Bottom Temperature Output Validation. 

From Figure 4.1 and Figure 4.2, it can be observed that the estimation and 

validation of all the four linear models show best fit with large number of error to the 

actual process for the top temperature of the process column. Similarly, Figure 4.3 

and Figure 4.4 also shows best fit with large number of error to the actual process for 

the bottom temperature of the process column. This shows that all the I 51 order models 

are capable of capturing the dynamics of the nonlinear system but with the presence 

of a large number of error. 

4.2.2 Second Order Models 

System identification of the top and bottom temperature of the distillation column is 

performed for 2nd order of ARX model of structure 220, ARMAX model of structure 

2220, Linear State Space and continuous process model. Results for both top and 

bottom temperature are shown from Figure 4.5 to Figure 4.8. 
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Figure 4.5: 2"d Order Top Temperature Output Estimation. 
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Figure 4.6: 2"d Order Top Temperature Output Validation. 
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Figure 4.7: 2nd Order Bottom Temperature Output Estimation. 
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Figure 4.8: 2nd Order Bottom Temperature Output Validation. 
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From Figure 4.5 and Figure 4.6, all the 2"d order linear models show a good best 

fit criteria result. The validation response shows a good capture of the actual process. 

But still there is a large number of error present in it. The process model shows a very 

low best fit percentage value for the top temperature of the process column. 

Meanwhile from Figure 4. 7 and Figure 4.8, all the linear models show a good best fit 

results to the bottom temperature of the process column. This shows that the 2"d order 

linear models are capable of capuring the dynamics of the nonlinear system to some 

extent. 

4.2.3 Third Order Models 

System identification of the top and bottom temperature of the distillation column is 

performed for the 3rd order of ARX model of structure 330, ARMAX model of 

structure 3330, Linear State Space and continuous process model. Results for both top 

and bottom temperature are shown from Figure 4.9 to Figure 4.12. 
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Figure 4.9: 3'd Order Top Temperature Output Estimation. 
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Figure 4.10: 3rd Order Top Temperature Output Validation. 
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Figure 4.11: 3'd Order Bottom Temperature Output Estimation. 
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Figure 4.12: 3'd Order Bottom Temperature Output Validation. 

From Figure 4.9 and Figure 4.10, all the 3'd order linear models show a good best 

fit criteria result but the process model shows a very low best fit percentage value for 

the top temperature of the process column. Meanwhile from Figure 4.11 and Figure 

4.12, all the linear models show a good best fit results to the bottom temperature of 

the process column. 3'd order models also shows good compatible resuts of capturing 

the nonlinear systems dynamics. Equations of all the developed linear models are 

given in Appendix B. 

4.3 Modelling Error Analysis 

4.3.1 Best Fit Analysis for Top Temperature 

Table 4.1 shows the model validation error analysis statistics for the developed linear 

models for the top temperature of the distillation column. Analyzing Table 4.1, it is 

shown that the ARX, ARMAX and Linear State Space model gives a better validation 

results compared to the process model. Overall the most suitable error analysis result 
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has been given by the linear state space model of 3'd order with best fit of 66.18% and 

0.0058 SSPE and 2nd order ARMAX model with best fit of 67.67% and 0.0044 of 

SSPE for the top temperature of the distillation column. 

Table 4.1: Linear Model Best Fit Error Analysis Statistics 

Model Performance Measurement 

Validation 

Order Model Best Fit Sum of Squared 
Structure (%) Prediction Error 

I" Order ARX 41.11 0.0180 

ARM AX 44.07 0.0378 

State Space 34.32 0.0067 

Process Model 39.22 0.2215 

2"' Order ARX 43.74 0.0114 

ARMAX 67.67 0.0044 

r 
State Space 40.73 0.0057 I 

Process Model 23.45 0.6788 

3"' Order ARX 63.3 0.0086 

ARM AX 43.59 0.0057 

State Space 66.18 0.0058 I 
r 

Process Model 40.75 0.6400 
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4.3.2 Top Temperature Residual Performance 

4.3.2.1 First Order Residual Analysis 

From Figure 4.13 to Figure 4.16 the predicted error or residual plot for the developed 

first order linear models are shown. These plots are based on the validation result of 

the model. Figure (a) shows the predicted error of the model, Figure (b) shows the 

histogram, Figure (c) and Figure (d) shows the Cross Correlation Response (CCR) 

from input U 1 and input U2 
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Figure 4.13: Residual Analysis for ARX Model Validation. 
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Figure 4.14: Residual Analysis for ARMAX Model Validation. 
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Figure 4.15: Residual Analysis for State Space Model Validation. 
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Figure 4.16: Residual Analysis for Continuous Time Process Model Validation. 

Analysing the residual plots for all first order linear models, ARX, ARMAX and 

linear state space model shows the histogram plot well distributed of the prediction 

error with the centre at the origin whereas the continuous time process model does not 

show a well distribution. The cross-correlation from input U 1 and input U2 for all 

models shows some relationship between the input and the residual, thus this means 

that not all the estimation data are modelled except for ARMAX model as the entire 

coefficient lies within the confidence interval of 95%. 

4. 3. 2. 2 Second Order Residual Analysis 

From Figure 4.17 to Figure 4.20, the predicted error or residual plot of the developed 

second order linear models are shown. These plots are based on the validation result 

of the model. 
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Figure 4.17: Residual Analysis for ARX Model Validation 
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Figure 4.18: Residual Analysis for ARMAX Model Validation 
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Figure 4.19: Residual Analysis for State Space Model Validation 
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Figure 4.20: Residual Analysis for Continuous Time Process Model Validation 

All the second order models show a well distributed histogram response of the 

model prediction errors with the mean at the centre except for continuous time 

process model. Cross-correlation response shows that ARX, ARMAX and linear state 

space model are well developed from the estimation data as no significant correlation 

is observed between the inputs and the residual whereas the continuous time process 

model does not show a good cross-correlation response. 
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4. 3. 2. 3 Third Order Residual Analysis 

From Figure 4.21 to Figure 4.24, the predicted error or residual plots of the developed 

third order linear models are shown along with the histogram. These plots are based 

on the validation result of the model. 
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Figure 4.21: Residual Analysis for ARX Model Validation. 
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Figure 4.22: Residual Analysis for ARMAX Model Validation. 
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Figure 4.23: Residual Analysis for State Space Model Validation. 
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Figure 4.24: Residual Analysis for Continuous Process Model Validation. 

All the third order models show a well distributed response with the mean at the 

centre except for continuous time process modeL Analysing the cross-correlation 

response of the models, all models do not show a significant correlation between the 

input and the residual whereas for the continuous time process model, the cross­

correlation response shows that the input has a relationship with the prediction error. 
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The mean and variance of the first, second and third order model are tabulated in 

Table 4.2. 

Table 4.2: Linear Models Top Temperature Residual Histogram Performance 
Measurement 

Model 
Model order 

Mean Variance 
structure 

I" order 
0.0590 0.0440 

Structure - I I 0 

ARX 2"d order 
0.0956 0.0400 

Structure - 220 

3'd- 330 0.0030 0.0540 

I" order 
0.0023 0.0640 

ARMAX ..Structure - I I I 0 
I 

2"d order 
I 0.0373 0.0100 

Structure - 2220 

3'd- 3330 0.0900 0.0400 

State Space I" order 0.0840 0.0400 

2"d_grder O.lll !.6.. J!..01Q!l 

3"' order 0.0040 0.0150 

I" order 0.4381 0.7220 
Continuous 2"d order 0.1486 1.4317 Process Model 

3"' order 0.0041 0.8705 

Analysing the residual statistics of the developed linear models from Table 4.2, it 

shows that the 3'd order state space model and 2"d order ARMAX model gives the 

minimum mean value of0.0373 and 0.004 and variance ofO.Ol and 0.015. Analysing 

the residual histogram the graphs are well distributed and centered at the origin. The 

cross correlation response of the models shows that the estimation data was 

completely modelled as the model inputs does not show a considerable relation of the 

inputs with the models prediction errors. 
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4.3.3 Best Fit Analysis for Bottom Temperature 

Table 4.3 shows the model validation error analysis statistics for the linear models 

developed for the bottom temperature of the distillation column. Analyzing Table 4.3, 

it is shown that the ARX, ARMAX and Linear State Space model gives a much better 

validation result compare to the process model. Overall the most suitable result has 

been given by the linear state space model or 3'd order with the best fit of 40.73% and 

0.0004 SSPE and 2"d order ARMAX model with best fit 67.67% and 0.0004 SSPE for 

the bottom temperature of the distillation column. 

Table 4.3: Linear Model Best Fit Error Analysis Statistics 

Model Performance Measurement 

Validation 

Order 
Best Fit Sum of Squared 

Model Structure Prediction 
(%) Error 

I" Order ARX (110) 41.11 0.0019 

ARM AX (Ill 0) 44.07 0.0004 

State Space 34.32 0.0004 

Process Model 39.22 0.0223 

2"• Order ARX (220) 43.74 0.0006 

ARMAX (2220) 67.67 0.0004 

State Space 64.18 0.0004 

Process Model 23.45 0.0137 

3'd Order ARX 63.30 0.0004 

ARMAX 43.59 0.0003 

State Space 40.73 0.0004 

Process Model 40.75 0.0235 
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4.3.4 Bottom Temperature Residual Performance 

4. 3. 4.1 First Order Residual Analysis 

From Figure 4.25 to Figure 4.28 the predicted error or residual plot of the developed 

first order linear models are shown. These plots are based on the validation results of 

the model. Figure (a) shows the predicted error of the model, (b) shows the histogram, 

(c) and (d) shows the cross correlation response from input Ul and input U2. 
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Figure 4.25: Residual Analysis for ARX Model Validation. 
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Figure 4.26: Residual Analysis for ARMAX Model Validation. 
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Figure 4.27: Residual Analysis for State Space Model Validation. 
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Figure 4.28: Residual Analysis for Continuous Process Model Validation. 

Analysing the residual response of the developed linear model for the bottom 

temperature of the distillation process column, AR.X, ARMAX, linear state space 

model show a well distributed prediction error response of the histogram while the 

continuous time process model does show a well distribution since the origin is not at 

the centre. Observing the cross correlation response for the AR.X and continuous time 

process model response from the two inputs shows that not all the estimation date are 

used for developing the model since correlation is observed between the inputs and 

the residual. ARMAX and linear state space model response shows that the models 

are well developed from the estimation data since no significance correlation is 

observed between the inputs and the residual. 
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4. 3. 4. 2 Second Order Residual Analysis 

From Figure 4.29 to Figure 4.32 the predicted error or residual plot of the developed 

second order linear models are shown along with the histogram. These plots are based 

on the validation result of the model. 
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Figure 4.31: Residual Analysis for State Space Model Validation. 
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Figure 4.32: Residual Analysis for Continuous Process Model Validation. 
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Second order ARMAX and linear state space model shows a well developed 

response based upon their cross-correlation response and its well distributed 

histogram response of the prediction error. ARX model and continuous time process 

model shows a well distributed response but the cross-correlation response shows that 
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the model is not well developed from the estimation data since correlation is observed 

between the inputs and the residual. 

4. 3. 4. 3 Third Order Residual Analysis 

From Figure 4.33 to Figure 4.36 the predicted error or residual plot of the developed 

second order linear models are shown along with the histogram. These plots are based 

on the validation result of the model. 
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Figure 4.36: Residual Analysis for Continuous Process Model Validation. 

(b) 

(d) 

Third order ARMAX shown in Figure 3.34 and linear state space model shown in 

Figure 3.35 demonstrates a well developed response based upon their cross­

correlation response and their well distributed response of the histogram. ARX model 

shows a well distributed response but the cross-correlation response shows that the 
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model is not well developed from the estimation data since inputs are having 

correlation with the residual. Similarly the continuous time process model is not well 

developed from its estimation data due to the correlation between the inputs and the 

residual and the histogram response of the model prediction error is well distributed 

but not centered at zero. 

The mean and variance of the first, second and third order model are tabulated in 
Table 4.4. 

Table 4.4: Linear Models Bottom Temperature Residual Histogram Performance 
Measurement 

Model Model order Mean Variance 

I" order 0.0590 0.0440 

ARX Structure - II 0 

2nd order 0.0964 0.0400 

Structure- 220 

"" -330 0.0300 0.0540 J 

I" order 0.0890 0.0092 

ARMAX Structure - II I 0 
j 

2nd order 0.0080 0.0380 
I Structure - 2220 
~---

3nl- 3330 0.0600 0.0400 

I" order 0.0290 0.0400 

State Space 2n~rd.er. QJ)8QQ. QJ)4l..Q. 
I 

3nt order 9.7e-004 4.3e-004 

Continuous I" order 0.5597 1.7034 
Process Model 2"d order 0.7571 0.8708 

3nt order 0.7867 1.2087 

Analysing the residual statistic of the developed linear models from Table 4.4, it 

shows that the 3'd order state space model and 2"d order ARMAX model gives the 

minimum mean value of 9.7e-4 and 0.008 and variance of 4.3e-4 and 0.038. 

Analysing the residual histogram of these two models, the graphs of these two models 

are well distributed and centred at the origin. 
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4.4 Summary 

In this chapter, results have been shown and evaluated for different types of linear 

parametric models which are the ARX, ARMAX, State Space Model and the 

Continuous time process model. All models are simulated up until 3'd order. The 

simulation results show that the identifier performance for estimating the model 

output is acceptable to some extent since the models are able to capture the changes in 

the dynamics of the process. The analysis of the results as shown in Table 4.1 and 

Table 4.3 shows the best model results and are highlighted accordingly. 

By analyzing the residual statistics from Table 4.1 and Table 4.3, it is observed 

that the linear state space model is to be considered as the most suitable model for the 

distillation column since its performance of best fit is higher and sum of squared 

prediction error is minimum than the other linear models. Furthermore, residual 

histogram plots of the model prediction error, cross-correlation graphs and statistics 

from Table 4.2 and Table 4.4 also verifies that the linear state space model and 

ARMAX model shows a compatible result. Since, it is said that State Space Model 

provides a more complete representation of a system not only for SISO systems but 

also for MIMO systems therefore, the 3rd order State Space model has been selected 

and has been enhanced in the development of Nonlinear State Space Model which has 

been discussed in Chapter 5. 
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CHAPTERS 

MULTIVARIABLE NONLINEAR SYSTEM IDENTIFICATION 

5.1 Introduction 

In this chapter the results of nonlinear system identification are presented. Three 

different modeling approaches have been used. Neural network trained with Gradient 

Decent with Momentum (GDM) and Lavemberg Marquardt (LM) algorithm, 

Nonlinear State Space model and Adaptive Neuro Fuzzy Inference System (ANFIS). 

Modeling errors have been analyzed and discussed. Modeling approach has been done 

considering MISO system. 

5.2 Neural Network Approach 

5.2.1 Gradient Decent with Momentum (GDM) 

For nonlinear system Identification the first approach that has been used is the 

Backpropagation Feedforward network trained using the delta rule (also known as 

gradient decent, with the addition of momentum). Modeling for both top and bottom 

temperature of the distillation column has been done with respect to the two inputs 

which are shown in Figure 3.5 for the reflux flow and Figure 3.6 for the steam flow of 

chapter 3. Figure 5.1 and 5.2 show the estimation result for top and bottom 

temperature of the distillation column. 2000 data points are used for estimation. 

Network architecture used is 2-10-1 and the model achieved its target within 57 

epochs. 
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Figure 5.2: NN GDM Distillation Column Bottom Temperature Estimation. 

Figure 5.3 and Figure 5.4 shows the validation result for top and bottom 

temperature of the distillation column. 2000 data points are used for Validation. 
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Figure 5.4: NN GDM Distillation Column Bottom Temperature Validation. 

Identification of the APC plant by the NN trained by GDM algorithm shows a very 

significant result. The network is able to capture the dynamic changes of the process 

plant. 
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5.2.2 Lavern berg Marquardt (LM) 

Lavernberg Marquardt algorithm for training a neural network is a very well known 

approach. Neural network trained with LM algorithm also is used for modeling the 

process plant. Modeling for both top and bottom temperature of the distillation 

column has been done with respect to the two inputs which are shown in Figure 3.5 

for the reflux flow and Figure 3.6 for the steam flow of chapter 3. Figure 5.5 and 5.6 

shows the estimation result for top and bottom temperature of the distillation column. 

2000 data points are used for estimation. The models took 3 7 epochs to achieve its 

target with network architecture of 2-10-1. 
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Figure 5.5: NN LM Distillation Column Top Temperature Estimation. 
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Figure 5.7 and Figure 5.8 shows the validation result for top and bottom 

temperature of the distillation column. 2000 data points are used for Validation. 
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Figure 5.7: NN LM Distillation Column Top Temperature Validation. 
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Figure 5.8: NN LM Distillation Column Bottom Temperature Validation. 

Observing the resposne of the neural network trained with Laverberg Marqurdt 

algorithm, the nework is capable of capturing the changes in the dynamics of the 

nonlinear process. 
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5.3 Nonlinear State Space Model 

A different type of approach using neural network, nonlinear state space model was 

developed in conjunction of linear state space model along with neural network as has 

been explained in Chapter 2. Modeling for both top and bottom temperature of the 

distillation column has been done with respect to the two inputs which are the reflux 

flow and the steam flow. The linear state space model of 3'd order discrete time 

system is used for developing the nonlinear state space model. The MISO forms of 

linear state space models obtained for top temperature of the system is given by 

equation 5.1 to 5.3. The equation is taken from the linear model discussed in chapter 

4. 

[

0 0 0.4375] [- 0.04537 
x(k +I)= 

0

1 0 -1.3226 x(k) + 0.6431 

1.881 -0.646 

-0.001 l 
0.01 [u, 

-0.00521 

(5.1) 

The MISO linear state space model output equation obtained for top temperature of 

the system is given as; 

(5.2) 

Where x(k) is the system state, y 1 (k) is the output of the system. The initial state x(O) 

of the system is given as; 

[

- 0.00355] 
x(O) = -0.017 

-0.003 

(5.3) 

As stated in [24], when using neural network to identii)' the system two important 

assumptions are considered: (I) all the system states are measureable; (2) the system 

is stable. States for the physical system are considered to be measured and the 

stability of the system is observed by the pole-zero plots as shown in Figure 5.9 for 

top temperature process and Figure 5.10 for bottom temperature process. Observing 

88 



the graphs from Figure 5.9 and Figure 5.1 0, all the poles positions appears to be 

within the unity circle which shows the stability if the system. 
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Figure 5.11 and Figure 5.12 shows the estimation and validation result for top 

temperature of the distillation process column. 2000 data points are used for both 

estimation and validation. 

".~----,~oo,----.,oo~--~ooo~-----~~--~.~ooo~---cu~oo,---,,d.,oo~---..,ooo~----,~~oo---~2000 
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Figure 5.11: Nonlinear State Space Model for Top Temperature Estimation. 
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Figure 5.12: Nonlinear State Space Model for Top Temperature Validation. 

The MISO forms of linear state space models obtained for bottom temperature of 

the system is given by equation 5.4 to 5.6. The equation is taken from the linear 

model discussed in chapter 4. 
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[ 

0 0 0.67] [- 0.3861 0.00606] 
x(k +I)= 0.5 0 -0.8872 x(k) + 0.4 -0.002705 [u, U,) 

0 2 2.1 - 0.4 0.0063 

(5.4) 

The MISO linear state space model output equation obtained for bottom temperature 

of the system is given as; 

y,(k)=[o o o.5]x(k)+[oiu, u,] (5.5) 

Where x(k) is the system state, y;(k) is the output of the system. The initial state x(O) 

of the system is given as; 

[

-0.013771] 
x(O) = - 0.004 

-0.0033 

(5.6) 

Figure 5.13 and Figure 5.14 shows the estimation and validation result for bottom 

temperature of the distillation column. 2000 data points are used for both estimation 

and validation. 
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Figure 5.13: Nonlinear State Space Model for Bottom Temperature Estimation. 
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Figure 5.14: Nonlinear State Space Model for Bottom Temperature Validation. 

Analysing the response of nonlinear state space model, the model is capable of 

capturing the nonlinear dynamic changes of the system. The error analysis for both top 

and bottom of the model are tabulated in Table 5.3 and Table 5.4. 

5.4 Adaptive Neuro-Fuzzy Inference System 

Adaptive Neuro Fuzzy Inference System is one another approach can be used for 

identifying nonlinear systems. In construction of ANFIS structure, parameters are 

determined. There are quite a few Mfs such as Triangular, Trapezoidal and Gaussian 

can be used as an input MFs. Commonly used MFs in literature are the Triangular and 

Gaussian. For this reason, Sigmoid, Gaussian and Triangular are chosen as input MF 

type in this study. Number of MFs on each input can be chosen as 3, 5, and 7 to define 

the linguistic labels significantly. 

Since, there is no typical method to employ the expert knowledge; automatic rule 

generation (grid partition) method is usually preferred [51]. According to this method, 

for instance, an ANFIS model with two inputs and three MFs on each input would 

result in 32=9 Takagi-Sugeno fuzzy if-then rules automatically. Although this method 

can require much computational knowledge especially in systems that have to be 

defined with many inputs, it is used in this study due to advantage of MATLAB 
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software. Therefore, rule bases of the estimators are formed automatically with the 

number of inputs and number of MFs. After the ANFIS structure is constructed, 

learning algorithm and training parameters are chosen. As mentioned in chapter 2, the 

hybrid learning algorithm is used in this study. Simulation has been performed for the 

top temperature and bottom temperature of the distillation column using ANFIS 

structure. Table 5 .I and Table 5.2 show the RMSE statistics of the ANFIS model. 

Table 5.1: RMSE Estimation Performance Measurement for ANFIS structure 

Top Temperature Bottom Temperature 

Membership 3MFs 5MFs 7MFs 3MFs 5MFs 7MFs 
Functions 

Sigmoid 0. 7578 0.7074 0.6781 0.2696 0.2597 0.2464 

Gaussian 0.7490 (£.6930: 0.6770 0.2695 I (£.2569: 0.2470 

Triangular 0.7841 0.7111 0.7064 0.2774 0.2611 0.2501 

Table 5.2: RMSE Validation Performance Measurement for ANFIS structure 

Top Temperature Bottom Temperature 

Membership 3MFs 5MFs 7MFs 3MFs 5MFs 7MFs 
Functions 

Sigmoid 1.0746 1.0107 1.0037 0.3115 0.304 0.2902 

lr ' ........ 

Gaussian 1.0834 \.._1.0158_...1 0.9943 0.3122 0.3028./ 0.2903 

Triangular 1.1589 1.0451 0.9982 0.3299 0.3026 0.2918 

Analyzing Table 5.2, 5 Gaussian type MF shows a good result with RMSE value 

of 1.0158 for top temperature and 0.3028 for bottom temperature. Although the other 

type MF shows similar result but due to higher number of rules, the computation for 

both learning and training phase could take a much longer time. Figure 5.15 and 

Figure 5.16 show the estimation and validation result of the ANFIS structure of the 
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Gaussian type with 5MFs modelled for top temperature of the distillation column. 

Membership functions and fuzzy inference rules are given in Appendix C. 
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Figure 5.15: ANFIS Top Temperature Estimation. 

A.'WIS Top Tempenlture Validation 

" l 

2800 3200 3400 3600 3800 
Data 

Figure 5.16: ANFIS Top Temperature Validation. 

Analyzing Table 5.2, 5 Gaussian type MF shows a good result compared to other 

ANFIS approaches. Although 7 Gaussian and Triangular type MF shows similar 

result but due to higher number of rules, the computation for both learning and 

training phase could take a much longer time. The following Figure 5.17 and Figure 
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5.18 shows the estimation and validation result of the ANFIS structure of the 

Gaussian type with 5MFs modeled for bottom temperature of the distillation column. 

Membership functions and fuzzy inference rules are given in Appendix C. 
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Figure 5.17: ANFIS Bottom Temperature Estimation. 
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Figure 5.18: ANFIS Bottom Temperature Validation. 
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Looking into the ANFIS response both for top and bottom of temperature, the result 

is very noisy. This is because ANFIS is sensitive to noisy signals when given at the 

input. This is one reason that the ANFIS has not accurately modelled the input-output 

data's which in result shows that big error is present in the response. 

5.5 Modelling Error Analysis 

5.5.1 Best Fit Error Analysis 

Following Table 5.3 shows the performance measurement of different types of 

nonlinear models. 

Table 5.3: Numerical Results Performance Measurement for Top Temperature 

Model Performance Measurement 

Validation for Top Validation for Bottom 

Sum of Sum of 
Best Fit Squared Best Fit Squared 

Model Structure 
(%) Prediction (%) Prediction 

Error Error 

Gradient Decent 97.43 0.0120 98.44 0.0216 
Momentum 

Lavern berg Marquardt 97.77 0.0312 98.39 0.0134 

Nonlinear State Space 97.96 0.0162 99.38 0.0090 - - - - -- - -- - - -- - - - -- - -ANFIS 50.16 0.0997 60.13 0.0852 
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Analyzing Table 5.3, it can be observed that all the nonlinear models are capable 

of modeling the dynamic nonlinear system. Neural network trained by gradient decent 

with momentum and LM shows a very good result. The NSS model is also capable of 

identifying the dynamic nonlinear system. NSS model shows the best result with the 

best fit of 97.96% and 0.0162 SSPE for top temperature and 99.38% of best fit and 

0.009 SSPE for bottom temperature process. ANFIS identification did not show a 

better result; this is because that every data point of the plant has to be evaluated from 

every rule defined in the ANFIS structure. Due to this process the computation takes a 

longer period and the process output observed is also noisy. 

5.5.2 Nonlinear Identification Model Residual Analysis 

5.5.2.1 Gradient Decent with Momentum 

Figure 5.19 and Figure 5.20 show the predicted error or residual plot of the developed 

neural network model using GDM as the learning algorithm along with the residual 

histogram. These plots are based on the validation result of the model. 
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Figure 5.19: Residual Histogram for Top Temperature. 
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Figure 5.20: Residual Histogram for Bottom Temperature. 

Observing Figure 5.19, the model does not show a proper histogram distribution 

for the validation data. Moreover, the cross-correlation graphs also show that the 

estimation data used for the development of the model did not completely modelled 

the top temperature of the process plant since correlation exits between the inputs and 

the residual. Observing Figure 5.20, the model validation shows a well distribution 

plot but the cross-correlation of the response shows that the estimation data used did 

not completely modelled the process plant as the graph has some values out of the 

95% confidence interval boundary. 

5.5.2.2 Lavernberg Marquardt 

Figure 5.21 and Figure 5.22 show the predicted error or residual plot of the developed 

neural network model using LM as the learning algorithm along with the residual 

histogram. These plots are based on the validation result of the model. 
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Observing Figure 5.21, the model shows a proper histogram distribution for the 

validation data. Moreover, the cross-correlation graphs show that the estimation data 

used for the development of the model did not completely modelled the top 

temperature of the process plant since correlation exist between inputs and the 

residual. Observing Figure 5.22, the model validation shows a well distribution plot of 

the histogram but the cross-correlation of the response shows that the estimation data 
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used did not completely modelled the process plant as the graph has some values out 

of the confidence interval line. 

5.5.2.3 Nonlinear State Space Model 

Figure 5.23 and Figure 5.24 show the predicted error or residual plot of the developed 

NSS model along with the residual histogram. These plots are based on the validation 

result of the model. 
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Figure 5.23: Residual Histogram for Top Temperature. 
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Observing Figure 5.23, the model shows a well histogram distribution plot for the 

validation data. Moreover, the cross-correlation graphs also show that the estimation 

data used for the development of the model completely modelled the top temperature 

of the process plant since no correlation exist between the inputs and the residual. 

Observing Figure 5.24, the model validation shows a well distribution plot and also 

the cross-correlation of the response shows that the estimation data used completely 

modelled the process plant as the graph lies within the 95% confidence interval 

boundary. 

5.5.2.4 ANFJS Model 

Figure 5.25 and Figure 5.26 show the predicted error or residual plot of the developed 

ANFIS model using along with the residual histogram. These plots are based on the 

validation result of the model. 
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Figure 5.25: Residual Histogram for Top Temperature. 

101 

(b) 

(d) 



(b) 

-I, 
"' 1000 I"' lOOO "" JOOO '"' -""' 

CCF from Input Ul 
0.1 

OJ 0.1 

.. .. .. 0 (o) .B 1 o~----------------------4~ 
~ ~ 

-oJ 

~.~ ·I' ·10 
_, 

0 10 I' lO ., 0 10 I' lO 
lop lop 

Figure 5.26: Residual Histogram for Bottom Temperature. 

The ANFIS model shows a well distributed histogram response for both top and 

bottom temperature model of the process plant but the cross-correlation performance 

from input U 1 and input U2 did not performed well since correlation exist with the 

residuaL 

Table 5.5 shows the mean and variance of the prediction errors for all the nonlinear 

models. 

Table 5.4: Nonlinear Models Residual Histogram Performance Measurement 

Model Top Temperature Bottom Temperature 

Mean Variance Mean Variance 

GDM 0.0408 0.0020 0.0003 0.0002 

LM O..Q.02,l ..Q. O.Q.Q I ;,) . 9.l] e;Q94 j.l~-~ 
I 

NSS 2.3e-005 5.3e-005 4.6le-005 2.01e-005 J 
ANFIS 0.8540 0.8670 0.2210 0.1850 

Analysing the residual statistic of the developed nonlinear models from Table 5.5, 

it shows that Nonlinear State Space model shows a well compatible result to the 
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process output with the minimum mean value of 2.3e-5 and variance of 5.3e-5 for top 

temperature process and minimum mean Of 4.61e-5 and 2.01e-5 for bottom 

temperature process. Neural network models also show a good compatible result. 

Analysing the residual histogram of these models, the graph is well distributed and 

centred at the origin. For ANFIS model, the residual is not well distribution at the 

centre for both top and bottom temperature models. 

5.6 Summary 

In this chapter, results has been shown and evaluated for different types of nonlinear 

models. The NN trained by GDM algorithm and LM, NSS model which is the 

combination of LSS models and NN trained by LM algorithm. All these models show 

a very significant result compared to the ANFIS. The simulation results shows that the 

identifier performance for estimating the model output is acceptable to some extend 

since the models are able to capture the changes in the dynamics of the process. 

Analyses of the result are given in Table 5.1, Table 5.2 and Table 5.3 and the best 

model results are highlighted. Further Analysis was performed by observing the 

prediction error and the residual histogram. Cross correlation testing is also observed 

from the two inputs U1 and U2. NSS model shows the best performance compared to 

all the other nonlinear models. 
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CHAPTER6 

CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

This study has discussed different types of system identification models for 

modelling a nonlinear process plant. SI mainly focuses on developing empirical 

models of systems where no prior knowledge is known about it. Injecting an input 

signal and observing the output response of the system, based on this input-output 

measurement of the system linear models are developed. By the help of these 

mathematical models, the dynamic behaviour of the system can be observed and 

further can be used for control purpose or any other purpose. 

Initially, the work started by a brief literature over distillation columns. The 

concept of distillation column was carefully understood. An experimental work was 

carried out over the plant. Selection of the input output parameters of the distillation 

column was chosen based on the purpose of controlling the plant. Distillation 

Columns are highly nonlinear multivariable systems. Therefore, the Reflux Flow rate 

of the plant was selected as the first input and the Steam Flow rate as the second 

input. The outputs of the plant are the distillations process columns Top and Bottom 

Temperature. Generally, the output of the plant should be considered as the 

concentration of the top and bottom product from the distillation column, but since as 

a common practice in the industry is to reduce cost from applying expensive 

analyzers for the measurement of the product concentration, therefore, the nearest 

process variable to concentration is the temperature of the top and bottom of the 

process column. 



System Identification technique was applied over the nonlinear plant in order to 

collect data. Approximately 4000 data were collected from the plant. 2000 data were 

used for model estimation and another 2000 data for model validation. Modelling 

approach was performed on multi variable based. Considering the distillation column a 

MIMO system, the structure was divided into two MISO systems. Linear and 

nonlinear modelling approach was than performed. 

Basic system identification models AR.X, ARMAX, Linear State Space model and 

Continuous time Process Model were evaluated. Simulation results showed that the 

identifiers perfom1ance for estimating the dynan1ic system output are acceptable to 

certain extend. All the linear models are able to capture the dynamics of the nonlinear 

plant. Performance measurements of these linear models are tabulated. 

Extending the work towards nonlinear modelling, three different approaches are 

used. Neural network is one of the most known and suitable approach for nonlinear 

modelling. Neural Network has the capability of updating its computations which 

enables itself to estimate the dynamics of a nonlinear system with minimum presence 

of error. Multilayer Perceptron (MLP) is used as one approach for modelling the 

nonlinear system. Two different training algorithms are used to train the network. The 

first algorithm is Gradient Decent with Momentum and the second is Lavenberg 

Marquardt. Both algorithms had given a very much significant result. Both networks 

estimated the nonlinear dynamic system. 

The second nonlinear model is the Nonlinear State Space (NSS) model. This model 

is the combination of linear state space and neural network. The training algorithm 

used for this model is the Lavenberg Marquardt algorithm. This algorithm also 

showed a very significant result. The model was capable of estimating the nonlinear 

dynamic system. Third approach used is the Adaptive Neuro Fuzzy Inference System. 

ANFIS model is sensitive to noisy data. From the response, it is clear that the ANFIS 

has given an extremely noisy output. This is due to the evaluation of every data point 

computing against the rules of the ANFIS structure. Since there isn't any fixed 

method of how to construct the rule for the ANFIS, rule bases of the ANFIS are 

formed automatically with the number of membership functions. 
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Further analysis has been performed to verify which model is to be selected. 

Prediction error or residual analysis has been performed for the models. Observing the 

residual histogram for the linear models, the ARMAX and State Space model showed 

much better analysis. Both models show a well distribution plot and the minimum 

mean and variance value. The cross correlation performance of these two models 

showed that the estimation data used are completely modelled since no correlation is 

obtained between the residual and the inputs. Observing the statistics of the nonlinear 

models, the nonlinear state space model showed a much better distribution of the 

histogram with the least mean and variance value. 

Analysing the residuals of the linear and nonlinear models, it emerges that the 

selected models ensures satisfactory performance as it is indeed able to correctly 

identify the dynamics of the distillation column. Therefore the selected models are 

considered reliable models for describing the dynamic behaviour of the APC plant. 

Comparing the results between both linear and nonlinear model, nonlinear modelling 

technique using neural network approach showed a better performance and indicates 

that the models are well capable to observe and identify the dynamics of the process. 

Linear models also showed a good performance comparing to the ANFIS modelling 

technique. 

Out of all the linear and nonlinear models discussed in this research work, it can be 

concluded that the Nonlinear State Space model is considered the best for the APC 

plant. A significant advantage of this model is that the linear part of the model 

computes the state and provides the values to the neural network. The result from the 

neural network indicates that it can successfully identify the input output behaviour of 

the APC plant. In this approach, two networks are used for identification. If the some 

of the system states are considered as the output, than only one network is enough to 

be used. But for the purpose of controlling the plant, the network needs to be simple 

for computation. 

The aim of this work is to identify the process dynamics of the APC plant by 

means of different types of linear and nonlinear models. By means of experimental 

measurement, system identification for the system dynamics provides a constructive 
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solution for the prescription of a consistent model. In this case the results showed that 

the models are able to give satisfactory descriptions of the experimental data. 

6.2 Recommendations 

The work in this research presented a comparative study of different types of linear 

and nonlinear models to identify a highly nonlinear process plant. Since the developed 

models are completely experimental based, therefore these models can easily be used 

for or can be much more improved for online system identification. The models can 

be used not only for the implementation over the APC plant but also for the detection 

and isolation of faults which can occur through the process dynamics. The developed 

models can be used in advanced control performances such as the Model Predictive 

Control (MPC) or other advance controllers for the performance improvement of the 

APC plant. It could be implanted and become part of the control process which is 

used to provide information of the distillation column process. Hence, the process can 

be maintained at the desired operating point. 
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APPENDIX B: LINEAR MODEL EQUATIONS 

Top Temperature Model Equations 

ARXMODEL 

I" order ARX model structure: II 0 

A= [0.987]; B = [- 0.366 0.02978); C = [0.25]; D = [- 0.093 0.00754] 

2"d order ARX model structure: 220 

A=[O -0.81]· B=[0.7266 -0.001847]· C=[O 
I 1.81 ' -0.753 0.00427 ' O.Sj; D=[-0.45 O.OOII 4] 

3'd order ARX model structure: 330 

[ 

0 0 

A= 0.5 0 

0 2 

0.7732j [-1.063 
-0.984 ; B = 0.977 

0.003] 
o.ooo57 ; c = [o o 1]; 

2.2 -0.933 -0.00014 

D = [-1.374 0.003814] 

ARMAXMODEL 

I" order ARMAX model structure: Ill 0 

A= [0.9905); B = [- 0.2638 0.025]; C = [0.25]; D = [- 0.0666 0.006313] 

2"d order ARMAX model structure: 2220 

A = · B = · C = 0 0.5 · [
0 -0.9561] [0.42046 -0.0217] [ l 
I 1.956 ' -0.4214 0.0218 ' ' 

D = [- 0.22 0.0 1133] 

3 rd order ARM AX model structure: 3 3 3 0 

[ 

0 0 0.5788] [- 0.4651 
A= 0.5 0 -1.074 ; B = 0.487 

0 2 2.57 -0.51 

0.0002] 
- o.oo 15 ; c = [o 

0.00321 

0 1]; 

D = [- 0.8035 0.00033] 
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STATE SPACE MODEL 

I" order State Space model 

A = [0.977]; B = [- 0.2332 0.0225]; C = [0.5]; D = [0 0] 

2"d order State Space model 

A=[O -0.8113]· B=[ 0.789 
I 1.811 ' -0.7903 

-0.043] · c = [o 1]· D = [o o] 
0.0426 , , 

3'd order State Space model 

[

0 0 0.4375] [ 1.124 
A = I 0 -1.326 ; B = -1.605 

0 I 1.88 0.4627 

0.000712] 
- o.o0855 ; c = [o o 2]; D = [o o] 

0.01122 

CONTINUOUS TIME PROCESS MODEL 

I" order Continuous Time Process model 

A= ·B= ·C=-0.3725 [
- 0.254 0 ] [0.5 0 ] 

0 -0.0133 , 0 0.0625 , [ 
0.1206]; D=[O 0] 

2"d order Continuous Time Process model 

-0.254 -0.01 0 0 0.0001 0 

0.00781 0 0 0 0 0 
A= ;B= 

0 0 -0.125 -0.03437 0 0.125 

0 0 0.0625 0 0 0 

c = [o -0.0002 0 0.1373]; D=[O o] 
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3'd order Continuous Time Process model 

-0.2033 -0.08364 -0.04 0 0 0 

0.125 0 0 0 0 0 

0 
A= 

0.03125 0 0 0 0 

0 0 0 -0.0425 -0.02545 -0.00221 

0 0 0 0.01563 0 0 

0 0 0 0 0.002 0 

0.5 0 

0 0 

0 0 
C=[O 0.094]; D=[O o] B= 0 -0.4235 0 0 

0 0.125 

0 0 

0 0 

Bottom Temperature Model Equations 

ARXMODEL 

l" order ARX model structure: ll 0 

A= [0.9817]; s = [o.o 1652 o.087t7]; c = [o.0625]; D = [o.oo 105 o.oo56] 

2"d order ARX model structure: 220 

A=[o -0.9tol]· B=[0.04445 
I 1.91 ' -0.0451 

D = [- 0.0061 0.00674] 

3'd order ARX model structure: 330 

[ 

0 0 0.5897] [- 0.47 
A= 0.5 0 -1.02 ; B = 0.4 

0 2 2.446 - 0.3 

D = [- 0.1997 0.005] 

-0.05] ·c-o 0.0526 , - [ 0.125]; 

0.0174 ; C=[O 0 0.25); 
0.01162~ 

-0.026 
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ARMAXMODEL 

I 51 order ARM AX model structure: I II 0 

A= [0.978]; B = [-0.00304 0.097]; C = [0.0625]; D = [-0.0002 0.0062] 

2"d order ARM AX model structure: 2220 

A- · B-
[ 

0 0.4524] [- 0.06303 
- 0.25 0.8614 , - 0.0153 

D=[-0.0174 0.006] 

0.02124] [ · C= 0 
0.0504 , 

3'd order ARMAX model structure: 3330 

[

0 0 0.5626] [- 0.1342 
A = I 0 - 1.325 ; B = 0.6368 

0 I 1.745 -0.5 

0.006046] 
- o.oo685 ; c = [o 

0.0104 

D=[-0.12 0.00537] 

STATE SPACE MODEL 

I 51 order State Space model 

A=[0.978]; B=[0.028 0.05]; C=[0.125j; D=[O 0] 

2"d order State Space model 

0.125]; 

0 0.5]; 

A =[0 -0.526]. B=[-0.4647 
I 1.515 ' 0.467 

· · c = [o 0.5]· D = [o o] -0 03] 
0.0341 , , 

3'd order State Space model 

[ 

0 0 0.67] [- 0.484 
A= 0.5 0 -0.887 ; B = 0.2257 

0 2 2.1 0.035 

-0.012] 
-0.0033 ; c = [o o o.5]; D = [o o] 

0.0255 
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CONTINUOUS TIME PROCESS MODEL 

I 51 order Continuous Time Process model 

A= ·B= ·C=-0.3725 
[
- 0.254 0 ] [0.5 0 ] 

0 -0.0133 ' 0 0.0625 ' [ 
o.I206j; D = [o o) 

2nd order Continuous Time Process model 

-0.254 -0.01 0 0 0.0001 0 

0.0078 I 0 0 0 0 0 
A= ;B= 

0 0 -0.125 -0.03437 0 0.125 

0 0 0.0625 0 0 0 

c = [o -0.0002 0 0.1373); D= [o o) 

3 rd order Continuous Time Process model 

-2000 -976 -I .936 0 0 0 I 0 

1024 0 0 0 0 0 0 0 

0 I 0 0 0 0 0 0 
A= ; B= 

0 0 0 -976.6 -976 -5.896 0 I 

0 0 0 1024 0 0 0 0 

0 0 0 0 4 0 0 0 

C=[O 0 1.323 0 0 1.65); D=(O o) 
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APPENDIX C: ANFIS MEMBERSHIP FUNCTIONS & RULES VIEW 
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APPENDIX D: ANFIS MODEL RULES 

Top Temperature Rules 

Reflux= U I ; Reflux Flow rate Input Steam = U2 ; Steam Input Flow rate Input 

Top Temperature= Y I ; Top Temperature Output MF =Membership Function 

If (reflux) is (U I MFl) and (steam) is (U2MF1) than (Top Temperature) is (Y IMFl) 

lf(reflux) is (UIMFl) and (steam) is (U2MF2) than (Top Temperature) is (YIMF2) 

lf(reflux) is (UIMFl) and (steam) is (U2MF3) than (Top Temperature) is (YIMF3) 

If (reflux) is (U I MFl) and (steam) is (U2MF4) than (Top Temperature) is (Y I MF4) 

If (reflux) is (U I MFl) and (steam) is (U2MF5) than (Top Temperature) is (Y I MFS) 

lf(reflux) is (UIMF2) and (steam) is (U2MF1) than (Top Temperature) is (YIMF6) 

If (reflux) is (U IMF2) and (steam) is (U2MF2) than (Top Temperature) is (Y I MF7) 

lf(reflux) is (UIMF2) and (steam) is (U2MF3) than (Top Temperature) is (YIMF8) 

lf(reflux) is (UIMF2) and (steam) is (U2MF4) than (Top Temperature) is (YIMF9) 

If (reflux) is (U I MF2) and (steam) is (U2MF5) than (Top Temperature) is (Y I MFlO) 

If (reflux) is (U IMF3) and (steam) is (U2MF1) than (Top Temperature) is (Y I MFll) 

If (reflux) is (U I MF3) and (steam) is (U2MF2) than (Top Temperature) is (Y I MF12) 

lf(reflux) is (UIMF3) and (steam) is (U2MF3) than (Top Temperature) is (YIMF13) 

If (reflux) is (U I MF3) and (steam) is (U2MF4) than (Top Temperature) is (Y I MF14) 

lf(reflux) is (UIMF3) and (steam) is (U2MF5) than (Top Temperature) is (YIMF15) 

lf(reflux) is (UIMF4) and (steam) is (U2MF1) than (Top Temperature) is (YIMF16) 

If (reflux) is (U I MF4) and (steam) is (U2MF2) than (Top Temperature) is (Y IMF17) 

lf(reflux) is (UIMF4) and (steam) is (U2MF3) than (Top Temperature) is (YIMF18) 

If (reflux) is (U I MF4) and (steam) is (U2MF4) than (Top Temperature) is (Y I MF19) 

If (reflux) is (U I MF4) and (steam) is (U2MF5) than (Top Temperature) is (Y I MF20) 

If (reflux) is (U I MFS) and (steam) is (U2MF1) than (Top Temperature) is (Y I MF21) 

If (reflux) is (U IMFS) and (steam) is (U2MF2) than (Top Temperature) is (Y IMF22) 

If (reflux) is (U I MFS) and (steam) is (U2MF3) than (Top Temperature) is (Y I MF23) 

If (reflux) is (U I MFS) and (steam) is (U2MF4) than (Top Temperature) is (Y I MF24) 

If (reflux) is (U I MFS) and (steam) is (U2MF5) than (Top Temperature) is (Y IMF25) 
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Bottom Temperature Rules 

Reflux = U I ; Reflux Flow rate Input 

Input 

Steam = U2 ; Steam Input Flow rate 

Top Temperature= Y2 ; Bottom Temperature Output MF =Membership Function 

If(reflux) is (UIMFl) and (steam) is (U2MF1) than (Bottom Temperature) is (Y2MF1) 

If(reflux) is (UIMFl) and (steam) is (U2MF2) than (Bottom Temperature) is (Y2MF2) 

If (reflux) is (U I MFl) and (steam) is (U2MF3) than (Bottom Temperature) is (Y2MF3) 

If(reflux) is (UIMFl) and (steam) is (U2MF4) than (Bottom Temperature) is (Y2MF4) 

If (reflux) is (U I MFl) and (steam) is (U2MF5) than (Bottom Temperature) is (Y2MF5) 

If (reflux) is (U I MF2) and (steam) is (U2MF1) than (Bottom Temperature) is (Y2MF6) 

If (reflux) is (U I MF2) and (steam) is (U2MF2) than (Bottom Temperature) is (Y2MF7) 

If (reflux) is (U I MF2) and (steam) is (U2MF3) than (Bottom Temperature) is (Y2MF8) 

If(reflux) is (UIMF2) and (steam) is (U2MF4) than (Bottom Temperature) is (Y2MF9) 

If (reflux) is (U I MF2) and (steam) is (U2MF5) than (Bottom Temperature) is (Y2MF10) 

If (reflux) is (U IMF3) and (steam) is (U2MF1) than (Bottom Temperature) is (Y2MF11) 

If (reflux) is (U I MF3) and (steam) is (U2MF2) than (Bottom Temperature) is (Y2MF12) 

If (reflux) is (U I MF3) and (steam) is (U2MF3) than (Bottom Temperature) is (Y2MF13) 

If (reflux) is (U I MF3) and (steam) is (U2MF4) than (Bottom Temperature) is (Y2MF14) 

If(reflux) is (UIMF3) and (steam) is (U2MF5) than (Bottom Temperature) is (Y2MF15) 

If (reflux) is (U I MF4) and (steam) is (U2MF1) than (Bottom Temperature) is (Y2MF16) 

If (reflux) is (U I MF4) and (steam) is (U2MF2) than (Bottom Temperature) is (Y2MF17) 

If (reflux) is (U I MF4) and (steam) is (U2MF3) than (Bottom Temperature) is (Y2MF18) 

If (reflux) is (U I MF4) and (steam) is (U2MF4) than (Bottom Temperature) is (Y2MF19) 

If (reflux) is (U I MF4) and (steam) is (U2MF5) than (Bottom Temperature) is (Y2MF20) 

If (reflux) is (U I MFS) and (steam) is (U2MF1) than (Bottom Temperature) is (Y2MF21) 

If (reflux) is (U I MFS) and (steam) is (U2MF2) than (Bottom Temperature) is (Y2MF22) 

If (reflux) is (U I MFS) and (steam) is (U2MF3) than (Bottom Temperature) is (Y2MF23) 

If (reflux) is (U I MFS) and (steam) is (U2MF4) than (Bottom Temperature) is (Y2MF24) 

If (reflux) is (U I MFS) and (steam) is (U2MF5) than (Bottom Temperature) is (Y2MF25) 
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