A Universal Infrared Remote Control

by

Mered Agayev

A project dissertation submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons) (Electrical & Electronics Engineering)

June 2006

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

> © Copyright 2006 by MERED AGAYEV, 2006

Ł 75 215 1) Autoration Control 2) Remote " A764 2006

Certification of Approval

A Universal Infrared Remote Control

by

Mered Agayev

A project dissertation submitted to the Electrical & Electronics Engineering Programme Universiti Teknologi PETRONAS in partial fulfillment of the requirement for the BACHELOR OF ENGINEERING (Hons) (ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

indd

Azizuddin Abdul Aziz

Mr. Azizuddin Abdul Aziz Lecturer Electrical & Electronic Engineerigg Universiti Teknologi Petronas 31759 Tronoh Perak Darul Ridzuan, MALAYSIA

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

Certification of Originality

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgments, and that the original work contained herein have not been undertaken or done by unspecified sources or persons

haeß-

MERED AGAYEV

Table of Contents

ABSTRACT		
CHAPTER 1 1		
INTRODUCTION1		
1.1 Background of study 1		
1.2 Problem statement		
1.3 Objective and Scope of study		
CHAPTER 2		
LITERATURE REVIEW AND THEORY5		
2.1 What is Infrared?		
2.2 How does an infrared system work?		
2.3 Infrared technology		
2.4 How does an infrared remote control work?		
CHAPTER 3		
METHODOLOGY/PROJECT WORK11		
3.1 General idea of project		
3.2 Software Required 12		
3.3 Infrared remote control with a single-channel receiver		
3.4 Universal infrared remote control with multi-channel receiver		
3.5 What is PIC?		
3.6 PIC16C55-XT/P Microcontroller		
3.7 Parallel port		
CHAPTER 4		
RESULTS AND DISCUSSION		
4.1 Findings 31		
CHAPTER 5 40		
CONCLUSION AND RECOMMENDATION40		
REFERENCES 41		
APPENDICES		

APPENDIX A: REQUIRED COMPONENT FOR UNIVERSAL INFRARED REMOTE COM	ITROL		
TRANSMITTER'S IMPLEMENTATION	43		
APPENDIX B: REQUIRED COMPONENT FOR MULTI-CHANNEL REMOTE COM	ITROL		
RECEIVER'S IMPLEMENTATION			
APPENDIX C: PIC16F84A C LANGUAGE CODING FOR FIGURE 4.2	45		
APPENDIX D: PIC16F84A C LANGUAGE CODING FOR FIGURE 4.3	51		
APPENDIX E: GANTT CHARTS	52		
APPENDIX F: DATA SHEETS	55		

List of Figures

ī

FIGURE 1.1: TRADITIONAL WAY TO REMOTELY CONTROL
FIGURE 1.2: REMOTE CONTROLLING USING A UNIVERSAL REMOTE CONTROLLER
FIGURE 2.1: ELECTROMAGNETIC SPECTRUM
FIGURE 2.2: EXAMPLE OF SIGNAL TRANSLATION INTO IR LIGHT
FIGURE 2.3: INDICATION OF IR RECEIVER9
FIGURE 3.1: SYSTEM BLOCK DIAGRAM
FIGURE 3.2: PIC C COMPILER WINDOW
FIGURE 3.3: WARP 13PIC PROGRAM BURNER
FIGURE 3.4: HYPERTERMINAL WINDOW14
FIGURE 3.5: TEST ORIGIN WINDOW FOR PC REMOTE CONTROL15
FIGURE 3.6: SCHEMATIC OF A SINGLE-CHANNEL INFRARED RECEIVER CIRCUIT
FIGURE 3.7: PSPICE SCHEMATIC OF A SINGLE-CHANNEL INFRARED RECEIVER CIRCUIT16
FIGURE 3.8: UNIVERSAL INFRARED REMOTE CONTROL SYSTEM
FIGURE 3.9: PIN DIAGRAM FOR SAA300422
FIGURE 3.10: PIN DIAGRAM FOR PIC16C55-XT/P24
FIGURE 3.11: UNIVERSAL INFRARED REMOTE CONTROL TRANSMITTER CIRCUIT
FIGURE 3.12: MULTI-CHANNEL INFRARED RECEIVER CIRCUIT
FIGURE 3.13: SUMMARY OF LINKING PROCEDURE
FIGURE 3.14: COMPUTER PARALLEL PORT
FIGURE 3.15: DETAILED COMPUTER PARALLEL PORT
FIGURE 4.1: SINGLE-CHANNEL INFRARED RECEIVER
FIGURE 4.2: INFRARED RECEIVER CIRCUIT DIAGRAM FOR DECODING SIGNALS
FIGURE 4.3: IMPLEMENTATION OF INFRARED RECEIVER CIRCUIT
FIGURE 4.4: SINGLE INPUT-OUTPUT INFRARED RECEIVER CIRCUIT
FIGURE 4.5: IMPLEMENTATION OF CIRCUIT IN FIGURE 4.4
FIGURE 4.6: HYPERTERMINAL WINDOW
FIGURE 4.7: READING ASCII CHARACTERS FOR REMOTE CONTROL BUTTONS
FIGURE 4.8: READING DECIMAL FOR REMOTE CONTROL BUTTONS
FIGURE 4.9: READING HEXADECIMAL FOR REMOTE CONTROL BUTTONS
FIGURE 4.10: SET-UP OF UNIVERSAL INFRARED REMOTE CONTROL SYSTEM

Abstract

This project consists of building a universal remote controller, which can be used to control any kind of device capable of communicating its user interface. The remote device works based on an infrared technology and allows the user to control any of the home appliances. The idea and design of this project are considered as a multicommunication between transmitter and receiver, because the remote control device combines many remotes into one and has an ability to control up to fifteen appliances that are commonly used at homes. The transmitter contains 15 independent inputs and has a carrier wave frequency of 38 kHz, which is the same for almost all infrared remote controls. Similarly, the receiver has 15 independent outputs, each of which can operate separately. The SAA3004 transmitter integrated circuit (IC), which is designed for infrared remote control systems, is used as a main IC on the remote control itself. As for receiver part, PIC16C55-XT/P is used as a microcontroller to control the infrared receiver operations due to the increased number of Input/Output pins. Both ICs are programmed accordingly to provide a multi- communication. A desktop lamp and fan are used as the example appliances to be remotely controlled. The control of these appliances is associated with ON/OFF switching application. Since a remote control has become a part of the everyday life, in this project, an infrared remote control system is designed to prove the universality of it.

Acknowledgment

First and foremost, I would like to thank my supervisor, Mr. Azizuddin Abdul Aziz. Without his guidance, feedback and encouragement, this project would not have been possible. It has been valuable experience to work with Mr. Azizuddin.

I would like to express my gratitude to Mr. Azman B. Zakariya, lecturer at Electrical & Electronics Department of UTP for providing the title and opportunity to work on this project. His advices and support are greatly appreciated.

Special thanks to laboratory technicians at Electrical & Electronics Department of UTP, to Mr. Musa for his help with experiments when the project circuits were tested and to Ms. Siti Hawa for the time she invested in teaching the soldering techniques.

CHAPTER 1

INTRODUCTION

When there are several controllable devices in a certain space, controlling them all in an efficient way requires much thought on the user interface and usability issues. Today's solutions differ from a local mechanical switch to a complex distributed controlling system. One part of these is different remote controllers, which people are using in their everyday life. Another solution is a universal infrared remote control, which can perform all functions of different remotes of various brand appliances that are used at homes [2].

1.1 Background of study

Remote controls have become more sophisticated in recent years. They are able to operate a large indefinite number of home entertainment equipment. However, the "universality" of remote controllers comes into question as entertainment devices add more features and functions to their standard controls [3]. Some remote controllers will not operate certain brands, and many do not come equipped with enough buttons to control all of the features of any given device. This leaves many consumers with no choice but to own a number of remote controls, each for a specific device or task.

A universal remote controller was invented to be able to turn the television on, control the lights, speed of fans, temperature of air conditioners, close the blinds or drapes - in fact, virtually anything electrical. With this device now it is possible to turn off all the lights in the house from the bedside or turn on all the lights with one press to scare away intruders.

The protocol, most commonly used in home entertainment remotes is Infrared (IR). It is line-of-sight only, and the transmission range is usually limited to about 30 meters, however, an IR distribution system can provide virtually unlimited range. IR is not a secure method of communication, as the codes are openly published in an industry standard IR code library. Universal IR remotes have this library built in, which allows

1

them to control most of any manufacturer's devices. For controlling components whose codes are not in the library, learning remotes are available everywhere which can be taught the code of any device. A common feature of universal remotes is the ability to group commands, so as to actuate, with one device, several components simultaneously.

1.2 Problem statement

Nowadays there is usually a unique remote controller for every infrared controllable appliance (See Figure 1.1, where RC stands for Remote Control). Every manufacturer has its own style in their user interfaces and they can be totally unique. So, if a person can use a certain remote controller properly, it does not necessarily mean one can use all the possible remote controllers. Even if the appliances would be from the same manufacturer, the user interface of the remote controllers can differ a lot. Most of the appliances have some kind of special functions and might need some special controls. So, it might be impossible to use the similar user interface to control different appliances. When we try to use the same remote controller to control different kind of appliances (see Figure 1.2, where URC stands for Universal Remote Control) there has to be several functions for one physical controller in different situations. Therefore, a universal remote controller was invented to prove the universal applicability. By universal remote controller the user can control all of the infrared controllable appliances used at home.

Figure 1.1: Traditional way to remotely control

Figure 1.2: Remote controlling using a universal remote controller

1.3 Objective and Scope of study

The main objective of this project is to provide a working prototype of a universal infrared remote control transmitter and receiver on a Printed Circuit Boards (PCB) creating the smallest and simplest set of commands that will provide the greatest flexibility. The control system should perform the operation of remote control for home appliances such as fan and lamp. An additional objective of the project is to create a command code using Microsoft Visual Basic to control these appliances from computer. At the end, the system should be user-friendly and reliable.

Scope of project's work is divided into two parts, FYP1 and FYP2 semesters:

FYP1 semester:

- Research and analysis on materials related to project.
- Project planning.
- Finalize the project's objectives and deliverability.
- Define what are the hardware and software required for the project's implementation.
- Get familiar with PCB design and learn how to work on it.
- Get familiar with PIC microcontroller and learn how to program it.
- Learn how to study the signal codes transmitted from remote control.

• Design, implement, test and prove the viability of an infrared single-channel receiver circuit.

FYP2 semester:

- Define a universal infrared remote control transmitter and receiver circuits.
- Learn how to decode the transmitted signals for remote control input buttons.
- Program the PIC Microcontroller that is being used at the receiver part accordingly by using the obtained signal codes for remote control.
- Implement and test the remote control system, and work on it to prove the universality.
- Additionally, learn about the computer parallel port and create a command code using Microsoft Visual Basic that will give the instructions to the transmitter from computer.
- Complete the project and achieve all the required objectives.

CHAPTER 2

LITERATURE REVIEW AND THEORY

2.1 What is Infrared?

Infrared (IR), just like any light ray, is an electromagnetic radiation of a wavelength longer than visible light, but shorter than microwave radiation. The name means "below red" (from the Latin "infra" - "below"), red being the color of visible light of longest wavelength. A very interesting phenomenon that can be observed is that anything material above absolute zero (-273.15 degrees Celsius or 0 Kelvin), radiates in the infrared, even ice emits infrared radiation. We as a human being cannot see IR, because our eyes are designed for visible light. Even though IR is not visible to the human eye, our skin can sense it [4].

The electromagnetic spectrum classifies electromagnetic energy according to frequency or wavelength.

Figure 2.1: Electromagnetic spectrum

Figure 2.1 represents the electromagnetic spectrum, which ranges from energy waves having extremely low frequency (ELF) to energy waves having much higher frequency, such as X-rays. A horizontal bar represents a range of frequencies from 10 Hertz (cycles per second) to 10^{18} Hertz [5]. Some familiar allocated frequency bands are labeled on the spectrum. Approximate locations are as follows.

- 10^1 Hertz: extremely low frequency or ELF.
- 10⁵ Hertz: AM radio
- 10⁸ Hertz: FM radio
- 10¹⁰ Hertz: Television
- 10¹¹ Hertz: Microwave

10¹⁶ Hertz: Infrared (frequency range is below the visible light spectrum)

- 10¹⁶ Hertz: Visible Light
- 10¹⁶ Hertz: Ultraviolet (frequency range is above the visible light spectrum)
- 10¹⁸ Hertz: X-rays

2.2 How does an infrared system work?

As it was mentioned, an IR radiation is the region of the electromagnetic spectrum between microwaves and visible light. In infrared communication, light emitting diode (LED) transmits the infrared signal as bursts of non-visible light. At the receiving end a photodiode or photoreceptor detects and captures the light pulses, which are then processed to retrieve the information they contain.

Generally, an IR system comprises three sections: the transmitter, the emitter and the receiver [6]. The emitter is sometimes located within its transmitter. It is known, that in any communications system there are transmitter, transmission medium, receiver, and system noise [23]. The transmission medium that provides a means of transporting signals between transmitter and receiver can be as simple as a pair of copper wires or as complex of sophisticated microwave, satellite, or optical fiber communications system. In infrared systems, the transmission medium is a modulated carrier of harmless invisible infrared light.

Infrared is interesting, because it is easily generated and does not suffer electromagnetic interference. It is nicely used in communication and control, but not perfect, because some other light emissions could contain infrared as well, and that can interfere in this communication. The sun is an example of light emission, since it emits a wide spectrum or radiation. IR signal is contained within the room in which it is used, so even adjacent rooms may use identical IR systems without interference among them.

IR products are compact and lightweight. While installing or using IR system, it is essential to consider that the visible components of the transmitter and the receiver must face each other without obstruction.

2.3 Infrared technology

Some common applications of infrared technology are listed below:

Augmentative communication devices:

- Car locking systems
- Computers (Mouse, Keyboards, Printers)
- Emergency response systems
- Environmental control systems (Windows, Doors, Lights, Curtains, Beds, Radios)
- Headphones
- Home security systems
- Navigation systems
- Signage
- Telephones
- TVs, VCRs, CD players, DVDs, stereos
- Toys

Infrared technology offers several important advantages as a form of wireless communication [5]. The advantages and disadvantages of IR technology described as follow:

Advantages of Infrared technology

- Low power requirements
- Low circuitry costs
- Simple circuitry: no special or proprietary hardware is required, can be incorporated into the integrated circuit of a product
- Higher security: directionality of the beam helps to ensure that data is not leaked or spilled to nearby devices as it's transmitted
- Portable
- Few international regulatory constraints: IrDA (Infrared Data Association) functional devices ideally usable by international travelers, no matter where
 - they may be
- High noise immunity: not as likely to have interference from signals from other devices

Disadvantages of Infrared technology

- Line of sight: transmitters and receivers must be almost directly aligned (i.e. able to see each other) to communicate
- Transmission block: people, walls, plants, etc. can block transmission
- Short range: performance drops off with longer distances
- Light, weather sensitive: direct sunlight, rain, fog, dust, pollution can affect transmission
- Lower speed: data rate transmission is lower than typical wired transmission

2.4 How does an infrared remote control work?

An IR remote control sends control information using infrared light. When we touch a key on this device, the circuitry determines what sequence of flashes of infrared light correspond to that key, and then the signal is sent as a sequence of voltages that turn an infrared LED ON and OFF, and the spacing between modulations determines whether the remote is transmitting "1" or "0". The appliance that we are pointing at has an infrared light detector that picks up the infrared light signals, converts the infrared light to electrical signals, and then uses some digital circuitry to determine what function needs to be done in response to that signal sequence.

A remote control has to be flexible enough to be able to encode the commands. By pressing a button in remote control we establish a complete specific connection. The transmitter chip senses that connection and knowing what button we pressed produces a code-line signal specific to that button. The code of bits is modulated with the certain frequency, usually 36 kHz - 40 kHz oscillating signal and the resulting pulses of oscillating signal are amplified through transistors and sent them to the LED, which translates the signal into infrared light and makes it flicker in bursts corresponding to the bits. That frequency oscillation is added to make sure the receiving appliance is not confused by other lights flashing ON and OFF around the home. The receiver can receive the light, filter out the signals that do not include that certain frequency oscillation, and then demodulate the signal to capture the bits from the same frequency modulated signal.

In general, the remote controls use 36 kHz - 40 kHz frequencies to transmit information. Infrared light emitted by IR diodes is pulsated at 36 thousand times per second, when transmitting logic level "1" and silence for "0".

To generate a 36 kHz pulsating infrared is quite easy, more difficult is to receive and identify this frequency. Therefore, most of the times, infrared receivers contain the filters, decoding circuits and the output shaper, that delivers a square wave, meaning the existence or not of the 36 kHz incoming pulsating infrared [7]. This actually means, that an output pin goes high (+5V) when there is a pulsating 36 kHz infrared in front of it, and zero volts when there is not this radiation. A square wave of approximately 27uS (microseconds) injected at the base of a transistor can drive an infrared LED to transmit this pulsating light wave. Upon its presence, the receiver will switch its output to high level (+5V).

Figure 2.2: Example of signal translation into IR light

If we can turn ON and OFF this frequency at the transmitter, the receiver's output will indicate when the transmitter is ON or OFF.

Figure 2.3: Indication of IR receiver

Those IR demodulators have inverted logic at its output. When a burst of IR is sensed, it drives its output to low level, meaning logic level = 1.

A universal IR remote control works on the same principle that a normal remote control, on a limited number of codes. The only advantage is that it combines multiple remotes into one to make our life easier.

CHAPTER 3

METHODOLOGY/PROJECT WORK

3.1 General idea of project

A universal infrared remote control that is designed in this project has an ability to combine multiple remotes into one, with some sort of input buttons indicating which device the remote is currently controlling. The main concentration is given on an IR transmitter and receiver, which are required to be as a working prototypes and implemented on a Printed Circuit Boards (PCB). Besides that, to meet the project's complete objectives and expectations there should also be a working program command, which is the code of instructions for remote control transmitter from computer to perform the control operation of its target appliances. The instruction command should be programmed using Microsoft Visual Basic.

A general idea of infrared remote controls is that they usually consist of encoder/decoder parts connected to a transmitter/receiver module, which takes care of the transmission of digital signals by infrared waves. The transmitter has a varying number of buttons and sends the states of these inputs to the receiver. The receiver device decodes the message and sets the outputs accordingly. The information about which key is pressed is encoded and sent. We can press at most one key at a time on the encoder, and only the code for the pressed key is sent to the decoder. This is an efficient method for general remote controls.

Figure 3.1 describes a universal infrared remote control system block diagram, where the signal transmission is clearly shown. In this figure, the input buttons represent function keys and the output appliances match to the input buttons. The signal is being transmitted when any of the input buttons is pressed, and then the appliance responds according to that particular input button. The system uses encoder integrated circuit that is located at the transmitter part and Peripheral Interface Controller (PIC) microcontroller at the receiver. Every signal code transmitted by remote control has to be known and PIC must be programmed before using it in the actual circuit. PIC is pre-

11

programmed to generate 38 kHz carrier frequency by simply pulsing from logic "1" to logic "0" at a rate of approximately 38,000 cycles per second, hence 38 kHz [8]. In general, an encoder IC can be replaced by PIC microcontroller at the transmitter, whereas PIC microcontroller can be also replaced by decoder IC at the receiver.

Figure 3.1: System block diagram.

3.2 Software Required

In order to work with the project, there will be several engineering software tools required. These tools are PIC C Compiler and WARP 13, Windows Hyper Terminal and PC Remote Control. The basic functions of required softwares are described below:

PIC C Compiler

PIC C Compiler is software that is used to write the PIC program using C language (see Figure 3.2). When program is written, it should include the header file of the PIC that is being used, its configuration bits, clock speed, which is the oscillator value (e.g. 10MHz), defined inputs and outputs and the main () function. After, when all these requirements are initialized and the program is completely written, it is compiled to generate the HEX file. If the program is written incorrectly or there is an error in the

program, PIC C Compiler identifies the error and highlights it in red at the bottom of window [9].

Figure 3.2 PIC C Compiler window

WARP 13

The written C language program is compiled to generate the HEX file/code, which is then used to burn into the PIC microcontroller using chip burner software WARP 13 [10]. Before burning any particular program into microcontroller, PIC device has to be identified (e.g. PIC16F84A) and its EEPROM should be erased and left as an empty blank. After, the new program is written into the PIC memory (see Figure 3.3).

Figure 3.3: WARP13 PIC program burner

Windows HyperTerminal

In general, Windows HyperTerminal is a program that we can to connect to other computers, Telnet sites, bulletin board systems, online services, and host computers, using modem, a null modem cable or Ethernet connection [11]. For this project it is used for other purpose as to check the signal received through serial communication

port. The connectivity between infrared receiver circuit and computer allows to read infrared signals transmitted from remote control in ASCII characters form. The HyperTerminal application can be found through the following Windows directive: Start => Programs => Accessories => Communications => HyperTerminal (see Figure 3.4).

Figure 3.4: Hyper Terminal window

PC Remote Control

PC Remote Control is very useful software that is used to check the ASCII character received through the serial port using its Test Origin feature. Note that the HyperTerminal window can only show the received signals in form of ASCII characters. By using PC Remote Control software it possible to learn the obtained ASCII characters in terms of ASCII codes for the respective number pressed on the remote control (see Figure 3.5). These data are important in defining the conditions to execute the further applications [12].

Figure 3.5: Test Origin window for PC Remote Control

3.3 Infrared remote control with a single-channel receiver

Besides research and analysis, during the Final Year Project I semester the idea was to work on a single-channel infrared receiver. It was as a mini-project to clearly understand the transmission and reception of infrared signals. The suitable circuit design was obtained from the early researches and implemented on the breadboard. An infrared receiver circuit (see Figure 3.6) was tested in Electrical & Electronics Laboratory by using a pre-programmed universal infrared remote control as a transmitter. The appliance to be controlled by the remote controller was a desktop lamp that works through 240 Volts AC. The more detailed description of an infrared receiver circuit and its implementation are as follow:

Figure 3.6: Single-channel infrared receiver circuit

Figure 3.7: Pspice schematic of a single-channel infrared receiver circuit

Required components used for circuit's implementation:

- Breadboard
- 5 Resistors (R1 = 220 kOhms, R2 = 330 Ohms, R3 = 1kOhm, R4 = 330 kOhms and R5 = 47 Ohms)

- 2 Capacitors (C1 = 100 microF, 16V and C2 = 0.1 microF)
- Diode (1N4007)
- 2 LED's (Green & Red)
- 2 Transistors (BC558 PNP and BC548 NPN)
- Counter (CD4017)
- IR receiver module (TSOP 1738)
- Relay (5V, 100 Ohm)
- Appliance to be controlled (i.e.lamp)

Figure 3.6 and Figure 3.7 show the circuitry of an infrared receiver. The circuit works as follow:

Once it has been assembled, it can be connected to any of the home appliances (lamp, fan, radio, etc) to make the appliance turn on/off from a TV/VCD or Universal remote controls. The activation range for the circuit can be for up to 15 meters. The frequency value for the experiment is the most common used in infrared remote control systems, which is 38 kHz. Therefore, the 38 kHz infrared rays generated by the remote control are received by IR receiver module TSOP1738 of the circuit. An IR receiver module TSOP1738 contains 3 pins, where Pin 1 is connected to the ground; pin 2 to the power supply Vcc (+5V) through resistor R5 and the output is taken from pin 3. The output signal is amplified by transistor T1 (BC558) and fed to clock (pin 14) of decade counter IC CD4017 (IC1). Pin 8 of IC1 is grounded, pin 16 is connected to Vcc (+5V) and pin 3 is connected to LED1 (red), which glows to indicate that the appliance is 'off.' The output of IC1 is taken from its pin 2 and connected to LED2 (green), which is used to indicate the 'on' state of the appliance. Transistor T2 (BC548) connected to pin 2 of IC1 drives relay RL1. Diode 1N4007 (D1) acts as a freewheeling diode. The appliance to be controlled is connected between the poles of the relay and neutral terminal of mains. It gets connected to live terminal of AC mains via normally opened (N/O) contact when the relay energizes.

The reason to work on this task was to understand and practically see how an infrared system works. A lamp was connected to the receiver circuit to perform ON and OFF operations and used as an appliance to be controlled by a universal remote control,

which is a transmitter with a sending frequency value of 38 kHz that is capable with infrared receiver module. Experimental results have been positively obtained.

3.4 Universal infrared remote control with multi-channel receiver

For FYP II semester, the plan was to design the whole infrared system. The idea to continue working on this project was to come up with new transmitter and receiver circuits that have abilities to control multiple appliances. As it was mentioned previously, in this project the control aim is on two appliances that are fan and lamp. Before starting the procedure, all the gathered information were analyzed. The block diagram (see Figure 3.1) shows how the system looks like. A remote control with several buttons was used as a transmitter, whereas a device with corresponding outputs was used as a receiver.

The following diagrams are the flow charts of the project activities. Flow chart 1 describes the general application of the project, whereas Flow chart 2 shows the additional commands using Microsoft Visual Basic and circuit connection from computer's parallel port to the remote control transmitter.

Flow chart 1

Flow chart 2

A universal infrared remote control transmitter circuit that is used in this project (see Figure 3.11) has the increased number of inputs and it is able to activate the outputs related to those inputs. Together with multi-channel infrared receiver and/or even with single-channel receiver this infrared transmitter can be used to remotely operate our home appliances. The transmitter contains 15 independent inputs and has a carrier wave frequency of 38 kHz, which is the same for almost all infrared remote controls. For the project, only two inputs and outputs are taken into consideration and used to show the communication of the universal infrared remote control with its receiver (see Figure 3.8). As for the remaining channels, normal LEDs are used on the output to indicate the activation. The receiver (see Figure 3.12 for its circuitry) has 15 independent outputs, each of which can operate separately.

Figure 3.8: Universal infrared remote control system

The required components are listed on Appendices (see Appendix A and Appendix B). As it is seen in Figure 3.11, the main device that drives the circuit is IC1. It is a transmitter integrated circuit (SAA3004) designed and used for infrared remote control systems. It has a total of 448 commands which are divided into 7 sub-system groups with 64 commands each. The sub-system code may be selected by a press button, a slider switch or hard wired. The SAA3004 IC generates the pattern for driving the output stage. These patterns are pulse distance coded. The pulses are infrared flashes or modulated pulses. The transmission mode is defined in conjunction with the sub-system

address. Modulated pulses allow receivers with narrow-band preamplifiers for improved noise rejection to be used. Flashed pulses require a wide-band preamplifier within the receiver. This chip drives IR LEDs at a 38 kHz modulated output. A standard 455 kHz ceramic resonator, attached across the oscillator input/output pins (pins 11 and 12) of the IC, sets the frequency. The external components must be connected to these pins when using an oscillator with an external resonator. The connections from D3 to D7 are the identification transmitter diodes. As it was mentioned previously, a remote control transmitter can operate for both multi-channel and single-channel receivers. Since in this project, the design requires multi-channel operations, by connecting D4 diode to the circuit we provide the identification of the receiver type for transmitter. LD1 is a red LED that indicates whether remote control is on or off and LD2,3,4 are the infrared LEDs that are used to transmit the signal to receiver. When a key is pressed, a generated signal is amplified and driven by transistors T1 and T2. The supply DC voltage to the circuit is 9 Volts and can be placed by 9V battery.

Figure 3.9: Pin diagram for SAA3004

At the receiver circuit (see Figure 3.12), PIC16C55-XT/P (IC1) is used as a main IC device. It is programmed in order to be able to communicate together with the

transmitter IC. Same as for transmitter, it has 15 channels/outputs that are decoded according to the encoded input signals.

Only two of the outputs are used to operate with appliances, as for the rest of the outputs, normal LEDs are placed to indicate the activation.

3.5 What is PIC?

PIC is a name for the microchip microcontroller family, consisting of microprocessor, I/O ports, timer(s) and other internal, integrated hardware. The main advantages of using the PIC are low external part count and wide range of chip sizes (number of pins). Its program memory is initially empty, and needs to be programmed with code to be usable in a circuit [13]. There are three most common ways can be used to program the PIC microcontroller, either using the assembly language, PIC Basic or C language. The assembly language and PIC Basic are considered to be quite messy and complicated to be used in programming. Furthermore, it may take much more time to understand the deliverables of the built-in functions of assembly language compared to C. C language is more straightforward and takes shorter time to be understood. C compiler is made by the third parties to provide viability to the programmer in coding the PICs. If some errors occur while programming, it has a compiler that can define the errors that are occurred. The basic knowledge on C syntax, its built-in functions and pre-processor are essential in pursuing the project to program the microcontroller.

3.6 PIC16C55-XT/P Microcontroller

The PIC16C55XT/P is chosen as the microcontroller to control the infrared receiver operations due to the number of I/O pins available for the entire microcontrollers analyzed. Figure 3.10 shows the pins configuration of the PIC16C55XT/P utilized in the project

Pin Descriptions

PIC16C55XT has a total of 28 pins. Individual I/O pins are programmable as inputs or outputs.

- Sink current: 25 mA per pin, 50 mA per port
- Source current: 20 mA per pin, 40 mA per port

Figure 3.10: Pin diagram for PIC16C55XT/P

<u>Pin</u>	Function
RA0 - RA3	I/O Port A
RB0 - RB7	I/O Port B
RC0 - RC7	I/O Port C (only on 28-pin PIC's)
RTCC	Real-time clock/counter input
MCLR	Master clear (reset)
OSC1	Oscillator input
OSC2/CLKOUT	Oscillator output (OSC/4)
Vdd	Power supply
Vss	Ground
N/C	No connection

Normally, a universal infrared remote controls are the lesser expensive, and as one of their disadvantage is that they have some drawbacks. In order to avoid the drawbacks of these devices, while working on this project the two criteria must be followed and kept in mind. First, the establishing of communication between the control and any target appliance must be based on a single mechanism and does not require a user to memorize any address or code. Second, the resulting hardware must be as simple as possible to avoid any complicated operations.

In general, for any appliance to be remotely controlled, the code must be known. Therefore, a special identification process is needed to establish a temporary communication link. With this process, the remote control can specify the controlled appliance for subsequent operation. Assigning to each appliance a unique identity code on the receiver fulfills the identification.

The identification process starts with sending out an identity code by the remote control, and if the identity code received by appliance matches, only then it responds. After that, it signals back the remote control immediately before the remote control sends out the next identity code. Once a temporary communication link is accomplished, an appliance alone will interpret further commands from the remote control [21]. Sometimes, it might not be clearly seen that the signal has been received and appliance starts to function immediately. Therefore, to achieve the signal-back and clearly indicate the reception to the user, two LED's (red for OFF state and green for ON state) are added to the receiver hardware. As soon as an identity code is received, the right LED will be on to indicate the performance of an appliance. If it is seen that green LED is ON, then the user stops the remote control from transmitting further identity codes at once. Such an action also indicates to the remote control which appliance it is supposed to control. In Figure 3.13, the summary of linking procedure is described with three advantages. First of all, a single remote control is able to control many appliances. Next, although each appliance is assigned a unique identity code, the code is transparent to users. And finally, since only a unidirectional link is required, involving human action in returning signal reduces the hardware requirement. These advantages will result a convenient size, easy to use and cheap to implement universal remote control system.

Figure 3.13: Summary of linking procedure

The identification process works only when the time-lapse between sending two identity codes is long enough for the user to respond. For instance, if the appliance receives another identity code, the communication link will be dropped. It can be also dropped after a time-out period. The ability of remote control to establish communication link with another appliance without worrying that previously established communication link still exists actually requires a time-out period. The time-lapse period can be as short as less than a second. Furthermore, the time-out of about half a minute should be enough to be accepted.

If the system of linking procedure fails to work, the implementation of hardware must be properly checked and some other troubleshooting techniques related to the project must be used.

3.7 Parallel port

In computers, ports are used mainly for two reasons: device control and communication. We can program PC's parallel ports for both. Parallel ports are mainly meant for connecting the printer to the PC, but we can program this port for many more applications beyond that. Parallel ports are easy to program and faster compared to the serial ports [14]. But main disadvantage is it needs more number of transmission lines. Because of this reason parallel ports are not used in long distance communications. PC parallel port can be very useful I/O channel for connecting our own circuits and to
perform some very amusing hardware interfacing experiments, as in this project to control appliances from computer using infrared waves as a signal transmission.

PC parallel port is 25 pins D-shaped female connector at the back of the computer. Not all 25 pins are needed always. Usually we can easily do with only 8 output pins (data lines) and signal ground. Those output pins are adequate for many purposes. Those data pins are TTL level output pins. This means that they put out ideally 0V when they are in low logic level (0) and +5V when they are in high logic level (1).

Pin functions

- 2 D0
- 3 D1
- 4 D2
- 5 D3
- 6 D4
- 7 D5
- 8 D6
- 9 D7

Pins 18,19,20,21,22,23,24 and 25 are all ground pins (see Figure 3.14 and 3.15).

Initially, before connecting the actual circuit to parallel port, we can make simple circuit for driving small LED's through PC parallel port. The only components needed are 8 software controllable LED's and 470 ohm resistors connected in series. The resistors are needed to limit the current taken from parallel port to a value which light up acceptably normal LED's and is still safe value (not overloading the parallel port chip).

₹ ×

Figure 3.14 shows the connection of LED's to the parallel port, where one end of the LED's goes to data pins and another goes to the ground pins.

Figure 3.14: Computer parallel port

		SLCT - Select
		PE - Paper End
SND - Ground		BUSY
GND - Ground		ACK - Acknowledge
GND - Ground		D7 - Datenbit 7
GND - Ground		DB - Datenbit 6
GND - Ground		D5 Detenbit 5
GND - Ground		DJ-Datenbit J
SND - Ground		D4 - Datenbit 4
	(102)	D3 - Datenbit 3
		D2 - Datenbit 2
		D1 - Datenbit 1
ERROR		D0 - Datenbit 0
ALF - Auto Line Feed		STB - Stmbe
		0.2 0.000

Figure 3.15: Detailed computer parallel port

By using program command code, when high level logic is sent to the data pin where the LED is connected, that LED will light on. When low level logic is sent to that same pin, the LED will no longer light. The command code has to be done through Microsoft Visual Basic software. For the project, only two pins are taken into consideration. The first click of any of these considered two buttons will ON that related appliance and second click on it will make it OFF. Unfortunately, due to complexity in transmitter circuit, a parallel port can not be connected to transmitter. In order, to make the connection, the project's transmitter has to be redesigned. Because of time constraints this additional objective was not implemented.

CHAPTER 4

RESULTS AND DISCUSSION

The experiment with a single-channel infrared receiver demonstrated in FYP1 semester has shown positive results. Figure 4.1 shows the experimental set-up. By using DC and AC voltages through the circuit implemented on a normal breadboard, it was proven that by universal infrared remote control it is possible to control any of home appliances, by meaning to switch ON and OFF.

Figure 4.1: Single-channel infrared receiver

4.1 Findings

Before proceeding with the actual project system, it was necessary to decode and list the corresponding codes for each input button on the remote control. To do so, another infrared receiver circuit with the computer serial port connection has been used. Figure 4.2 represents the circuit diagram of the infrared receiver that is uses PIC16F84A microcontroller [20].

Figure 4.2: Infrared receiver circuit diagram for decoding the signals

Circuit description

An infrared receiver circuit (see Figure 4.2) has helped a lot for decoding and studying the signals that are being transmitted by remote control. The detailed description of circuit is as follow: An infrared receiver module contains three pins, where pin 1 is connected to +5 V power supply thought resistor (R2). This module can generate false IR strings when there is high frequency distortion on the +5V supply. Hence, 22pF capacitor (C3) is connected in between the +5V and ground to filter the noise received. Pin 3 is connected to the ground and pin 2 to pin RB0 of the PIC16F84A microcontroller as an interrupt-on-change input. By using 22pF capacitors (C1 and C2) and oscillator of 10MHz that are connected to the OSC1 and OSC2 pins of the microcontroller; we establish high speed oscillations. A red LED is inversely connected to pin RB2 of the microcontroller through resistor (R1) to indicate when the circuit is powered-up. The following is MAX232, which is used as a level translation IC for serial I/O communication between the receiver circuit and computer. Pin RB1 and RB5 of PIC16F84A are connected to the CMOS input and CMOS output of MAX232. And then, from MAX232, the RS232 output and RS232 input pins are connected to the receive-in and transmit-out pins of 9-pin female connector, respectively. Initially, PIC16F84A was programmed accordingly in order to be able to

communicate with computer serial port and send the received data to computer (see Appendix C for PIC coding). The circuit has been implemented on the breadboard (see Figure 4.3) and the communication between infrared receiver circuit and PC serial port has been established.

Figure 4.3: Implementation of infrared receiver circuit

But, actually before constructing the circuit on Figure 4.2, PIC16F84A has been programmed with a simple command just to check that circuit is working. To do that, the circuit was simplified (see Figure 4.4) and only one output LED, which is connected to RB3 was tested. The input was the signal received by infrared receiver module. The programming is quite simple (see Appendix D). When any button on the remote control is pressed, an input RB0 receiver signal and understands it as logic 1(high), and therefore it activates output RB3. When the button is pressed again, the output goes low (logic 0). The implementation of circuit is shown in Figure 4.5.

Figure 4.4: Single input-output Infrared receiver circuit

Figure 4.5: Implementation circuit in Figure 4.4

Decoding the signals

An infrared receiver circuit has been implemented on the bread board, and the next step was to decode and study the received signals. As for transmitter, an available universal infrared remote control (Model 'AV10') has been used. In order to check the signal received through serial communication port, the Hyper Terminal program has been used (the location of program: Start => Programs => Accessories => Communications => HyperTerminal). If there is connectivity between receiver circuit and computer, the signal received at the infrared receiver can be read in ASCII code at the Hyper Terminal window. The ASCII code for each input button of remote control has been viewed (see Figure 4.6).

Figure 4.6: HyperTerminal Window

By looking at the long strings of characters received and being displayed on the HyperTerminal Window, it was difficult to recognize the signal. Therefore, as solution, PC remote control software was used to clearly see the ASCII character received through the serial port using its Test Origin feature. The signals obtained for the respective input numbers pressed on the remote control were translated into three data formats: ASCII, decimal and hexadecimal (see Figures 4.7, 4.8 and 4.9).

Figure 4.7: Reading ASCII characters for remote control buttons

Test origin		Ē
Show data coming from:	Data format:	
Serial port	Decimal 💓	1
255 255 255 255 255 255 255 255		
255 223 191 191 255 251 251 255		
255 255 127 127 255 247 247 255		
255 255 255 255 255 255 255 255 255		
255 255 255 255 255 255 255 255		
255 223 255 255 255 255 255 255		
255 255 253 251 251 255 255 255		
255 255 255 127 127 255 255 255		
255 255 255 255 255 255 223 191 255	·	
		1,11,
	e Help	

Figure 4.8: Reading decimal values for remote control buttons

Figure 4.9: Reading hexadecimal values for remote control buttons

The signal codes for each button were obtained as a repetition of strings. The repetition of strings depends on how often and for how long the specific button has been pressed. Therefore, to define the difference between the signal codes of remote control buttons, a single string is enough (see Figure 4.8).

Once the signal codes for each button of remote control are retrieved, they can be used for further applications. One of these applications is to design the Graphical User Interface using Visual Basic and control the Windows applications (e.g. Windows Media player, Winamp, Microsoft Office). The application covers the capability of the receiver to receiver the signals sent from remote control, transmit them to the PC through serial port communication and lastly the interfacing software should start an application if the received ASCII characters match any of the defined characters. Another application is to control the multiple outputs of the receiver. In this case, PIC microcontroller has to be reprogrammed according to the number outputs that has to be controlled. While writing the programming by, for example, C language, any of the data formats (ASCII, decimal, or hexadecimal) can be used. In program these data formats have to be defined as single string.

A universal IR remote control works on the principle that almost all remote control devices work, on a limited number of codes. There may be numerous televisions, stereo and other manufacturers in the world, but they all use the same handful of frequencies and programming codes. By identifying and listing the codes used by individual manufacturers, a universal remote control can duplicate the functions of the original remote. Consumers simply find their make and model of electronic device in the coding list, and then use the universal remote control's function keys to enter the necessary information. Different universal remote control models control different electronic devices, so consumers should choose accordingly. Some models only replace one system, such as television, while others can control almost every electronic or electrical device. If a universal remote control operates more than one system, keypad controls for separate devices should be present. A function key for each system should be depressed first to let the remote know which device to control. Figure 4.10 shows the set-up of universal infrared remote control system. In these transmitter and receiver models, a total of fifteen inputs and related outputs are specified as communication objects. Both transmitter and receiver boards use 9 VDC supply. The lamp is connected through the relay board to output pin number 1 on the receiver. The transmission range is about 30 meters long.

Figure 4.10: Set-up of multi-channel infrared remote control system

39

CHAPTER 5

CONCLUSION AND RECOMMENDATION

This project presents how a universal infrared remote control design is carried out. The main idea of the project is to achieve a simple and cost effective universal infrared remote control system and to control the home appliances such as fan and lamp.

A clear definition on the remote control operation has been acknowledged. Several experiments related to infrared remote control system were conducted and the results were noted. The final outcome of the project is user-friendly and can be extended and applied to various applications with additional features.

It is been a great experience to work on this project. The basic knowledge learned during the early years of study in Electrical and Electronics Engineering was reapplied. Besides, new knowledge have been gained in usage of PIC microcontroller in the circuits, C language programming and burning data into PIC microcontroller. An ability to decode the signals transmitted from remote control is a big part of the project. A new knowledge have been extended also in using the decoded signals for Graphical User Interface through Visual Basic and programming PIC microcontroller to control the outputs.

There are several recommendations based on the completion of the project. An infrared remote control system that is designed in this project can be applied to various applications such as controlling the lights and white board in the new lecture halls of Universiti Teknologi PETRONAS by universal infrared remote control, since they are still controlled by manual switches.

Besides, the system can be upgraded with more operations and easily used at home. The receiver model can be used as a central device and placed somewhere in the corner of the room. All the appliances that are intended to be controlled will require additional relay connections with some extra wires, and accurately arranged without causing any damage to the device.

REFERENCES

Webpage references

- [1] General search on <u>www.google.com</u>
- [2] http://www.crito.uci.edu/noah/hoit/
- [3] http://cosmos.buffalo.edu/t2rerc/pubs/forums/vision/ problem_ statements /universal accessor.htm
- [4] http://www.metrisinst.com/infrared_tutorial.php
- [5] http://trace.wisc.edu/docs/ir_intro/ir_intro.htm
- [6] http://www.mineroff.com/courtroom/infrared.htm
- [7] http://www.ustr.net/infrared/infrared1.shtml
- [8] http://www.rentron.com/Infrared_Remote_Control.htm
- [9] http://www.blitzlogic.com/projects.htm
- [10] http://www.thebytefactory.com/
- [11] http://www.hilgraeve.com/htpe/index.html
- [12] http://www.pcremotecontrol.com/info.html
- [13] http://www.epanorama.net/links/microprocessor.html
- [14] http://electrosofts.com/parallel/
- [15] http://www.webelectricmagazine.com/99/2/uirr.ht
- [16] http://www.bigbruin.com/reviews/imon/
- [17] http://www.ieee.org/ieeexplore
- [18] http://www.discovercircuits.com
- [19] http:/www.talkingelectronics.com

Book and article references

- [20] Asrul Nizar Bin Ahmad. "Remote Control for PC, Project Final Report, Universiti Teknologi Petronas, 2005.
- [21] C.S. Choy. "Infra-red Remote Control System," Proceedings of 1992
 International Symposium on Consumer Electronics, ISCE '92, Beijing, China,
 pp. 173-176, 1992 (IEEE)

- [22] Mohd Khair Hassan, Mohd Amrallah Mustafa and Ikmal Arif Abd. Jalal.
 "Lighting Management System", Department of Electrical & Electronics Engineering, Faculty of Engineering, University Putra Malaysia 43400 Serdang, Selangor, Malaysia (IEEE)
- [23] Wayne Tomasi. "Electronics Communications Systems", Fifth Edition, Devry University, Phoenix, Arizona

APPENDICES

Appendix A: Required component for Univ	ersal infrared remote control transmit	ter's
implementation		

Components	Quantity
R1, 1K8 (brown, grey, red)	1
R2, 1K (brown, black, red)	1
R3, 33 (orange, orange, black)	1
R4, 68 ½ W (blue, grey, black)	1
R5, 1 1/2 W (brown, black, gold)	1
D1,D2, D4 1N4148 diode	3
T1, BC547 NPN transistor	1
T2, BC640 PNP transistor	1
Cl, 100pF ceramic capacitor	1
C2, 220pF ceramic capacitor	1
C3, 10uF electrolytic capacitor	1
C4, C5, 470 uF electrolytic capacitor	2
LD1, LD2, LD3, LD4, LED	4
SAA3004 remote control transmitter, IC1	1
455kHz ceramic resonator	1

Components	Quantity
R1R16, 390 (3-9-1-B)	16
R17, R18, 10K (1-0-3-B)	2
D1D16, 1N4148 diode	16
D17, D18, 1N40004007	2
T1, BC547 NPN transistor	1
Cl, C2 18pF	2
C3, C4, C5 100nF (104, 0.1u)	3
C6, C7, 10uF	2
C8, 1000uF	1
LD1LD16, LED	16
IC1, PIC16C55 XT/P, IR remote control receiver	1
IC2, ULN2003 High Voltage & Current driver, IC2	1
IC3, ULN2803 Octal High Current & Voltage driver	1
MOD1, IR receiver module, carrier 38kHz	1
X1, X-TAL 4.000000 MC - HC-49/U	1
VR1, UA7805 1A- 5V TO-220	1

·

Appendix B: Required component for multi-channel remote control receiver's implementation

#include <16F84A.H> #fuses HS,NOWDT,NOPROTECT,PUT #use DELAY(clock=1000000) #use fast io(A) #use fast io(B) PIN B1 // (output) RS232 serial transmit #define RS232 XMIT PIN B2 // (output) Red LED (low true) #define RED LED PIN_B3 // (output) Infrared LED (low true) #define IR LED PIN_B4 // (input) IR sensor (Sharp IS1U30) #define IR SENSOR #define RS232 RCV PIN_B5 // (input) RS232 serial receive // Macros to simplify I/O operations \parallel #define RED_LED_ON output low(RED LED) #define RED_LED_OFF output_high(RED_LED) #define IR_LED_ON output_low(IR_LED) output_high(IR_LED) #define IR_LED_OFF #define IR_RECEIVED (!input(IR_SENSOR)) // Default TRIS bits: RS232_RCV and IR_SENSOR are inputs, all // others are outputs // 0600110000 #define IRX_B_TRIS // _____ // General definitions // struct { short int RBIF; short int INTF; short int T0IF; short int RBIE; short int INTE; short int TOIE; short int PEIE; short int GIE; } INTCON; #byte INTCON $= 0 \times 0 B$ // general I/O buffer \parallel #define BUF SIZE 32 char gBuf[BUF_SIZE]; ____ // IRDA constants 11 // Port B0 is also an input (jumpered from IR_RECEIVE port) #define IRDA TRIS (IRX B TRIS | 0b0000001) // Minimum IRDA pulse is 1.63 uSec. With 400 nSec instruction

```
// cycle time (10MHz clock), this requires 4+ cycles, ergo 5.
\parallel
#define IRDA_PULSE_CYCLES 5
// The following assume an RTCC prescaler of 4:1, or 1600 nSec tics
ll
#define IRDA_BIT_TICS
                                          65
                                                  // 1/9600 baud
#define IRDA_STARTBIT_TICS 98
                                          // 1.5 * 1/9600 baud
#define IRDA_TIMEOUT_TICS 255
// =====
// IR Output
\parallel
// Wait until the *previous* bit period has expired, then
// write a single bit using IrDA 1.0 protocol: a 1.63 uSec
// pulse for a zero bit, no pulse for a one bit.
\parallel
// Reads low order bit in b
//
void putIRDABit(int b) {
 do {} while (!INTCON.T0IF); // wait for TMR0 to expire
 set rtcc(256-IRDA BIT_TICS); // reset for next bit period
 INTCON.T0IF = 0;
                                  // for 'scope testing
 output high(PIN A2);
                                  // pulse for 0 bit, no pulse for 1
 if (!(b&1)) {
  IR LED ON;
  delay_cycles(IRDA_PULSE_CYCLES-1);
  IR_LED_OFF;
 }
                                 // for 'scope testing
 output_low(PIN_A2);
}
// write a start bit, 8 bits of b (LSB first), and a stop
// bit using IrDA 1.0 protocol.
11
void putIRDAByte(char b) {
 output high(PIN_A1);
 putIRDABit(0);
                         // start bit
 putIRDABit(b);
                         // b0: lsb first
 b>>=1;
                         // b1
 putIRDABit(b);
 b>>=1;
 putIRDABit(b);
                         // b2
 b >>= 1;
                         // b3
 putIRDABit(b);
 b >>= 1;
                         // b4
 putIRDABit(b);
 b>>=1;
                         // b5
 putIRDABit(b);
 b>>=1;
                         // b6
 putIRDABit(b);
 b >>= 1;
 putIRDABit(b);
                         // b7: msb
 putIRDABit(1);
                         // stop bit
 output low(PIN A1);
}
```

```
// Send all the chars in Buf[] via IrDA
//
void putIRDABuf(int count) {
int i;
 INTCON.T0IF = 1;
                                 // makes putIRBit() start immediately
 for (i=0; i<count; i++) {
  putIRDAByte(gBuf[i]);
 }
}
// ==
                                                             _____
// IR Input
//
// Wait for an IR start bit. If no start bit
// was seen within the timeout interval, return
// 0. Otherwise set up RTCC to roll over in the
// middle of the next bit cell and return 1.
//
int findIRDAStart() {
 output high(PIN A1);
 set rtcc(256-IRDA TIMEOUT TICS);
 INTCON.T0IF = 0;
 while (!INTCON.T0IF) {
  if (INTCON.INTF) {
   output high(PIN_A2);
   // caught a start bit. next tic in 1.5 bit cells...
   set_rtcc(256-IRDA_STARTBIT_TICS);
   INTCON.T0IF = 0;
   INTCON.INTF = 0;
   output_low(PIN_A1);
   output_low(PIN_A2);
                                 // start bit seen
   return 1;
  }
 }
 output_low(PIN_A1);
                                 // start bit not seen
 return 0;
}
// Wait for TMR0 to indicate the end of a bit cell. If
// in that time an IR pulse has been received, return a
// zero. Otherwise return a 1
11
int getIRDABit() {
 int seen;
 output high(PIN_A3);
 do {
  output_high(PIN_B7);
  seen = INTCON.INTF;
  output_low(PIN_B7);
 } while (!INTCON.TOIF);
 set_rtcc(256-IRDA_BIT_TICS); // reset for next bit period
 INTCON.T0IF = 0;
 INTCON.INTF = 0;
                                 // reset "pulse seen" flag
 output_low(PIN_A3);
 return !seen;
```

```
}
// Read a single IrDA byte. Assumes the start bit has
// already been detected and that RTCC is set to roll
// over in the middle of the first bit cell.
11
int getIRDAByte() {
 char ch:
 shift right(&ch, 1, getIRDABit());
 return ch;
3
// Read bytes from the IrDA input and store them
// in gBuf[]. Upon entry, it's assumed that a
// start pulse has been detected and that RTCC
// is set up to roll over in the middle of the
// first bit period.
11
// Returns when no start bit is detected within
// the given timeout period OR when the buffer
// is full.
11
int getIRDABuf() {
int count = 0;
 output_high(PIN_A0);
 do {
  gBuf[count++] = getIRDAByte();
  if (count == BUF_SIZE) break;
 } while (findIRDAStart());
 output_low(PIN_A0);
 return count;
ł
____
// RS232 constants
#use rs232(baud=9600, xmit=RS232_XMIT, rcv=RS232_RCV)
// The following assume an RTCC prescaler of 4:1, or 1600 nSec tics
11
#define RS232_TIMEOUT_TICS 255
-----
// RS232 Output
11
// Send all the chars in Buf[] via RS232
//
void putRS232Buf(int count) {
 int i;
```

```
for (i=0; i<count; i++) {
  putc(gBuf[i]);
 }
}
// ______
                                      _____
// RS232 Input
11
// Look for an RS232 start bit, returning 1 if
// a start bit was detected or 0 if no start bit
// was detected in the timeout period.
//
int findRS232Start() {
 set rtcc(256-RS232 TIMEOUT_TICS);
 INTCON.T0IF = 0;
 while (!INTCON.T0IF) {
  if (kbhit()) return 1;
 }
                                   // timed out waiting for RS232 data
 return 0;
}
// Read bytes from the RS232 input and store them
// in gBuf[]. Upon entry, it's assumed that an
// RS232 start bit has been detected.
11
// Returns when no start bit is detected within
// the given timeout period OR when the buffer
// is full.
//
int getRS232Buf() {
 int count = 0;
 do {
  gBuf[count++] = getc();
  if (count == BUF SIZE) break;
 } while (findRS232Start());
 return count;
}
// ==
// Main read/write loop
\parallel
#define IRDA_SEEN
                          1
#define RS232_SEEN
                          0
// loop until an IrDA start bit or a serial start bit
// is detected.
\parallel
// If an IrDA bit is seen, set up RTCC to interrupt
// after 1.5 bit cells and return IRDA_SEEN. Otherwise
// if an RS232 start bit is seen, return RS232_SEEN.
//
int waitForStart() {
```

```
output_high(PIN_B6);
while (1) {
  if (INTCON.INTF) {
   set rtcc(256-IRDA STARTBIT TICS);
   INTCON.T0IF = 0;
   INTCON.INTF = 0;
   output low(PIN B6);
   return IRDA SEEN;
  } else if (kbhit()) {
   output low(PIN B6);
   return RS232 SEEN;
  }
}
}
void main() {
set_tris_a(0x00);
                               // all outputs
set tris_b(IRDA_TRIS);
output low(PIN A0);
output low(PIN A1);
output low(PIN A2);
output low(PIN A3);
output low(PIN A4);
setup_counters(RTCC_INTERNAL, RTCC_DIV_4);
                                       // reality check at startup
RED_LED_ON;
delay_ms(1000);
RED_LED_OFF;
ext_int_edge(H_TO_L);
                               // watch for leading edge of IR pulse
printf("Decoding the remote control V1.1\r\n");
while (1) {
 if (waitForStart() == IRDA_SEEN) {
   putRS232Buf(getIRDABuf());
  } else {
   putIRDABuf(getRS232Buf());
  }
 }
```

```
#include <16F84A.h>
#use delay(clock=1000000)
#fuses hs,nowdt
int a;
void main()
{
 loop1:
 a = input(PIN_B0);
 if(a==1)
 {
   do
   {
     output_high(PIN_B3);
   }
   while(!input(PIN_B0));
   goto loop1;
  }
 if(a!=1)
 {
   output_low(PIN_B3);
   goto loop1;
 }
}
```

Appendix D: PIC16F84A C language coding for Figure 4.3

Appendix E: Gantt Charts

Gantt chart for the First Semester of 2 Semester Final Year Project

No.	Detail/ Week	1	7	3	4	5	9	7	8	6	10	11	12	13	14
Γ	Selection of Project Topic														
	-Propose Topic														
	-Topic assigned to students														
	Preliminary Research Work														
	-Introduction														
	-Objective														
	-List of references/literature	-													
	-Project planning														
, ,	3 Submission of Preliminary Report	•													
4	1 Project Work														
	-Reference/Literature														
	-Practical/Laboratory Work														
41	5 Submission of Progress Report						•								
ľ	5 Project work continue											- - -			
	-Practical/Laboratory Work														
			:												
	7 Submission of Interim Report Final Draft										•				
							-								
~ ا	8 Oral Presentation											•			
		-													
,	9 Submission of Interim Report												•		
				ţ	•	•									
	•			Kepor	t submis	suous									

53

Gantt chart for the Second Semester of 2 Semester Final Year Project

9	Detail/ Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1															
[I Project Work Continue			a (f. 194											
	-Practical/Laboratory Work														
	2 Submission of Progress Report 1		•												
	3 Project Work Continue							5 							
1	-Practical/Laboratory Work														
	4 Submission of Progress Report 2							•							
[]	5 Project work continue														
	-Practical/Laboratory Work														
									Ŧ						
-	6 Submission of Dissertation Final Draft											•			
Γ	7 Oral Presentation												•		
								-				-			
	8 Submission of Project Dissertation													•	

Report submissions Process 54

Appendix F: Data sheets

IS1U60/IS1U60L

Features

- 1. 1-package design owing to adoption of OPIC
- 2. Compact
- (Volume : About 1/8 compared with GP1U58X)
- 3. B.P.F. (Band Pass Frequency) : (TYP. 38kHz)
- 4. Aspherical lens

Applications

1. Audio equipment

2. Cameras

Absolute Maximun	n Ratings		(Ta=25°C)
Parameter	Symbol	Rating	Unit
Supply voltage	Vcc	0 to 6.0	v
*1Operating temperature	T opr	- 10 to +60	°C
Storage temperature	T stg	- 20 to +70	°C
*2Soldering temperature	T sol	260	°C

*1 No dew condensation is allowed.

*2 For 5 seconds

Sensors with 1-Package Design of Remote Control Detecting Functions owing to OPIC

* "OPIC" (Optical IC) is a trademark of the SHARP Corporation.

An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a single chip.

Recommended Operating Conditions

Parameter	Symbol	Recommended operating conditions	Unit
Operating supply voltage	Vcc	4.7 to 5.3	v

" In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device."

IS1U60/IS1U60L

Electrical Characteristics

(Ta=25°C, V_{CC} =+5V)

Parameter	Symbol	Conditions	MIN.	TYP,	MAX.	Unit
Dissipation current	Icc	No input light	-	2.8	4.5	mA
High level output voltage	V _{OH}	*3, Output terminal OPEN	Vcc- 0.2	-	-	v
Low level output voltage	Vol	*3, *4	-	0.45	0.6	v
High level pulse width	T_I	*3	400	-	800	μs
Low level pulse width	Τ2		400	-	800	μs
B.P.F. center frequency	fo	· · · · · · · · · · · · · · · · · · ·	-	38	-	kHz
Linear ultimate distance	L	ϕ , $\theta = 0^\circ$, $E_e < 10 \text{ lx}$	5.0		-	m
Linear ultimate distance	Lı	$ \phi = \pm 30^{\circ} (\theta = 0^{\circ}) \theta = \pm 15^{\circ} (\phi = 0^{\circ}) E_{c} < 10 \text{ lx} $	3.0	-	-	m

*3 The burst wave as shown in the following figure shall be transmitted. *4 Pull-up resistance : $2.2k\Omega$ *5 By SHARP transmitter

Internal Block Diagram

SHARP

Performance

Using the transmitter shown in Fig. 1, the output signal of the light detecting unit is good enough to meet the following items in the standard optical system in Fig. 2. (1) Linear reception distance characteristics

When L=0.2 to 5 m, Ee < 10 lx (*4) and $\phi = 0^{\circ}$ in Fig. 2, the output signal shall meet the electrical characteristics in the attached list. (2) Sensitivity angle reception distance characteristics

When L=0.2 to 3 m, Ee < 10 lx (*4) and $\phi <= 30^{\circ}$ in the direction X and $\theta = 0^{\circ}$ in the direction Y in Fig. 2, the output signal shall meet the electrical characteristics in the attached list Further, the electrical characteristics shall be met when L=0.2 to 5 m, Ee < 10 lx (*4) and $\phi = 0^{\circ}$ in the direction X and $\theta <= 15^{\circ}$ in the direction Y.

*4 It refers to detector face illuminance.

In the above figure, the transmitter should be set so that the output Vout can be $40mV_{P-P}$. However, the **PD49Pi** to be used here should be of the short-circuit current $I_{SC}=2.6 \mu$ A at Ev=100 lx. (Ev is an illuminance by CIE standard light source A (tungsten lamp).)

Fig. 2 Standard optical system

SHARP

Angular displacement ø

Fig. 5 AEHA (Japan Association of Electrical Home Appliances) Code Pulse Width Characteristics (1st Bit) (TYP.) for Reference

(Conditions)

V_{CC}=5V, Ta=RT, φ =0°, Ee < 10 lx

SHARP

Precautions for Operation

- (1) Use the light emitting unit (remote control transmitter), in consideration of performance, characteristics, operating conditions of light emitting device and the characteristics of the light detecting unit.
- (2) Pay attention to a malfunction of the light detecting unit when the surface is stained with dust and refuse.
 - Care must be taken not to touch the light detector surface.
 - · Conduct cleaning as follows.
- (3) Cleaning

Solvent dip cleaning : Solvent temperature of 45 °C max., dipping time : Within 3 minutes

Ultrasonic cleaning : Elements are affected differently depending on the size of cleaning bath, ultrasonic output, time,

size of PWB and mounting method of elements.

Conduct trial cleaning on actual operating conditions in advance to make sure that no problem results.

- Use the following solvents only.
- Solvents : Ethyl alcohol, methyl alcohol or isopropyl alcohol

(4) To avoid the electrostatic breakdown of IC, handle the unit under the condition of grounding with human body, soldering iron, etc.

- (5) Do not apply unnecessary force to the terminal.
- (6) Example of recommended external circuit (mount outer mounting parts near the sensor as much as possible.)

xial Lead tandard Recovery Rectifiers

his data sheet provides information on subminiature size, axial lead unted rectifiers for general-purpose low-power applications.

chanical Characteristics

Case: Epoxy, Molded

Weight: 0.4 gram (approximately)

Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable

Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16" from case

Shipped in plastic bags, 1000 per bag.

Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to the part number

Polarity: Cathode Indicated by Polarity Band

Marking: 1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006, 1N4007

XIMUM RATINGS

Rating	Symbol	1N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	800	1000	Volts
Non-Repetitive Peak Reverse Voltage (halfwave, single phase, 60 Hz)	VRSM	60	120	240	480	720	1000	1200	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	560	700	Volts
Average Rectified Forward Current (single phase, resistive load, 60 Hz, see Figure 8, T _A = 75°C)	1 ₀		<u></u>	<u> </u>	1.0				Amp
Non-Repetitive Peak Surge Current (surge applied at rated load conditions, see Figure 2)	IFSM			30) (for 1 cyc	le)			Amp
perating and Storage Junction Temperature Range	Tj Tstg			_	- 65 to +17	5			°C

ECTRICAL CHARACTERISTICS*

Rating	Symbol	Тур	Max	Unit
laximum Instantaneous Forward Voltage Drop ($i_F = 1.0 \text{ Amp}, T_J = 25^{\circ}C$) Figure 1	٧F	0.93	1.1	Volts
laximum Full–Cycle Average Forward Voltage Drop (I _O = 1.0 Amp, T _L = 75°C, 1 inch leads)	VF(AV)		0.8	Volts
Taximum Reverse Current (rated dc voltage) $(T_J = 25^{\circ}C)$ $(T_J = 100^{\circ}C)$	^I R	0.05 1.0	10 50	μΑ
laximum Full-Cycle Average Reverse Current (I _O = 1.0 Amp, T _L = 75°C, 1 inch leads)	^I R(AV)		30	μA

licates JEDEC Registered Data

ferred devices are Motorola recommended choices for future use and best overall value.

- 5

PACKAGE DIMENSIONS

NOTES:

1. ALL RULES AND NOTES ASSOCIATED WITH

JEDEC DO-41 OUTLINE SHALL APPLY. 2. POLARITY DENOTED BY CATHODE BAND. 3. LEAD DIAMETER NOT CONTROLLED WITHIN F DIMENSION

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.07	5.20	0.160	0.205	
В	2.04	2.71	0.080	0.107	
D	0.71	0.86	0.028	0.034	
F		1.27	ł	0.050	
к	27.94		1.100	1	

CASE 59-03 (DO-41) **ISSUE M**

otorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding e suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and ecifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola its sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" ust be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of thers. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other pilications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola ising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that otorola was negligent regarding the design or manufacture of the part. Motorola and **(A)** are registered trademarks of Motorola. Inc. is an Equal otorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal pportunity/Affirmative Action Employer.

ow to reach us:

SA/EUROPE/Locations Not Listed: Motorola Literature Distribution; O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447 Mfax is a trademark of Motorola, Inc.

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488

ax™: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 ITERNET: http://motorola.com/sps

0

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, - US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

MOTOROLA

1N4001/D

DISCRETE SEMICONDUCTORS

1N4148; 1N4448 High-speed diodes

Product specification Supersedes data of 1999 May 25 2002 Jan 23

Philips Semiconductors

High-speed diodes

Product specification

1N4148; 1N4448

EATURES

Hermetically sealed leaded glass SOD27 (DO-35) package

High switching speed: max. 4 ns

General application

Continuous reverse voltage: max. 75 V

Repetitive peak reverse voltage: max. 100 V

Repetitive peak forward current: max. 450 mA.

PPLICATIONS

High-speed switching.

IMITING VALUES

) accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
/ _{RRM}	repetitive peak reverse voltage		-	100	V
/ _R	continuous reverse voltage		-	75	V
 F	continuous forward current	see Fig.2; note 1	-	200	mA
FRM	repetitive peak forward current		-	450	mA
FSM	non-repetitive peak forward current	square wave; T _j = 25 °C prior to surge; see Fig.4			
		t = 1 μs	-	4	А
		t = 1 ms	-	1	А
		t = 1 s	-	0.5	А
>tot	total power dissipation	T _{amb} = 25 °C; note 1	-	500	mW
Γ _{stg}	storage temperature		-65	+200	°C
<u> </u>	junction temperature		-	200	°C

ote

. Device mounted on an FR4 printed circuit-board; lead length 10 mm.

The 1N4148 and 1N4448 are high-speed switching diodes fabricated in planar technology, and encapsulated in hermetically sealed leaded glass SOD27 (DO-35) packages.

The diodes are type branded.

Fig.1 Simplified outline (SOD27; DO-35) and symbol.

DESCRIPTION
High-speed diodes

1N4148; 1N4448

LECTRICAL CHARACTERISTICS

= 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
/ _F	forward voltage	see Fig.3			
	1N4148	l _F = 10 mA	-	1	V
	1N4448	l _F = 5 mA	0.62	0.72	V
		l _F = 100 mA	-	1	V
२	reverse current	V _R = 20 V; see Fig.5		25	nA
		V _R = 20 V; T _j = 150 °C; see Fig.5	-	50	μA
२	reverse current; 1N4448	V _R = 20 V; T _j = 100 °C; see Fig.5	-	3	μA
2 _d	diode capacitance	$f = 1 MHz; V_R = 0; see Fig.6$	-	4	pF
7	reverse recovery time	when switched from $I_F = 10$ mA to $I_R = 60$ mA; $R_L = 100 \Omega$; measured at $I_R = 1$ mA; see Fig.7	—	4	ns
/ _{fr}	forward recovery voltage	when switched from I_F = 50 mA; t_r = 20 ns; see Fig.8		2.5	V

HERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
λth j-tp	thermal resistance from junction to tie-point	lead length 10 mm	240	K/W
₹ _{th j-a}	thermal resistance from junction to ambient	lead length 10 mm; note 1	350	K/W

ote

Device mounted on a printed circuit-board without metallization pad.

DISCRETE SEMICONDUCTORS

Product specification Supersedes data of 1997 Mar 04 1999 Apr 15

Philips Semiconductors

NPN general purpose transistors

BC546; BC547

EATURES

Low current (max. 100 mA) Low voltage (max. 65 V).

PPLICATIONS

General purpose switching and amplification.

ESCRIPTION

PN transistor in a TO-92; SOT54 plastic package. NP complements: BC556 and BC557.

PINNING

PIN	DESCRIPTION
1	emitter
2	base
3	collector

MITING VALUES

accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
/ _{СВО}	collector-base voltage	open emitter			
	BC546		-	80	v
	BC547		-	50	V
/ _{CEO}	collector-emitter voltage	open base			
	BC546		-	65	V
	BC547		-	45	V
/ _{EBO}	emitter-base voltage	open collector			
	BC546		-	6	V
	BC547		-	6	V
c	collector current (DC)		-	100	mA
см	peak collector current		-	200	mA
BM	peak base current		-	200	mA
tot	total power dissipation	T _{amb} ≤ 25 °C; note 1	_	500	mW
- stg	storage temperature		-65	+150	°C
	junction temperature		-	150	°C
amb	operating ambient temperature		-65	+150	°C

ote

. Transistor mounted on an FR4 printed-circuit board.

NPN general purpose transistors

BC546; BC547

HERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
₹th j-a	thermal resistance from junction to ambient	note 1	0.25	K/mW

ote

Transistor mounted on an FR4 printed-circuit board.

HARACTERISTICS

= 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
СВО	collector cut-off current	I _E = 0; V _{CB} = 30 V	-	-	15	nA
		I _E = 0; V _{CB} = 30 V; T _j = 150 °C	_	-	5	μA
EBO	emitter cut-off current	$I_{C} = 0; V_{EB} = 5 V$	-	-	100	nA
1 _{FE}	DC current gain	I _C = 10 μA; V _{CE} = 5 V;				
	BC546A	see Figs 2, 3 and 4	-	90	-	
	BC546B; BC547B		-	150	-	
	BC547C		-	270	-	
	DC current gain	I _C = 2 mA; V _{CE} = 5 V;				
	BC546A	see Figs 2, 3 and 4	110	180	220	
	BC546B; BC547B		200	290	450	
	BC547C		420	520	800	
	BC547		110		800	
	BC546		110	_	450	
/ _{CEsat}	collector-emitter saturation	I _C = 10 mA; I _B = 0.5 mA	-	90	250	mV
	voltage	I _C = 100 mA; I _B = 5 mA	_	200	600	mV
/ _{BEsat}	base-emitter saturation voltage	I _C = 10 mA; I _B = 0.5 mA; note 1	—	700	-	mV
		I _C = 100 mA; I _B = 5 mA; note 1	—	900	-	mV
/ _{BE}	base-emitter voltage	I _C = 2 mA; V _{CE} = 5 V; note 2	580	660	700	mV
		I _C = 10 mA; V _{CE} = 5 V	—	-	770	mV
50	collector capacitance	I _E = i _e = 0; V _{CB} = 10 V; f = 1 MHz	-	1.5	-	pF
2 _e	emitter capacitance	$I_{C} = i_{c} = 0$; $V_{EB} = 0.5 V$; f = 1 MHz	-	11		pF
	transition frequency	I _C = 10mA; V _{CE} = 5 V; f = 100 MHz	100		-	MHz
-	noise figure	l_{C} = 200 μA; V _{CE} = 5 V; R _S = 2 kΩ; f = 1 kHz; B = 200 Hz	-	2	10	dB

otes

. V_{BEsat} decreases by about 1.7 mV/K with increasing temperature.

. $\,V_{BE}$ decreases by about 2 mV/K with increasing temperature.

DISCRETE SEMICONDUCTORS

Product specification Supersedes data of 1999 Apr 23 2001 Oct 10

Philips Semiconductors

PNP medium power transistors

BC636; BC638; BC640

HERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
	thermal resistance from junction to ambient	note 1	150	K/W

lote

. Transistor mounted on an FR4 printed-circuit board.

HARACTERISTICS

i = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
СВО	collector cut-off current	I _E = 0; V _{CB} = -30 V		-100	nA
		I _E = 0; V _{CB} = -30 V; T _j = 150 °C	-	-10	μA
EBO	emitter cut-off current	I _C = 0; V _{EB} = -5 V	-	-100	nA
JFE	DC current gain	V _{CE} = -2 V; see Fig.2			
		l _c = -5 mA	63	-	
		I _C = -150 mA	63	250	
		I _C = -500 mA	40	-	
	DC current gain	$I_{C} = -150 \text{ mA}; V_{CE} = -2 \text{ V}; \text{ see Fig.2}$			
	BC636-10		63	160	
	BC636-16; BC638-16; BC640-16		100	250	
V _{CEsat}	collector-emitter saturation voltage	I _C = -500 mA; I _B = -50 mA	-	-0.5	V
√ _{BE}	base-emitter voltage	$I_{C} = -500 \text{ mA}; V_{CE} = -2 \text{ V}$	-	–1	V
T	transition frequency	$I_{C} = -50 \text{ mA}; V_{CE} = -5 \text{ V}; f = 100 \text{ MHz}$	100	-	MHz
h _{FE1} h _{FE2}	DC current gain ratio of the complementary pairs	I _C = 150 mA; V _{CE} = 2 V	_	1.6	

BC636; BC638; BC640

PNP medium power transistors

EATURES

High current (max. 1 A) Low voltage (max. 80 V).

PPLICATIONS

Audio and video amplifiers.

ESCRIPTION

'NP medium power transistor in a TO-92; SOT54 plastic ackage. NPN complements: BC635, BC637 and BC639.

PINNING

.

PIN	DESCRIPTION
1	base
2	collector
3	emitter

Fig.1 Simplified outline (TO-92; SOT54) and symbol.

IMITING VALUES

1 accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
/ _{Сво}	collector-base voltage	open emitter			
	BC636		-	-45	v
	BC638		_	-60	v
	BC640		_	100	V
V _{CEO}	collector-emitter voltage	open base			
	BC636		_	-45	V
	BC638		_	-60	v
	BC640		_	-80	V
√ _{EBO}	emitter-base voltage	open collector	-	-5	V
С	collector current (DC)		—	-1	A
CM	peak collector current		—	-1.5	A
вм	peak base current			-200	mA
, tot	total power dissipation	T _{amb} ≤ 25 °C; note 1	-	0.83	W
Γ _{stg}	storage temperature		-65	+150	°C
Гj	junction temperature		-	150	°C
Г _{атb}	operating ambient temperature		-65	+150	°C

ote

. Transistor mounted on an FR4 printed-circuit board.

PIC16F8X

18-pin Flash/EEPROM 8-Bit Microcontrollers

Devices Included in this Data Sheet:

- PIC16F83
- PIC16F84
- PIC16CR83
- PIC16CR84
- Extended voltage range devices available (PIC16LF8X, PIC16LCR8X)

High Performance RISC CPU Features:

- Only 35 single word instructions to learn
- All instructions single cycle except for program branches which are two-cycle
- Operating speed: DC 10 MHz clock input DC - 400 ns instruction cycle

Device	Program Memory (words)	Data RAM (bytes)	Data EEPROM (bytes)	Max. Freq (MHz)
PIC16F83	512 Flash	36	64	10
PIC16F84	1 K Flash	68	64	10
PIC16CR83	512 ROM	36	64	10
PIC16CR84	1 K ROM	68	64	10

- · 14-bit wide instructions
- · 8-bit wide data path
- 15 special function hardware registers
- Eight-level deep hardware stack
- · Direct, indirect and relative addressing modes
- · Four interrupt sources:
- External RB0/INT pin
- TMR0 timer overflow
- PORTB<7:4> interrupt on change
- Data EEPROM write complete
- 1000 erase/write cycles Flash program memory
- 10,000,000 erase/write cycles EEPROM data memory
- · EEPROM Data Retention > 40 years

Peripheral Features:

- 13 I/O pins with individual direction control
- High current sink/source for direct LED drive
 - 25 mA sink max. per pin
 - 20 mA source max. per pin
- TMR0: 8-bit timer/counter with 8-bit programmable prescaler

Special Microcontroller Features:

- In-Circuit Serial Programming (ICSP™) via two pins (ROM devices support only Data EEPROM programming)
- Power-on Reset (POR)
- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Code-protection
- · Power saving SLEEP mode
- · Selectable oscillator options

CMOS Flash/EEPROM Technology:

- · Low-power, high-speed technology
- · Fully static design
- Wide operating voltage range:
 Commercial: 2.0V to 6.0V
- Industrial: 2.0V to 6.0V
- Low power consumption:
 - < 2 mA typical @ 5V, 4 MHz
- 15 μA typical @ 2V, 32 kHz
- < 1 μA typical standby current @ 2V

© 1998 Microchip Technology Inc.

DS30430C-page 1

PIC16C5x

PIC16C5x Pin-Outs

The following diagrams show the 18-pin and 28-pin PIC16C5x pin-outs:

Pin	Function
	I/O Port A
RB0 - RB7	I/O Port B
RC0 - RC7	I/O Port C (only on 28-pin PIC's)
RTCC	Real-time clock/counter input
MCLR	Master clear (reset)
OSC1	Oscillator input
OSC2/CLKOUT	Oscillator output (OSC/4)
Vdd	Power supply
Vss	Ground
N/C	No connection

TechTools • PIC Mini Data Sheets • Page 5

VIC16C5x Microcontrollers

he table below shows the various PIC16C5x devices available:

PART #	ERASE	(E)PROM	RAM	I/O	SUPPLY	OSC.	FREQ.
PIC16C54-RC/P PIC16C54-XT/P PIC16C54-HS/P PIC16C54-LP/P PIC16C54/JW	No No No Yes	512 x 12 512 x 12 512 x 12 512 x 12 512 x 12 512 x 12	32 x 8 32 x 8 32 x 8 32 x 8 32 x 8 32 x 8	12 12 12 12 12	3.00 - 6.25 V 3.00 - 6.25 V 4.50 - 5.50 V 2.50 - 6.25 V 3.00 - 5.50 V	RC XTAL XTAL XTAL RC,XTAL	DC - 4 MHz DC - 4 MHz DC - 20 MHz DC - 20 MHz DC - 40 kHz DC - 20 MHz
PIC16C55-RC/P PIC16C55-XT/P PIC16C55-HS/P PIC16C55-LP/P PIC16C55/JW	No No No Yes	512 x 12 512 x 12 512 x 12 512 x 12 512 x 12 512 x 12	32 x 8 32 x 8 32 x 8 32 x 8 32 x 8 32 x 8	20 20 20 20 20	3.00 - 6.25 V 3.00 - 6.25 V 4.50 - 5.50 V 2.50 - 6.25 V 3.00 - 5.50 V	RC XTAL XTAL XTAL RC,XTAL	DC - 4 MHz DC - 4 MHz DC - 20 MHz DC - 20 MHz DC - 40 kHz DC - 20 MHz
PIC16C56-RC/P PIC16C56-XT/P PIC16C56-HS/P PIC16C56-LP/P PIC16C56/JW	No No No Yes	1K x 12 1K x 12 1K x 12 1K x 12 1K x 12 1K x 12	32 x 8 32 x 8 32 x 8 32 x 8 32 x 8 32 x 8	12 12 12 12 12	3.00 - 6.25 V 3.00 - 6.25 V 4.50 - 5.50 V 2.50 - 6.25 V 3.00 - 5.50 V	RC XTAL XTAL XTAL RC,XTAL	DC - 4 MHz DC - 4 MHz DC - 20 MHz DC - 20 kHz DC - 40 kHz DC - 20 MHz
PIC16C57-RC/P PIC16C57-XT/P PIC16C57-HS/P PIC16C57-LP/P PIC16C57/JW	No No No Yes	2K x 12 2K x 12 2K x 12 2K x 12 2K x 12 2K x 12	80 x 8 80 x 8 80 x 8 80 x 8 80 x 8 80 x 8	20 20 20 20 20 20	3.00 - 6.25 V 3.00 - 6.25 V 4.50 - 5.50 V 2.50 - 6.25 V 3.00 - 5.50 V	RC XTAL XTAL XTAL RC,XTAL	DC - 4 MHz DC - 4 MHz DC - 20 MHz DC - 40 kHz DC - 20 MHz
PiC16LC58A-04/P PiC16C58A-04/P PiC16C58A-20/P PiC16C58A/JW	No No No Yes	2K x 12 2K x 12 2K x 12 2K x 12 2K x 12	80 x 8 80 x 8 80 x 8 80 x 8 80 x 8	12 12 12 12	2.50 - 6.25 V 3.00 - 6.25 V 3.00 - 6.25 V 3.00 - 6.25 V	RC,XTAL XTAL XTAL RC,XTAL	DC - 4 MHz DC - 4 MHz DC - 20 MHz DC - 20 MHz DC - 20 MHz

^veripheral Features

n addition to the obvious features shown above, the PIC's have a number of not-so-obvious features and qualities that are important:

- Fully static operation, allowing you to stop the oscillator and then restart where you left off, with all registers intact. This is useful in applications where power conservation is important.
- Individual I/O pins are programmable as inputs or outputs. Sink current: 25 mA per pin, 50 mA per port Source current: 20 mA per pin, 40 mA per port
- 2-level hardware stack.

 Real-Time Clock/Counter (RTCC). The RTCC is an 8-bit counter, which can be driven by the RTCC pin or by the PIC's internal instruction clock (OSC/4). If the external pin is used, the counter can be set to increment on low-to-high or high-to-low transitions.

Normally, the RTCC is driven directly by either source. For higher count values, though, the prescaler can be used to effectively increase the RTCC to 16 bits.

The RTCC signal source and trigger edge are determined by bits in the Option register (see next section for register descriptions).

See the Microchip PIC16C5x data sheet for details concerning timing characteristics for the RTCC's external input.

 Watchdog Timer (WDT). When enabled, the watchdog timer is used to reset the PIC if the program has "crashed." Normally, a CLR WDT instruction in the main loop of your program would prevent the watchdog timer from ever timing out and resetting the PIC. However, if the program was not executing properly, the watchdog timer would reset the PIC.

The watchdog timer works from an internal oscillator, allowing it to run even if the PIC's main oscillator has stopped. The watchdog timer's normal time-out period is 18 ms, but can be increased to several seconds by using the post-scaler.

 Prescaler/Post-scaler. This 8-bit counter can be assigned to the RTCC (as a prescaler) or the watchdog timer (as a post-scaler).
 For simplicity, this counter is normally referred to as the "prescaler," even when it's used as a post-scaler.

When assigned to the RTCC, the prescaler is placed between the RTCC and its clock source. The clock signal which would normally increment the RTCC, increments the prescaler. When the prescaler overflows, the RTCC is incremented. Increment ratios from 1:2 - 1:256 can be used, effectively giving you a 16-bit RTCC.

When assigned to the watchdog timer, the prescaler is placed between the watchdog timer and the PIC's reset circuit. The watchdog timer signal which would normally reset the PIC,

increments the prescaler. When the prescaler overflows, the PIC is reset. Delay ratios from 1:1 - 1:128 can be used, allowing the watchdog period to be set from 18 ms to several seconds.

The prescaler setup is determined by bits in the Option register *(see the next section for register descriptions).*

- Code-protect fuse. This is a special fuse that can be blown during programming; once the fuse is blown, the PIC's EPROM cannot be read.
- Power saving sleep mode. For applications where low power consumption is important, the PIC has a sleep mode. This mode is entered by executing a SLEEP instruction, which shuts down the oscillator. I/O pins maintain whatever state they had when the sleep mode was entered.

To awaken the PIC from sleep mode, a reset must be performed, either from the MCLR pin or from a watchdog timer time-out.

Once the PIC is running, the "PD" and "TO" bits in the Status register can be read to determine 1) if the PIC was powered up or awakened from sleep, and 2) if the wake-up was caused by an external reset or by the watchdog timer.

 Programmable oscillator type. The PIC can run with any of four oscillator types, as shown below:

LP:	Low power crystal	(DC - 40 KHz)
RC:	Resistor & capacitor	(DC - 4 MHz, ± 13-39 percent)
XT:	Crystal or resonator	(100 KHz - 4 MHz)
HS:	High speed crystal	(4 - 20 MHz)

The oscillator type is determined by two EPROM bits, which are normally programmed at the factory. The RC and erasable PIC's, however, can be user-programmed for any of the oscillator types. Keep in mind, though, that RC-type PIC's are only tested for use with RC oscillators.

PIC16C5x

Page 8 • PIC Mini Data Sheets • TechTools

Internal Architecture

Internally, the PIC is based on a register file concept with separate busses and memories for data and instructions (sometimes called "Harvard architecture"). The data bus and memory (RAM) are 8-bits wide, while the program bus and memory (EPROM) are 12-bits wide. All PIC instructions and their operands fit into a single 12-bit word, resulting in smaller code and faster execution. PIC programs are typically 33-50 percent smaller than programs written for 8-bit processors. And most instructions execute in a single instruction cycle (4 clock cycles); instructions that affect the program counter take an extra instruction cycle, for a total of 8 clock cycles. To further increase speed, the PIC uses overlapping instruction fetch and execution cycles; while one instruction is executed, the following instruction is being read from program memory. Because of its efficiency, the PIC can deliver 5 MIPS execution with a clock frequency of 20 MHz.

PIC16C5x Registers

The following table shows the various PIC16C5x registers; the function of each register is described in the following pages.

Register	Function
00h	Indirect addressing register
01h	Real-time clock/counter (RTCC)
02h	Program counter (PC)
-	Stack registers (2)
03h	Status register
04h	File select register (FSR)
05h	I/O Port A
06h	I/O Port B
07h	I/O Port C
-	TRISA
-	TRISB
-	TRISC
-	Wregister
-	Option register
08h - 0Fh	General purpose registers
10h - 1Fh	General purpose registers (4 banks in PIC16C57)

TechTools • PIC Mini Data Sheets • Page 9

PIC16C5x

	BANK 0	BANK 1*	BANK 2*	BANK 3*
	W register	W register-	W register	W register av
	Stack (2)	Stack (2)	Stack (2)	Stack (2)
	Option register	Option register	Option register	•Option register
	TRISA	TRISA	TRISA	TRISA
	TRISB	TRISB	TRISE	TRISB
	TRISC	, TRISC	TRISC.	TRISC
)0h	Indirect addr.	Indirect addr.	Indirect addr.	Indirect addr
)1h	RTCC	RTCC	RTCC	RTCC
)2h	PC	PC	PC	PC
I3h	STATUS	STATUS	STATUS	STATUS
I4h	FSR	FSR.	FSR	ESR
ŀ5h	PORT A	PORTA	BORT A	PORT A
i6h	PORT B	PORTB	PORTB	PORTB
∍7h	PORT C	PORTC	PORTC	PORT C
⊦8h				
	8	and the second second second		
	general	reads/writes	reads/writes	··· reads/writes
	purpose	registers	registers	registers
ĺ	registers	08h - 0Fh.,.		14 1 08h - 0Fh
	(RAM)			and the second
Fh				a far her her her her her her her her her he
0h		30h	50h	70h
	16	16	16	16
	general	general	general	general
	purpose	purpose	purpose	purpose
	registers	registers	registers	registers
	(RAM)	(RAM)*	(RAM)*	(RAM)*
Fh		3Fh	5Fh	7Fh
	(00h - 1Fh)	(20h - 3Fh)*	(40h - 5Fh)*	(60h - 7Fh)*

* Available on PIC16C57 only.

'age 10 • PIC Mini Data Sheets • TechTools

The following text describes the function of each register. For some of the registers, you'll notice the designation "xxh" following the register name. This indicates the address of the register. Registers with no address cannot be addressed directly.

 Indirect Addressing Register (00h). This register doesn't actually exist. Naming register 00h in an instruction causes the PIC to read the register *pointed to* by register 04h (file select register). For example, the instruction "ADD 00h, #05" will *not* add five to register 00h; instead, it will add five to whatever register is *pointed to* by the address in register 04h.

If register 00h itself is read through register 04h (04h contains "00h"), 00h will be returned. If register 00h is written to through register 04h, the PIC will execute a NOP.

- Real-Time Clock/Counter (01h: RTCC). This is the location of the RTCC (see previous section for a description). Although its contents may change in response to a clock signal, the RTCC register may be read and written just as any other register.
- Program Counter (02h: PC). The program counter holds the address for the instruction currently being executed. The program counter and its associated two-level stack are 9-11 bits wide, depending on the EPROM size of the PIC being used.

Certain instructions affect the program counter, as shown below:

GOTO (Microchip) and **JMP** (Parallax) load the lower 9 bits of the program counter. In the PIC16C56 and '57, which have more than 512 words of EPROM, the upper two bits of the program counter are loaded with the page select bits from the status register. The Parallax instruction set includes a convenient instruction, **LJMP**, which sets the page select bits before executing the jump.

CALL loads the lower 8 bits of the program counter and clears the ninth bit. The program counter + 1 is pushed into the stack. In the '56 and '57, the upper two bits of the program counter are loaded with the page select bits from the status register. The Parallax instruction set includes **LCALL**, which sets the page select bits before executing the jump.

RETLW (Microchip) and **RETW** (Parallax) load the program counter with the address most recently pushed on the stack by a CALL instruction.

Instructions which load a computed value into the program counter, such as **JMP PC+W**, load the value into the lower 8 bits. The ninth bit of the program counter is cleared. In the PIC16C56 and '57, the upper two bits of the program counter are loaded with the page select bits from the status register.

It should be noted that because the ninth bit of the program counter is cleared by CALL instructions and computed value instructions (such as JMP PC+W), all subroutine calls and computed jumps must have their destination in the first 256 locations of any page (each page is 512 words).

As you may have noticed when reading the JMP and CALL paragraphs above, the program counter may not be loaded as expected when using a PIC with more than 512 words of EPROM. This is because the upper two bits of the program counter are loaded with the page select bits from the status register. If your program continues into the second page of memory and executes a JMP without having properly set the page select bits, execution may jump to another page (probably not what you want). To avoid this mistake, make sure to set the page select bits for the correct page. Or, use the Parallax "long" instructions, which do this for you (long instructions are LCALL, LJMP, and LSET).

 Stack. The stack is a pair of registers which are used for calling and returning from subroutines. The stack is affected by two instructions:

When a **CALL** is executed, the first stack register is copied into the second register, then the program counter + 1 (the return address) is loaded into the first register. The original contents of the second register are lost. Finally, the program counter is loaded with the subroutine address, at which point execution continues.

Page 12 • PIC Mini Data Sheets • TechTools

When a **RETLW** (Microchip) or **RETW** (Parallax) is executed, the first stack register is copied into the program counter, then the second register is copied into the first register. Execution continues at the address loaded from the first stack register.

 Status Register (03h). This register contains the status of the PIC's arithmetic logic unit (ALU), the reset status, and the page select bits for PIC's with more than 512 words of EPROM.

The function of each bit in the status register is shown below:

. .

Bit	Function
0	Carry bit (C). Set if an addition or subtraction causes an overflow from the most significant bit of the result- ant (bit 7). Subtraction is included because it's ex- ecuted by adding the two's complement.
	Also used by rotate instructions, which rotate the contents of a register and copy the low or high order bit of the register into the carry bit.
1	Digit carry bit (DC). Set if an addition or subtraction causes an overflow from the 4th low order bit (bit 3). Digit carry indicates that more than one hex digit (4 bits) was necessary to accomodate the result.
2	Zero bit (Z). Set if the result of an arithmetic or logic operation is zero.
3	Power-down bit (PD). Set during power-up or by a CLR WDT (clear watchdog) instruction. Cleared by a SLEEP instruction.
4	Time-out bit (TO). Set during power-up, by CLR WDT, or by SLEEP. Cleared by a watchdog time-out.
5-6	Page select bits (PA0, PA1). In the '54 and '55, these are unused. In the '56, bit 5 selects program page 0 or 1 (bit 6 is unused). In the '57, both bits select page 0, 1, 2, or 3. Each page is 512 words long.

TechTools • PIC Mini Data Sheets • Page 13

PIC16C5x

7 Unused bit (PA2). Reserved by Microchip for future use.

The following table shows how various events affect the power-down and time-out bits:

Event	PD	то
Power-up	1	1
Watchdog time-out	x	0
SLEEP instruction	0	1
CLR WDT instruction	1	1

Lastly, this table shows the status of the power-down and time-out bits after a reset:

Cause of Reset	PD	то
Watchdog time-out (not during sleep)	1	0
Watchdog time-out (during sleep)	0	0
External reset (not during sleep)	х	х
External reset (during sleep)		1
Normal power-up		1

• File Select Register (04h: FSR). This register serves a dual purpose: it selects the register for indirect addressing, and it selects the current register bank in the PIC16C57.

In all PIC16C5x devices, bits 0-4 select one of 32 registers in the current bank (only the '57 has more than one bank).

In the PIC16C57, bits 5-6 select one of four register banks. Each bank has 32 registers. However, reading or writing the lower 16 registers in **any** bank will access registers 00h - 0Fh (bank 0). Only the upper 16 registers in each bank are unique. This results in one bank of 32 registers, plus three banks of 16 registers, for a total of 80 registers.

Page 14 • PIC Mini Data Sheets • TechTools

The following table shows the function of each FSR bit:

Bit	Function
0-4	Available in all PIC's; select one of 32 registers in the current bank (only the '57 has more than 1 bank).
5-6	PIC16C57 only; select one of four register banks.
7	Read-only bit; always reads as "1".

This table shows the registers available in the various PIC's:

Registers	Description
00h - 07h	Special registers, bank 0 (RTCC, PC, etc.)
08h - 0Fh	General purpose registers, bank 0
10h - 1Fh	General purpose registers, upper half of bank 0
	- End of register memory in '54, '55, and '56.
20h - 2Fh	Reads/writes registers 00h - 0Fh
30h - 3Fh	General purpose registers, upper half of bank 1
40h - 4Fh	Reads/writes registers 00h - 0Fh
50h - 5Fh	General purpose registers, upper half of bank 2
60h - 6Fh	Reads/writes registers 00h - 0Fh
70h - 7Fh	General purpose registers, upper half of bank 3

The register selected in the FSR can be accessed in the indirect addressing mode (see description of indirect addressing register, earlier in this section).

In the PIC16C57, all registers can be accessed through indirect addressing. However, to access registers above 1Fh using direct instructions, you must set the page select bits (5-6) to the appropriate page, then read or write the corresponding register in bank 0. For instance, to load register 30h with #A5h, you would execute the following instructions:

MOV	04h,#00100000b	;Select bank 1
MOV	10h,#A5h	;Load register 10h in ;b ank 1 (register 30h) ;with #A5h

 I/O Port A (05h: RA or Port A). 4-bit I/O port. This register is used to read and write I/O Port A. This register can be read and written just as any other register. However, read instructions always read the I/O pins, regardless of whether the pins are programmed as inputs or outputs.

The upper 4 bits are unused and read as 0's.

- I/O Port B (06h: RB or Port B). 8-bit I/O port.
- I/O Port C (07h: RC or Port C). 8-bit I/O port, only available on 28pin PIC's. On 18-pin PIC's, this register can be used for storage.
- TRISA (TRI-State A). This is the data direction register for Port A. Bits in this register which are set to "1" cause the corresponding bits in Port A to become inputs (the pins go into high impendence mode, allowing them to be driven by an external source). Bits which are cleared to "0" cause the corresponding bits in Port A to become outputs.

The data direction registers are not directly addressable; to change their contents, you can use either of these instructions:

TRIS	port_fr	(Microchip) Copies W into the data direction register for <i>port_fr</i> , where <i>port_fr</i> is 05h-07h.
MOV	<pre>!port_fr,#literal</pre>	(Parallax) Copies <i>literal</i> into the data direction register for <i>port_fr</i> , where <i>port_fr</i> is 05h-07h.

Page 16 • PIC Mini Data Sheets • TechTools

- TRISB. Data direction register for Port B.
- TRISC. Data direction register for Port C.
- W (working register). The W register holds the second operand in two-operand instructions and is used in internal data transfer; much like the "accumulator" in other processors.
- Option Register. This register defines the prescaler ratio, prescaler assignment, RTCC trigger edge, and RTCC signal source. The function of each bit in the option register is shown below:
 - Bit Function
 - 0-2 Prescaler ratio. These 3 bits determine the prescaler input-to-output ratio. When using the prescaler with the RTCC, the seven possible ratios are 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, 1:256. When using the prescaler with the watchdog timer, the ratios are 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128.

For example, let's say that the prescaler is assigned to the watchdog timer. To increase the watchdog time-out period to 64 times its normal length, the prescaler ratio would be set to 110b; this yields a watchdog period of approx. 1 second (64 x 18 ms).

- 3 Prescaler assignment. This bit determines whether the prescaler is assigned to the RTCC ("0") or to the watchdog timer ("1").
- 4 RTCC trigger edge. This bit determines whether the RTCC increments on a low-to-high ("0") or high-tolow ("1") transition on the RTCC pin.
- 5 RTCC signal source. This bit determines whether the RTCC is driven by the PIC's internal instruction clock ("0") or by the RTCC pin ("1").
- General purpose registers. These registers may be used by your program for storage of variables, data, etc.

TechTools • PIC Mini Data Sheets • Page 17

DŞ

INTEGRATED CIRCUITS

DATA SHEET

SAA3004 Remote control transmitter

Product specification File under Integrated Circuits, IC02 August 1982

Philips Semiconductors

SAA3004

GENERAL DESCRIPTION

The SAA3004 transmitter IC is designed for infrared remote control systems. It has a total of 448 commands which are divided into 7 sub-system groups with 64 commands each. The sub-system code may be selected by a press button, a slider switch or hard wired.

The SAA3004 generates the pattern for driving the output stage. These patterns are pulse distance coded. The pulses are infrared flashes or modulated. The transmission mode is defined in conjunction with the sub-system address. Modulated pulses allow receivers with narrow-band preamplifiers for improved noise rejection to be used. Flashed pulses require a wide-band preamplifier within the receiver.

The SAA3004 has the following features:

- · Flashed or modulated transmission
- 7 sub-system addresses
- Up to 64 commands per sub-system address
- High-current remote output at V_{DD} = 6 V (-I_{OH} = 40 mA)
- Low number of additional components
- Key release detection by toggle bits
- Very low stand-by current (< 2 μA)
- Operational current < 2 mA at 6 V supply
- Wide supply voltage range (4 to 11 V)
- Ceramic resonator controlled frequency (typ. 450 kHz)
- Encapsulation: 20-lead plastic DIL or 20-lead plastic mini-pack (SO-20)

PACKAGE OUTLINES

SAA3004P: 20-lead DIL; plastic (SOT146); SOT146-1; 1996 December 11.

SAA3004T: 20-lead mini-pack; plastic (SO20; SOT163A); SOT163-1; 1996 December 11.

SAA3004

INPUTS AND OUTPUTS

Key matrix inputs and outputs (DRV0N to DRV6N and SEN0N to SEN6N)

The transmitter keyboard is arranged as a scanned matrix. The matrix consists of 7 driver outputs and 7 sense inputs as shown in Fig.1. The driver outputs DRVON to DRV6N are open drain N-channel transistors and they are conductive in the stand-by mode. The 7 sense inputs (SEN0N to SEN6N) enable the generation of 56 command codes. With 2 external diodes all 64 commands are addressable. The sense inputs have P-channel pull-up transistors, so that they are HIGH until they are pulled LOW by connecting them to an output via a key depression to initiate a code transmission.

Address mode input (ADRM)

The sub-system address and the transmission mode are defined by connecting the ADRM input to one or more driver outputs (DRV0N to DRV6N) of the key matrix. If more than one driver is connected to ADRM, they must be decoupled by a diode. This allows the definition of seven sub-system addresses as shown in Table 3. If driver DRV6N is connected to ADRM the data output format of REMO is modulated or if not connected, flashed.

The ADRM input has switched pull-up and pull-down loads. In the stand-by mode only the pull-down device is active. Whether ADRM is open (sub-system address 0, flashed mode) or connected to the driver outputs, this input is LOW and will not cause unwanted dissipation. When the transmitter becomes active by pressing a key, the pull-down device is switched off and the pull-up device is switched on, so that the applied driver signals are sensed for the decoding of the sub-system address and the mode of transmission.

The arrangement of the sub-system address coding is such that only the driver DRVnN with the highest number (n) defines the sub-system address, e.g. if driver DRV2N and DRV4N are connected to ADRM, only DRV4N will define the sub-system address. This option can be used in transmitters for more than one sub-system address. The transmitter may

be hard-wired for sub-system address 2 by connecting DRV1N to ADRM. If now DRV3N is added to ADRM by a key or a switch, the transmitted sub-system address changes to 4.

A change of the sub-system address will not start a transmission.

Remote control signal output (REMO)

The REMO signal output stage is a push-pull type. In the HIGH state a bipolar emitter–follower allows a high output current. The timing of the data output format is listed in Tables 1 and 2.

The information is defined by the distance t_b between the leading edges of the flashed pulses or the first edge of the modulated pulses (see Fig.3).

The format of the output data is given in Figs 2 and 3. In the flashed transmission mode the data word starts with two toggle bits T1 and T0, followed by three bits for defining the sub-system address S2, S1 and S0, and six bits F, E, D, C, B and A, which are defined by the selected key.

In the modulated transmission mode the first toggle bit T1 is replaced by a constant reference time bit (REF). This can be used as a reference time for the decoding sequence.

The toggle bits function as an indication for the decoder that the next instruction has to be considered as a new command.

The codes for the sub-system address and the selected key are given in Tables 3 and 4.

Oscillator input/output (OSCI and OSCO)

The external components must be connected to these pins when using an oscillator with a ceramic resonator. The oscillator frequency may vary between 400 kHz and 500 kHz as defined by the resonator.

FUNCTIONAL DESCRIPTION

Keyboard operation

In the stand-by mode all drivers (DRV0N to DRV6N) are on. Whenever a key is pressed, one or more of the sense inputs (SENnN) are tied to ground. This will start the power-up sequence. First the oscillator is activated and after the debounce time t_{DB} (see Fig.4) the output drivers (DRV0N to DRV6N) become active successively.

Within the first scan cycle the transmission mode, the applied sub-system address and the selected command code are sensed and loaded into an internal data latch. In contradiction to the command code the sub-system address is sensed only within the *first* scan cycle. If the applied sub-system address is changed while the command key is pressed, the transmitted sub-system address is not altered.

In a multiple key-stroke sequence (see Fig.5) the command code is always altered in accordance with the sensed key.

Multiple key-stroke protection

The keyboard is protected against multiple key-strokes. If more than one key is pressed at the same time, the circuit will not generate a new output at REMO (see Fig.5). In case of a multiple key-stroke the scan repetition rate is increased to detect the release of a key as soon as possible.

There are two restrictions caused by the special structure of the keyboard matrix:

- The keys switching to ground (code numbers 7, 15, 23, 31, 39, 47, 55 and 63) and the keys connected to SEN5N and SEN6N are not covered completely by the multiple key protection. If one sense input is switched to ground, further keys on the same sense line are ignored.
- SEN5N and SEN6N are not protected against multiple key-stroke on the same driver line, because this condition has been used for the definition of additional codes (code numbers 56 to 63).

SAA3004

Output sequence (data format)

The output operation will start when the selected code is found. A burst of pulses, including the latched address and command codes, is generated at the output REMO as long as a key is pressed. The format of the output pulse train is given in Figs 2 and 3. The operation is terminated by releasing the key or if more than one key is pressed at the same time. Once a sequence is started, the transmitted words will always be completed after the key is released.

The toggle bits T0 and T1 are incremented if the key is released for a minimum time t_{REL} (see Fig.4). The toggle bits remain unchanged within a multiple key-stroke sequence.

August 1982

Fig.4

1

Ξ

osco

8

ž

DRVnN

z

REMO

August 1982

closed

KΕΥ

key bouncing

Philips Semiconductors

Ę 🗆 ឆ្ន័

SAA3004

SAA3004

Table 1 Pulse train/timing

mode	T _O ms	t _p μs	t _M μs	t _{ML} μs	t _{MH} μs	t _W ms
flashed	2,53	8,8		-	_	121
modulated	2,53	-	26,4	17,6	8,8	121

fosc	455 kHz	t _{OSC} = 2,2 μs
t _P	$4 \times t_{OSC}$	flashed pulse width
t _M	$12 \times t_{OSC}$	modulation period
t _{ML}	$8 \times t_{OSC}$	modulation period LOW
t _{MH} .	4 × t _{osc}	modulation period HIGH
т _о	$1152 \times t_{OSC}$	basic unit of pulse distance
t _W	55 296 \times t _{OSC}	word distance

Table 2 Pulse train separation (t_b)

code	t _b	
logic "0"	$2 \times T_o$	· · · · · · · · · · · · · · · · · · ·
logic "1"	3 × T _o	
reference time	3 × T _o	
toggle bit time	$2 \times T_o$ or $3 \times T_o$	

SAA3004

Table 3 Transmission mode and sub-system address selection

The sub-system address and the transmission mode are defined by connecting the ADRM input to one or more driver outputs (DRV0N to DRV6N) of the key matrix. If more than one driver is connected to ADRM, they must be decoupled by a diode.

mode	sub-system address						dr	iver DRV for n =	nN		
	#	S2	S1	S0	0	1	2	3	4	5	6
F	0	1	1	1							
L	1	0	0	0	0						
A	2	0	0	1	X	ο					
S	3	0	1	0	X	х	0				
н	4	0	- 1	1	X	Х	х	ο			
E	5	1	0	0	X	х	Χ.	х	0		
D	6	1	0	1	x	х	х	х	х	0	
М											
0	0	1	1	1							о
D	1	0	0	0	0						0
U U	2	0	0	1	X	ο					Ο
L	3	0	1	0	X	х	ο				0
A	4	0	1	1	X	Х	х	ο			ο
т	5	1	0	0	X	х	Х	х	0		0
E	6	1	0	1	X	х	х	х	х	o	ο
D											

Notes

1. o = connected to ADRM

2. blank = not connected to ADRM

3. X = don't care

SAA3004

Table 4 Key codes

matrix	matrix			со	de			matrix
drive	sense	F	Ë	D	C	в	А	position
DRV0N	SENON	0	0	0	0	0	0	0
DRV1N	SENON	0	0	0	0	0	1	1
DRV2N	SENON	0	0	0	0	1	0	2
DRV3N	SENON	0	0	0	0	1	1	3
DRV4N	SENON	0	0	0	1	0	0	4
DRV5N	SENON	0	0	0	1	0	1	5
DRV6N	SENON	0	0	0	1	1	0	6
Vss	SENON	0	0	0	1	1	1	7
note 1	SEN1N	0.	0	1		note 2		8 to 15
note 1	SEN2N	0	1	0		note 2		16 to 23
note 1	SEN3N	0	1	1		note 2		24 to 31
note 1	SEN4N	1	0	0		note 2		32 to 39
note 1	SEN5N	1	0	1		note 2		40 to 47
note 1	SEN6N	1	1	0		note 2		48 to 55
	SEN5N							
note 1	and SEN6N	1	1	1		note 2		56 to 63

Notes

1. The complete matrix drive as shown above for SEN0N is also applicable for the matrix sense inputs SEN1N to SEN6N and the combined SEN5N/SEN6N.

2. The C, B and A codes are identical to SEN0N as given above.

SAA3004

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range	V _{DD}	-0,5 to +15		v	
Input voltage range	V _t	–0,5 to V _{DD} +0,5		V	
Output voltage range	Vo	–0,5 to V _{DD} +0,5		V	
D.C. current into any input or output	±I	max.	10	mA	
Peak REMO output current					
during 10 μ s; duty factor = 1%	-I(REMO)M	max.	300	mΑ	
Power dissipation per package					
for T _{amb} = -20 to +70 °C	Ptot	max.	200	m₩	
Storage temperature range	T _{stg}	-55 to +150		°C	
Operating ambient temperature range	T _{amb}	–20 to +70		°C	

SAA3004

CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; unless otherwise specified

PARAMETER	V _{DD} (V)	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage				1	I	
T _{amb} = 0 to +70 °C	-	V _{DD}	4	_	11	v
Supply current; active						
f _{OSC} = 455 kHz; REMO output unloaded	6 9	loo loo	-	1 3	-	mA mA
Supply current; inactive						
(stand-by mode) T _{amb} = 25 °C	6 9	I _{DD} I _{DD}	-	-	2 2	μΑ μΑ
Oscillator frequency						
(ceramic resonator)	4 to 11	fosc	400	-	500	kHz
Keyboard matrix						
Inputs SEN0N to SEN6N						
Input voltage LOW	4 to 11	V _{IL}	-	-	$0,2 \times V_{DD}$	v
Input voltage HIGH	4 to 11	VIH	$0.8 \times V_{DD}$	_	-	v
Input current	4	-lı	10	_	100	μA
$V_1 = 0 V$	11	-l _l	30	-	300	μA
Input leakage current						
$V_i = V_{DD}$	11	Ц.,	-	 .	1	μA
Outputs DRV0N to DRV6N						
Output voltage "ON"						
l _o = 0,1 mA	4	V _{OL}	-	-	0,3	v
l _O = 1,0 mA	11	VOL			0,5	V
Output current "OFF"						
V _O = 11 V	11	lo	-	-	10	μA
Control input ADRM						
Input voltage LOW	-	V _{IL}	-	-	$0,8 \times V_{DD}$	v
Input voltage HIGH	-	V _{IH}	$0,2 \times V_{DD}$	-	-	v
Input current (switched P- and N-channel pull-up/pull-down)						
Pull-up active	4	III.	10	-	100	μA
stand-by voltage: 0 V	11	l _{IL}	30	-	300	μA
Pull-down active	4	I _{IH}	10		100	μA
stand-by voltage: V _{DD}	11	IIH	30	_	300	μA

SAA3004

PARAMETER	V _{DD} (V)	SYMBOL	MIN.	TYP.	MAX.	UNIT
Data output REMO						
Output voltage HIGH	6	V _{OH}	3	_	-	V
I _{OH} = 40 mA	9	V _{OH}	6	_	-	V
Output voltage LOW	6	VoL	-	-	0,2	V
I _{OL} = 0,3 mA	9	VOL	-	-	0,1	V
Oscillator						
Input current						
OSCI at V _{DD}	6	h	0,8	- .	2,7	μA
Output voltage HIGH						
–I _{OL} = 0,1 mA	6	V _{он}	-	_	V _{DD} -06	V
Output voltage LOW						
I _{OH} = 0,1 mA	6	VOL	<u> -</u>		0,6	V

PACKAGE OUTLINE

DIP20: plastic dual in-line package; 20 leads (300 mil)

OUTLINE	OUTLINE REFERENCES				ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSOE DATE	
SOT146-1			SC603		92-11-17- 95-05-24	

August 1982

Product specification

I.

SAA3004

SOT146-1

SAA3004

MAX232, MAX232I DUAL EIA-232 DRIVERS/RECEIVERS

MAX232...D, DW, N, OR NS PACKAGE

MAX2321...D, DW, OR N PACKAGE

(TOP VIEW)

C1+ 👖 1

С2+П4

C2- 1 5

7

VS- 🛛 6

T2OUT

R2IN 8

V_{S+} [] 2 C1- [] 3

SLLS047L - FEBRUARY 1989 - REVISED MARCH 2004

16 V_{CC}

14 T10UT

12 R10UT

13 R1IN

11 T1IN

10 T2IN 9 R2OUT ł

- Meets or Exceeds TIA/EIA-232-F and ITU Recommendation V.28
- Operates From a Single 5-V Power Supply With 1.0-μF Charge-Pump Capacitors
- Operates Up To 120 kbit/s
- Two Drivers and Two Receivers
- ±30-V Input Levels
- Low Supply Current . . . 8 mA Typical
- ESD Protection Exceeds JESD 22
 2000-V Human-Body Model (A114-A)
- Upgrade With Improved ESD (15-kV HBM) and 0.1-μF Charge-Pump Capacitors is Available With the MAX202
- Applications
 - TIA/EIA-232-F, Battery-Powered Systems, Terminals, Modems, and Computers

escription/ordering information

The MAX232 is a dual driver/receiver that includes a capacitive voltage generator to supply TIA/EIA-232-F voltage levels from a single 5-V supply. Each receiver converts TIA/EIA-232-F inputs to 5-V ⊤TL/CMOS levels. These receivers have a typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept ±30-V inputs. Each driver converts TTL/CMOS input levels into TIA/EIA-232-F levels. The driver, receiver, and voltage-generator functions are available as cells in the Texas Instruments LinASIC[™] library.

T _A	PAC	CKAGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP (N)	Tube of 25	MAX232N	MAX232N
		Tube of 40	MAX232D	1117000
	SOIC (D)	Reel of 2500	MAX232DR	MAX232
0°C to 70°C		Tube of 40	MAX232DW	
	SOIC (DW)	Reel of 2000	MAX232DWR	MAXZ3Z
	SOP (NS)	Reel of 2000	MAX232NSR	MAX232
	PDIP (N)	Tube of 25	MAX232IN	MAX232IN
-40°C to 85°C		Tube of 40	MAX232ID	144 20201
	SOIC (D)	Reel of 2500	MAX232IDR	MAX2321
		Tube of 40	MAX232IDW	MAY020L
	SOIC (DW)	Reel of 2000	MAX232IDWR	

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

inASIC is a trademark of Texas Instruments.

ODUCTION DATA information is current as of publication date. aducts conform to specifications per the terms of Texas instruments indard warranty. Production processing does not necessarily include sting of all parameters.

Copyright © 2004, Texas Instruments Incorporated
32, MAX232I EIA-232 DRIVERS/RECEIVERS

- FEBRUARY 1989 - REVISED MARCH 2004

Function Tables

ł

EACH DRIVER

INPUT TIN	OUTPUT TOUT
L	н
н	L
H = high l	evel, L = low
level	

EACH RECEIVER

UT						
1						
H = high level, L = low						

diagram (positive logic)

MAX232, MAX232I DUAL EIA-232 DRIVERS/RECEIVERS

SLLS047L - FEBRUARY 1989 - REVISED MARCH 2004

solute maximum ratings over operating free-air temperature range (unless otherwise noted)

Input supply voltage range, V _{CC} (see Note 1)	-0.3 V to 6
Positive output supply voltage range, VS+	V _{CC} = 0.3 V to 15 ^v
Negative output supply voltage range, VS	-0.3 V to -15 V
Input voltage range, VI: Driver	
Receiver	±30 '
Output voltage range, VO: T1OUT, T2OUT	$V_{S-} = 0.3 \text{ V to } V_{S+} + 0.3 \text{ V}$
R10UT, R20UT	
Short-circuit duration: T1OUT, T2OUT	
Package thermal impedance, θ_{IA} (see Notes 2 and 3):	: D package
	DW package
	N package
	NS package 64°C/V
Operating virtual junction temperature, T ₁	
Storage temperature range, T _{stg}	65°C to 150°C

tresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and inctional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not noted. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

TES: 1. All voltages are with respect to network GND.

- 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

commended operating conditions

			MIN	NOM	MAX	UNIT
00	C Supply voltage		4.5	5	5.5	V
Н	High-level input voltage (T1IN,T2IN)		2			V
L	Low-level input voltage (T1IN, T2IN)				0.8	V
1IN, R2IN	Receiver input voltage				±30	V
	Operating free air temperature	MAX232	0		70	۰ ۰
Coperating nee-air temperature		MAX232I	-40		85	υ Γ

ectrical characteristics over recommended ranges of supply voltage and operating free-air mperature (unless otherwise noted) (see Note 4 and Figure 4)

PARAMETER		TEST CONDITIONS		MIN	түр‡	MAX	UNIT	
	Supply current		V _{CC} = 5.5 V, T _A = 25°C	All outputs open,		8	10	mA

II typical values are at V_{CC} = 5 V and T_A = 25°C.

TE 4: Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V.

32, MAX232I EIA-232 DRIVERS/RECEIVERS

- FEBRUARY 1989 - REVISED MARCH 2004

DRIVER SECTION

cal characteristics over recommended ranges of supply voltage and operating free-air rature range (see Note 4)

PARAMETER		TEST CONDITIONS	6 MIN	TYP†	MAX	UNIT
High-level output voltage	T1OUT, T2OUT	$R_L = 3 k\Omega$ to GND	5	7		V
Low-level output voltage‡	T1OUT, T2OUT	$R_L = 3 k\Omega$ to GND		-7	-5	V
Output resistance	T10UT, T20UT	$V_{S+} = V_{S-} = 0, V_O = \pm 2$	V 300			Ω
Short-circuit output current	T1OUT, T2OUT	V _{CC} = 5.5 V, V _O = 0		±10		mA
Short-circuit input current	T1IN, T2IN	VI = 0			200	μA

al values are at V_{CC} = 5 V, T_A = 25°C.

ebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage nly.

re than one output should be shorted at a time.

Test conditions are C1-C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V.

ing characteristics, V_{CC} = 5 V, T_A = 25°C (see Note 4)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Driver slew rate	$R_L = 3 k\Omega$ to 7 kΩ, See Figure 2			30	V/µs
Driver transition region slew rate	See Figure 3		3		V/µs
Data rate	One TOUT switching		120		kbit/s

Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V.

RECEIVER SECTION

cal characteristics over recommended ranges of supply voltage and operating free-air rature range (see Note 4)

PARAMETER		TEST	TEST CONDITIONS			MAX	UNIT
High-level output voltage	R10UT, R20UT	l _{OH} = −1 mA		3.5			v
Low-level output voltage‡	R10UT, R20UT	I _{OL} = 3.2 mA				0.4	v
Receiver positive-going input threshold voltage	R1IN, R2IN	V _{CC} = 5 V,	T _A = 25°C		1.7	2.4	V
Receiver negative-going input threshold voltage	R1IN, R2IN	V _{CC} = 5 V,	T _A = 25°C	0.8	1.2		v
Input hysteresis voltage	R1IN, R2IN	V _{CC} = 5 V		0.2	0.5	1	V
Receiver input resistance	R1IN, R2IN	V _{CC} = 5,	T _A = 25°C	3	5	7	kΩ

al values are at V_{CC} = 5 V, T_A = 25°C.

ebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage nly.

Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V.

ing characteristics, V_{CC} = 5 V, T_A = 25°C (see Note 4 and Figure 1)

PARAMETER				
Receiver propagation delay time, low- to high-level output	500	ns		
Receiver propagation delay time, high- to low-level output	500	ns		

Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V.

MAX232, MAX232I DUAL EIA-232 DRIVERS/RECEIVERS

SLLS047L - FEBRUARY 1989 - REVISED MARCH 2004

PARAMETER MEASUREMENT INFORMATION

-)TES: A. The pulse generator has the following characteristics: Z_O = 50 Ω , duty cycle \leq 50%.
 - B. CL includes probe and jig capacitance.
 - C. All diodes are 1N3064 or equivalent.

Figure 1. Receiver Test Circuit and Waveforms for tPHL and tPLH Measurements

32, MAX232I EIA-232 DRIVERS/RECEIVERS

- FEBRUARY 1989 - REVISED MARCH 2004

PARAMETER MEASUREMENT INFORMATION

A. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, duty cycle $\leq 50\%$.

B. CL includes probe and jig capacitance.

Figure 2. Driver Test Circuit and Waveforms for tPHL and tPLH Measurements (5-µs Input)

: The pulse generator has the following characteristics: Z_O = 50 Ω , duty cycle \leq 50%.

Figure 3. Test Circuit and Waveforms for t_{THL} and t_{TLH} Measurements (20- μs Input)

MAX232, MAX232I DUAL EIA-232 DRIVERS/RECEIVERS

SLLS047L - FEBRUARY 1989 - REVISED MARCH 2004

ł

C3 can be connected to VCC or GND.

OTES: A. Resistor values shown are nominal.

B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown. In addition to the 1-µF capacitors shown, the MAX202 can operate with 0.1-µF capacitors.

PACKAGE OPTION ADDENDUM

12-Jul-2005

ļ

CKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MAX232D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232DWE4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232DWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232DWRE4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232ID	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IDE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IDWE4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IDWRE4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232IN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
MAX232INE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
MAX232N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
MAX232NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
MAX232NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MAX232NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS 8 no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

he marketing status values are defined as follows: **FIVE:** Product device recommended for new designs. **EBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **ND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in w design. EVIEW: Device has been announced but is not in production. Samples may or may not be available.

IOLETE: TI has discontinued the production of the device.

Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check //www.ti.com/productcontent for the latest availability information and additional product content details. :: The Pb-Free/Green conversion plan has not been defined.

Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered gh temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

en (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame dants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

ASL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder perature.

ortant Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is ided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the iracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take onable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on ming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited mation may not be available for release.

c) event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI ustomer on an annual basis.

(R-PDIP-T**) PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

(ES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

μΑ7800 SERIES POSITIVE-VOLTAGE REGULATORS

SLVS056E - MAY 1976 - REVISED JULY 1999

- 3-Terminal Regulators
- Output Current up to 1.5 A
- Internal Thermal-Overload Protection
- High Power-Dissipation Capability
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Direct Replacements for Fairchild µA7800 Series

escription

This series of fixed-voltage monolithic integrated-circuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 1.5 A of output current. The internal current-limiting and thermal-shutdown features of these regulators essentially make them immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents, and also can be used as the power-pass element in precision regulators.

The μ A7800C series is characterized for operation over the virtual junction temperature range of 0°C to 125°C.

KC PACKAGE

The COMMON terminal is in electrical contact with the mounting base.

(TOP VIEW)

The COMMON terminal is in electrical contact with the mounting base.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ODUCTION DATA information is current as of publication date. ducts conform to specifications per the terms of Texas Instruments ndard warranty. Production processing does not necessarily include ting of all parameters.

Copyright © 1999, Texas Instruments Incorporated

00 SERIES TIVE-VOLTAGE REGULATORS

E - MAY 1976 - REVISED JULY 1999

AVAILABLE OPTIONS								
		PACKAGED	CUID					
Tj	Vo(NOM) (V)	PLASTIC FLANGE-MOUNT (KC)	HEAT-SINK MOUNTED (KTE)	FORM (Y)				
	5	μA7805CKC	μA7805CKTE	μA7805Y				
	6	μA7806CKC	μА7806СКТЕ	μA7806Y				
	8	μА7808СКС	µА7808СКТЕ	μ A7808 Υ				
	8.5	μA7885CKC	μА7885СКТЕ	µА7885Y				
0°C to 125°C	10	μA7810CKC	μA7810CKTE	μ Α7810 Υ				
	12	μA7812CKC	μA7812CKTE	μ A7812Y				
	15	μA7815CKC	μA7815CKTE	μ A7815 Υ				
	18	μA7818CKC	μΑ7818СКТЕ	μA7818Y				
	24	μA7824CKC	μА7824СКТЕ	μA7824Y				

The KTE package is only available taped and reeled. Add the suffix R to the device type (e.g., μ A7805CKTER). Chip forms are tested at 25°C.

natic

μΑ7800 SERIES POSITIVE-VOLTAGE REGULATORS

SLVS056E - MAY 1976 - REVISED JULY 1999

bsolute maximum ratings over operating temperature ranges (unless otherwise noted)[†]

		μ Α78xx	UNIT
Input voltage Vu	μA7824C	40	v
niput voitage, v	All others	35	v
Virtual junction temperature range, TJ	0 to 150	°C	
Package thormal impodance A (see Notes 1 and 2)	KC package	22	
- ackage thermain impedance, of A (see Notes 1 and 2)	KTE package	23	۰. د
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260	°C	
Storage temperature range, T _{Stg}	-65 to 150	°C	

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

OTES: 1. Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) – T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can impact reliability. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

commended operating conditions

	· · · · · · · · · · · · · · · · · · ·	MIN	MAX	UNIT
	μA7805C	7	25	
	μ Α7806 C	8	25	
· · · · ·	µА7808С	10.5	25	
	μ A7885C	10.5	25	
Input voltage, V _I	μA7810C	12.5	28	v
	μA7812C	14.5	30	
	μA7815C	17.5	30	
	μΑ7818C	21	33	
	μΑ7824C	27	38	
Output current, IO			1.5	A
Operating virtual junction temperature, TJ	μA7800C series	0	125	°C

300 SERIES TIVE-VOLTAGE REGULATORS

3E - MAY 1976 - REVISED JULY 1999

rical characteristics at specified virtual junction temperature, V_i = 10 V, I_O = 500 mA (unless wise noted)

	TEST CONDITIONS		_ +	μ	μ Α7805C		
	TEST CC	JNDITIONS	TJI	MIN	ТҮР	MAX	UNII
it voltage	IO = 5 mA to 1 A,	VI = 7 V to 20 V,	25°C	4.8	5	5.2	
	P _D ≤ 15 W	≤ 15 W		4.75		5.25	v
voltage regulation	V = 7 V to 25 V		2500		3	100	
	V _I = 8 V to 12 V				1	50	mv
+ rejection	VI = 8 V to 18 V,	f = 120 Hz	0°C to 125°C	62	78		dB
it voltage regulation	I _O = 5 mA to 1.5 A		0500		15	100	
	l _O = 250 mA to 750 r) = 250 mA to 750 mA			5 5		mv
t resistance	f = 1 kHz		0°C to 125°C		0.017		Ω
erature coefficient of output voltage	l _O = 5 mA		0°C to 125°C		-1 .1		mV/°C
t noise voltage	f = 10 Hz to 100 kHz		25°C		40		μV
ut voltage	I _O = 1 A		25°C		. 2		V
urrent			25°C		4.2	8	mA
urrantiabanga	Vi = 7 V to 25 V					1.3	-
	I _O = 5 mA to 1 A		[−] ^{0°C} to 125°C	0.5		0.5	mΑ
circuit output current			25°C		750		mA
output current		-	25°C	:	2.2		А

testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into nt separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

ical characteristics at specified virtual ju	inction temperature,	V _I = 11 V, I _O =	500 mA (unless
wise noted)			

PARAMETER	TERT CO			μ Α7806C			
		DIDITIONS	TJI	MIN	ТҮР	MAX	UNII
t voltage	$I_0 = 5 \text{ mA to 1 A},$	= 5 mA to 1 A, $V_1 = 8 V$ to 21 V,		5.75	6	6.25	
	P _D ≤ 15 W		0°C to 125°C	5.7		6.3	v
valtage regulation	V ₁ = 8 V to 25 V		2500		5	120	
	V _I = 9 V to 13 V		- 25°C		1.5	60	mv
rejection	V ₁ = 9 V to 19 V,	f = 120 Hz	0°C to 125°C	59	75		dB
t voltage regulation	I _O = 5 mA to 1.5 A		25%0		14	120	
	IO = 250 mA to 750 r) = 250 mA to 750 mA			4	60	mv
t resistance	f = 1 kHz		0°C to 125°C		0.019		Ω
rature coefficient of output voltage	l _O = 5 mA		0°C to 125°C		-0.8		mV/ºC
t noise voltage	f = 10 Hz to 100 kHz		25°C		45		μV
ut voltage	I _O = 1 A		25°C		2		V
urrent		-	25°C		4.3	8	mA
urrent ebenge	V = 8 V to 25 V		000 - 40500			1.3	
	IO = 5 mA to 1 A		- 0°C to 125°C	0.5		MA	
circuit output current			25°C		550		mA
output current			25°C		2.2		A

sesting techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into t separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

$\mu \text{A7800 SERIES} \\ \textbf{POSITIVE-VOLTAGE REGULATORS} \\ \end{array}$

SLVS056E - MAY 1976 - REVISED JULY 1999

i.

lectrical characteristics at specified virtual junction temperature, V_I = 14 V, I_O = 500 mA (unless therwise noted)

	TEST CONDITIONS		- +	μ	μ Α7808C		
	IESTCOM	DITIONS	Tji	MIN	ТҮР	MAX	UNIT
Output voltage	$I_{O} = 5 \text{ mA to } 1 \text{ A}, V_{I} = 10.5 \text{ V to } 23 \text{ V},$		25°C	7.7	8	8.3	V
	P _D ≤ 15 W		0°C to 125°C	7.6		8.4	v
Input voltage regulation	$V_{ }$ = 10.5 V to 25 V		2500		6	160	
	Vi = 11 V to 17 V		25-0		2	80	mν
Ripple rejection	Vj = 11.5 V to 21.5 V,	f = 120 Hz	0°C to 125°C	55	72		dB
	IO = 5 mA to 1.5 A		9540		12	160	
	I _O = 250 mA to 750 mA		25-0		4 80		mv i
Output resistance	f = 1 kHz		0°C to 125°C		0.016		Ω
Temperature coefficient of output voltage	lo = 5 mA		0°C to 125°C.		-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		52		μV
Dropout voltage	lo = 1 A		25°C		2		v
Bias current			25°C		4.3	8	mA
Pice surrent change	Vj = 10.5 V to 25 V		000 to 10500			1	
	I _O = 5 mA to 1 A		0.0 125.0	0.5		mA	
Short-circuit output current			25°C		450		mA
Peak output current			25°C		2.2		Ä

Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

lectrical characteristics	at specified virtual	junction temperature,	$V_{I} = 15 V_{10} =$	500 mA (unless
therwise noted)		•	•	•

DADAMETED	TEST COL	TEST CONDITIONS		μ Α7885C		UNIT	
	TEST COM	DITIONS	'J'	MIN	TYP	MAX	UNIT
	IO = 5 mA to 1 A,	V _I = 11 V to 23.5 V,	25°C	8.15	8.5	8.85	v
	P _D ≤ 15 W	D ≤ 15 W 0		8.1		8.9	v
Input voltage regulation	V _I = 10.5 V to 25 V		25%0		6	170	
	Vj = 11 V to 17 V		25 0		2	85	mv
Ripple rejection	V <u>I</u> = 11.5 V to 21.5 V,	f = 120 Hz	0°C to 125°C	54	70		dB
Output voltage regulation	IO = 5 mA to 1.5 A		25%0		12	170	
	I _O = 250 mA to 750 mA		25 0		4	85	1111
Output resistance	f = 1 kHz		0°C to 125°C		0.016		Ω
Temperature coefficient of output voltage	IO = 5 mA		0°C to 125°C		-0.8		mV/⁰C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		55		μV
Dropout voltage	l _O = 1 A		25°C		2		V
Bias current			25°C		4.3	8	mA
Pice surrent change	V _I = 10.5 V to 25 V		0%C to 125%C			1	4
bias current change	$I_{O} = 5 \text{ mA to 1 A}$		0.010152.0	0.5		mA	
Short-circuit output current			25°C		450		mA
Peak output current			25°C		2.2		А

²ulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

100 SERIES TIVE-VOLTAGE REGULATORS

3E - MAY 1976 - REVISED JULY 1999

rical characteristics at specified virtual junction temperature, V_I = 17 V, I_O = 500 mA (unless wise noted)

÷

	TEOT CONDITIONS		_ +	μ А7810С			HNIT
PARAMETER	TEST CO	NDITIONS	TjT	MIN	ТҮР	MAX	
	$I_{O} = 5 \text{ mA to } 1 \text{ A},$	VI = 12.5 V to 25 V,	25°C	9.6	10	10.4	v
it voltage	P _D ≤ 15 W	•	0°C to 125°C	9.5	10	10.5	v
	VI = 12.5 V to 28 V		25%		7	200	m\/
voltage regulation	VI = 14 V to 20 V		25°C		2	100	iiiv
e rejection	VI = 13 V to 23 V,	f = 120 Hz	0°C to 125°C	55	71		dB
······································	IO = 5 mA to 1.5 A		2590		12	200	m)/
it voltage regulation	IO = 250 mA to 750 m	O = 250 mA to 750 mA			4 100		
it resistance	f=1 kHz		0°C to 125°C		0.018		W
erature coefficient of output voltage	1 _O = 5 mA		0°C to 125°C		-1		mV/°C
ut noise voltage	f = 10 Hz to 100 kHz		25°C		70		μV
out voltage	lo = 1 A		25°C		2		V
current			25°C		4.3	8	mA
· · · · · · · · · · · · · · · · · · ·	VI = 12.5 V to 28 V		0°C to 125°C			1	mΑ
surrent change	IO = 5 mA to 1 A		00101230	·		0.5	
-circuit output current			25°C		400		mA
output current			25°C		2.2		Α

-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into int separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

rical characteristics at specified virtual junction temperature,	V _I = 19 V, I _O	= 500 mA (unle	SS
wise noted)			

			- 4	μ	μ Α7812C		
PARAMETER	TEST CO	TEST CONDITIONS		MIN	TYP	MAX	UNIT
	$1_{0} = 5 \text{ mA to } 1 \text{ A}.$	= 5 mA to 1 A, V ₁ = 14.5 V to 27 V,		11.5	12	12.5	
ut voltage	P _D ≤ 15 W	•	0°C to 125°C	11.4		12.6	. v
	VI = 14.5 V to 30 V		25%0		10	240	mV
voltage regulation	VI = 16 V to 22 V		250	1	3	120	1114
e rejection	VI = 15 V to 25 V,	f = 120 Hz	0°C to 125°C	55	71		dB
	IO = 5 mA to 1.5 A		25%		12	240	m\/
ut voltage regulation	1 _O = 250 mA to 750 mA		25 0		4 120		
ut resistance	f = 1 kHz		0°C to 125°C		0.018		W
erature coefficient of output voltage	l _O = 5 mA		0°C to 125°C		-1		mV/°C
ut noise voltage	f = 10 Hz to 100 kHz		25°C		75		μV
out voltage	I _O = 1 A		25°C		2		V
current			25°C		4.3	. 8	mA
	V ₁ = 14.5 V to 30 V		000 10 10500			1	mA
current change	IO = 5 mA to 1 A		0-0 10 125-0	0.5		0.5	
t-circuit output current			25°C		350		mA
output current	:		25°C		2.2		A

>-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into unt separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

$\mu \text{A7800 SERIES} \\ \textbf{POSITIVE-VOLTAGE REGULATORS} \\$

SLVS056E - MAY 1976 - REVISED JULY 1999

lectrical characteristics at specified virtual junction temperature, V_I = 23 V, I_O = 500 mA (unless therwise noted)

		_ +	μ A7815C			UNIT
PARAMETER	TEST CONDITIONS	TjT	MIN	TYP	MAX	UNIT
	$I_{O} = 5 \text{ mA to 1 A}, V_{I} = 17.5 \text{ V to 30 V},$	25°C	14.4	15	15.6	v
Output voltage	P _D ≤ 15 W	0°C to 125°C	14.25		15.75	v
	VI = 17.5 V to 30 V	25%		11	300	m\/
Input voltage regulation	V _I = 20 V to 26 V	23.0		3	150	(111)
Ripple rejection	Vi = 18.5 V to 28.5 V, f = 120 Hz	0°C to 125°C	54	70		dB
	l _O = 5 mA to 1.5 A	25%		12	300	m\/
Output voltage regulation	I _O = 250 mA to 750 mA	2010		4	150	
Output resistance	f = 1 kHz	0°C to 125°C		0.019		W
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		-1		mV/ºC
Output noise voltage	f = 10 Hz to 100 kHz	25°C		90		μV
Dropout voltage	1 ₀ = 1 A	25°C		2		V
Bias current		25°C		4.4	8	mA .
	VI = 17.5 V to 30 V	0°C to 125°C			1	mΔ
Bias current change	$I_{O} = 5 \text{ mA to } 1 \text{ A}$	00101230	0.5		1103	
Short-circuit output current		25°C		230		mA
Peak output current		25°C		2.1		A

Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

lectrical characteristics at specified	virtual junction temperature,	, V _I = 27 V, I _O = 500 mA (unless
otherwise noted)	·	

			- +	μ Α7818C		UNIT	
PARAMETER	TEST CO	DIDITIONS	ΤJI	MIN	TYP	MAX	UNIT
	$I_{O} = 5 \text{ mA to 1 A}, \qquad V_{I} = 21 \text{ V to 33 V},$ $P_{D} \le 15 \text{ W}$	25°C	17.3	18	18.7	v	
Output voltage		0°C to 125°C	17.1		18.9	v	
	VI = 21 V to 33 V		0500		15	360	m\/
Input voltage regulation	V _I = 24 V to 30 V		25 0		5	180	
Ripple rejection	VI = 22 V to 32 V,	f = 120 Hz	0°C to 125°C	53	69		dB
Output voltage regulation	IO = 5 mA to 1.5 A		25%		12	360	mV
	1 _O = 250 mA to 750	mA	25*0		4	180	
Output resistance	f=1kHz		0°C to 125°C		0.022		W
Temperature coefficient of output voltage	l _O = 5 mA		0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		110		μV
Dropout voltage	I _O = 1 A		25°C		2		ΪV
Bias current			25°C		4.5	8	mA
	V ₁ = 21 V to 33 V		0°C to 125°C			1	mΔ
Bias current change	$I_0 = 5 \text{ mA to } 1 \text{ A}$					0.5	
Short-circuit output current			25°C		200		mA
Peak output current			25°C		2.1		A

Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

300 SERIES ITIVE-VOLTAGE REGULATORS

6E - MAY 1976 - REVISED JULY 1999

rical characteristics at specified virtual junction temperature, V_I = 33 V, I_O = 500 mA (unless rwise noted)

DADAWETED			- +	μ Α7824C		LINIT	
PARAMETER	IESICO	INDITIONS	TJI	MIN	ТҮР	MAX	UNIT
	$I_{O} = 5 \text{ mA to } 1 \text{ A}, V_{I} = 27 \text{ V to } 38 \text{ V},$	25°C	23	24	25	· V	
ut voltage	P _D ≤ 15 W		0°C to 125°C	22.8		25.2	v
	VI = 27 V to 38 V		25%		18	480	m\/
voltage regulation	V _I = 30 V to 36 V		25.0		6	240	mv
e rejection	VI = 28 V to 38 V,	f = 120 Hz	0°C to 125°C	50	66		dB
ut voltage regulation	IO = 5 mA to 1.5 A		– 25°C		12	480	mV
	I _O = 250 mA to 750 n	nA			4	240	
ut resistance	f = 1 kHz		0°C to 125°C		0.028		W
erature coefficient of output voltage	I _O = 5 mA		0°C to 125°C		-1.5		mV/°C
ut noise voltage	f = 10 Hz to 100 kHz	-	25°C		170		μV
out voltage	l _O = 1 A	· .	25°C		2		V
current			25°C		4.6	8	mA
	VI = 27 V to 38 V		0°C to 125°C			1	mΔ
current change	IO = 5 mA to 1 A		00101230			0.5	AUA .
t-circuit output current			25°C		150		mA
output current			25°C		2.1		А

-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into ant separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

rical characteristics at specified virtual junction temperature, VI	= 10 V, I _O = 500 mA, T _J = 25°C
ess otherwise noted) [†]	

		μ Α7805 Υ	115117
PARAMETER	TEST CONDITIONS	MIN TYP MAX	
ut voltage		5	V
voltage regulation	V _I = 7 V to 25 V	3	m\/
	V _I = 8 V to 12 V	1	1117
e rejection	V ₁ = 8 V to 18 V, f = 120 Hz	78	dB
ut voltage regulation	I _O = 5 mA to 1.5 A	15	mV
	I _O = 250 mA to 750 mA	5	
ut resistance	f = 1 kHz	0.017	W
erature coefficient of output voltage	I _O = 5 mA	-1.1	mV/°C
ut noise voltage	f = 10 Hz to 100 kHz	40	μV
out voltage	IO = 1 A	2	- V
current		4.2	mA
t-circuit output current		750	mA
: output current		2.2	A

-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into unt separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

μA7800 SERIES POSITIVE-VOLTAGE REGULATORS

SLVS056E - MAY 1976 - REVISED JULY 1999

ectrical characteristics at specified virtual junction temperature, V_I = 11 V, I_O = 500 mA, T_J = 25°C unless otherwise noted)[†]

DADAMETED	TEST CONDITIONS	μ Α7806Υ	
		MIN TYP MAX	
Output voltage		6	V
Input voltage regulation	V = 8 V to 25 V	5	
	V _I = 9 V to 13 V	1.5	mv –
Ripple rejection	V _I = 9 V to 19 V, f = 120 Hz	75	dB
	IO = 5 mA to 1.5 A	14	
	IO = 250 mA to 750 mA	4	1 mv
Output resistance	f = 1 kHz	0.019	W
Temperature coefficient of output voltage	IO = 5 mA	-0.8	mV/ºC
Output noise voltage	f = 10 Hz to 100 kHz	45	μV
Dropout voltage	I _O = 1 A	2	V
Bias current		4.3	mA
Short-circuit output current		550	mA
Peak output current	· ·	2.2	A

Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 14 V, I_0 = 500 mA, T_J = 25°C unless otherwise noted)[†]

DADAMETED	TERT CONDITIONO	μ Α7808Υ	T
PARAMETER	TEST CONDITIONS	MIN TYP MAX	
Output voltage		. 8	, V
Input voltage regulation	V ₁ = 10.5 V to 25 V	6	
	V _I = 11 V to 17 V	2	
Ripple rejection	V _I = 11.5 V to 21.5 V, f = 120 Hz	72	dB
Output voltage regulation	I _O = 5 mA to 1.5 A	12	
	I _O = 250 mA to 750 mA	4	
Output resistance	f = 1 kHz	0.016	Ŵ
Temperature coefficient of output voltage	I _O = 5 mA	-0.8	mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	52	μV
Dropout voltage	I _O = 1 A	2	V
Bias current		4.3	mA
Short-circuit output current		450	mA
Peak output current		2.2	A

Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

300 SERIES ITIVE-VOLTAGE REGULATORS

6E - MAY 1976 - REVISED JULY 1999

rical characteristics at specified virtual junction temperature, V_I = 15 V, I_O = 500 mA, T_J = 25°C ss otherwise noted)[†]

PARAMETER	TEST CONDITIONS	μ Α7885Υ	UNIT
	TEST CONDITIONS	MIN TYP MAX	
ut voltage		8.5	. V
voltage regulation	VI = 10.5 V to 25 V	6	.,
	V _I = 11 V to 17 V	2	mv
e rejection	V _I = 11.5 V to 21.5 V, f = 120 Hz	70	dB
ut voltage regulation	I _O = 5 mA to 1.5 A	12	mV
	I _O = 250 mA to 750 mA	4	
It resistance	f = 1 kHz	0.016	W
erature coefficient of output voltage	I _O = 5 mA	-0.8	mV/ºC
it noise voltage	f = 10 Hz to 100 kHz	55	μV
out voltage	I _O = 1 A	2	V
purrent		4.3	mA
-circuit output current		450	mA
output current		2.2	A ·

-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into nt separately. All characteristics are measured with a $0.33 - \mu$ F capacitor across the input and a $0.1 - \mu$ F capacitor across the output.

rical characteristics at specified virtual junction temperature, V_I = 17 V, I_O = 500 mA, T_J = 25°C ss otherwise noted)[†]

	TEST CONDITIONS	μ Α7810 Υ	
	TEST CONDITIONS	MIN TYP MAX	UNIT
it voltage		10	V
voltage regulation	V _I = 12.5 V to 28 V	7	
	Vi = 14 V to 20 V	2	mv
> rejection	V _I = 13 V to 23 V, f = 120 Hz	71	dB
it voltage regulation	I _O = 5 mA to 1.5 A	12	mV
	I _O = 250 mA to 750 mA	4	
it resistance	f = 1 kHz	0.018	w
erature coefficient of output voltage	4 _O = 5 mA	-1	mV/°C
t noise voltage	f = 10 Hz to 100 kHz	70	μV
ut voltage	I _O = 1 A	2	V
urrent		4.3	mA
circuit output current		400	mA
output current		2.2	Α

testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into nt separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

µA7800 SERIES POSITIVE-VOLTAGE REGULATORS

SLVS056E - MAY 1976 - REVISED JULY 1999

electrical characteristics at specified virtual junction temperature, $V_I = 19 V$, $I_O = 500 mA$, $T_J = 25^{\circ}C$ unless otherwise noted)[†]

	TEST CONDITIONS	μ Α7812 Υ	
		MIN TYP MAX	
Output voltage		12	V
Input voltage regulation	VI = 14.5 V to 30 V	10	mV
	VI = 16 V to 22 V	3	
Ripple rejection	V _I = 15 V to 25 V, f = 120 Hz	71	dB
Output voltage regulation	I _O = 5 mA to 1.5 A	12	
	IO = 250 mA to 750 mA	4	mv
Output resistance	f = 1 kHz	0.018	W
Temperature coefficient of output voltage	l _O = 5 mA	-1	mV/⁰C
Output noise voltage	f = 10 Hz to 100 kHz	75	μV
Dropout voltage	I _O = 1 A	2	V
Bias current		4.3	mA
Short-circuit output current		350	mA
Peak output current		2.2	A

Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

lectrical characteristics at specified virtual junction temperature, V_I = 23 V, I_O = 500 mA, T_J = 25°C unless otherwise noted)[†]

DADAMETED	TEST CONDITIONS	μ Α7815Υ	(1).17
		MIN TYP MAX	
Output voltage		15	V
Input voltage regulation	Vi = 17.5 V to 30 V	11	
	V _I = 20 V to 26 V	3	
Ripple rejection	V _I = 18.5 V to 28.5 V, f = 120 Hz	70	dB
Output voltage regulation	I _O = 5 mA to 1.5 A	12	
	IO = 250 mA to 750 mA	4	
Output resistance	f = 1 kHz	0.019	W
Temperature coefficient of output voltage	I _O = 5 mA	-1	mV/ºC
Output noise voltage	f = 10 Hz to 100 kHz	90	μV
Dropout voltage	I _O = 1 A	2	V
Bias current		4.4	mA
Short-circuit output current		230	mA
Peak output current		2.1	A

Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

11

BOO SERIES ITIVE-VOLTAGE REGULATORS

6E - MAY 1976 - REVISED JULY 1999

rical characteristics at specified virtual junction temperature, $V_I = 27 V$, $I_O = 500 mA$, $T_J = 25^{\circ}C$ is otherwise noted)[†]

24 DAMETED		μ Α7818Υ	
PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNII
ut voltage		18	V
voltage regulation	VI = 21 V to 33 V	15	m\/
	$V_{l} = 24 V \text{ to } 30 V$	5	mv
e rejection	$V_{l} = 22 V \text{ to } 32 V$, $f = 120 \text{ Hz}$	69	dB
ut voltage regulation	I _O = 5 mA to 1.5 A	12	mV
	IO = 250 mA to 750 mA	4	
ut resistance	f = 1 kHz	0.022	W
erature coefficient of output voltage	I _O = 5 mA	-1	mV/°C
ut noise voltage	f = 10 Hz to 100 kHz	110	μV
out voltage	I _O = 1 A	2	V ·
current		4.5	mA
L-circuit output current		200	mA
output current		2.1	A

-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into unt separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

rical characteristics at specified virtual junction temperature, V_I = 33 V, I_O = 500 mA, T_J = 25°C iss otherwise noted)[†]

		μ Α7824Υ	
PARAMETER	TEST CONDITIONS	MIN TYP MAX	
ut voltage		24	V
voltage regulation	V ₁ = 27 V to 38 V	18	
	V _I = 30 V to 36 V	6	
e rejection	V ₁ = 28 V to 38 V, f = 120 Hz	66	dB
ut voltage regulation	I _O = 5 mA to 1.5 A	12	mV
	I _O = 250 mA to 750 mA	4	
ut resistance	f = 1 kHz	0.028	W
perature coefficient of output voltage	I _O = 5 mA	-1.5	mV/⁰C
ut noise voltage	f = 10 Hz to 100 kHz	170	μV
out voltage	I _O = 1 A	2	V
current		4.6	mA
t-circuit output current		150	mA
output current		2.1	A

>-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into unt separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

μA7800 SERIES POSITIVE-VOLTAGE REGULATORS

SLVS056E - MAY 1976 - REVISED JULY 1999

ł

APPLICATION INFORMATION

Figure 1. Fixed-Output Regulator

Figure 2. Positive Regulator in Negative Configuration (VI Must Float)

NOTE A: The following formula is used when V_{XX} is the nominal output voltage (output to common) of the fixed regulator: $V_{C} = V_{XX} + \left(\frac{V_{XX}}{CT} + I_{C}\right)R2$

$$V_{0} = V_{xx} + \left(\frac{V_{xx}}{R1} + I_{Q}\right)R2$$

800 SERIES ITIVE-VOLTAGE REGULATORS

6E - MAY 1976 - REVISED JULY 1999

Figure 5. Regulated Dual Supply

ation with a load common to a voltage of opposite polarity

In many cases, a regulator powers a load that is not connected to ground but, instead, is connected to a voltage source of opposite polarity (e.g., operational amplifiers, level-shifting circuits, etc.). In these cases, a clamp diode should be connected to the regulator output as shown in Figure 6. This protects the regulator from output polarity reversals during startup and short-circuit operation.

Figure 6. Output Polarity-Reversal-Protection Circuit

rse-bias protection

Occasionally, the input voltage to the regulator can collapse faster than the output voltage. This can occur, for example, when the input supply is crowbarred during an output overvoltage condition. If the output voltage is greater than approximately 7 V, the emitter-base junction of the series-pass element (internal or external) could break down and be damaged. To prevent this, a diode shunt can be used as shown in Figure 7.

Figure 7. Reverse-Bias-Protection Circuit

ULN2001A-ULN2002A ULN2003A-ULN2004A

SEVEN DARLINGTON ARRAYS

- SEVEN DARLINGTONS PER PACKAGE
- OUTPUT CURRENT 500mA PER DRIVER (600mA PEAK)
- OUTPUT VOLTAGE 50V
- INTEGRATED SUPPRESSION DIODES FOR INDUCTIVE LOADS
- OUTPUTS CAN BE PARALLELED FOR HIGHER CURRENT
- TTL/CMOS/PMOS/DTL COMPATIBLE INPUTS
- INPUTS PINNED OPPOSITE OUTPUTS TO SIMPLIFY LAYOUT

DESCRIPTION

The ULN2001A, ULN2002A, ULN2003 and ULN2004A are high voltage, high current darlington arrays each containing seven open collector darlington pairs with common emitters. Each channel rated at 500mA and can withstand peak currents of 600mA. Suppression diodes are included for inductive load driving and the inputs are pinned opposite the outputs to simplify board layout.

The four versions interface to all common logic families :

ULN2001A	General Purpose, DTL, TTL, PMOS, CMOS
ULN2002A	14-25V PMOS
ULN2003A	5V TTL, CMOS
ULN2004A	6-15V CMOS, PMOS

These versatile devices are useful for driving a wide range of loads including solenoids, relays DC motors, LED displays filament lamps, thermal printheads and high power buffers.

The ULN2001A/2002A/2003A and 2004A are supplied in 16 pin plastic DIP packages with a copper leadframe to reduce thermal resistance. They are available also in small outline package (SO-16) as ULN2001D/2002D/2003D/2004D.

February 2002

1/8

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vo	Output Voltage	50	V
Vin	Input Voltage (for ULN2002A/D - 2003A/D - 2004A/D)	30	V
l _c	Continuous Collector Current	500	mA
۱ _b	Continuous Base Current	25	mA
Tamb	Operating Ambient Temperature Range	- 20 to 85	°C
T _{stg}	Storage Temperature Range	- 55 to 150	°C
Tj	Junction Temperature	150	°C

THERMAL DATA

Symbol	Parameter	DIP16	SO16	Unit
Rth j-amb	Thermal Resistance Junction-ambient Max.	70	120	°C/W

57

2/8

TEST CIRCUITS

Figure 1a.

Figure 2.

Figure 4.

Figure 6.

ł.

Figure 5.

Figure 7.

57

ł

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	Fig.
ICEX	Output Leakage Current	$V_{CE} = 50V$ $T_{amb} = 70^{\circ}C$, $V_{CE} = 50V$			50 100	μΑ μΑ	1a 1a
		$\begin{array}{l} T_{amb} = 70^{\circ}C \\ for \; ULN2002A \\ V_{CE} = 50V, \: V_i = 6V \\ for \; ULN2004A \\ V_{CE} = 50V, \: V_i = 1V \end{array}$			500 500	μA _μA	1b 1b
V _{CE(sat)}	Collector-emitter Saturation Voltage	I_{C} = 100mA, I_{B} = 250µA I_{C} = 200 mA, I_{B} = 350µA I_{C} = 350mA, I_{B} = 500µA		0.9 1.1 1.3	1.1 1.3 1.6	V V V	2 2 2
li(on)	Input Current	for ULN2002A, V _i = 17V for ULN2003A, V _i = 3.85V for ULN2004A, V _i = 5V V _i = 12V		0.82 0.93 0.35 1	1.25 1.35 0.5 1.45	mA mA mA mA	3333
li(off)	Input Current	T _{amb} = 70°C, I _C = 500μA	50	65		μA	4
Vi(on)	Input Voltage	$\begin{array}{l} V_{CE} = 2V \\ for \ ULN2002A \\ l_{C} = 300mA \\ for \ ULN2003A \\ l_{C} = 200mA \\ l_{C} = 250mA \\ l_{C} = 250mA \\ l_{C} = 300mA \\ for \ ULN2004A \\ l_{C} = 125mA \\ l_{C} = 200mA \\ l_{C} = 275mA \\ l_{C} = 350mA \end{array}$			13 2.4 2.7 3 5 6 7 8	V	5
h _{FE}	DC Forward Current Gain	for ULN2001A V _{CE} = 2V, I _C = 350mA	1000				2
Ci	Input Capacitance			15	25	pF	
t _{PLH}	Turn-on Delay Time	0.5 V _i to 0.5 V _o		0.25	1	μs	
t _{PHL}	Turn-off Delay Time	0.5 V _i to 0.5 V _o		0.25	1	μs	
I _R	Clamp Diode Leakage Current	$V_{R} = 50V$ $T_{amb} = 70^{\circ}C, V_{R} = 50V$			50 100	μΑ μΑ	6 6
VF	Clamp Diode Forward Voltage	I _F = 350mA		1.7	2	V	7

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise specified)

ULN2001A - ULN2002A - ULN2003A - ULN2004A

Figure 8: Collector Current versus Input Current

Figure 10: Peak Collector Current versus Duty Cycle

Figure 9: Collector Current versus Saturation Voltage

Figure 11: Peak Collector Current versus Duty Cycle

51

5/8

ULN2001A - ULN2002A - ULN2003A - ULN2004A

DIM.		mm		ínch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
Е		8.5			0.335		
e		2:54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
z			1.27			0.050	

ULN2001A - ULN2002A - ULN2003A - ULN2004A

IM		mm	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		inch	
0111.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.069
a1	0.1		0.25	0.004		0.009
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.020	
c1			45° ((typ.)		
D (1)	9.8		10	0.386		0.394
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F (1)	3.8		4	0.150		0.157
G	4.6		5.3	0.181		0.209
L	0.4		1.27	0.016		0.050
м			0.62			0.024

(1) D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch).

8°(max.)

s

ULN2801A ULN2802A - ULN2803A ULN2804A - ULN2805A

EIGHT DARLINGTON ARRAYS

- EIGHT DARLINGTONS WITH COMMON EMIT-TERS
- OUTPUT CURRENT TO 500 mA
- OUTPUT VOLTAGE TO 50 V
- INTEGRAL SUPPRESSION DIODES
- VERSIONS FOR ALL POPULAR LOGIC FAMI-LIES
- OUTPUT CAN BE PARALLELED
- INPUTS PINNED OPPOSITE OUTPUTS TO SIMPLIFY BOARD LAYOUT

PIN CONNECTION (top view)

DESCRIPTION

The ULN2801A-ULN2805A each contain eight darlington transistors with common emitters and integral suppression diodes for inductive loads. Each darlington features a peak load current rating of 600mA (500mA continuous) and can withstand at least 50V in the off state. Outputs may be paralleled for higher current capability.

Five versions are available to simplify interfacing to standard logic families : the ULN2801A is designed for general purpose applications with a current limit resistor; the ULN2802A has a 10.5k Ω input resistor and zenerfor 14-25V PMOS; the ULN2803A has a 2.7k Ω input resistor for 5V TTL and CMOS; the ULN2804A has a 10.5k Ω input resistor for 6-15V CMOS and the ULN2805A is designed to sink a minimum of 350mA for standard and Schottky TTL where higher output current is required.

All types are supplied in a 18-lead plastic DIP with a copperlead from and feature the convenient inputopposite-output pinout to simplify board layout.

1N 1 18 OUT 1 IN 2 2 17 OUT 2 OUT 3 IN 3 16 3 OUT 4 IN 4 15 IN 5 OUT 5 5 14 007 5 IN 6 13 6 IN 7 7 112 OUT 7 IN B B 11 OUT & O COMMON FREE WHEELING DIODES GND 9 5-3490/1

September 1997

1/8

SCHEMATIC DIAGRAM AND ORDER CODES

For ULN2801A (each driver for PMOS-CMOS)

For ULN2803A (each driver for 5 V, TTL/CMOS)

For ULN2805A (each driver for high out TTL)

SGS-THOMSON

For ULN2802A (each driver for 14-15 V PMOS)

For ULN2804A (each driver for 6-15 V CMOS/PMOS

ł

3/8

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vo	Output Voltage	50	V
Vi	Input Voltage for ULN2802A, UL2803A, ULN2804A 30 for ULN2805A 15		
lc	Continuous Collector Current	500	mA
l _B	Continuous Base Current	25	mA
P _{tot}	Power Dissipation (one Darlington pair) (total package)	1.0 2.25	W
Tamb	Operating Ambient Temperature Range	- 20 to 85	c
Tstg	Storage Temperature Range	- 55 to 150	-l-°C
Tj	Junction Temperature Range	- 20 to 150	

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j–amb}	Thermal Resistance Junction-ambient Max.	55	°C/W

ELECTRICAL CHARACTERISTICS (Tamb = 25°C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	Fig.
ICEX	Output Leakage Current	$V_{CE} = 50V$ $T_{amb} = 70^{\circ}C, V_{CE} = 50V$ $T_{amb} = 70^{\circ}C$ for III N2802A			50 100	μΑ μΑ	1a 1a
		$V_{CE} = 50V, V_i = 6V$ for ULN2804A			500	μA	1b
L		$V_{CE} = 50V, V_i = 1V$			500	μΑ	1b
V _{CE(sat)}	Collector-emitter Saturation Voltage	$I_{C} = 100mA$, $I_{B} = 250\mu A$ $I_{C} = 200mA$, $I_{B} = 350\mu A$ $I_{C} = 350mA$, $I_{B} = 500\mu A$		0.9 1.1 1.3	1.1 1.3 1.6	V V V	2
li(on)	Input Current	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		0.82 0.93 0.35 1 1.5	1.25 1.35 0.5 1.45 2.4	mA mA mA mA	3
li(off)	Input Current	$T_{amb} = 70^{\circ}C, I_{C} = 500\mu A$	50	65		μA	4
Vi(on)	Input Voltage	$\begin{array}{l} V_{CE} = 2 \ V \\ \text{for } ULN2802A \\ l_{C} = 300\text{mA} \\ \text{for } ULN2803A \\ l_{C} = 200\text{mA} \\ l_{C} = 250\text{mA} \\ l_{C} = 300\text{mA} \\ l_{C} = 300\text{mA} \\ \text{for } ULN2804A \\ l_{C} = 125\text{mA} \\ l_{C} = 205\text{mA} \\ l_{C} = 350\text{mA} \\ \text{for } ULN2805A \\ l_{C} = 350\text{mA} \\ \end{array}$			13 2.4 2.7 3 5 6 7 8 2.4	> >>> >>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>	5
h _{FE}	DC Forward Current Gain	for ULN2801A V _{CE} = 2V, I _C = 350mA	1000	:		-	2
Ci	Input Capacitance			15	25	pF	-
t _{PLH}	Turn-on Delay Time	0.5 Vi to 0.5 Vo		0.25	1	μs	_
t _{PHL}	Turn-off Delay Time	0.5 Vi to 0.5 Vo		0.25	1	μs	_
I _R	Clamp Diode Leakage Current	$V_{R} = 50V$ $T_{amb} = 70^{\circ}C, V_{R} = 50V$			50 100	μΑ μΑ	6 6
V _F	Clamp Diode Forward Voltage	I _F = 350mA		1.7	2	V	7

SGS-THOMSON

TEST CIRCUITS

Figure 1a.

Figure 2.

Figure 4.

Figure 6.

Figure 1b.

ł

Figure 7.

SGS-THOMSON

4/8

Figure 8 : Collector Current as a Function of Saturation Voltage.

Figure 10 : Allowable Average Power Dissipation as a Function of Ambient Temperature.

Figure 12 : Peak Collector Current as a Function of Duty.

Figure 9 : Collector Current as a Function of Input Current.

ł

Figure 11 : Peak Collector Current as a Function of Duty Cycle.

Figure 13 : Input Current as a Function of Input Voltage (for ULN2802A).

ULN2801A - ULN2802A - ULN2803A - ULN2804A - ULN2805A

Figure 14 : Input Current as a Function of Input Voltage (for ULN2804A)

Figure 15 : Input Current as a Function of Input Voltage (for ULN2803A)

Į.

Figure 16 : Input Current as a Function of Input Voltage (for ULN2805A)

SGS-THOMSON

A7/

6/8
ULN2801A - ULN2802A - ULN2803A - ULN2804A - ULN2805A

DIP18 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN,	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
В	1.39		1.65	0.055		0.065
b		0.46			0.018	
b1		0.25			0.010	
D			23.24			0.915
E		8.5			0.335	
e		2.54			0.100	
e3		20.32			0.800	
F			7.1			0.280
1			3.93			0.155
L		3.3	:		0.130	
z		1.27	1.59		0.050	0.063

