
CERTIFICATION OF APPROVAL

Automated Visual Basic Application for Zipping and Backup

By

Hema Latha Nantha G.

A projectdissertation submitted to the

Information System Programme

Universiti Teknoiogi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION SYSTEM)

Approved by,

i Ahmad Izuddin)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

HEMA LATHA NANTHA G.

ACKNOWLEDGEMENT

First and foremost, myhighest gratitude and endless thank youto the God above for

giving me the people around me at the right time and the right places in doing and

completing this project.

I would like to express my sincere thanks to my supervisor Mr Ahmad Izuddin for

his guidance, advice and encouragement throughout the length ofthis project.

I also wish to thank my friends that have helped me by giving me useful ideas,

pointing outmy mistake and giving me comforting advice during the process.

Never to forget my deepest gratitude and never ending thanks to Mr. Jesudass

Thomas for his perseverance and effort in making sure that I have no problem

completing this project. 1 also wish to record my sincere appreciation for his

patience andassistance in editing this report..

May all efforts and hard work will befully appreciated and rewarded accordingly.

Thank You

TABLE OF CONTENTS
Page

TITLE PAGE i

ACKNOWLEDGEMENTS ii

TABLE OF CONTENTS iii

ABSTRACT vii

LIST OF FIGURES ix

CHAPTER 1: INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 2

1.2.1 Problem Identification 2
1.2.2 Significance ofthe Project 3

1.3 Objective and Scope of Study 3

1.3.1 The Relevancy ofthe Study 3
1.3.2 Scope and Time Frame 4

CHAPTER 2: LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Statistical Techniques 5

2.3 Dictionary Techniques 7

2.4 Basic Lemper-Ziv-Welch 10

2.5 Conclusion H

CHAPTER 3: RESEARCH METHODOLOGY 12

3.1 Procedure Identification 12

3.7.7 Analysis 13

3.1.2 Designing 14

3.1.3 Coding 15

3.1.4 Testing 21

3.1.5 Data Collection 22

3.2 Tools Required 22

3.2.1 Hardware Used 22

3.2.2 Software Used 22

CHAPTER 4: RESULTS AND DISCUSSION 23

4.1 Finding 23

4.1.1 Interface andDataStructure 23

4.1.2 Database 30

CHAPTER5: CONCLUSION AND RECOMMENDATION 31

5.1 Relevancy to the Objectives 31

5.2 Expectation of the Application 32

5.3 Problems Encountered 32

5.4 Suggested Future Work for Expansion and Continuation 33

5.4.1 Development ofthe System 33

5.4.2 Application Wise 33

LIST OF REFERENCES 34

GANTT CHART 36

ABSTRACT

This study focuses on the visual basic zipping and backup application to improve and

develop the way of life to a more convenient style. This approach can be applied to

various areas such as different working platform or environment to develop a more

secure project. The main target is to design an application to interface between the

VBPZip with the visual basic project files working on the Microsoft Visual Basic 6.0 and

Microsoft Access 2002 terminal with data compression and backup functionality. The

dictionary data compression technique and LZW method used to zip the project files

before backups. It will act as a synergy between user and application with the server that

complies with the overall application.

The VBPZip application development involves several stages. Defining the methodology,

there will be four phrases, which are analyzing, designing, coding and testing. The cores

of the project are the data compression and backup functionality in the VBPZip source

code, database development and its interface design. Data structure of the application is

obtained through research and detailed assessment. Entirely the back end of the

application is concerning the source code and its interface. To achieve those with fine

results, there are tool required during the whole process.

Thus, the result will be concluded based on the objective set. The application comprises

of several form which will act as the interface between the user and database. The form

encompass the VBZipping, File Type Options, Auto Zipping, date and time setting and

related project files data. All of them have the same purpose which is to ease and create

simplicity for the current visual basic platform applied at most development areas.

Suggested works for further enhancement and realization are also stated.

vn

LIST OF FIGURES

Page
Figure 1.1 Theoretical Framework of VBPZip 2

Figure 3.1 Software Engineering Waterfall Model 12

Figure 4.1 VBPZip ApplicationMain Menu 24

Figure 4.2 VBZipping Menu 24

Figure 4.3 Zip All Menu 25

Figure 4.4 VB Manual File Type Option 26

Figure 4.5 Auto Zip Menu 27

Figure 4.6 Add New Menu 28

Figure 4.7 Daily Backup Set Menu 29

Figure 4.8 Custom Backup Set Menu 29

Figure 4.9 Program List Table 30

IX

CHAPTER 1

INTRODUCTION

1.1 Background of Study

In this technological development era, Visual Basic should be well manageable and

effective in term of quality of application. This is to ensure an effective project files

management, cost reduction of the maintenances and time saving. Thus, visual basic

project files compression (zipping) and backup considered as elemental and very

important for the future programmers or developers. In general, this application will have

an end program with a function oflinking the VBPZip with the Visual Basic project files

that complies with the Visual Basic 6.0 and Microsoft Access (Figure 1.1). Apart from

crucial secure backup, the VBPZip should guarantee the integrity of all the updated files

or codes.

The three main components in this project would be the VBZipping, File Type Options,

and Auto VBBackup Setting. The area of study is more towards data compressing

(zipping) and backup coding in the Visual Basic environment. Besides human computer

interaction (HCI) understanding, author must also get used to graphical user interface

(GUI) designing method. These subjects will have main function as an intermediary

between human and machine. However, the foundation of this project would be data

compressing algorithms or method and visual basic programming. Author has to

familiarize with advanced programming language besides disseminating perceptive on

the particular visual basic application architecture. Technically, author will encounter

diverse new scope of study associated with technology knowledge.

VBPZip
Database Exchange

Visual Basic Project
Files

Terminal

Microsoft Visual Basic 6.0 and

Microsoft Access

Figure 1.1 Theoretical Framework of VBPZip

1.2 Problem Statement

Working on major applications would need the userto save all theirVisual Basic projects

files and references (.DLL/OCX). By right, information storage might encounter problem

besides demanding manpower during peak hours. Over the study, author encounter that

system developers and programmers face similar problem as losing many project files

while upgrading codes or overwriting files by mistake. Thus, author sees that the

introduction of VBPZip would provide a proper solution for efficient work ethic. This is

a part of technique to achieve effective file management, efficient workforce and

organized system.

1.2.1. Problem Identification

There are several problems identified at the Visual Basic environment which necessitate

this project to be accomplished:

a) Overwriting visual basic project files by mistake.

b) Lost of many project files while upgrading codes.

c) Large project files capacity leads to poor file management and limited storage

space.

1.2.2. Significance ofthe Project

The significance of this project to overcome the problem is to act exactly as an

intermediary between four parties, which are VBPZip, Visual Basic Project Files,

Microsoft Visual Basic 6.0 and Microsoft Access. Existing visual basic environment

issues are the elements in prompt to develop this application. It will definitely create an

effective confidential communication environment. This project also reliable enough for

further enhancement as it provide a suitable interface and stable database system. If this

project is a complete success, it can be applied in real industry, as long as it is stable and

secured enough.

1.3 Objective and Scope of Study

1.3.1. The relevance of the Project

This project need less theory on past course to be practiced, which mean author has the

opportunity to go deep into technical knowledge. Yet, author must familiarize with the

particular visual basic application, for instance data compressing algorithm (zipping) and

methods. Upon completing this project, there will be only one approach involved, which

is delivered in one semester:

a) Final semester - Design and develop preliminary interface layout and exact

information to be in the application, and prepare tools for Visual Basic

programming. Develop and debug the prototype, its database and terminal

Microsoft Visual Basic 6.0 and Microsoft Access for successful implementation.

For a long term plan, the main objective ofthis project is to compress (zip) and backup

the existing visual basic project files. That is to create a smart, effective, productive and
efficient environment for the subject. However, it has to be realized partially, by applying

a test run the VBPZip and particularly a single project file. Author had successfully

achieved the entire respective objective during the semester. Thus, to realize VBPZip

objectives are:

a) To gather information and perform case study on several compressing method

(zipping) to determine the best approach.

b) To compress the visual basic project files ina zip format.

c) Allow maximum project zipping and backup options for a single file, backup

folders, and backup file types and restore backup.

d) To complete the source code development for the VBPZip.

e) To design the data structure and interface coordination appropriately.

f) To design VBPZip that is able to store data.

1.3.2. Feasibility of the Project within Scope and Time Frame

The application is VBPZip. Upon completing the whole prototype, the objectives are vital.

The scheduled tasks andmilestones for the final yearproject are summarized in the Gantt

chart [Appendix Al]. It covers the entire schedule from doing the preliminary design and
constructing data structure, coding, testing, and also report writing. The scope ofproject

seems to be feasible for author to complete on time with the possible outcomes, and the

time allocated will be used efficiently for developing the whole end product.

CHAPTER 2

LITERATURE REVIEW AND THEORY

2. LITERATURE REVIEW

2.1 Introduction

Any programmer working on mini or microcomputers in this day and age should have at

least some exposure to the concept of data compression. In MS-DOS world, programs

like ARC, by System Enhancement Associates, and PKZIP, by Pkware are ubiquitous.

ARC has also been ported to quite a few other machines, running UNIX, CP/M, and so

on. CP/M users have long had SQ and USQ to squeeze and expandprograms. Unix users

have the COMPRESS and COMPACT utilities. Yet the data compression techniques

used in these programs typically only show up in two places: file transfers over phone

lines, and archival storage. Deciding on what is good or not is very subjective. It depends

on the user very own perspective of applying the subject. Compressing and

decompressing methods can vary from different individual perception. Technologically,

thisapplication canas well be considered as evolution to the Visual Basic environment.

2.2 Statistical Techniques

Statistical compression method use a statistical models of the data, so the quality of

compression they depends on how good that model is. The most basic solutions for

compressing files revolve around computing how often particular patterns can be found

in the file and then replacing the most common patterns with shorter patterns and

replacing the least common patterns with longer ones. In the end, the tradeoff is worth it.

These solutions are usually described as applying to letters or bytes. The statistics can be

gathered for any collection of characters, bytes, tokens, or patterns of bits. The first

approach is commonly known as "Huffman encoding" and named after David Huffman

[Huf52].

It provides a simple way of producing asset of entire placement bits. The algorithm is

easy to describe, simple to code, and comes with a proof that it is optimal, at least in

some sense. The algorithm finds the strings of bits for each letter by creating a tree and

using the tree to read off the codes. The common letters ends up near the top of the tree,

while the list common letters end up near the bottom. The paths from the root of the tree

to the node containing the character are used to compute the bit patterns. [Fin85] The

biggest problem is that both the compression and decompression routines must have

access to the same list or tokens or bits. [Muk89]. The basic idea in Huffman coding is to

assign short codeword to those input blocks with high probabilities and long codeword to

those with lowprobabilities. Thisconcept is similar to thatof the Morse code.

A Huffman code is designed by merging together the two least probable characters, and

repeating this process until there is only one character remaining. A code tree is thus

generated and the Huffman code is obtained from the labeling of the code tree. An

example of how this is done is shown below.

X pm

il cm

b 0.031

c 0,037

d o.ow

r 0.274-

f 0.051

S G.CH2

h 0.130

i 0 U9

j 0.00*

The final static code tree is given below:

X

0,11

0.03

o.m

0.G31

0.04-1

omz

Tl«e

a "J.Vi

.174-

Q£t

j.U-i:

0075

X [Cakf

a

h

tf 1 0 = H

d l

• It does not matter how the characters are arranged. I have arranged it above so

that the final code tree looks nice and neat.

• It does not matter how the final code tree are labeled (with Os and Is). I chose to

label the upper branches with Os and the lower branches with Is.

• There may be cases where there is a tie for the two least probable characters. In

such cases, any tie-breaking procedure is acceptable.

• Huffman codes are not unique.

• Huffman codes are optimal in the sense that no other lossless fixed-to-variable

length code has a lower average rate.

• The rate of the above code is 2.94 bits/character.

• The entropy lower bound is 2.88 bits/character.

2.3 Dictionary Techniques

Dictionary based compression methods do not use statistical model, nor do they use

variable codes. Instead they select strings of symbols and encode each string as a token

using a dictionary. [MU89, Weg89]

Dictionary techniques utilize groups of symbols, words, and phrases with the
corresponding abbreviations; the abbreviations are used during data transmission and the
receiver translates them back to the original form using the same dictionary as the sender.

The dictionaries can be static ordynamic. Astatic dictionary remains the same during the

course of encoding the data. This can be as simple as utilizing commonly used acronyms

(CEO, UN, ASCII) abbreviations (dr., Penna, ca), or coined abbreviations (M—male,

192 - acidfree paper, #$-- load instruction). More systematically an explicit dictionary is

created that list frequently used symbol patters and their codewords. One such dictionary

is not applied with equal efficient in all situations. [Snow86]

One of the most common solutions for compressing data is to create a list of the most

common words or phases in a document and then replace each of these blocks of letters

with a short number representing the position in the dictionary. This can be quite

powerful if the dictionary is the right size and there are plenty of common patterns in the

file. [Mol83]

First, a dictionary should be language specific. One technique uses n-grams—that is,

frequently used pattern of n consecutive symbols. If three-grams (trigams) are used, then

in an English text such trigams as the, que, ome, or neu can be found much more often

than sch, hin, or wer, but in a German text it would be the other way around.

Second, dictionaries should be domain specific. If commonly used words are to be

encoded in few bits, then in a dictionary pertaining to gardening texts and databases such

as a rake, soil, foliage, orparsley would be found more often than the words hardbound,

Press, index, orpages, which in turn would have a very high frequency of occurrence in

the library setting.

The best-known version of these dictionary schemes, which are sometimes called

substitution compression, is called "Lempel-Ziv" after Jakob Ziv and Abraham Lempel.

The algorithm, first described in 1977 [ZL77], is used in many different compression

programs in many different versions. Some of the laterversions have been patented, and

the patents have been the basis for some bitter battles over rights and ownership. The

Lempel-Ziv algorithm is a variable-to-fixed length code. Basically, there are two versions

of the algorithm presented in the literature: the theoretical version and the practical

version. Theoretically, both versions performessentially the same. However, the proof of

the asymptotic optimality of the theoretical version is easier. In practice, the practical

version is easier to implement and is slightly more efficient. We explain the practical

version of the algorithm as explained in the book by Gersho and Gray and in the paperby

Welch. The basic idea is to parse the input sequence into non-overlapping blocks of

different lengths while constructing a dictionary of blocks seen thus far.

Encoding Algorithm

• Initialize the dictionary to contain all blocksof lengthone (D^{a,b}).

• Searchfor the longestblock W which has appeared in the dictionary.

• Encode W by its index in the dictionary.

• Add W followed by the first symbol of the next block to the dictionary.

• Go to Step 2.

The following example illustrates how the encoding is performed.

HU^h jQ ,_S;i 1> ,h ^ a b l, h_hA* ;lf _i tb_?> ^LliiLi

1 Qidsohaij

| Index EMLy Index Enii'3?

b

.1 b

h h

•;>

b A 4

s. h a

abbs

| ..i b 9. r: 5 a b

|
6

4. a e> .i «. &

Theoretically, the size of the dictionary can grow infinitely large.

In practice, the dictionary size is limited. Once the limit is reached, no more

entries are added. Welch had recommended a dictionary of size 4096. This

corresponds to 12 bits per index.

The length of the index may vary. For example, in the /7-th block, the current

dictionary size is n+1 (assuming that the limit has not been reached). Therefore,

we can encode the index of block n using [log2(n+l)J bits (rounded up to the

nearest integer). For example, the first index can be represented by 1 bit, the 2nd

and 3rd by 2 bits each, the 4th, 5th, 6th, and 7th by 3 bits each, and so on. This is

the variable-to-variable length version of the Lempel-Ziv algorithm.

For a maximum dictionary size of 2m, variable-length encoding of the indices

saves exactly 2m~l bits compared to fixed-length encoding.

The above example, as most other illustrative examples in the literature, does not

result in real compression. Actually, more bits are used to represent the indices

than the original data. This is because the length of the input data in the example

is too short.

In practice, the Lempel-Ziv algorithm works well (lead to actual compression)

only when the input data is sufficiently large and there are sufficient redundancy

in the data.

Decompression works in the reverse fashion. The decoder knows that the last

symbol of the most recent dictionary entry is the first symbol of the next parse

block. This knowledge is used to resolve possible conflict in the decoder.

Many popular programs (e.g. Unix compress and uncompress, gzip and gunzip,

and Windows WinZip) are based on the Lempel-Ziv algorithm.

2.4 Basic Lemper-Ziv-Welch

Many program use a version of Lemper -Ziv created by Terry Welch in 1984. This

version is pretty simple and easy to code, so it is frequently included in many simple

compression schemes. It is also relatively good, although it takes its time building up the

dictionary. [Hen93]

From author point of view, the application of VBPZip now is becoming a necessity for

the developers and programmers with the increasing project. People are now living in a

10

fast pace and demanding high lifestyle. People will insist for a firm and quick response in

every aspect of life. This is where the VBPZip application provides solution with

guaranteed security.

2.5 Conclusion

A Huffman encoder takes a block of input characters with fixed length and produces a

block of output bits of variable length. It is a fixed-to-variable length code. Lempel-Ziv,

on the other hand, is a variable-to-fixed length code. The design of the Huffman code is

optimal (for a fixed block length) assuming that the source statistics are known a priori.

The Lempel-Ziv code is not designed for any particular source but for a large class of

sources. Surprisingly, for any fixed stationary and ergodic source, the Lempel-Ziv

algorithm performs just as well as if it was designed for that source. Mainly for this

reason, the Lempel-Ziv code is the most widely used technique for lossless file

compression. Datacompression has an undeserved reputation for being difficult to master,

hard to implement, and tough to maintain.

In fact, the techniques used in the previously mentioned programs are relatively simple,

and can be implemented with standard utilities taking only a few lines of code. This

article discusses a good all-purpose data compression technique: Lempel-Ziv-Welch, or

LZW compression. The routines shown here belong in any programmer's toolbox. For

example, a program that has a few dozen help screens could easily chop 50K bytes off by

compressing the screens. Or 500K bytes of software could be distributed to end users on

a single 360K byte floppy disk. Highly redundant database files can be compressed down

to 10% of their original size. Once the tools are available, the applications for

compression will show up on a regular basis. In this studies author will be using the

Lempel-Ziv-Welch method.

11

CHAPTER 3

METHODOLOGY

3.METHODOLOGY

The process of completing this project involves several components and distinct stages.

Mainly, the 3 parts of the system are the VBPZip, Visual Basic Project files and

Microsoft Visual Basic 6.0 and Microsoft Access.

v. Analysis j

i

'

(^ Des ipn)
i—-^

i

(^~Cocling)
r——-^

•

i i

(^ Testing ^)

Figure 3.1 Software Engineering Waterfall Model

Applying the software engineering knowledge, the classic waterfall model is applied to

design the system. Three stages are referred to as system development life cycle (SDLC).

This methodology was chosen because it provides systematic approach in solving any

encountered problems. Cycle in SDLC refers to the natural tendency for the system to

cycle through these activities, which can be viewed in Figure 3.1

12

3.1 Procedure Identification

3.1.1. Analysis

This phase is to study the problems, causes and effects. Next, there will be problem

identification and list of requirements in providing the solution. These are two elements

in the preliminary analysis, which are the system comprehensive data and Visual Basic

Application. These two provide ample information and details proceeding to the next

designing stage.

a) System Comprehensive Data

Several methods of gathering useful data are used throughout this preliminary period.

There had been interview, literature reviews, internet research, journals and books to

clarify the problem statement. The data compiled will be used for creating comprehensive

coverage of VBPZip database and interface of the system.

b) Visual Basic Application

This is done by performing literature reviews and doing research on the internet. The

information obtained is not directly involves with the project, but it provides more

understanding of the visual basic interior system.

For this project, visual basic platform and visual basic programming is used. The latest

techniques and method used to determine the best compression for the files zipping, the

sub classing instances and support files download to the application, and supports

database.

13

3.1.2. Designing

The designing of system layout and GUI for the application needs a good HC1 knowledge.

Therefore, during this stage, the three main factor of HCI are the study of:

a) Anthropology - science of the origin and development of human.

b) Psychology - science of the mind and human nature.

c) Sociology - science of organization of human society.

This knowledge of system analysis is applied. At this step, the designing started with

Unified Modelling Lauguage(UML) diagram. Object- oriented analysis was performed

using UML. Object-oriented design is a design strategy where system designers think in

terms of 'things' instead of operations or functions.

The execution application is made up interesting objects that maintain their own local

state and provide operations on the state information. An object oriented design process

involves designing the object classes and the relationships between these classes. When

the design is realized as an executing program, the required objects are created

dynamically using the class definitions. UML is an integration of the different notations

for describing object-oriented designs. There are several diagrams produced using UML.

14

3.1.3. Coding

Upon the completion of analysis and designing stages, there is the coding of the whole

source code for the system. The main source codes to be developed are for the VBPZip

programs to support the Visual Basic project files in the Microsoft Visual Basic 6.0

application and integrate with the Microsoft Access database support. This interface

created using Microsoft Visual Basic 6.0 terminal. This stage consumes most of the time

because the main constraint is to learn in detail of the programming language. Coding

stage also will mostly necessitate author to be well literate in computer programming

software.

During this stage, the process of developing the source code for this particular VBPZip

program is important. There are stages and exact practices to be preformed such as its

requirements, library path setting and sub classing instances.

a. Method to be included

An applet must include the installation, selection and processing methods. All these

methods were to be declared in the applet's primary class. The purpose of installation

method is to create the class object needed by the applet. The select method is to prepare

the applet to receive and process the commands.

b. Library Path

To ensure source code can be debugged, the host system's environment variable path

must be set to the class library directory and also to the Visual Basic class files in

author's development environment. In this case, the path to the class library in Microsoft

Visual 6.0 must be set properly.

15

c. Instructions

There are several orders to make the program as efficient as possible to minimize the

requirements and also to reduce the instances needs. Each instantiation of an object or

array declared with a local scope allocated memory. Each call to the local method

allocates memory until all the Visual Basic resources are exhausted. For variables, the

static and final modifiers are used in the declaration statements so that the variables act as

constants. This practice minimizes the instance's size through compression and improves

performance. Each new variable introduced consumes additional visual basic resources.

So, it is better to reuse variables.

Local variables also should not be used frequently since they occupy space in the Visual

Basic platform. Class hierarchy also must be as simple as it can since calling classes

within classes takes up program space. It can be done by using the class hierarchies in the

prototype program, and the hierarchy is compressed before converting the code to an

applet. Arguments also were to be used as few as possible. Reviewing of source code is

also important since it helps a lot in editing process. Unused variable definitions and

operations must be removed. In terms of data types, short is more preferred rather than

bytes whenever possible because short consumes the same amount of memory as bytes

do but offer a wider range of values.

d. SSubTmr Implementation

SSubTmr implementation is to produce a stable sub classer technique which can used

regardless of how many instances created and how many controls want to attempt to

subclass the same hWnd. The implementation is very similar to the Sub Timer

component from Hardcore Visual Basic, but with some improvements.

16

The sub classing consists of three parts:

• A bas module (subclass.bas) which contains the logic to associate object pointers

with window handles, and manage the adding and removing of the sub classed

proc.

• An Interface, (ISubClass.bas), defining the properties and methods wljich an

object must support in order to take part in sub classing with subclass.bas. To

ensure all these interfaces are present, subclass.bas will not accept any object

which doesn't implement this interface.

• A global class (GSubClass.Cls) which exposes functions to initiate and control

the sub classing procedure.

Here are the window properties SSUBTMR uses to manage the sub classing process:

CfhWndJ

Store the number of instances using the subclass. When the property is 0 and you add to

the subclass, it installs the WindowProc. Subsequent additions just increment the counter

and use the existing WindowProc. When items are removed, the count is decremented,

until it gets to zero, when the WindowProc is removed again.

[hWnd]#[Message]C

The count of how many times the message [Message] is attached to the hWnd [hWnd].

This allows subclass the same message on the same hWnd more than once. For example,

if a control wants to subclass its parent, and place two controls on the same parent, need

both controls to be able to receive that message.

[h Wnd]#[Message]#[NumberJ

Store a pointer to the object which wants to receive notification for the hWnd or Message

combination.

17

e. Adding Files to a Zip

Adding files to the zip is used using the AddFileSpec method. A file specification can

either be a fully specified path name (e.g. C:\Stevemac\HTML\ssite\index.html), a

wildcard specification (e.g. C:\Stevemac\HTML\ssite* .htm?) or a relative path (e.g.

index.html). Relative paths are taken relative to the BasePath property of the zip

AddFileSpec adds additional file specifications to be used during operations. To clear the

buffer, use ClearFileSpecs. To modify existing file specifications, FileSpecCount can be

used to return how many specifications have been set up and the property FileSpec to

read or write the property.

f. Progress and Cancel

As Zipping operations are performed, the class will raise the Progress event, which will

display status messages about the directory operation, and Cancel an event, which allows

stopping the directory or unzipping operation.

g. Options

The most important zip options are RecurseSubDirs and StoreFolderNames. When set

RecurseSubDirs, the zip DLL will check for all files starting at the BasePath property

and below for matches against each of the FileSpecs. So, for example, if add "*.*" as a

specification, all files in the BasePath folder and below will be added to the zip. The

StoreFolderNames option determines whether the zip will include the folder names as

well as the file names. The default operation of this option is to store the full folder name,

however, if FileSpec items are relative paths at or below the BasePath then the zip will

include the relative path name instead

h. Deleting Files

Deleting files from a Zip is accomplished in exactly the same way as zipping, except to

use the Delete method instead of the Zip method.

i. Two types of incremental backups

Differential incremental backup

- Archives all files changed since the last incremental or complete backup.

To restore files, restore all archives: at first the last complete backup, and then

all incremental backups.

Cumulative incremental backup

Archives all files changed since the last complete (or full) backup.

To restore files restore two archives: at first the last complete backup

and then the most recent incremental backup.

Daily Backup uses differential incremental backups, but speeds up the restoration by

reverse retrieval:

It restores at first the most recent incremental backup, and continues till the last complete

backup. It stores the retrieved files in a list, and does not retrieve them again. This trick

speeds up the restoration. The normal way to restore with an incremental backup scheme

is to restore at first the last complete backup, and then all incremental backups. In this

way a file might be overwritten many times.

19

Decompressing algorithm recognize that table is growing larger and allocate more space

to each code. The decompression loop is summarized with this pseudo code:

read a character x from compressed file;

write x to uncompressed version;

word^x;

while not end of compressed file do begin

read x

look up dictionary element corresponding to x;

output element

add w + first char of element to the dictionary

w - dictionary element

endwhile

The two algorithms maintain the same version of the dictionary without ever transmitting

it in a separate file.

3.1.4. Testing

Testing would be the final stage of the whole process of this project. Basically testing is a

process of after compiling and debugging the source code. There are some syntax errors.

This is an evaluation period of the project development where run time error testing will

be executed to manipulate real time situation.

21

3.1.5. Data Collection

To ensure the project can adapt with real time purpose, the updated data and path from

the original project files are required. Therefore, the feedback with several users is vital.

This is performed in normal procedure where the author had to flow all formality,

protocols and established contact with all significant personnel. Several developers and

programmers were selected to obtain the data required.

3.2 Tools Required

This project should have a reliable prototype and it does not cost high budget. Since it is

visual basic application project, therefore it requires some additional hardware. For the

next coding and testing phases, Microsoft Visual Basic 6.0 and Microsoft Access are

used as the platform to build the system.

3.2.1 Hardware Used

a) Processor - Pentium3 or higher

b) RAM - 64 Megabytes or higher

c) Disk space - 1 Gigabytes or higher

d) Monitor - 14 inch with 1024 x 768 resolution

e) Graphic card - any standard

f) Mouse/ Keyboard - any standard

3.2.2 Software Used

a) Operating System - Windows 98 or higher

b) Microsoft Visual Basic 6.0

c) Microsoft Access 2002

22

CHAPTER 4

RESULT AND DISCUSSIONS

4. RESULT AND DISCUSSIONS

This is the most critical part in the project. Research output is presented in this section.

The results must meet the requirement of the target audience to fulfill their expectation of

a system. Methodology applied within the timeframe of this project should get accurate

result. Findings andresults obtained during this coding stage.

4.1 Finding

The output for the end product is the system requirement functionalities. It mainly

engaged with the interface, data structure and database tables.

4.1.1. Interface and Data Structure

The interface is designed and developed by using Microsoft Visual Basic 6.0. There are 2

main components in the interface design which author declares them as application menu

and data modules.

a) Application Menu

The application starts with a main menu which will lead to three other sub menus, which
are VBZipping, File Type Option, AutoZip. Each ofthem has different functionality and

interface design.

23

**

0

lew Help

OpenProject ZipAl! ClearUstbox

-inlxf

^sjj,^f^feP^I '^C-l-i1.

Figure 4.1 VBPZip Application Main Menu

The menu also contains the connectivity to the visual basic project files and library path

setting. There are also window taskbar features with open file, zip project, view full mode,

status bar, zip page and help on the vbaccelerator on the web with the Fl. Other addition

features with the clear list box to close the open project files. The source code is vital in

associating the VBPZip, VB project files and the Microsoft Visual Basic 6.0 and

Microsoft Access Platform.

,=Jojj*l
File Praiett View Heip

{^Qpen Project pp All Clear Listbox

pi 0 i|!$"Project1" (C:\Documents and 5ettings\winxp\Desktop\VB 8ackup\VBPZip_Source_Code\Bachjp Prorew^Pmiern •bp!
• * 0 !£.• Forms

0 Q. (C\Documents and5ettings\winxp\Desktop\VB Backup\VBPZip_5ource_Code'i,Backup Processor\frmMain,frm)
0 I) Classes

(3 ^cSplit5tring(C:\Documents and 5ettings\winxp\Desktop\VBBackup\VBPZip_Source_Code\BackjpProces5or\i:5plil:5l;ri,,,
0 |̂ cVBFileTypes(C:\DocumentsandSettings\win^^
0 |§cVBPro)ect(C:\DocumentsandSetting5\whxp\Desl^
0 ^cV8ProjectGroup(C:\Documents and5ettings\winxp\Desktop\VB Backup\VBPZip_SourcejCode\Backup Processor^VB,,,
0 ^JcZip(C:\Document5 andSettings\winxp\Desktop\VB Backup\VBPZip_5ourcejIode\Backup Processor\cZip,d5)
0 ^JcRegistrv(C:\Documents andSettingsVivinxp\Desktop\VB Backup\VBPZip_Source_Code\Backup Processor\cRegistry.cls)
0 ji^cSimpleODListBox(C:\Documentsand SeEtings\winxp\Deskl:op\VBBackup\VBPZip_5ource_Code\Bai:kup Processor\t5i...

0 :Tr Modules
"}Tray(C:\Docurnents and 5ettings\winx-p\Desktop\VB Backip\VBPZip_5ource_Code\Backup Processor\Tray.bas)

lmodGeneral(C:\Documentsand5etting5\winxp\Desl<iop\VBBacl<up\VBPZip_5ource_Code\BackipProcessGr\modGen,.,
pmUtilifcy^C^Documents and Settings^inxp\Desktop\VB Backup\VBPZip_5ource_Code\Backup Processor\mUtility,bas)
lmZip(C:\Documents and Settings\winxp\Desktop\VB Backup\VBPZip_5ourcejIcde\Backup Processor\mZip ,bas)
jmMain(C:\Docurnents and Settings\winxp\Desktop\VB Backup\VBPZip_5Gurce_Code\Backup Processor\mMain.bas)

fl Peter ences

0.

*jOLE Automation^;\WINDOW5\System32\stdote2.tlb)
-, Microsoft Scripting Runtime(C: \WINDOWS\System32\scrnjn.dll)
' Microsoft ActiveX Data Objects 2.7 Library(C'.\Program Files\Common Files\system\ado\msadol5,dll)
*(Subclassingand Timer Assistant (with configurablemessage response, multi-control support + timer bug fix)(C:\Do:...
" ,DTray VI,0. i (C:\Docurnents and 5ettings\winxp\Desktop\VB Backup\VBPZip_5ource_Code\Backup Processor\DTray,

Project Binaries
(L:'(Documents and SettinqsU'jinxplDesktcipWB 8ackupi,VBPZip_5ource_Code\BackupProcessor!,Auto Zip'.exej

Figure 4.2 VBZipping Menu

24

VBZipping menu contains the link button for the administrator personnel to go to the

project files contents and select the required file to be zipped. The VBZipping menu

allow the administrator personnel to select from the automated or default file types of

forms, classes, modules, references and project binaries. The zip all buttons allow to zip

the selected file types to be zipped. The clear list box will clear the opened project file

from the interface.

The administrator personnel can only upload single project file at a time to be zipped. To

add another project file, the openedproject file must be cleared.

4 s.

0,

0

•

0 tie name 1 J Save

Cancel•ave as type jZipFiles Pzipl II

Figure 4.3 Zip All Menu

Once the administrator personnel select the project file type, the Zip Menu would enquire

the file name for the new zip.

25

^ =

i?.
0 Form

0 Class

0 Module

0 UserControl

0 Property Page

0 UserDocument

0 Resource File

0 Related File

• Control Dependency
Reference Dependency

171
Si !Fb: Shortenedpaths and Resolve ,A[Path] References
• Write [Project File],xml

Figure 4.4 VB Manual File Type Option

The VB Manual File Type Option allows the administrator personnel to select manually

from the file types to zip. The type file options are forms, class, module, User Control,

Property Page, User Document, Resource File, Related File, Control Dependency,
Reference Dependency and Project Binary. The administrator personnel can either select

the file types and apply to the project file or select the default option of the file types.

This selection will be automatically updated in the VBZipping menu of any opened

project files. Other setting provides the show folders, fix shortened path and resolve and
write [Project file] xml. These are addition features to the application allow to partition

the project file according to the type for easy viewing.

26

Add New Delete

Figure 4.5 Auto Zip Menu

The Auto Zip menu contains add new button linked to the file directory of the zipped

project. The interface shows the file path, start date, start time, interval and stop date of

the updated database based on administrator personnel preferences. The delete button

pops out a message box to the user.

27

./*

Add New

Open file

iff Daily backup

Start time f \p$\

Stop at pg>25^2004 *

t" Star* when windows start

Custom backup

"3

f" Delete the previous backup file

S f~ Alert when backup is compSete

Apply Close

-•Dixl

Interval Hour[s]

in.__J AM •"

Figure 4.6 Add New Menu

The add new menu form is for administrator personnel to select the backup option for a

single zipped project file. It contains the file directory to the zipped project. The

administrator personnel can choose from two options of backup of daily backup or

custom backup.

The daily backup contains the start time to start the backup, interval between the backup

and the stop date to terminate the backup. The start when windows start allow set project

file to be backed up once the windows start.

The custom backup contains day backup, start date, time and stop date. The delete the

previous backup file allow the program to delete the previous backups after each updated

backup. The alert when backup is complete will notify the administrator personnel that

backup is saved and completed.

28

View Heip

^JQJXJ

iPafch IStart Date Start Time Interval Stop Date Delete Previous File;

El !C:\Doi:ument5 and Settinqs'i, bta 1 hours 11,117/2004

Figure 4.7 Daily Backup Set Menu

The daily backup set menu show the updated administrator personnel preference to daily

backup the project file set on start time, interval and stop date.

File Project View Help

i -

I(_ I'lDocurrierits an I 11i'3.i 20CMI

inixi

1U5i'2CiCi4 Yes

Figure 4.8 Custom Backup Set Menu

The custom backup set menu show the updated administrator personnel preference to

custom backup the project file set on start date, start time, interval, stop date, delete

previous file? And display alert.

b. Data Modules

All the data for the system is placed in one directory. By using the Microsoft Access for

the directory, data structure is arranged in a proper way besides having it looks more real

in sense of application wise. Moreover, it reduces the possibility of forms disorder.

29

There only one single folder that captures the entire backup updated and all data saved in

the same database of the directory.

4.1.2 Database

The database is designed by using the Microsoft Access 2002. This is one program

responding to the data modules interface designed. The database function is simply to

store and retrieve backup setting and data depending on the task performed on the

interface. The database is linked to the interface by applying the Microsoft ADO Data

Control 6.0 (OLEDB)

File Edit View Insert Format ftecmds Tods Window Help

&- Urn &?M> £ 'til V'
^^>i$&&l^,X?&&$j *&&%&>&* i*^*JM%

C'Documents and SettinjsVmixp\De 2 11.12004 4/52004 220 AM
utoNumbei)

R

11/5/2004 Ves ^es

Figure 4.9 Program List Table

There will be tables of database included inside the interface for the purpose of viewing

and monitoring by the authorized personnel. These particulars are linked using project

component Microsoft Data grid Control 6.0 "(OLEDB). The particulars are selected

because they are vital information and in need have quick and firm response in case of

emergency. Thus, authorized personnel could access the database system ina whole.

30

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5. CONCLUSION AND RECOMMENDATIONS

As a conclusion, this project is a success since it achieves the six objectives stated earlier.

Gradually, author can now make the project as significant as it can be and the relevance

of the matter towards engineering prospect arebecoming understandable and apparent.

5.1 Relevancy to the Objectives

The first objective is to compress the visual basic project files in a zip format. This is

completed by selecting the best compressing technique /method and by doing some

modification and revision from the source provided from vbaccelerator. The dictionary

compression technique with the LZW method is used to compress the visual basic project

files.

The second objective is to design the maximum project zipping and backup options for a

single file, backup folders, and backup file types and restore backup. This is the more

crucial part since this act as a synergy between the user and the application to interact and

it is successfully achieved.

The third objective is to complete the source code development for the VBPZip. The

completion leads to the testing phase, besides establishing the connectivity database of

the system.

The fourth objective is to design the data structure and interface coordination

appropriately. This was successfully achieved to create the good interaction between the

user and the application. It is a user-friendly application.

31

The fifth objective is to design VBPZip that is able to store data. This is in occurrence

with the third objective but the key is only the authorized personnel able to view and

modify basic information for the application to retrieve backup.

The last objective is to gather information and perform case study on several compressing

methods to determine the best approach. Upon this succession, it leads to the testing

process which can detect run time error. This is vital consecutively to manipulate real

time application.

5.2 Expectation of the Application

The application should provide data that allow justification of the project files, high level

of trust in data precision during backup, storage space and short time of data

interpretation. Moreover, VBPZip ensure the basic function to act in emergency cases to

backup important files. In addition, the application provides mutual information among

the developers and programmers who are implied in the long term project developments.

5.3 Problems Encountered

Throughout the process of developing this application, author encountered some minor

problems which affected the flow of the progress.

Communication was a problem during the process of gathering real issues faced by

developers and programmers. This is because author has to go to different developers and

programmers before getting the exact information of the application. The protocol and

level of management seems to be the main factor of this drawback. However, author

coped with the situation well and obtained the data as expected but in a longer period.

From the technical aspect, author encounter problem on the backup folders due to the

lack of testing. For this reason, author has to set by backup according to the appropriate

intervals.

32

5.4 Suggested Future Work for Expansion and Continuation

The author hopes that this project will be a major success, useful and practical through

different versions to be used in the future. In the meanwhile, the author focuses on to

caterthe user for a user-friendly system and alsothe design constraints.

5.4.1. Development ofthe System

a) Improvisation in terms of its interface to ease user interaction.

b) Usage of a more stable database to adapt with real time environment.

c) Clarification of the definite memory size of thebackup storage.

5.4.2. Application Wise

a) Security is guaranteed with more identifier such asbiometrics and image scanning

to identify the authorized personnel.

b) The application is standardized for all visual basic project files and it continues to

be enhanced in the future.

c) The application has the ability to store multiple backups of different project files

at the same time with less accuracy issue and more storage capacity through file

zipping.

d) The application could backup single file working on different platform of

developers in the same directory.

As a conclusion, the author confirmed that this project meet the expectation and

successfully in achieving the long terms objective of the project. The exposure and

experience gained throughout the project will be a very good base for working

environment. Certainly, the knowledge and benefits gained will be implied in daily

life.

33

Books and Journals

[Huf52]

REFERENCES

David A.Huffman. A methodfor the construction of minimum redundancy
codes. Proceedings of the IRE. 40(9): 1098- 1101 September 1952

[Fin85] Steven G. Finn. Data compression:. Dec. 24, 1985.

[Muk89] Amar Mukherjeee. Code converter for datacompression/ decompression:
Aug, 1, 1989.

[Mil89, VictorS.Miller and MarkN.Wegman. Datacompression method:
Weg89] March 21,1989.

[Snow86] CraigA.Snow. System for compressed storage of 8-bitASCII bytesusing
coded string of 4 bit nibbles: June, 24, 1986.

[Mol83] Edward W.Moll. Systemfor minimizing space requirements for storage
and transmission of digital signals. Oct 25, 1983.

[ZL77] JacobZiv and Abraham Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, IT-23(3): 337 -
343, May 1977.

[Hen93] N.Ranganathan SelwynHenriqies. Methodand apparatus for the
compression and decompression of data using Lempel-Ziv based
techniques: Jun 12, 1993.

David Solomon, A Guide to Data Compression Methods. Springer Professional
Computing.

Adam Drozdek, Element of Data Compression, Brooks/Cole Thomson Learning.

Peter Wayner, Compression Algorithms for Real Programmers, Morgan Kaufmann.

A Technique for High Performance Data Compression, Terry A. Welch, IEEE Computer,
17(6), June 1984, pp. 8-19

34

J Ziv and ALempel, "A Universal Algorithm for Sequential Data Compression," IEEE
Transactions on Information Theory, Vol. IT-23, No. 3, May 1977, pp. 337-343

A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.

D. A. Huffman, "A Method for the Construction of Minimum Redundancy Codes,"
Proceedings ofthe IRE, Vol. 40, pp. 1098-1101,195

Ziv and A. Lempel, "A Universal Algorithm for Sequential Data Compression," IEEE
Transactions on Information Theory, Vol. 23, pp. 337-342, 1977.

J. Ziv and A. Lempel, "Compression of Individual Sequences Via Variable-Rate
Coding," IEEE Transactions on Information Theory, Vol. 24, pp. 530--536,1978.

T. A. Welch, "A Technique for High-Performance Data Compression," Computer, pp. J
-18, 1984.

Websites

VBAccelerator, http://www-vbaccelerator.com

PlanetSourceCode, http://www.planetsourcecode.com

35

D
at

a
G

at
h

er
in

g

R
e
se

a
rc

h
of

U
sa

bi
li

ty

Pr
ep

ar
at

io
n

of
pr

el
im

in
ar

y
re

po
rt

S
ub

m
is

si
on

of
pr

el
im

in
ar

y
re

po
rt

D
a
ta

b
a
se

D
es

ig
n

S
c
re

e
n

/U
se

r
In

te
rf

ac
e

D
es

ig
n

A
pp

lic
at

io
n

C
on

st
ru

ct
io

n

U
ni

t
T

es
ti

n
g

1
0

In
te

gr
at

io
n

T
es

tin
g

1
1

Fu
ll

A
pp

lic
at

io
n

T
es

tin
g

1
2

P
re

pa
ri

ng
pr

oj
ec

t
R

ep
or

t

1
3

IT
/I

S
E

x
h

ib
it

io
n

1
4

E
d

it
F

in
al

D
ra

ft
R

ep
o

rt

1
5

F
in

al
d

ra
ft

S
u

b
m

is
si

o
n

Pr
oj

ec
t:

H
em

a
FY

P
G

an
tt

C
ha

rt
D

a
te

:
T

u
e

1
2

/1
4

/0
4

T
a
s
k

Sp
lit

P
ro

g
re

ss

8
d

a
y

s

6
d

a
y

s

5
d

ay
s

1
d

ay

10
d

ay
s

1
0

d
ay

s

27
d

ay
s

4
d

ay
s

3
d

ay
s

7
d

ay
s

3
d

ay
s

1
d

ay

6
d

a
y

s

1
d

ay

i
n

u
m

/
w

M
o

n
7

/1
2

/0
4

M
o

n
7

/1
9

/0
4

M
o

n
7

/2
6

/0
4

W
e
d

7
/2

8
/0

4

T
u

e
8

/1
0

/0
4

T
u

e
8

/2
4

/0
4

W
e
d

9
/2

9
/0

4

M
o

n
1

0
/4

/0
4

M
o

n
1

1
/8

/0
4

M
o

n
1

0
/1

8
/0

4

W
e
d

1
0

/2
0

/0
4

F
ri

1
0

/2
2

/0
4

T
u

e
1

1
/2

/0
4

M
il

e
s
to

n
e

S
u

m
m

ar
y

P
ro

je
ct

S
u

m
m

ar
y

P
ag

e
1

E
x

te
rn

a
l

T
a
s
k

s

Ex
ter

na
lM

ile
sto

ne
^

D
ea

dl
in

e
<J

7

Pr
oj

ec
t:

H
em

a
FY

P
G

an
tt

C
ha

rt
D

a
te

:
T

u
e

1
2

/1
4

/0
4

T
a
s
k

Sp
lit

P
ro

g
re

ss

M
il

e
s
to

n
e

S
u

m
m

a
ry

P
ro

je
ct

S
u

m
m

ar
y

P
ag

e
2

E
x

te
rn

a
l

T
a
s
k

s

E
xt

er
na

lM
ile

st
on

e
^

De
ad

lin
e

\fj
z

