
BLOCK MOTION ESTIMATION USING DIRECTIONAL ADAPTIVE
SEARCH WINDOW

By

NOR FARHANA BT. FADLY CHEW

FINAL PROJECT REPORT

Submitted tothe Electrical &Electronics Engineering Programme
in Partial Fulfillment of the Requirements

for the Degree

Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Universiti Teknologi Petronas

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

© Copyright 2006

by

Nor Farhana Bt. Fadly Chew, 2006

CERTIFICATION OF APPROVAL

BLOCK MOTION ESTIMATION USING DIRECTIONAL ADAPTIVE
SEARCH WINDOW

by

NorFarhana Bt. Fadly Chew

A project dissertation submitted to the

Electrical &Electronics Engineering Programme
Universiti Teknologi PETRONAS

inpartial fulfilment oftherequirement for the
Bachelor ofEngineering (Hons)

(Electrical &Electronics Engineering)

Approved: Approved:

Ms. Nasreen Badruddin Assoc. Prof. Dr. Varun Jeoti
Project Supervisor Project Co-Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2006

111

CERTIFICATION OF ORIGINALITY

This is to certifythat I am responsible for the worksubmitted in this project, that the

original work ismyown except as specified inthe references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sourcesor persons.

^t^
Nor FarhanaBt. FadlyChew

IV

ABSTRACT

Motion estimation (ME) is the exploitation of similarities between adjacent frames in

a video sequence by eliminating temporal redundancy, and is an essential part of the

H.264 and other video compression standards. However, it introduces an increase of

computation complexity resulting in longer execution time. Thus, adaptive motion

estimation for H.264 is proposed in order to reduce the execution time while giving

better PSNR performance. The algorithm determines the amount of motion in each

block and classifies them as low, medium and high motion. From the magnitude and

direction of the x andy motion vector components, the search window (search range)

is dynamically adjusted. For high motion, the search range is set to be the maximum

value and vice versa. The results show that execution time could be reduced to almost

half (50%) of the conventional method since the number of search points and

computations decrease inthe range of 40% to 60%. Furthermore, the method gives a

better image quality for video sequence with uniform motion and negligible PSNR

loss in others. By introducing early termination inthe adaptive motion estimation, the

number of computation could be reduced even further since the search process is

terminated immediately certain criteria are satisfied. By using Option 2 for early
termination, the search point computation and PSNR is reduced with average 1.3%
and 1.027% from the adaptive motion estimation without the early termination
process.

ACKNOWLEDGEMENTS

First and foremost, the Author would like to thank God, for giving His precious time

to the Author to work on Final Year Project. Not forgotten to Electrical and

Electronics Engineering Department of Universiti Teknologi Petronas (UTP) for the

chance given to me to carry out this project.

This dissertation could not have been written without Ms. Nasreen Badruddin who

not only served as my supervisor but also encouraged and challenged methroughout

my academic program as well as this project. She patiently guided me through the

dissertation process, neveraccepting lessthanmy bestefforts.

A special thank is dedicated to my co-supervisor, Assoc. Prof. Dr. Varun Jeoti for

sharing his idea and thought in this project. Also an appreciation to Ms Siti Hawa

Tahir (EE FYP Technician) for helping me throughout the project process.

Finally, I would like to thank my mother and father, who gave me the opportunity and
the spirit to educate myself. Mom, Dad, you are the best. Special thank to Yulnaikey
Mohd. Yusoff for his continuous support. He was always being there to listen and

encourage me to face with problems. To all my friends, all ideas, advices, support and
compassions to meare completely appreciated.

VI

November 01,2006

Universiti Teknologi Petronas

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

CHAPTER 1 INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 1

1.2.1 Problem Identification 1

1.2.2Significance of the Project 2

1.3Objectives and Scope ofStudy 3

1.3.1 The Relevancy of the Project 3

1.3.2 Feasibility of the Project within Scope andTimeFrame 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 VideoResolution 4

2.2 H.264 5

2.2.1 Inter-prediction 5

2.2.2BlockMatching Method 6

2.2.3MatchingCriteria 7

2.2.4BlockSize 7

2.2.5 Search Window g

2.2.6 Search Method g

2.2.7 Video Quality g

2.2.8 Computation Complexity 9

2.2.9 Early Search Termination 10

CHAPTER 3 METHODOLOGY / PROJECT WORK 11
3.1 Procedure Identification U

3.1.1 Current Frame Analysis 12

3.1.2 Adaptive Search Window and Search Range Decision 13
3.1.3 Early Termination J5

3.1.4 Directive Search Process 21

3.1.5 Predicted image reconstruction 22

3.1.6 Computation Count 22

3.1.7 PSNR Determination 22

vn

3.2 Summary ofalgorithm 23

3.3 Tools Required 24

CHAPTER 4 RESULTS AND DISCUSSION 26

4.1 Motion Vector Estimation 26

4.2 Adaptive Search Window(Search Range) 27

4.3 Comparison between Non-adaptive and Adaptive Search Window 28

4.4 Adaptive MotionEstimation with EarlyTermination 32

CHAPTER 5 CONCLUSION AND RECOMMENDATION 36

CHAPTER 6 REFERENCES 37,

APPENDICES 39

Appendix A Gantt Chart 40

Appendix B Window Size 42

Appendix C CalculatePSNR(ioopPSNR.m) 46

Appendix D Adaptive Motion Estimation (NEWADAPTIVE.m) 47

Appendix E Non-Adaptive Motion Estimation (NEWFS.m) 55

Appendix F Adaptive Motion Estimation With Early Termination
(NEWADAPTIVE_ET.m) 59

Appendix G Split .YUV And .QCIF Video (extract.m) , 68

vm

LIST OF TABLES

Table 1 Video Resolutions (pixel) 4

Table 2 Direction of the motion basedon signofmotion vector component 13

Table 3 Search Range for horizontal direction (mvx) 15

Table 4 Search Range for Vertical Direction (mvy) 15

Table 5 Percentage of stationary and non-stationary blocks 16

Table 6 Statistical data for stationary SAD 17

Table 7 Statistical data fornon-stationary SAD 17

Table 8 Distribution result for Claire.qcif. 18

Table 9 Distribution resultfor Container.qcif 18

Table 10 Distribution resultforNews.qcif 18

Table11 Distribution result forHall Monitor.qcif 19

Table 12 Matlab Program File 24

Table 13 Raw video 25

Table 14 Total number ofcomputation for 30 frames ofHall Monitor.qcif.. 29

Table 15 Total number ofsearch point for 30 frames ofHall Monitor.qcif 29
Table16The average number of search points.... 30

Table 17The average PSNR comparison , 31

Table 18 Comparison ofthe average search point and PSNR using various algorithms
for "Container.qcif 32

Table 19 Comparison ofthe average search point and PSNR using various algorithms
for"Claire.qcif' 32

Table 20 Comparison ofthe average search point and PSNR using various algorithms
for "News.qcif\ 33

Table 21 Comparison ofthe average search point and PSNR using various algorithms
for "Hall Monitor.qcif' 33

Table 22 Comparison of the percentage reduction of search point for the proposed
algorithms 33

Table 23 Comparison of the percentage reduction of PSNR for the proposed
algorithms , 34

IX

LIST OF FIGURES

Figure 1 Block diagram of H.264 encoder.{9] 5

Figure 2 Block matching.[6] 6

Figure 3 Search Region , 8

Figure 4 Procedure of motion estimation 11

Figure 5 Search window size based on motion vector 14

Figure6 Cumulative distribution function SADfor Claire.qcif. 19

Figure 7 Cumulative distribution function SAD for Container.qcif. 20

Figure 8 Cumulative distribution function SAD forNews.qcif. 20

Figure 9 Cumulative distribution function SAD for Hall Monitor.qcif. 20

Figure 10 Directive Search Process ;....... 21

Figure 11Flowdiagram of the proposed algorithm 23

Figure 12 Motion vector field forCoastguardqcifat frame 152 26

Figure 13 Search ranges Rl, R2, R3 and R4 for adaptive search range 27

Figure 14 Number ofsearch point for "Hall Monitor.qcif 28

Figure 15 Percentage ofsearch point difference between adaptive and non-adaptive
1 29

Figure 16The average PSNRcomparisons for several videos 30

Figure 17 Comparison ofpercentage search point reduction for proposed algorithm.
34

Figure 18 Comparison ofpercentage PSNR reduction for proposed algorithm 35

x

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Video compression is a conversion of the digital video data to another format that

requires lesser bits (digital) so that the data can be transmitted and stored efficiently.

Video data contains spatial and temporal redundancy. Video compression is done by

discarding information that is indiscernible to the viewer. Spatial redundancy is

reduced by using intra-frame compression where the compression process is done

within single frame. On the other hand, temporal redundancy is reduced by encoding

only the differences between frames which is also known as inter-frame compression.

This task involves various techniques including motion estimation and motion

compensation. Motion estimation is an essential part of the H.264 and other video

compression standards where it eliminates temporal redundancy between adjacent

frames since only the first frame and the differences between frames are encoded.

There are various video compression standards that have been designed such as

MPEG-1, MPEG-2, MPEG-4, H.261; and H.263. H.264 is the latest video coding

standard introduced in 2003. The H,264 adopted various new techniques such as

multi reference frames, intra block prediction and in-loop deblocking filter to achieve

better visual quality thus increase the complexity ofencoder.

1.2 Problem Statement

1,2.1 Problem Identification

Motion estimation is the most computationally intensive component of the encoder

since it consumes about 60% to 80% of the total encoding time. Thus, this limits its

practical application in the real-time video coding. The H.261 and H.263 video

1

compression standards, use exhaustive search algorithm (ESA) with a fixed block size

of 16x 16 and a fixed search window (SW). Ideally, the search window parameter is 7

corresponding to a window of size 15 x!5. In [1], a performance comparison of

block matching techniques in motion estimation was done for various types of video

motion. For a small video motion, the blocks seem not to move at all. Therefore, it is

found that optimum result is obtained by using small block and window size.

Conversely, for large motion, it is better to use large blockand windowsize. Thus, an

algorithm that could adaptiveiy change the search window depending on the motion

type is themain concern inorder to avoid wasting time incomputing the search point

especially fora small motion video. For instance; a window size is highly dependant

with a search range (SR) where bigger size of SW will correspond to more search

points computation.

Early termination is introduced to reduce the computations further since the search

process is terminated immediately for stationary blocks. In [10], [11] and [12], fixed

threshold value is applied in the early termination process for all video sequence. For

large motion video, the thresholding did not contributes much in reducing the

computation however, for low motion video, larger threshold lead to low video

quality. Therefore, a directional adaptive search window (DASW) for H.264 with

early termination algorithm is proposed in order to reduce the execution time with

better PSNR performance.

1.2.2 Significance oftheProject

Video compression is important in the telecommunication and multimedia are where

bandwidth isa valuable commodity. Thus, the study of motion estimation has become

extremely important in order to model a current frame as accurate as possible with
less computational complexity tosave the bandwidth usage.

1.3 Objectives and Scope of Study

The main objective of this project is to design an intelligent algorithm which will

dynamically adjust the search window (search range) in the motion estimation

process based on the predicted motion vector in a video sequence. The scopes and

assumptions for this project are:

• Investigates the motion estimation part of encoder only. Other part such as

entropyencoding, quantization and infra-frame prediction are not covered.

• Only the search window size (search range) is changed. The block size is

fixed to 16x16.

• Since only inter-frame prediction is performed, the motion estimation is

limited to frames which have almost similar content (no abrupt changes) and

uniform motion.

1.3.1 TheRelevancy ofthe Project

The development of the adaptive motion estimation for H.264 by using the search

method is very significant since this new design will give the encoder the ability to
select the best or near optimumsearch range.

13.2 Feasibility ofthe Project within Scope and Time Frame

The project starts with the study ofseveral motion estimation techniques focusing on
the blocked-matching method. Research isdone as the methods to predict the motion

vectors and to determine the amount of motion contained in a particular frame. A

program that dynamically adjusts the motion estimation parameters (search method,
block size, window size orthe search range) based on the predicted motion iscreated.

In the first semester, simulation is done on the directional adaptive search window
algorithm using MATLAB. Later in the second semester, the algorithm is enhanced
by integrating early termination technique. Finally, athoughtful analysis is conducted
on the result obtained based on the performance measurement of the new adaptive
motion estimation technique. Appendix A shows the Gantt chart for the whole
semester.

CHAPTER 2

LITERATURE REVIEW

2.1 Video Resolution

The size of video image is measured in pixels for digital video. A higher resolution

and sharper images is produced as the number of pixels contains increase. The

standard resolution of YUV video in pixel is indicated by Common Intermediate

Format (CIF). Other standard video resolutions are listed in Table 1.

Table 1 Video Resolutions (pixel)

Video Formats Luminance Resolution Chrominance Resolution

SQCIF 128x96 64x48

QCIF 176x144 88x72

CIF 352x288 176x144

4 CIF 704 x 576 352x288

16 CIF 1408x1152 704x576

YUV defined color space consists ofone luminance or luma component (Y) and two
chrominance or chroma components (U and V). The luminance indicates the

brightness of the color, while the chrominance components determine the color. A

grey-scale image is produced from a Ycomponent without the Uand Vcomponents.

Since human eyes are more sensitive to brightness compared to color, many video
compression formats eliminate some information of chrominance to reduce the

number ofcomputation without affecting the perceived video quality.

2.2 H.264

H.264 or MPEG-4 Part 10 that was also known as MPEG-4 AVC (Advanced Video

Coding) is the latest video compression standard established by the ITU-T Video

Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture Experts

Group (MPEG) [2]. Recently, it has gained more attention due to its high coding

efficiency compared with the previous successive standards. The enhanced

compression and perceptual quality of H.264 is obtained from motion estimation,

which minimizes the temporal redundancies [3]. Figure 1 illustrates the block

diagram of the H.264 encoder where the ME and motion compensation (MC) take

place in the inter-prediction mode.

Reorte- ; *• NAL

Figure 1 Blockdiagram of H.264encoder. m

2.2.1 Inter-prediction

Inter-prediction mode creates a prediction model from one or more previously
encoded video frames by shifting the samples in the reference frame [9]. Amotion
vector that denotes the displacement ofthe best matching block in the reference frame

with respect to the block in the current frame is determined in this mode.

2.2.2 Block Matchmg Method

Theoretically, motion estimation is the process of predicting the current frame based

on the available data in a reference frame by obtaining the motion vector [4] [5].

Practically, the block matching method is the simplest and most popular technique of

estimating the motion vector by searching the best matched block in the reference

frame. It is a combination of four different parameters namely matching criteria,

block size, search window (search range) and the search method [I].

Figure 2 illustrates the process of block-matching algorithm [6j. Each frame is

divided with equally square size non-overlapped block (16x16 pixels). The block in

the current frame is compared with the block at the same position in the reference

frame. The reference block is at the centre of the search window (indicated by the

dashed lines). Each block in the currentframe is compared to a block in the reference

frame within the search window using the prediction error measure (MAD, SAD, or

MSE). The best matching block which has the minimum amount of error is selected

(shown by the thick line in the reference frame) [4] to give the motion vector (MV).

MV is the displacement of the bestmatched blockfrom the original block, indicated

by the arrow pointing to the upper-left ofthe frame.

Current Frame

».Q

Search windowi

3

Reference Frame

Figure 2 Block matching. [61

2.2.3 Matching Criteria

There are various criteria that the motion estimation scheme can use to find a close

match between two blocks. These include the minimum sum of absolute error (SAE)

or sum of absolute differences (SAD), the minimum mean absolute difference

(MAD), the minimum mean square error (MSE), and the maximum cross-correlation.

However, the most popular methods are MAD and SAD since they are

computationally less complex as compared to others. The energy difference between

predicted/current block lpand reference block lrat coordinate (jc, y) is measuredas:

MAD(mvx,mvy) =—- ^\lp(x,y,k)~Ir(x+mvx,y +mvy,k +l)\ (1)

MSE(mvx,mvy) =—-• ^l^y.ky-I^x+mv^y +mv^k +Vi (2)

where Bt and #> denote the size of block (B!xB2), for a candidate of motion vectors

(mvx , mvy) at frame k. The estimate value for motion vector (mvx , mvy) is taken
from the coordinate block of the minimum MSE or MAD.

2.2.4 Block Size

The block size is defines as BixB2 centered at the position (x, y) where for a square

block, B{ =B2. Normally, the block size used is 16x 16 or 8x8. Using a small block
size, results in more motion vectors to be computed but a more accurate prediction is
produced.

2.2.5 Search Window

The search window is limited to(Bx +2R)x(B2 +2R), where R is a predetermined

integer. This search window shown in Figure 3 restricts the region to find the best-

matched block and itscorresponding motion vector in the reference frame. The larger

the search window, the bigger region for motion estimation, thus more computation

needs to be done. In general, the search window is restricted to lower the execution

time associated with block matching.

Search window

Figure 3 Search Region

2.2.6 Search Method

The search process is conducted over a predetermined search region and it can be

modified to suit the needs of particular algorithm [4]. Two types of popular search

method are full-search (exhaustive) and fast-search (Three-Step Search, Logarithmic

Search, Cross-Search). Full-search is the most accurate one since it searches over all

possible blocks within the search window to find optimal motion vector.

2.2.7 Video Quality

Video quality is measured using PSNR matrix. The PSNR also known as peak signal-

to-noise ratio is the ratio of signal power to the noise power. PSNR is always

measured in decibel units (dB). Normally, PSNR is used to measure the reconstructed

image quality after performing video compression compression. Larger value of

PSNR corresponds to better video/image quality. The PSNR is defined via using the

mean squared error (MSE) where the difference between two mx n monochromes

images / and K is calculated. The MSE is defined as:

1 — (2MSE(mvx,mvy) =-— %)lc(x,y,k)-I0(x +Mvx9y +mvy,k +ty (3)

where Ic is the current image that experience image compression (noisy) and lQ is the

original image. The PSNRisdefined as:

r2552} .„ . r 255 1
PSNR= 10- log

yMSEj
= 20 log

yJMSE;
(4)

2.2.8 Computation Complexity

The computation complexity determines the number of operation counts for one

particular frame. Theoretically, the sooner the search point is found, the less number

of computations and to the encoder execution time is reduced. Currently, the

computation complexity is one of the important metrics that researchers work on in

estimating the encoder performance. It is desirable to minimize the complexity. The

computation for each block is as follows:

Blockcomputation = (2R+1)2 x B2 (5)

The total entire frame computation is defined as:

Frame computation = (m xn)x {2R +1)2 (6)

The total search point per block is:

Search pointper block= (2R+1)2 (7)

The total number ofsearch point per frame is:

Search point per frame = -—~-(2R +1)2
B

(8)

2.2.9 Early Search Termination

Low motion video-sequences tend to have more stationary blocks than non-stationary

block. A stationary block is a block that has MV equal to (0,0), and other blocks than

that is considered as non-stationary block. Therefore, an early termination algorithm

is introduced which immediately terminates the motion estimation process after

certain criteria are satisfied. As a result, the computational cost and execution time

could be reduced for zero motion blocks. A larger threshold value results in less

computation costsare perform, butthe larger degradation of video quality.

10

CHAPTER 3

METHODOLOGY / PROJECT WORK

3.1 Procedure Identification

The motion estimation procedure will be based on the following project design:

Current frame analysis

Determine the motion vector and motion type in the
current frame.

' t

Adaptive search range decision

Perform adaptive search range determination based
on motion vector magnitude and direction

''

Early Search Termination

Terminate the ME when the threshold value is

satisfied.

> •

Directive Search process

Compare the block within the search window range
using the Full-Search method.

•'

Predicted image reconstruction

i '

Computation Count

i '

PSNR determination

Figure 4 Procedure of motion estimation.

tl

3.1.1 CurrentFrame Analysis

Generally, the videos are classified into three categories which are low, medium, and
high motion. The motion categories are determined hierarchically at the frame level
and only the information gathered from the first predicted frames is used which are

the motion vectors (mvx, mvy).

In this project, the motion vector is determined by applying the Sum of Absolute

Difference (SAD) equation. Initially, the block size and search range were used are

fixed to 16 and 7. The SAD equation is given as:

SAD(mvx,mvy)= JjIpix^y^-I^x+mv^y +mv^k +i)] (5)
(x,y)eB

where mvx and mvy indicate the candidate xandy motion vector respectively. The MV

chosen is the one which minimized the SAD. The criterion that has been set to

classify the three categories of motion ©, in one blockis given as:

{Low mvx =0, mvy = 0

Medium 0< \mvx\ <4,0< \mvy\ < 4 (6)

High }mvx\>4,\mvy\>4

where \mvx\ and \mvy\ are the magnitudes of their respective associated motion vector

MV(mvx ,mvy) in a predicted frame. The sign of the motion vectors component

indicates the direction ofthe motion in the current frame as:

mvx - positive, direction = right (—•)

mvx= negative, direction = left (<—)

mvy = positive, direction = downwards (|)

mvy =negative, direction =upwards (f)

12

Table 2 Direction of the motion based on sign ofmotion vector component.

Sign of mv, Sign of ntVy Direction of motion

0 0 no direction

0 + 1

0 - r

+ 0 -»

- 0 *-

+ +
^

+ - si

- +
v

- - t^

3.1.2 Adaptive Search Window and Search Range Decision

Based on the category of motion and the direction of respective motion vector, the

optimum size of the search window is changed by adjusting the search range

parameters. The search range is derived based on the predicted blocks motion vector

where the motion vectors are classified as small (low motion), medium (medium

motion) and large (high motion). The proposed adaptive search window (search

range) algorithm on each block is described as follows:

Perform theadaptive searchrange

if((o==:low)

search range - srmin

else if((o==medium)

searchrange = srmi„ + (sr^- srmin)/4

13

For this project, the value of srmill is set equal to 4 and s/w* is set equal to 16. The
reason is for a small motion video, blocks tend to move less than 4 pixels from its

initial position. Meanwhile for large motion the blocks can move as far as the size of
the blocks 16 pixels. It means than the blocks is totally shifted from its original
position. Therefore, the search range is defined as follows:

u.

in.

Small: <o = low, mvx =0, mvy = 0;

Search range, R = 4

Medium; ©= medium, 0< |mvx| < 4,0 < |mvy| < 4;

Search range, R= 7

Large: <a = high, |mvj > 4, |mvy| >4;

Search range, R = 16

The adaptive search window's orientation also changed according to the direction of
the motion vector component. The search window is now represented by 4parameters

i.e. Ri, R2, R3 and R4. The values of R,, R2 R3 and R4 are dynamically adjusted based
onthe magnitude and direction ofmotion vector.

For example, in Figure 5; ifthe motion vector (3,2) is large in the right direction
(mvx) and downward direction (mvy\ thus it is effectively to have larger value of R2
and R4 compare to Ri and R3.

Figure 5 Search window size based on motion vector.

14

Table 3 Search Range for horizontal direction (mvx).

Motion Category Sign R1 R2

low 0 4 4

medium + 4 7

medium - 7 4

high + 4 16

high - 16 4

default 0 7 7

Table 4 Search Range for Vertical Direction (mvy)

Motion Category Sign R3 «4

low 0 4 4

medium + 4 7

medium - 7 4

high + 4 16

high - 16 4

default 0 7 7

Appendix B shows all possible of search window sizes estimated from

equation (i?, +Rl+R2)x(B2+R3+R4).

3.1.3 Early Termination

An early termination process is employed in order to reduce the computation cost by

terminated the search process immediately without examining the other points after

some criterion is met. This method exploits the characteristics of stationary blocks

where the amount of SAD for stationary blocks theoretically is smaller than non-

stationary blocks at zero motion position (0, 0). A stationary block is a zero motion

block that has MV = (0, 0), while moving block that has MV £ (0,0) is considered as

non-stationary block Thus, this method is only applicable for low motion video

sequences since it has a lotof stationary blocks compared to non-stationary ones.

15

Table 6 Statistical data for stationary SAD.

Parameters News Claire Hall Monitor Container

Min 103 34 148 110

Max 3224 1302 3060 1022

Mean 463.5783 183.5165 440.8316 224.6354

Median 273 122 337 169.5

Std 524.4001 219.1274 375.3875 155.827

Table 7 Statistical data for non-stationary SAD.

Parameters News Claire Hall Monitor Container

Min 156 75 313 111

Max 4022 3419 361 138

Mean 728.8125 1637 333.75 121.3333

Median 386.5 1691 330.5 115

Std 1115 1152.8 20.1556 14.5717

The normalized value for probability distribution function, F(x <n) of stationary

SAD is examined. This normalization process is done to adjust the differences among
data that have various ranges and sources in order to create common basis for

comparison purposes. The results percentage of stationary (PI) and non-stationary
(P2) blocks that have SAD value under the x value are indicated in Table 8, 9, 10 and
//. The normalized value iscalculated by using the equation:

Normalized Value(NV) =F(x$n)-™nF(x)
maxF(x)~ min F(x)

17

(7)

Table 8 Distribution result for Claire.qcif

n Stationary Non-Stationary Normalized

Value (NV)F(x<n) X Pl% xl<x Fl(xl) P2%

0.8 0.7912 171 72.71 113 0.25 2 0.108

0.7 0.6923 149 63.62 113 0.25 2 0.0907

0.6 0.5934 136 54.53 113 0.25 2 0.0804

0.5 0.4945 121 45.44 113 0.25 2 0.0694

Table 9 Distribution result for Container.qcif

n Stationary Non-Stationary Normalized

Value (NV)F(x<n) x % xl<x Fl(xl) %

0.8 0.7917 236 76.77 138 1 3.03 0.1382

0.7 0.6979 191 67.68 138 1 3.03 0.0808

0.6 0.5833 179 56.56 138 1 3.03 0.0757

0.5 0.5 169 48.49 138 1 3.03 0.0647

Table 10 Distribution result for News.qcif

n Stationary Non-Stationary Normalized

Value (NV)F(x<n) x % xl<x Fl(xl) %

0.8 0.7952 583 66.67 453 0.8125 13.13 0.1538

0.7 0.6988 464 58.59 453 0.8125 13.13 0.1157

0.6 0.5904 333 49.5 209 0.375 6.06 0.0737

0.5 0.494 252 41.42 209 0.375 6.06 0.0477

18

Table 11 Distribution result for Hall Monitor.qcif

n Stationary Non-Stationary Normalized

Value (NV)F(x<n) x % xl<x. Fl(xl) %

0.8 0.8 474 76.77 361 1 4.04 0.112

0.7 0.6947 406 66.66 361 1 4.04 0.0886

0.6 0.5895 365 56.57 361 1 4.04 0.0745

0.5 0.4947 336 47.47 334 0.75 3.03 0.0646

Through the cumulative distribution function plot, the distributions of the SAD for

stationary and non-stationary data value are clearly pictured. Figure 6 to Figure 9

illustrate that the plots of empirical cumulative distribution function of the stationary

and non-stationary SAD for the 4 video sequences. This plot is used to examine the

distribution of a sample data. From the figures, it is shown that a low motion video

has the steepest slope compared to high motion video sequence in the stationary block

plots. This is because most of the sample data falls at the lower value range.

EropmcdCDF EropmcalCOF

200 400 EDO 800 1000 12CG 1*00 SB 1000 ISM 3300 35GO 3000 3500

Stationary Non-stationary

Figure 6 Cumulative distribution function SAD for Claire.qcif

19

EmpricslCDF

0.9 —

Q.8 -

07

ae ••

0.4

0.3

a2

ai

EmpiricalCDF

lOD 300 300 «B 600 SB TOG BOO 900 1030 11G0

Stationary Non-staSonary

Figure 7 Cumulative distribution function SAD for Container.qcif

Figure

EmjwicaiCOF

IBM 1500 ZOO 2600 3000 3S0D

EmpiricalCDF

0.9 =1
o.a

M !... ~~\ 4 1 4

07 \ -

0.S -4 \ 1 •

05 •

a .. ••4 t | \ 1
0.3 !

0.3 j- -

0.1 •4 1 ! { |
i i ; ; ; i :

500 1000 1500 20B0 2HD 3000 3500 4B0B 4500

Stationary Non-stationary

8 Cumulative distribution function SAD for News.qcif

EmpiricalCDF

1

0.9

o.a

EmpiricalCDF

0.7 "! |

0£ 4 ':

0.5 •4 1

0.4 i

03

0.2

0.1

Figure 9 Cumulative distribution function SAD for Hall Monitor.qcif

20

In Option 1, the value of x at V(x <0.6) is chosen as threshold value, it is found that

less than 10% ofthe blocks which is the non-stationary blocks will be misinterpret as

part of stationary blocks. The average of normalized value at F(x <0.6) for these four

video is calculated to be equal to 0.076 and is set as fixed parameter to adaptively

calculate the threshold value. The threshold value (TH_SAD) is calculated using the

expression:

TH_SAD = 0.076(maxF(x)-mmF(x))+minF(x) (8)

On the other hand, in Option 2 for x at ¥(x <0.8), less than 15% ofthe blocks will be

misinterpreted. The calculated average of normalized value at F(x <0.8) for these four

video is equal to 0.128. The threshold value (TH_SAD) is calculated using the

expression:

TH_SAD- QA2$(maxF(x)-mmF(x))+mmF(x) (9)

3.1.4 Directive Search Process

The motion estimation (ME) was done using the same method as in subsection 3.1.1

by applying the SAD to predict the motion vector and displacement. The block size

used is fixed to 16x 16 but the search range is varied depending on the amount of

motion vector. In sequence, this process was continued from the previous part, where

the last predicted frame was taken as the new reference frame for the next frame

prediction. A directive search process is done which started from the centre of search

window. The process then next proceeded from the most interest region (area that has

biggest search range) to less interest region as in Figure 10.

Figure 10 Directive Search Process

21

3.1.5 Predicted image reconstruction

The filtered predicted image was saved in Bitmap format replacing the current frame

to be used for the next prediction.

3.1.6 Computation Count

For this adaptive search range motion estimation, the computation count varies

between different block and different frames depending on the size of search range

(Ri, R2 R3 and R4 parameters). The computation count is one of the parameters in

estimating the encoder performance. The smaller the search range, lesser the

computation count, thus the execution time is reduced. The computation count for an

entire frame is calculated using this formula:

Framecomputation- Heightx Width x (Ri + R2 + 1)x (R3 + R4+1) (10)

Meanwhile, the total search pointcount for entire frame indicates by:

Search point per frame =(&&*****!>)fa +̂ +jfa +̂ +,) (u)
B

3.1.7 PSNR Determination

Peak-Signal-to-Noise Ratio (PSNR) is another matrix that is used to evaluate the

encoder performance in term of reconstructed image quality produced. The PSNR is

measured as in (4). Appendix C showsthe MATLAB codes for calculatingthe PSNR

ofreconstructed frame.

22

3.2 Summary of algorithm

Start

NO

Read image

Search

Range
Decision

Zero

Paddine

Calculate

SADCO.OI

Get mv*

&mv„

Reconstruct

image

Figure 11 Flow diagram ofthe proposed algorithm.

Choose

min SAD

Update
mvx and

mvv

Figure 11 shows the flow diagram ofthe adaptive searchrange motion estimation for

the program in Appendix D. The proposed work as follows:

Step 1)Initially, the mvx and mvy are considered as default value.

Step 2) Readthe reference and current image.

Step 3) Pad the border ofreference imagewith 0.

Step 4) Get the mvx and mvy for all blocks.

Step 5) Perform the search range decision for Ri, R2, R3, and R4.

Step6) Apply the adaptive search range in calculating SAD.

Step 7) Check if SAD (0, 0) greater than THSAd. Else, terminate the ME process and

go to step 10.

23

Step 8) Check MV predictors and choose the minimum SAD as the new mvx and

mvy.

Step 9) Update the new mvx and mvy.

Step 10) Reconstruct the image and predict for the next frame.

3.3 Tools Required

Throughout this project, the simulation is done using mathematics software called

MATLAB. Therefore, knowledge in that software is essential in order to developed

programs for this project. MATLAB is a powerful mathematical tool that allows

matrix computation, calculation and plotting data. It consists of several toolboxes

including image processing block set toolbox. Table 12 lists name of the programs

have been developedusing MATLAB for this project.

Table 12 Matlab Program File

M-fileName Functions

loopPSNR.m Calculates the PSNR between the compressed image and

original image shown in Appendix C.

NEWADAPTIVE.m Calculates SAD, performs adaptive search range motion

estimation shown in Appendix D.

NEWFS.m Calculates SAD and performs motion estimation using

non-adaptive search range (fixed search range) and

reconstruct the predicted image shown in Appendix E.

NEWADAPTIVE__ET.m Calculates SAD, do adaptive search range motion

estimation with early termination shown in Appendix F.

extract.m Splits the Y, U and V component from .YUV or .QCIF

video shown in Appendix G.

24

Various uncompressed raw video sequences are used in this project. The luminance

(Y) and chrominance (U and V) components are split using the codes extract.m and

SPLIT.m as in Appendix F. However, only the Y component is used in the motion

estimation part. Table 13 contains the videos and the respective 30 frame sequence

that been used for prediction.

Table 13 Raw video

Video Name Sample Image Frame Number

Claire.qcif 1-30

Carphone.qcif 1-30

Container.qcif 1-30

News.qcif 1-30

Foreman.yuv 31-60

Coastguard.yuv 151-180

Hallmonitor.qcif 151-180

25

CHAPTER 4

RESULTS AND DISCUSSION

RESULTS AND DISCUSSION

4.1 Motion Vector Estimation

Figure 12 Motion vector field for Coastguardqcifat frame 152.

The proposed directional adaptive search window method helps to dynamically select

the search range and orientation of search window. Initially, the motion estimation

was done in the predicted frame 152 with fixed block size of 16 and search range of

7. The motion vector determined is used to decide the search range for next frame

prediction based on the design criteria stated in Chapter 3. The motion vectors are

updated for each block computation in every frame.

Figure 12 illustrates the motion vector field in the first predicted frames based on

frame 151 as reference for Coastguardqcifthat has uniform amount of motion and

26

direction. The motions detected in the frame are indicated by the arrows pointing to

the right direction.

4.2 Adaptive Search Window (Search Range)

mvx = 1 1 1 1 1 1 1 0 mvy = 0 0 0 0 0 0 0 0 0 0 0

1 1 1 i 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 i i 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 i 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 l 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 l 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1] i 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Rl = 4 4 4 4 4 4 4 4 4 4 4
R2 = 7 7 7 7 7 7 7 7 7 7 4

4 4 4 4 4 4 4 4 4 4 4
7 7 7 7 7 7 7 7 7 7 4

4 4 4 4 4 4 4 4 4 4 4
7 7 7 7 4 7 7 7 7 7 4

4 4 4 4 4 4 4 4 4 4 4
7 7 7 7 7 4 7 7 7 7 7

4 4 4 4 4 4 4 4 4 4 4
7 7 4 4 4 4 4 4 4 7 4

4 4 4 4 4 4 4 4 4 4 4
7 7 4 7 4 7 4 4 4 7 4

4 4 4 4 4 4 4 4 4 4 4
7 7 7 7 7 7 7 7 7 7 4

4 4 4 4 4 4 4 4 4 4 4
7 7 7 7 7 7 7 7 7 7 4

4 4 4 4 4 4 4 4 4 4 4
7 7 7 7 7 7 7 7 7 7 4

R3 = 4 4 4 4 4 4 4 4 4 4 4
R4 = 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4

Figure 13 Search ranges RI, R2, R3 and R4 for adaptive search range.

Figure 13 shows the resulting search range RI, R2, R3, and R4 for 11x9 blocks

based on the previous predicted frame motion vectors MV (mvx, mvy). The motion

vector components have zero magnitude in the y direction only. Therefore, values of

R3 and R4 are set to 4. On the other hand, there are a lots of motion toward the right

direction indicated by the mvx^l. The blocks highlighted in bold show regions that

contain no motion. Since all of the motion is orientated towards the right, the search

range at the left (RI) is set to the minimum value 4. The search range at the right (R2)

is adaptively selected based on the magnitude of motion vector (mvx). All blocks that

experienced motion, have search range (R2=7) except the blocks with no motion

which is highlighted in bold

27

43 Comparison between Non-adaptive and Adaptive Search Window

Non-adaptive search window is a conventional algorithm where the search range is

R=7 for all blocks in the predicted frame. Appendix E shows the program for the

non-adaptive search window. Using the adaptive search window motion estimation,

the size of search range is varied depending on the motion vectors predictedfrom the

frame. As a result, the number of computation differs from one frame to another.

Figure 14 illustrates the number of search point for both adaptive and non-adaptive

methods. The number of search point for non-adaptive is consistent throughout all

frames which are 22,275/frame. Thus, this contributes to higher execution time for

the encoder.

25000

20000-

| 15000-
a.

g 10000
09

5000

-1—mn—n—r-i—i—i—n—i—i—i—i—i—i—i—i—I—r—n—r-

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

-Non-Adaptive

Adaptive

Frame

Figure 14 Number of search point for "Hall Monitor.qcif.

For the adaptive search window, the number of search point is only equal to

22,275/frame during the initial state due to fixed search range. After the motion

vectors are determined from the first predicted frame, the search range is dynamically

adjusted for each block in each respective frame. The number of search point dropped

rapidly to the range between 8,000/frame to 10,000/frame. Therefore, more time is

saved for video coding by using this adaptive algorithm.

28

Table 14 Total number ofcomputation for 30 frames ofHall Monitor.qcif

Parameters Total Computation for 30

frames

Non-Adaptive 165,369,600

Adaptive 66,546,432

Table 15 Total number of search point for 30 frames ofHall Monitor.qcif

Parameters Total Search Point for 30

frames

Non-Adaptive 645,975

Adaptive 259,947

Table 14 shows the total number of computation for 30 sequence frames of Hall

Monitor.qcif. As can be seen, there are a lot of difference in number of computation

for both methods which is of about 59.76%. It is more than half of the total

computation for non-adaptive search window motion estimation. Meanwhile, Table

15 shows that number of search point is reduced up to 59.76% from the conventional

method. Therefore, it proves that the number of computation is directly proportional

to the search point. As a consequence, the adaptive search window can reduce the

execution time about 50% from the non-adaptive method.

Figure 15 Percentage ofsearch pointdifference betweenadaptiveand non-adaptive

29

Table 16 The average number of search points.

Video Sequence Number of Search Point Search Point

Difference

Percentage
Difference (%)

Non- adaptive Adaptive

claire 22,275 9639.93103 12635.069 56.72

earphone 22,275 11603.7931 10671.2069 47.91

container 22,275 9084.10345 13190.8966 59.22

news 22,275 8872.13793 13402.8621 60.17

foreman 22,275 12931.4483 9343.55172 41.95

coastguard 22,275 11729.7931 10545.2069 47.34

hall 22,275 8963.68966 13311.3103 59.76

Figure 15 illustrates the percentage reduction of search point for the proposed search

window algorithm compared to the; conventional algorithm. The results show that

number of computation is decreased by 40% to 60% based on the amount of motion

content for the whole frames. Small amount of motion such as Claire and Container

have higher percentage difference compared to high motion such as Foreman and

Carphone. For instance, the average execution time is reduced by almost 50%. Table
16shows the respective values for Figure 15.

O Non-Adaptive

B Adaptive

Video

Figure 16 The average PSNR comparisons for several videos.

30

In Figure 16, the average PSNR for seven 30-frame video with uniform motion are

analyzed and tabulated in the graph. The graph shows that there is only small

degradation in terms of PSNR for Claireand container video which is about 0.0337%

and 0.0141% from the conventional method which is negligible. This is due to the

motion vectors throughout the motion estimation process did not have constant

direction of motion vector. The direction keeps on changing from frame to frame

which is not predictive for the next frame.

The remaining five video sequences namely coastguard, news, foreman, earphone

and hall monitor have larger average PSNR for the adaptive search window motion

estimation. Coastguard PSNR is increased by 0.00321 dB or 0.00962%, while Hall

monitor is increased by 0.11962 dB or 0.31625% from the non-adaptive method. This

result is expected because these five videos contained almost uniform amount of

motionand direction. Table 17 lists the exact valuesofthe averagePSNR comparison

used in Figure 16.

Table 17 The average PSNR comparison.

Video

Sequence

Average PSNR PSNR

Difference (dB)

Percentage

Difference (%)Non- adaptive Adaptive

claire 39.61845 39.60352 -0.0149 -0.0377

earphone 36.07479 36.10183 0.02703 0.07494

container 38.42221 38.41679 -0.0054 -0.0141

news 36.43452 36.51662 0.0821 0.22535

foreman 33.10203 33.18141 0.07938 0.2398

coastguard 33.32583 33.32903 0.00321 0.00962

hall 37.82438 37.944 0.11962 0.31625

31

4.4 Adaptive Motion Estimation with Early Termination

The comparison results for various algorithms are listed in Table 18, 19, 20, and 21.

The three types of algorithm that are used for comparison are full search (FS),

adaptive search window motion estimation, and adaptive motion estimation with

early termination. The early termination contains two options namely Option 1 where

the threshold (TH_SAD) is set to be the value ofx at F(x <0.6) of the stationary SAD.

For Option 2, the value of x at F(x <0.8) of stationary SAD is set as the threshold

(TH_SAD) value. The numbers of search points can be reduced further by adapt the

early termination in the adaptive motion estimation with only small degradation of

video quality as penalty.

Table 18 Comparison of the average search point and PSNR using various
algorithms for "Container.qcif\

Carphone TH_SAD

Average Search Point Average PSNR (dB)

Value ASP % Value APSNR %

FS - 22275 0 0 38.42221 0 0

Adaptive - 9084.103 -13190.9 -59.22 38.41679 -0.0054 -0.0141

Option I 179.312 8981.379 -13293.6 -59.68 38.38248 -0.0397 -0.1034

Option 2 226.736 8945.586 -13329.4 -59.84 38.37114 -0.0511 -0.1329

Table 19 Comparison of the average search point and PSNR using various
algorithms for "Claire.qcif.

Container THJSAD

Average Search Point Average PSNR (dB)

Value ASP % Value APSNR %

FS - 22275 0 0 39.61845 0 0

Adaptive - 9639.931 -12635.1 -56.72 39.60352 -0.0149 -0.0377

Option I 130.368 9472.345 -12802.7 -57.48 39.58255 -0.0359 -0.0906

Option 2 196.304 9012.621 -13262.4 -59.54 39.52238 -0.0961 -0.2425

32

Table 20 Comparison of the average search point and PSNR using various
algorithms for "News.qcif.

Claire THJSAD

Average Search Point Average PSNR (dB)

Value ASP % Value APSNR %

FS - 22275 0 0 36.43452 0 0

Adaptive - 8872.138 -13402.9 -60.17 36.51662 0.0821 0.2254

Option 1 340.196 8796.414 -13478.6 -60.51 36.22741 -0.2071 -0.5684

Option 2 502.488 8757.621 -13517.4 -60.68 35.84514 -0.5894 -1.6176

Table 21 Comparison of the average search point and PSNR using various
algorithms for "Hall Monitor.qcif.

Coastguard THJSAD

Average Search Point Average PSNR (dB)

Value ASP % Value APSNR %

FS - 22275 0 0 37.82438 0 0

Adaptive - 8963.69 -13311.3 -59.76 37.944 0.11962 0.3163

Option 1 369.312 8930.28 -13344.7 -59.91 37.41814 -0.4062 -1.074

Option 2 520.736 8681.69 -13593.3 -61.02 36.80031 -1.0241 -2.7074

Table 22 Comparison of the percentage reduction of search point for the
proposed algorithms.

Search Point Adaptive Option 1 Option 2

Container -59.22% -59.68% -59.84%

Claire -56.72% -57.48% -59.54%

News -60.17% -60.51% -60.68%

Hall Monitor -59.76% -59.91% -61.03%

33

Container Claire News Hall Monitor

13Adaptive

a Option 1

S3 Option 2

Video

Figure 17 Comparison of percentage search point reduction for proposed
algorithm.

Table 22 and Figure 17 summarize the percentage of search point reduction from

Table 18 to Table 21. Through the results for all four type videos, the computation of

search point shows large reduction mostly using option 2 compare to option 1 since

the value ofjc at F(x <0.8) is larger than F(x <0.6).

Table 23 Comparison of the percentage reduction of PSNR for the proposed
algorithms.

Search Point Adaptive Option 1 Option 2

Container -0.0141% -0.1034% -0.13292%

Claire -0.0377% -0.0906% -0.24249%

News 0.22535% -0.5684% -1.61764%

Hall Monitor 0.31625% -1.074% -2.70743%

34

Hall Monitor

o
o
•D

News

Claire

Container

• Option 2

m Option 1

s Adaptive

Figure 18 Comparison of percentage PSNRreduction for proposedalgorithm.

In contrast, Table 23 and Figure 18 summarize the percentage of PSNR reduction

from Table 18 to Table 21. Through the results, it is observed that the images have

experienced large degradation of quality by using Option 2 compare to Option 1. The

reason that certifies the results is there is a trade off between the video quality

performance and time saving. The largerthe threshold (THSAD) valueemployed in

the termination process, the more search points and candidate blocks are skipped.

This results in less number of computations, but leads to a larger quality degradation

and motion distortion.

The results show that for Option 2 the number of search point is reduced by an

averageof 1.3%from the algorithm without early termination. Option 1 only gives a

reduction of 0.4225%. For example, the PSNR reduction from the adaptive motion

estimation without early termination is only 1.027% for Option 2 and 0.3101% for

Option 1. Therefore, it can be concluded that a large threshold value results in

reducingin numberofcomputation as well as imagequality.

35

CHAPTERS

CONCLUSION AND RECOMMENDATION

This research is based on designing adaptive motion estimation for H.264 video

compression with early termination in order to optimize the performance video

compression in term of better PSNR with lesser time of execution. The best motion

estimation parameter is determined based on the predicted amount of motion or

motion vector in a particular frame. As a result, it shows that there are three

categories of motion that can be estimated from the motion vector using the sum of

absolute difference (SAD). From the amount ofmotion vectors, the motion estimation

parameter which is the search window is dynamically adjusted based on the decision

criteria. It shows that, using adaptive search window motion estimation, the image

quality in term of PSNR for five video sequences is better compared to the non-

adaptive method. Only small degradation of PSNR resulting from proposed algorithm

for two other video sequences (most of 0.038%) which is negligible. Besides that,

execution time could be reduced to half (50%) of the non-adaptive method as it

reduces the number of search points and computations between the ranges of 40% to

60%. Through the comparison result, by using the early termination the number of

computation could be reduced further more with average 1.3% for Option 2. The

image has experience degradation of image quality with average of 1.027% from the

adaptive motion estimation without the early termination process. This is done by

eliminate the search process for stationary block. This proved that the larger the

threshold value, the more reduction in term ofcomputation and image quality.

For future work, it is recommended to applied the iriter/intra mode decision to

increase the reconstructed image quality.

36

CHAPTER 6

REFERENCES

[1] N. N. Abu Bakar and N. Badruddin, "Performance Comparison of Block

Matching Techniques in Motion Estimation for Different Types of Video Sequences",

Final Year Project Thesis, Universiti Teknologi PETRONAS, Perak, Malaysia, 2005.

[2] Wikipedia, "H.264/MPEG-4 AVC", 30 Jan 2006,

hUp://en.\Mk[pedia/wlki/H.264/MPEG-4 AVC

[3] A Whatis.com, "H.264", 6 Feb 2006, http:vsearchsmb.techtaraet.com-'

sDefimuon/0,,sid44_gci934039.00.html

[4] L. Kohout, "Motion Estimation Tutorial", 20 March 1998,

http:/;"stargate.ecn.purdue.edu/-ips/tutorials/me

[5] Richardson, Iain E. G., "Video Codec Design - Developing Image and Video

Compression Systems", West Sussex, John Wiley & Sons Ltd, 2002.

[6] A. Murat Tekalp, "Digital Video Processing", Upper Saddle River, Prentice Hall

Signal Processing Series, 1995.

[7] Y. Liang, 1. Ahmad, J. Luo, Y. Sun, and V. Swaminathan, "On Using Hierarchical

Motion History for Motion Estimation in H.264/AVC", IEEE Transactions on Circuit

and Systemsfor Video Technology, vol. 15, Dec. 2005.

[8] G. L. LI and M. J. Chen, "Adaptive Search Range Decision and early Termination

for Multiple Reference Frame Motion Estimation for H.264", IEICE Trans.

Commun., vol. E89-B, Jan. 2006.

[9] L E. G. Richardson, "H.264 and MPEG-4 Video Compression", West Sussex,

New York: John Wiley & Sons Ltd, 2003.

[10] W. Ni, B. Guo, G. Ding and L. Yang, "Motion Vector Field and Direction

Adaptive Search Technique for Motion Estimation", Journal of Information &

Computational Science 2:3, September 2005.

37

[11] T. Xu and W. Chen, "A Fast Adaptive Statistical Genetic Motion Search

Algorithm for H.264/AVC", Proc. OfIEEEInternational Conference2006 on

AdvancedInformation Networking andApplications (AINA '06), 2006

[12] Z. Yang, J. Bu, C. Chen and X. Li, "Fast PredictiveVariable-block Size Motion

Estimation for H.264/AVC"in Proc. OfIEEEInternational Conferenceon

Multimedia & Expo2005, July 2005, pp. 354-357.

38

APPENDICES

Appendix A Gantt Chart

Appendix B Window Size

Appendix C Calculate PSNR (loopPSNR.m)

Appendix D Adaptive Motion Estimation (NEWADAPTIVE.m)

Appendix E Non-Adaptive Motion Estimation (NEWFS.m)

Appendix F Adaptive Motion Estimation With Early Termination
(NEWADAPTIVE_ET.m)

Appendix G Split .YUV And .QCIF Video (extract.m)

39

F
ir

st
S

em
es

te
r

o
f2

S
em

es
te

r
F

in
al

Y
ea

r
P

ro
je

ct

A
P

P
E

N
D

IX
A

G
a
n

tt
C

h
a
rt

N
o

.
D

e
ta

il
/W

e
e
k

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4

1
Se

le
ct

io
n

o
fP

ro
je

ct
T

op
ic

-T
op

ic
as

si
gn

ed
to

st
ud

en
ts

-
:
-
-

-

2
P

re
li

m
in

ar
y

R
es

ea
rc

h
W

or
k

-S
tu

dy
on

H
.2

64
an

d
M

E
-
•

-
-
-
-
-

-
-
-
-
-

3
S

ub
m

is
si

on
o

fP
re

li
m

in
ar

y
R

ep
or

t
©

4
P

ro
je

ct
W

or
k

-D
es

ig
n

de
ci

si
on

cr
it

er
ia

-P
re

d
ic

t
th

e
a
m

o
u

n
t

o
f

m
o

ti
o

n
/

m
o

ti
o

n
v

e
c
to

r

-
St

ar
t

on
pr

og
ra

m
m

in
g

in
M

A
T

L
A

B

5
S

ub
m

is
si

on
o

f
P

ro
gr

es
s

R
ep

or
t

©

6
P

ro
je

ct
w

o
rk

co
nt

in
ue

-C
o

n
ti

n
u

e
w

it
h

th
e

M
A

T
L

A
B

-A
na

ly
ze

an
d

co
m

pa
re

th
e

re
su

lt
pe

rf
or

m
an

ce

7
S

ub
m

is
si

on
o

f
In

te
ri

m
R

ep
or

t
©

8
O

ra
l

P
re

se
n

ta
ti

o
n

®

S
ug

ge
st

ed
m

il
es

to
ne

P
ro

c
e
s
s

4
0

S
ec

o
n

d
S

e
m

e
st

e
r

o
f2

S
e
m

e
st

e
r

F
in

a
l
Y

e
a

r
P

ro
je

ct

N
o

.
D

e
ta

il
/
W

e
e
k

I
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4

1
P

ro
je

ct
W

or
k

C
on

tin
ue

-R
es

ea
rc

h
an

d
st

ud
y

on
E

ar
ly

T
er

m
in

at
io

n

2
S

u
b

m
is

si
o

n
o

f
P

ro
gr

es
s

R
ep

or
t

1
©

3
P

ro
je

ct
W

or
k

C
on

ti
nu

e
-S

et
th

e
de

si
gn

cr
ite

ri
on

-C
on

ti
nu

e
pr

og
ra

m
m

in
g

in
M

A
T

L
A

B

4
S

ub
m

is
si

on
o

fP
ro

gr
es

s
R

ep
or

t2
©

5
P

ro
je

ct
w

or
k

co
nt

in
ue

-C
o

n
ti

n
u

e
w

it
h

th
e

M
A

T
L

A
B

-
A

na
ly

ze
an

d
co

m
pa

re
th

e
re

su
lt

6
S

u
b

m
is

si
o

n
o

f
D

is
se

rt
at

io
n

F
in

al
D

ra
ft

©

7
S

u
b

m
is

si
o

n
o

f
F

in
al

R
ep

or
t

®

8
O

ra
l

P
re

se
n

ta
ti

o
n

©

9
S

ub
m

is
si

on
o

fP
ro

je
ct

D
is

se
rt

at
io

n
#

S
ug

ge
st

ed
m

il
es

to
ne

P
ro

c
e
ss

4
1

APPENDIX B

Window Size

RI R2 R3 R4 Window Size

4 4 4 4 24x24

4 4 4 7 24x27

4 4 4 16 24x64

4 4 7 4 24x27

4 4 7 7 24x30

4 4 7 16 24x39

4 4 16 4 24x36

4 4 16 7 24x39

4 4 16 16 24x48

4 7 4 4 27x24

4 7 4 7 27x27

4 7 4 16 27x64

4 7 7 4 27x27

4 7 7 7 27x30

4 7 7 16 27x39

4 7 16 4 27x36

4 7 16 7 27x39

4 7 16 16 27x48

4 16 4 4 36x24

4 16 4 7 36x27

4 16 4 16 36x64

4 16 7 4 36x27

42

4 16 7 7 36x30

4 16 7 16 36x39

4 16 16 4 36x36

4 16 16 7 36x39

4 16 16 16 36x48

7 4 4 4 27x24

7 4 4 7 27x27

7 4 4 16 27x64

7 4 7 4 27x27

7 4 7 7 27x30

7 4 7 16 27x39

7 4 16 4 27x36

7 4 16 7 27x39

7 4 16 16 27x48

7 7 4 4 30x24

7 7 4 7 30x27

7 7 4 16 30x64

7 7 7 4 30x27

7 7 7 7 30x30

7 7 7 16 30x39

7 7 16 4 30x36

7 7 16 7 30x39

7 7 16 16 30x48

7 16 4 4 39x24

7 16 4 7 39x27

7 16 4 16 39x64

43

7 16 7 4 39x27

7 16 7 7 39x30

7 16 7 16 39x39

7 16 16 4 39x36

7 16 16 7 39x39

7 16 16 16 39x48

16 4 4 4 36x24

16 4 4 7 36x27

16 4 4 16 36x64

16 4 7 4 36x27

16 4 7 7 36x30

16 4 7 16 36x39

16 4 16 4 36x36

16 4 16 7 36x39

16 4 16 16 36x48

16 7 4 4 39x24

16 7 4 7 39x27

16 7 4 16 39x64

16 7 7 4 39x27

16 7 7 7 39x30

16 7 7 16 39x39

16 7 16 4 39x36

16 7 16 7 39x39

16 7 16 16 39x48

16 16 4 4 48x24

16 16 4 7 48x27

44

16 16 4 16 48x64

16 16 7 4 48x27

16 16 7 7 48x30

16 16 7 16 48x39

16 16 16 4 48x36

16 16 16 7 48x39

16 16 16 16 48x48

45

APPENDIX C

Calculate PSNR (loopPSNRm)

function [a,b,PSNR]=loopPSNR(name,namereal,f1,f2)

a=0;

for loop = fl:f2

cimg = imread (strcat(num2str(loop),name));

oimg = imread (strcat(num2str(loop),namereal));

[m/n]=size(cimg) ;

eimg=cimg-oimg;

mse=sum(sum(eimg.A2))/(m*n);

RMSE=sqrt(mse);

PSNR(loop)=20*logl0(255/RMSE);

a=a+PSNR(loop);

end

b=a/29

46

APPENDIX D

Adaptive Motion Estimation (NEWADAPTIVE.m)

%%%Adaptive motion estimation (search range) with adaptive deblocking

%%%filter

function [Set_P, calc, num] = NEWADAPTIVE(name,fl,f2)

A=ones(9,ll);

B=ones(9,ll) ;

exe=0;

mvx=A*lll;

mvy=B*lll;

for loop = fl:f2 %start loop frames

num=loop+2-f1;

comp =0;

cmp=0;

il = imread (strcat(num2str(loop-1),name));

im2 = imread (strcat(num2str(loop), name) };

B = 16;%block size

sz = B*B;

R = 7; %search window

[height,width] = size(il); %width = row, height = column

iml = padarray(il,[(R) (R)],0,'both');%pad both x and y sides with '0'

nl=0;

for i=l:B:height-B+l

r=i-(nl*B)+nl;

n2=0;

for j=1:B:width-B+1 %for every block in the reference and predicted

image frame (dinstinct)

c=j-{n2*B)+n2;

vx = mvx(r,c);

vy = mvy(r,c);

s_point =0;

47

if vx==0

Rl=4;

R2=4;

elseif abs(vx}>0 £ abs(vx)<=4

if vx>0

Rl=4;

R2=7 ;

else

Rl=7;

R2=4;

end

elseif abs(vx)>4 & abs(vx}<100

if vx>0

Rl=4;

R2=16;

else

Rl=16;

R2=4;

end

else

Rl=7;

R2=7 ;

end

if vy==0

R3=4;

R4=4;

elseif abs(vy)>0 £ abs(vy)<=4

if*vy>0

R3=4 ;

R4=7;

else

R3=7;

R4=4;

end

48

elseif abs(vy)>4 £ abs(vy)<100

if vy>0

R3=4;

R4=16;

else

R3=16;

R4=4;

end

else

R3=7;

R4=7;

end

if R1>R2

RA=-R1;

RB=R2;

dl=-l;

d2=l;

else

RA=R2;

RB=-R1;

dl=l;

d2=-l;

end

if R3>R4

RC=-R3;

RD=R4;

d3=-l;

d4=l;

else

RC=R4;

RD=-R3;

d3=l;

d4=-l;

end

SADmin = 256*B*B;

49

for k =[0:d3:RC]

for 1 =[0:dl:RA]

SADabsdiff = imabsdiff(im2(i:i+B-1,j:j +B-1), iml(i+k+R3+(R-

R3):i+k+R4+(R-R4)+B-l,J+1+R1+(R-R1):J+1+B+R2+(R-R2)-1));% iml will

slide its block by one pixel at a time

SAD = sum(sum(SADabsdiff));%sum all SAD avg for one row

if SAD < SADmin

SADmin = SAD;

dx=l;

dy=k;

end

s_point = s_point+l;

end

end'

for k =[0:d3:RC]

for 1 =[d2:d2:RB]

SADabsdiff = imabsdiff(im2(i:i+B-1,j:j+B-1), iml(i+k+R3+(R-

R3):i+k+R4+(R-R4)+B-l,J+1+R1+(R-Rl):J+1+B+R2+(R-R2)-1});% iml will

slide its block by one pixel at a time

SAD = sum(sum(SADabsdiff});%sum all SAD avg for one row

if SAD < SADmin

SADmin = SAD;

dx=l;

dy=k;

end

s_point = s_point+l;

end

end

for k =[d4:d4:RD]

for 1 =[0:dl:RA]

SADabsdiff = imabsdiff(im2(i:i+B-1,j:j+B-1),iml(i+k+R3+(R-

R3):i+k+R4+(R-R4)+B-l,J+1+R1+(R-Rl):J+1+B+R2+(R-R2)-1));% iml will

slide its block by one pixel at a time

SAD = sum(sum(SADabsdiff));%sum all SAD avg for one row

if SAD < SADmin

SADmin = SAD;

dx=l;

50

dy=k;

end

s_point = s_point+l;

end

end

for k =[d4:d4:RD]

for 1 =[d2:d2:RB]

SADabsdiff = imabsdiff(im2(i:i+B-1,j:j+B-1),iml(i+k+R3+(R-

R3):i+k+R4+(R-R4)+B-l,J+1+R1+(R-Rl):J+1+B+R2+(R-R2)-1));% iml will

slide its block by one pixel at a time

SAD = sum(sum(SADabsdiff));%sum all SAD avg for one row

if SAD < SADmin

SADmin = SAD;

dx=l;

dy=k;

end

s_point = s_point+l;

end

end

cmp=(Rl+R2+l)*(R3+R4+1)*BA2;

% writing predicted image %

imp(i:i+B-1,j:j +B-1)= iml(i+dy+R:i+dy+R+B-1,dx+R+j:j +dx+R+B-l);

iblk = floor ((i-l)/B+l);

jblk = floor ((j-lJ/B+1);

mvxfiblk,jblk) = dx;

mvy(iblk,jblk) = dy; %record the estimated MV

SAD99(iblk,jblk) = SAD;

rl (iblk,jblk) = RI;

r2(iblk,jblk) = R2;

r3 (iblk,jblk) = R3;

r4 (iblk,jblk) = R4;

SP(iblk,jblk) = s_point;

SADl(iblk,jblk)= SADmin;

51

n2=n2+l;

comp=comp+cmp;

end

nl=nl+l;

end

%deblocking filter

inp=imp;

dd=B;

[dimy,dimx]=size(inp); % Calcolo dimensione immagine

p=0; % Azzeramento contatore strong filter

% Passaggio su tutte le righe...

for j=dd:dd:dimx-dd

for i=l:l:dimy

diff=inp(i,j+l)-inp(i,j);

diffl=inp(i,j-l)-inp(i,j);

diff2=inp(i,j+2)-inp(i,j+1);

if ((abs(diffl)<5)&(abs(diff2)<5))

ixl|,|x2|<5)

inp(i,j-2)=inp(i,j-2)+(diff/8); % a=A+x/8

inp(i,j-l)=inp(i/j-l)+(diff/4); % b=B+x/4

inp(i, j)=inp (i, j)+ (diff/2) ;

inp(i,j+l)=inp(i,j+1)-(diff/2)

inp(i,j+2)=inp(i,j+2)-(diff/4)

inp(i,j+3)=inp(i,j+3)-(diff/8)

P=P+1;

else

inp(i,j-l)=inp(i,j-1)+(diff/8); % b=B+x/8

inp(i,j)=inp(i,j)+(diff/2); % c=C+x/2

inp(i,j+l)=inp(i,j+l)-(diff/2); % d=D-x/2

inp(i,j+2)=ihp(i,j+2)-(diff/8); % e=E-x/8

end;

end;

end;

52

% x=D-C

% xl=B-C

% x2=E-D

Strong filter :if

% c=C+x/2

% d=D-x/2

% e=E-x/4

% f=F-x/8

% Aumento cont strong filter

% Soft filter

IPassaggio su tutte le colonne...

for i=dd:dd;dimy-dd

for j=l:l:dimx

diff=inp(i+l,j)-inp(i,j);

diffl=inp(i-1,j}-inp(i,j);

diff2=inp(i+2,j)-inp(i+l,j); %

if ((abs(diffl)<5)&(abs(diff2)<5))

|xl|,[x2|<5)

inp(i-2,j)=ihp(i-2,j}+(diff/8)

inp(i-1,j)=inp(i-1,j)+(diff/4)

inp(i, j)=inp (i, j) + (diff/2) ;

inp(i+l,j)=inp(i+l,j)- (diff/2)

inp(i+2,j)=inp £i+2,j)-(diff/4)

inp(i+3,j)=inp(i+3,j)-(diff/8)

p=p+l;

else

inp(i-1,j)=inp(i-1,j)+(diff/8)

inp(i,j)=inp(i,j)+(diff/2);

inp(i+1,j}=inp(i+1,j)-(diff/2); % d=D-x/2

inp(i+2,j)=inp(i+2,j)-(diff/8); % e=E-x/8

end;

end;

end;

inp;

SAD1

mvx

mvy

% x=D-C

% xl=B-C

% x2=E-D

Strong filter (if

% a=A+x/8

% b=B+x/4

% c=C+x/2

% d=D-x/2

% e=E-x/4

% f=F-x/8

% Aumento cont strong filter

% Soft filter

% b=B+x/8

% c=C+x/2

[X,Y] = meshgrid(1:B:width-B+1,l:B:height-B+i;

coordinates

^Set motion vector

figure, imshow(inp,[0 255])

Frame'))

hold on

quiver(X,Y,mvx,mvy)

hold off

title (strcat(num2str(loop),'Predicted

SN = strcat(num2str(loop),name);

53

imwrite(inp,SN,'bmp*) %write predicted image to file

%imwrite(imp,strcat(num2str(loop),'Ynews.Y')) %write predicted image to

file

tot_SP = sum(sum(SP))

Set_P(num) = tot_SP

exe=exe+comp;

calc(num)=comp;

% %

end %end loop frames

totexe=exe

54

APPENDIX E

Non-Adaptive Motion Estimation (NEWFS.m)

%%%Full Search Motion Estimation

function [Set_P, calc, num] = NEWFS(name,f1,f2)

exe=0;

%name = 'hall__monitorY.Y' ;

%f1=152;

%f2=180;

for loop = fl:f2 %start loop frames

num=loop+2-f1;

comp =0;

cmp=0;

il = imread (strcat(num2str(loop-1),name));

im2 = imread (strcat(num2str(loop), name));

B = 16;%block size

sz = B*B;

R = 7; %search window

[height,width] = size(il); %width = row, height = column

iml = padarray(il,[(R) (R)],0,'both*);%pad both x and y sides with *0'

for i=l:B:height-B+l

for j=l:B:width-B+1 %for every block in the reference and predicted

image frame (dinstinct)

s_point =0;

%j,k= column, i,l = row

SADmin = 256*B*B;

for k =[0:R -R:-l]

for 1 =[0:R -R:-l]

SADabsdiff = imabsdiff(im2(i:i+B-1,j:j+B-

1),iml(i+R+k:i+R+k+B-l,j+R+1:j+R+l+B-1));% iml will slide its block by

one pixel at a time

SAD = sum(sum(SADabsdiff));%sum all SAD avg for one row

55

if SAD < SADmin

SADmin = SAD;

dx=l;

dy=k;

end

sjpoint = sjpoint+1;

end

end

cmp=(R+R+l)*(R+R+l)*BA2;

% writing predicted image_

imp(i:i+B-l,j:j+B-1)= iml(i+dy+R:i+dy+R+B-1,dx+R+j:j+dx+R+B-1);

iblk = floor ((i-1)/B+l);

jblk = floor ((j-lJ/B+1);

mvx(iblk,jblk) = dx;

mvy(iblk,jblk) = dy; %record the-estimated MV

SAD99(iblk,jblk) = SAD;

SP(iblk,jblk) = s_point;

SAD1(iblk,jblk)= SADmin;

comp=comp+cmp;

end

end

%deblocking filter

inp=imp;

dd=B;

[dimy,dimx]=size(inp); % Calcolo dimensione immagine

p=0; % Azzeramento contatore strong filter

56

% Passaggio su tutte le righe—

for j=dd:dd:dimx-dd

for i=l:l:dimy

diff=inp(i,j+l)-inp(i,j);

diffl=inp(i,j-1)-inp(i,j};

diff2=inp(i,j+2)-inp(i,j+1);

if ((abs(diffl)<5)&(abs(diff2)<5))

[xll,Ix2l<5)

inp(i,j-2)=inp(i,j-2)+(diff/8); %

inp(i,j-l)=inp(i,j-l)+(diff/4); % b=B+x/4

inp(i,j}=inp(i,j)+(diff/2); % c=C+x/2

inp(i,j+1)=inp(i,j+1)-(diff/2)

inp(i,j+2)=inp(i,j+2)-(diff/4)

inp(i,j+3)=inp(i,j+3)-(diff/8)

p=p+l;

else

inp(i,j-l)=inp(i,j-l)+(diff/8); % b=B+x/8

inp(i,j)=inp(i,j)+(diff/2); % c=C+x/2

inp(i,j+1)=inp(i,j+1)-(diff/2); % d=D-x/2

inp(i,j+2)=inp(i,j+2)-(diff/8); %e=E-x/8

end;

end;

end;

IPassaggio su tutte le colonne—

for i=dd:dd:dimy-dd

for j=l:l:dimx

diff=inp(i+1,j)-inp(i,j) ;

diffl=inp(i-l,j)-inp(i, j) ;

diff2=inp(i+2,j)-inp(i+1,j); I

if ((abs(diffl)<5)&(abs(diff2)<5))

|xl!,|x2|<5)

inp(i-2,j)=inp(i-2,j)+(diff/8); % a=A+x/8

inp(i-l,j)=inp{i-l,j)+(diff/4); % b=B+x/4

inp(i,j)=inp(i,j)+(diff/2); %c=C+x/2

inp(i+l,j)=inp(i+l,j)-(diff/2); % d=D-x/2

inp(i+2,j)=inp(i+2,j)-(diff/4)

inp(i+3,j)=inp(i+3,j)-(diff/8)

p=p+l;

else

57

% x=D-C

% xl=B-C

% X2=E-D

a=A+x/i

Strong filter (if

% d=D-x/2

% e=E-x/4

% f=F-x/8

% Aumento cont strong filter

% Soft filter

% x=D-C

% xl=B-C

I x2=E-D

Strong filter (if

% e=E-x/4

% f=F-x/8

% Aumento cont strong filter

% Soft filter

inp(i-l,j)=inp(i-l,j)+(diff/8); % b=B+x/8

inp(i,j)=inp(i,j)+(diff/2); % c=C+x/2

inp(i+1,j)=inp(i+l,j)-(diff/2); % d=D-x/2

inp(i+2,j)=inp(i+2,j)-(diff/8); % e=E-x/8

end;

end;

end;

inp;

[X,Y] = meshgrid(l:B:width-B+l,l:B:height-B+l); %Set motion vector

coordinates

figure, imshow(inp,[0 255]); title (strcat(num2str(loop),'Predicted

Frame'))

hold on

quiver(X,Y,mvx,mvy)

hold off

SN = strcat(num2str(loop),name);

imwrite(inp,SN,'bmp') %write predicted image to file

%imwrite(imp,strcat(num2str(loop),'Ynews.Y')) %write predicted image to

file

tot_SP = sum(sum(SP))

Set__P(num) = tot_SP

exe=exe+comp;

calc(num)=comp;

end %end loop frames

totexe=exe

58

APPENDIX F

Adaptive Motion Estimation With Early Termination

(NEWADAPTIVE_ET.m)

%%%Adaptive motion estimation (search range) with adaptive deblocking

%%%filter

function [Set_P, calc, num] = NEWADAPTIVE_ET(name,fl,f2)

A=ones(9,ll);

B=ones(9,ll);

exe=0;

TH_SAD=0;

TH=0;

name = 'carphoneY.Y';

mvx=A*lll;

mvy=B*lll;

SAD3=A*10000;

fl=2;

f2=4;

for loop = fl:f2 %start loop frames

num=loop+2-f1;

comp =0;

cmp=0;

il = imread (strcat(num2str(loop-1),name));

im2 = imread (strcat(num2str(loop), name));

B = 16;%block size

sz = B*B;

R = 7; %search window

[height,width] = size(il); %width = row, height = column

iml = padarray(il,[(R) (R)],0,'both'};Spad both x and y sides with «0'

no=0;

TH_SAD

59

nl=0;

for i=l:B:height-B+l

r=i-(nl*B)+nl;

n2=0;

for j=l:B:width-B+1 %for every block in the reference and predicted

image frame (dins tinct)

c=j-(n2*B)+n2;

vx = mvx(r,c);

vy = mvy(r,c);

s_point =0;

if vx==0

Rl=4;

R2=4;

elseif abs(vx)>0 & abs(vx)<=4

if vx>0

Rl=4 ;

R2=7;

else

Rl=7;

R2=4;

end

elseif abs(vx)>4 & abs(vx)<100

if vx>0

Rl=4;

R2=16;

else

Rl=16;

R2=4;

end

else

Rl=7;

60

R2=7 ;

end

if vy==0

R3=4;

R4=4;

elseif abs(vy)>0 & abs(vy)<=4

if vy>0

R3=4;

R4=7;

else

R3=7;

R4=4;

end

elseif abs(vy)>4 £ abs(vy)<100

if vy>0

R3=4;

R4=16;

else

R3=16;

R4=4;

end

else

R3=7;

R4=7;

end

if R1>R2

RA=-R1;

RB=R2;

dl=-l;

d2=l;

else

RA=R2;

RB=-R1;

dl=l;

d2=-l;

61

end

if R3>R4

RC=-R3;

RD=R4;

d3=-l;

d4=l;

else

RC=R4;

RD=-R3;

d3=l;

d4=-l;

end

%j,k= column, i,l = row

SADmin = 256*B*B;

for k =[0:d3:RC]

for 1 =[0:dl:RA]

if (k==0 £ 1==0)

SADabsdiff = imabsdiff(im2(i:i+B-1,j:j +B-1),iml(i+k+R3+(R-

R3):i+k+R4+(R-R4)+B-l,J+1+R1+(R-Rl):J+1+B+R2+(R-R2)-1));% iml will

slide its block by one pixel at a time

SAD = sum(sum(SADabsdiff));%sum all SAD avg for one row

SADO = SAD;

if (SADO<TH_SAD)

dx=0 ;

dy=0;

s_point = s_point+l;

break

end

else

SADabsdiff = imabsdiff(im2(i:i+B-1,j:j+B-1),iml(i+k+R3+(R-

R3):i+k+R4+(R-R4)+B-l,J+1+R1+(R-Rl):J+1+B+R2+(R-R2)-1));% iml will

slide its block by one pixel at a time

SAD = sum(sum(SADabsdiff)};%sum all SAD avg for one row

end

if SAD < SADmin

SADmin = SAD;

62

dx=l;

dy=k;

end

s_point = s_point+l;

end

if (k==0 & 1==0)

if (SADO<TH_SAD)

break

end

end

end

for k =[0:d3:RC]

for 1 =[d2:d2:RB]

SADabsdiff = imabsdiff(im2(i:i+B-1,j:j+B-1),iml(i+k+R3+(R-

R3):i+k+R4+(R-R4)+B-l,J+1+R1+(R-Rl):J+1+B+R2+(R-R2)-1)) ;% iml will

slide its block by one pixel at a time

SAD = sum(sum(SADabsdiff});%sum all SAD avg for one row

if SAD < SADmin

SADmin = SAD;

dx=l ;

dy=k;

end

s_point = s_point+l;

end

end

for k =[d4:d4:RD]

for 1 =['0:dl:RA]

SADabsdiff = imabsdiff(im2(i:i+B-1,j:j+B-1),iml(i+k+R3+(R-

R3):i+k+R4+(R-R4)+B-l, J+1+R1+(R-Rl):j+1+B+R2+(R-R2)-1) };% iml will

slide its block by one pixel at a time

SAD = sum(sum(SADabsdiff));%sum all SAD avg for one row

if SAD < SADmin

SADmin = SAD;

dx=l ;

dy=k;

63

end

s_point = s_point+l;

end

end

for k =[d4:d4:RD]

for 1 =[d2:d2:RB]

SADabsdiff = imabsdiff(im2(i:i+B-1,j:j+B-1),iml(i+k+R3+(R-

R3):i+k+R4+(R-R4J+B-1,J+1+R1+(R-Rl):J+1+B+R2+(R-R2)-1));% iml will

slide its block by one pixel at a time

SAD = sum(sum(SADabsdiff));%sum all SAD avg for one row

if SAD < SADmin

SADmin = SAD;

dx=l;

dy=k;

end

s_point = s_point+l;

end

end

cmp=(Rl+R2+l)*(R3+R4+l)*BA2;

% writing predicted image_

imp(i:i+B-1,j:j+B-1)= iml(i+dy+R:i+dy+R+B-1,dx+R+j:j+dx+R+B-1);

iblk = floor ((i-1)/B+l);

jblk = floor ((j-D/B+1);

mvx(iblk,jblk) = dx;

mvy(iblk,jblk) = dy; %record the estimated MV

SAD99(iblk, jblk) = SAD;

rl (iblk,jblk) = RI,

r2 (iblk,jblk) = R2,

r3 (iblk,jblk) = R3,

r4 (iblk,jblk) = R4.

SP(iblk,jblk) = s_point;

SAD1(iblk,jblk)= SADmin;

64

n2=n2+l;

if(num == 2)

if (dx==0 & dy==0)

no=no+l;

SADst(no)=SADmin;

SAD3(iblk,jblk)= SADmin;

end

end

comp=comp+cmp;

end

nl=nl+l;

end

%deblocking filter

inp=imp;

dd=B;

[diray,dimx]=size(inp); % Calcolo dimensione immagine

p=0; % Azzeramento contatore strong filter

% Passaggio su tutte le righe...

for j=dd:dd:dimx-dd

for i=l:l:dimy

diff=inp(i,j+l)-inp{i,j); % x=D-C

diffl=inp(i,j-l)-inp(i,j); % xl=B-C

diff2=inp(i,j+2)-inp(i,j+l); % x2=E-D

if {(abs(diffl)<5)£(abs(diff2)<5)) % Strong filter (if

Ixl|,|x2|<5)

inp(i,j-2)=inp(i,j-2)+(diff/8); % a=A+x/8

inp(i,j-l)=inp(i,j-l)+(diff/4); %b=B+x/4

inp(i,j)=lnp(i,j)+(diff/2); % c=C+x/2

65

inp(i,j+1)=inp(i,j+1)-(diff/2)

inp(i,j+2)=inp(i,j+2)-(diff/4)

inp(i,j+3)=inp(i,j+3)-(diff/8)

P=P+1;

else

inp(i,j-l)=inp(i,j-l)+(diff/8);

inp (i, j)=inp (i, j)+ (diff/2);

inp(i,j+l)=inp(i,j+l)-(diff/2);

inp(i,j+2)=inp(i,j+2)-(diff/8);

end;

end;

end;

%Passaggio su tutte le colonne...

for i=dd:dd:dimy-dd

for j=l:l:dimx

diff=inp(i+1,j)-inp (i,j);

diffl=inp(i-1,j}-inp(i,j);

diff2=inp(i+2,j)-inp{i+1,j);

if ((abs(diffl)<5)£(abs(diff2)<5)}

!xl|,]x2|<5)

inp(i-2,j)=inp(i-2,j)+(diff/8); % a=A+x/8

inp(i-1,j)=inp(i-1,j)+(diff/4); % b=B+x/4

inp(i, j)=inp (i, j)+ (diff/2) ;

inp(i+1,j)=inp(i+1,j)-(diff/2)

inp(i+2,j)=inp(i+2,j)-(diff/4)

inp(i+3fj)=inp(i+3,j)-(diff/8)

p=p+l;

else

inp(i-l,j)=inp(i-l,j)+(diff/8); % b=B+x/8

inp(i,j)=inp(i,j)+(diff/2); % c=C+x/2

inp(i+l,j)=inp(i+l,j)-(diff/2); % d=D-x/2

inp(i+2,j)=inp(i+2,j)-(diff/8); % e=E-x/8

end;

end;

end;

inp;

66

% d=D-x/2

% e=E-x/4

% f=F-x/8

% Aumento cont strong filter

% Soft filter

% b=B+x/8

% c=C+x/2

% d=D-x/2

% e=E-x/8

% x=D-C

% xl=B-C

% x2=E-D

Strong filter (if

% c=C+x/2

% d=D-x/2

% e=E-x/4

% f=F-x/8

% Aumento cont strong filter

% Soft filter

if (num==2)

figure, hist(SADst)

figure, [H,STATS]=CDFPLOT(SADst)

if (no/99 >=0.8)

TH_SAD=(0.128*(max(SADst)-min(SADst)))+min(SADst]

end

end

[X,Y] = meshgrid(l:B:width-B+l,l:B:height-B+l); %Set motion vector

coordinates

figure, imshowfinp,[0 255]); title (strcat(num2str(loop),'Predicted

Frame'))

hold on

quiver(X,Y,mvx,mvy)

hold off

SN = strcat(num2str(loop),name);

imwrite(inp,SN,'bmp') %write predicted image to file

%imwrite(imp,strcat(num2str(loop),'Ynews.Y')) %write predicted image to

file

tot__SP = sum(sum(SP})

Set_P(num) = tot_SP

exe=exe+comp;

calc(num)=exe;

end %end loop frames

totexe=exe

67

APPENDIX G

Split .YUV And .QCIF Video (extractm)

% FUNC_YUV_SPLIT Extracts Y,U,V frames from YUV files

% modified by NOR FARHANA BT. FADLY CHEW (4 OCTOBER 2006)

% FLAG = func_YUV_split(FILENAME, NFRAME) extracts the first NFRAME

number

% of frames from the YUV file specified by FILENAME and separates the

% Y,U and V frames into separate image files with extensions ".Y",

n.U"

% and ".V" respectively. The function returns FLAG = 1 if extraction

is

% successful.

%

function A = extract(in__file_name, nFrame)

% Objective: extract YUV components from the CIF 4:2:0 video file, that

is,

% split CIF file into three files, i.e., .Y, .U, .V.

%

% Jing Tian

% Contact: scuteejtian@hotmail.com

I This program is written in 2005 during my postgraduate studying in

% NTU, Singapore.

%Modified by Nasreen Badruddin (eenb@yahoo.com) on 23 February 2006

% Changes are:

% 1) input arguments for input YUV file and number of frames to extract

% 2) saved each Y, U, V component of each frame into a separate file

% (output filename uses this format:

% <name of input file>_f<framenum>.<Y/U/V>

% 3) saved each Y,U,V frame as uncompressed bitmap.

% 4) included comments as HELP

% Old code is marked with "%%%"

;%in file name = 'test.cif

68

%%%nFrame « 10;

[fidl message]= fopen(in_file_name,'rb*);

%Initialize FLAG

FLAG = 0;

if length(strfind(in_file_name, *.yuv')) == 0

nRow = 288/2;

nColumn = 352/2;

%%% in_file_name2 = strrep(in_file_name, '.cif, '-Y');

%%% [fid2 message]= fopen(in_file_name2,'w') ;

%%% in_file_name3 = strrep(in_file_name, '.cif, '.D');

%%% [fid3 message]= fopen(in_file_name3,'w');

%%% in_file_name4 = strrep(in_file_name, '.cif, '.V');

%%% [fid4 message]^ fopen(in_file_name4,'w');

else

nRow = 288/2;

nColumn = 352/2;

%%% in_file_name2 = strrep(in_file_name, '.qcif, *.Y')

%%%[fid2 message]= fopen(in_file_name2,'w');

%%% in_file__name3 = strrep(in_file_name, '.qcif, '.U');

I%%[fid3 message]= fopen(in_file_name3,'w');

%%% in_file_name4 = strrep(in_file_name, '.qcif, '.V');

%%%[fid4 message]= fopen(in_file_name4,'w*);

end

for i = 1: nFrame

% BEGINNING OF PART 1 OF NEW CODES BY NASREEN B (23/02/06)

%

nFstr=int2str(i);

if length(strfind(in_file_name, '.yuv')) == 0

out_file_name_Y = strrep(in_file_name,*.qcif,'Y*);

out_file_name_Y = strcat(nFstr,out_file_name_Y,'.Y*);

out_file_name_U = strrep(in_file_name,'.qcif,*U');

out_file_name_U = strcat(nFstr,out_file_name_U,'.U*);

out_file_name_V = strrep (in_file_name, ' .qcif ,'V) ;

out_file_name_V = strcat (nFstr, out_f ile_name_V, ' .V) ;

else

69

out_file__name_Y = strrep (in_file_name, '. yuv1, *Y') ;

out_file_name_Y = strcat(nFstr,out_file_name_Y,'-Y');

out_file_name_U = strrep(in_file_name,'.yuv','U');

out_file_name_U = strcat(nFstr,out_file_name_U,'.U');

out_file_name_V = strrep(in_file_name,'.yuv','V};

out_file_name_V = strcat(nFstr, out_file_name_V, '.V);

end

END OF PART 1 OF NEW CODES BY NASREEN B (23/02/06)

%reading Y component

img_y = fread(fidl, nRow * nColumn, 'uchar');

img_y = reshape (img__y, nColumn, nRow);

img_y = img__y';

%reading U component

img_u = fread(fidl, nRow * nColumn / 4, 'uchar');

img_u = reshape(img_u, nColumn/2, nRow/2);

img_u = img_u';

%reading V component

img_v = fread(fidl, nRow * nColumn / 4, 'uchar');

img_v = reshape (img__y, nColumn/2, nRow/2);

img_v = img_v';

%writing file

%%%count = fwrite(fid2, img_y, *uint8')

%%%count = fwrite(fid3, img_u, *uint8')

%%%count = fwrite(fid4, img_v, *uint8')

% BEGINNING OF PART 2 OF NEW CODES BY NASREEN B (23/02/06)

imwrite(uint8(img_y),out_file_name_Y, 'bmp')

% imwrite(uint8(img_u),out_file_nameJJ, 'bmp')

% imwrite(uint8(img_v),out_file_name__V, 'bmp')

%

% END OF PART 2 OF NEW CODES BY NASREEN B (23/02/06)

end

70

%%%fclose(fidl);

%%%fclose(fid2);

%%Sfclose(fid3);

%%%fclose(fid4);

FLAG = 1;

71

