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ABSTRACT

The objective of this project is to build a stack-based central processing unit (CPU)
using discrete Transistor-Transistor Logic (TTL). FORTH is the software that is to be

implemented on the computer system.

The scope of this project is limited to developing and building a stack-based FORTH
computer system. Wire wrapping was used to construct the CPU and the computer
system. The final computer system consists of 9 wire-wrapped Eurocards connected

together through a backplane.

The project is successful. A fully functional stack-based FORTH computer system has

been successfully developed.
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CHAPTER 1

INTRODUCTION

1.1  Background of Study

Stack data structures (based on the Last In First Out (LIFO) principle) have been in use
in computers since the 1950s. Originally, they were used to increase the execution
efficiency of high-level programming languages. Today, stacks are mostly used as
secondary data handling structures. For example, the program counter (PC) in typical
CPU designs emulates a stack structure. However, computers that use hardware stacks
as their primary data handling mechanism (stack computers) never found widespread
usage and acceptance. On the other hand, register-based machines became more and

more popular over the years.

A reason for this trend is suggested: In the past, stack computers used stacks that were
stored in program memory. This was both slow and expensive. Therefore, much more
research and development work went into register-based machines, which were
perceived as being superior in architecture. However, recent developments have now
made it possible for large, high speéd dedicated stack memories to be cost effective.
Stack computers now show a good combination of simplicity, speed and flexibility. The
time has now come again for the stack computer to be considered as an alternative

design to the dominant CISC and RISC designs. [1]



1.2 Problem Statement

Advances in integrated circuit technology have made it possible for many components
of computer systems to be put on a single chip. Hence, more compact and sophisticated
computer systems are possible. However, many electronics engineers have lost sight of
what actually goes on inside a central processing unit (CPU). Many approaches have
been used in attempts to resolve this problem. Unfortunately though, the internal

workings of a CPU are still not clearly understood by many engineers.

To address this problem, engineers need to acquire the knowledge to be able to design
and build their own CPUs. This project provides a hands-on experience in

understanding the workings of a CPU and a computer system.

1.3  Objective and Scope of Study

The objective of this project is to build a central processing unit using discrete
Transistor-Transistor Logic (TTL). The CPU will use a stack-based architecture.
FORTH is the language that will be used to program the CPU. The final product should
be a completely working stack-based FORTH computer system.

This project will be limited to developing and building a FORTH-based computer
system using the previously mentioned CPU. CPU design will not be attempted in
order to simplify matters. An available CPU design will be used to develop and build
the system. Given the long time frame to develop the system, it is envisaged that the

project is feasible.



1.4  Overview of Report
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CHAPTER 2

LITERATURE REVIEW

2.1  Register-based Computer Architecture

Computer architecture refers to a high-level description of the hardware required to
implement a computer. [2] Typically, the architecture for a computer can be divided
into a datapath and a control. The datapath will be discussed in the next section. The
section following that will discuss the instruction set architecture (a set of instructions

that are used to control the computer) for a conventional computer.

2.1.1 Datapaths

The datapath is defined by three basic components:

- a set of registers

- the microoperations that are performed on data stored in the registers

- the control interface

The registers are used to provide temporary, high-speed storage of data. This data will

be used during microoperations that performed.



In order to perform a microoperation, the contents of specified source registers are sent
to the ALU. The ALU is a shared unit; since a large number of registers have access to
it. The ALU performs the operation, and the result of this operation is transferred to a
destination register, Since the ALU is used in most operations, it is an integral part of
the datapath. An example of another component required to perform a microoperation is

a shift register. These shift registers are also found in datapaths.

In addition to the units mentioned on the previous page, the datapath also contains the
digital logic that implements various microoperations. This is the control interface. This
digital logic generally consists of a variety of buses, multiplexers, decoders and
processing circuits. A block diagram of a simple, generic datapath is shown in Figure
2.1 on the next page. This datapath consists of four registers, an AL, a shifter and the

control interface. [2]
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Figure 2.1: Block Diagram of a Generic Datapath

(Source: M. Mano, C. Kime; Logic and Computer Design Fundamentals; pg 432)

A simplified block diagram for a datapath is shown in the Figure 2.2 on the next page.

In this datapath, the ALU and shifter are combined as a single function unit. The

registers are organized into a single register file. A register file is basically a set of

registers which have common microoperations. This gives the block diagram as shown

in Figure 2.2 on the next page.
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2.1.2 Instruction Set Architecture (ISA)

A computer can only perform a task when it is given an instruction. The instructions
that may be issued by a user are stored in the instruction memory of a computer. When
an instruction is issued, the control unit reads the issued instruction from memory and
decodes and executes the instruction. The way it executes the instruction is by issuing a
sequence of one or more of the previously discussed microoperations. Put simply, this

means that an instruction consists of a combination of microoperations.

An instruction can be more specifically defined as a collection of bits that instructs the
computer to perform a specific operation. The set of instructions that a computer can
handle is called its instruction set. The thorough description of this instruction set is the
Instruction Set Architecture. For a simple register-based computer, the ISA has three
major components: the storage resources, the instruction formats and the instruction

specifications.

Put simply, the storage resources component of the ISA tells the programmer (or user)
which and how much resources are available for storing information. For example, a
programmer might have eight 16-bit registers, a 16-bit program counter, 64 KB of
Instruction Memory, and 64 KB of Data Memory.

The instruction format tells the programmer how the bits of the instruction are arranged.
The instruction bits are typically divided into groups called fields. Each field is assigned
a specific item. For example, one field is for just the operation code, while another field
is just for the destination register address. The operation code or opcode is always at the
most significant bit part of an instruction. The opcode contains control signals that
prepare the datapath (e.g. set the control logic) for a specific operation. Other fields can
contain different items, depending on the operation. An example of a 32-bit instruction

format is shown on the next page.



OPCODE Destination Source Source Offset
Register | Register A | Register B

31 2322 18 17 1312 87 0

Figure 2.3: Example of a typical 32-bit Instruction Format

The final component of the ISA is the instruction specifications. These specifications
basically describe each of the instructions that can be executed by the computer. The
instruction specifications are usually given in a table as shown in Table 2.1 below:
Therefore, the instruction specifications can be also seen as a detailed list of instructions

that can be executed by the computer. [3]

Status

Instruction Opcode  Mpemonic Format Description Bits

Move A 0000000 MOVA RD.RA  R[DR] < R[SA] N.Z
Increment 0000001 INC RDERA R[DR] « R[SA] +1 N.Z
Add 0000010 ADD RD,RARB R[DR] < R[SA] +R[SB] N.Z
Subtract 0000101 SUB RD,RARB RI[DR] <« R[SA] - R[SB] N, Z
Decrement 0000110 DEC RD,RA R[DR] « R[SA] -1 N.Z
AND 0001000 AND RDRARB R[DR] « R[SA} AR[SB] N.Z
OR 0001001 OR RD.RARB R[DR] « R[SA] v R[SB] N Z
Exclusive OR 0001010 XOR RDRARB R[DR] < R[SA] ® R[SB] N, Z
NOT 0001011 NOT RDRA R[DR] « R[SA] N.Z

Table 2.1: An Example of Instruction Specifications
(Source: M. Mano, C. Kime; Logic and Computer Design Fundamentals; pg 454)

As previously mentioned, the architecture of a computer consists of datapath and
control. The control of the computer is done via the ISA, as explained in the previous
section. A generic block diagram combining datapath and control for a simple computer

architecture is shown on the next page.



\?
(,

N™M(

Branch

IRE6) 1 1RGP

e

Instruction decoder

e

L

ABSDWWLEBEB (B”
CONTROM.

*

B
A

1lin

Kl‘onsta

Data in' Addresk

Daty
- memory.

Figure 2.4: Architecture of a Simple Computer

(Source: M. Mano, C. Kime; Logic and Computer Design Fundamentals; pg 457)

10



2.2 Introduction te Stack Computers and FORTH

A stack computer is a system that is based on the use of stacks, rather than being
register based. A stack is defined as a data structure that is based on the LIFO (Last In
First Out) principle. Stacks are the simplest way of saving information for common
operations, such as evaluating math equations, and calling subroutines. Stack computers

are particularly useful in real time control applications.

FORTH is a programming language that is very often used in stack computers. The
reason for this is that FORTH itself is based on a set of primitives that execuie on a
virtual stack machine. Using FORTH, a lot of processing power can be obtained from

small hardware.

FORTH is a procedural and reflective programming language. It does not make use of
type checking. Reflection refers to the ability a program has to modify or improve itself.
FORTH features both interactive execution of commands (making it possible for
FORTH to be used as a shell, in the absence of a formal operating system) and the
ability to compile sequences of commands for later execution. Early FORTH versions
generally compiled threaded code, but many modem versions generate optimized

machine code like other language compilers. [4]

2.3 Advantages of Stack Computing

Stack computers have the following advantages:
o Less processor complexity compared to CISC designs
o Less system complexity compared to RISC and CISC designs
o Easier to write programs and compilers
e More reliable programs
e More efficient than register based machines in running well-modularized
programs

o Provide more processing power with very little hardware [1]

11



2.4 Stack-based Computer Architecture

Stack computers and conventional computers have different architectures. A block

diagram for the architecture of a generic stack computer is shown below.

DS
pATA STACK [* 1 TosS
—
ALU
RS ) ) ) -
RETURN STACK |* B ¢ g
D
A
A
B
T
4 AODRESS
CONTROL DATA PROGRAM
'-g‘f;c " MEMORY

Figure 2.5: Architecture for a Generic Stack Computer
(Source: P. Koopman; Stack Computers: The New Wave, Internet Book:
http://www.cs.cmu.eduw/~koopman/stack_computers/; 1989)
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The stack computer shown on the previous page is a type of stack computer with
multiple stacks, a large stack memory and 0-operand stack addressing. Each box in the
diagram represents a logical resource for the machine. These resources are the data bus,
the data stack (DS), the return stack (RS), the arithmetic/logic unit (ALU) with its top of
stack register (TOS), the program counter (PC), program memory with a memory
address register (MAR), control logic with an instruction register (IR), and an

input/output component (I/O).

The following sections describe each component in more detail.

2.4.2 Data Bus

The stack computer shown has a single bus connecting the system resources. This is for
the sake of simplicity. Commercial stack computers may have more than one data path
to allow both instruction fetching and calculations to be done at the same time. In the
generic stack computer, the data bus allows a single transmitting functional block and a

single receiving functional block during any single operation cycle.
2.4.3 Data Stack

The data stack is memory with an internal mechanism to implement a LIFO stack. A
common way to do this might be a conventional RAM with an up/down counter used
for address generation. The data stack allows the two original stack operations: push
and pop. The push operation extracts the value on the data bus and writes it onto the top
of the stack. The pop operation extracts the value on the top of the stack and writes it
onto the data bus. It then removes the value at the top of the stack, exposing the second-

topmost value on the stack, This value will be used for the next processor operation.
2.4.4 Return Stack

The return stack is similar to the Data Stack in operation. The only difference is that it is

used to store subroutine return addresses, instead of instruction operands.

13



2.4.5 ALU and Top-of-stack Register

The ALU functional block performs arithmetic and logical operations on pairs of data
elements. One of these data element pairs is the top-of-stack (TOS) register, which
holds the topmost element of the data stack. Thus, to the programmer, the perceived top
data stack element is the data item kept in the TOS register buffer (at the ALU). The
perceived second topmost element is actually the topmost item on the real data stack.
This scheme allows using a single ported data stack memory while allowing operations,
such as addition, on the top two stack elements. The ALU supports the standard
primitive operations for any computer. This includes addition, subiraction, logical
functions (AND, OR, XOR), and test for zero.

2.4.6 Program Counter

The program counter holds the address of the next instruction that is to be executed. The
PC may be incremented (e.g. PC € PC + 4) to fetch the next sequential instruction

from program memory, or may be loaded directly from the bus to implement branches.
2.4.7 Program Memory

The program memory block has a Memory Address Register (MAR) and a reasonable
amount of RAM. To access the memory, first the MAR is written with the address to be
read or written, Then, on the next system cycle, the program memory is either read onto

or written from the system data bus.
2.4.8 Input/Qutput

This component handles communications to/from the world outside the CPU.

(1]
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2.5 Stack Computing versus Register-based Computing

The basic difference between stack computing and register based computing is that pure
stack machines make use of O-operand stack addressing, while register machines use
register based addressing. For example, suppose a stack computer and a register-based
computer need to perform the following operation:

X=(A+B)({C+D)

Stack Computer Register-based Computer
PUSH A LD R1,A
PUSH B LD R2.B

ADD ADD R3R1,R2
PUSH C LD R1,C
PUSH D LD R2.D

ADD ADD RILRILR2

MUL MUL R1,R1,R3

POP X ST X.R1

Table 2.2: Example of a Simple Operation
(Source: M. Mano, C. Kime; Logic and Computer Design Fundamentals; pg 488)

The two computers above perform the same task. However, the way each computer
approaches the operation is clearly different. The stack computer makes full use of a
stack, performing operations on items only at the top of the stack. This is why there is
no need to specify any address (hence the name 0-operand stack addressing). On the
other hand, the register-based computer moves data into registers first. Operations are
performed on this data, and then the results are stored into registers. This method makes
full use of registers, hence the name: Register-based computing. Other significant

differences between the two approaches can be summarized in the following table:

15




Stack Based

Register Based

Smaller programs:

¢ Requires less memory

Larger programs:

e Uses more memory

Less processor and system complexity
o Tries to strike a balance between
RISC and CISC
¢ Limits data on which operations
are performed on to the top of the

stack

CISC
¢ Increase in processor complexity
for low system complexity
o Goal of a consistent and simple
interface between hardware and
software
RISC
¢ Increase in system complexity for
low processor complexity
s Goal of making processor faster by
only reducing the number of
instructions

Modern processors have features from

both CISC and RISC machines

Compatible with Reverse Polish Notation
(eeg. AB+CxDEx+)

Uses the more traditional infix notation

(e.g. (A+B) * C + (D*E))

Not nearly as much research and

development over the years

Popular due to:
e Cheap cost of memory
e Traditional way of doing
computing
¢ Lots of research and development

over the years

Table 2.3: Summary of Differences between Stack and Register Based Computing

16




CHAPTER 3

METHODOLOGY / PROJECT WORK

The objective of this project (to build a central processing unit using discrete TTL) will
be achieved by following the steps listed in section 3.1. Equipment required for this
project is listed in section 3.2 and the appendices. Section 3.3 describes the computer
system that will be built in more detail. The next section, Section 3.4 explains the
methods that were used to link the computer’s software to its hardware. Finally, Section

3.5 explains the methods that were used to test and troubleshoot the system.

3.1 Procedure Identification

The planned procedure can be summarized as follows:
1. Obtain components
. Plan layout of components on system cards

. Wire wrap components on system cards

. Connect system cards to each other via a backplane

2

3

4. Test system cards separately

5

6. Download the software into the system
7

. Test and troubleshoot the complete system

17



3.2 Equipment Required

The equipment required for this project can be summarized as follows:
1. Wire wrapping tool and wires
2. Eurocards, backplane and card connectors
3. Electronic components (e.g. Logic ICs, resistors, ROM and RAM chips)
Note: For the sake of brevity, the complete list of components required is not
listed here. A list of components for all system cards can be found in the

appendices section.

3.3  The Mark 1 FORTH Computer Design

The computer system that will be built in this project is named the Mark 1 FORTH
Computer. It was designed by Andrew Holme, an electronic engineer. The Mark 1
FORTH Computer has no microprocessor. It uses discrete TTL logic chips for its CPU.
Other components of the computer system are also implemented using mainly TTL

chips. Table 3.1 below lists the specifications of the Mark 1 FORTH Computer. {5]

Technology TTL and HCMOS
Clock Speed 1 MHz
Data Bus 8-bit
Address Bus 16-bit
Software FIG-FORTH
ROM 8 KB
RAM 24 KB
Input/Output RS-232

Table 3.1: Mark 1 FORTH Computer Specifications

18




The architecture of the Mark 1 FORTH Computer is shown in Figure 3.1 below.

Figure 3.1: Mark 1 FORTH Computer Architecture
(Source: A. Holme; Mark 1 FORTH Computer; Internet:
http://www.holmea.demon.co.uk/Mk1/Architecture.htm; 2003)

Table 3.2 on the next page describes each of the components shown in the figure above

in more detail.

19



Module | Width | Description | Comments
(bits)

ALU 8 | Arithmetic | The ALU data path is a bottleneck. It takes four clock
and logic cycles to load the inputs, set the ALU function, and
unit read the result. This is the least satisfactory aspect of

the whole design.

OP 8 | Operand OP is loaded into the uppermost 8 bits of uPC. The
register lower 4 bits are reset to zero.

upC 12 | Microcode
program
counter

W 16 | FORTH The 16-bit index registers, IP and W, support
Working increment, decrement, and can address memory.
register

IP 16 | FORTH
Instruction
Pointer

PSP 8 | FORTH The stack pointers, RSP and PSP, are 8-bit up/down
Parameter | counters feeding the A1-A9 address inputs of the
stack stack RAMSs. The least significant address input (A0)
pointer selects the upper or lower byte. Logically, the stacks

RSP 8 | FORTH are 16-bits wide by 256 words deep. The FORTH
Return word length is 16 bits.
stack
pointer

Stack 16 | Dedicated

RAM stack RAM

0 8 | Force 00H
on data bus

Table 3.2: Description of Mark 1 FORTH Computer Components
(Source: A. Holme; Mark 1 FORTH Computer; Internet:
http://www.holmea.demon.co.uk/Mk1/Architecture.htm; 2003)

The Mark 1 FORTH Computer has a very elegant design. It resembles the generic stack

computer that was discussed in Section 2.4 in some ways. However, in other ways, it

improves on the generic stack computer’s design.

20




The Mark 1 FORTH computer is built using nine system cards connected together via a

DIN41612 64-way backplane. Together, these nine cards implement the architecture

previously shown in Figure 3.1. The system cards are:

System Clock and Instruction Decoder
Microcode Sequencer

Working (W) Index Register
Instruction Pointer (IP) Index Register
Stacks

Memory

Diode ROM

Input/Output

Arithmetic Logic Unit (ALU)

The complete schematics for the computer can be found in the appendices.

34

Software

The Mark 1 FORTH computer has both RAM and EPROM chips for its memory. They
RAM chips are only used during normal operation of the computer. The EPROM chips

however, are used not only during normal operation, but during the boot sequence,

interrupts and resets. Therefore they need to be programmed before being placed on

their respective cards. The table below shows the location of each memory chip:

System Card Memory Chip Quantity
Memory 6264 8KB RAM 3
M2764 8KB ROM 1
. Stacks 6116 2KB RAM 2
Microcode Sequencer M2764 8KB ROM 1

Table 3.3: Location of Memory Chips

21




The first EPROM chip is the M2764 chip on the Microcode Sequencer card. This chip
contains microcode routines for the computer and is referred to as the uROM. Andrew
Holme provided complete software for programming this chip: source code for an
assembler (written in C++), and the assembly code for the uROM. First of all, the
assembler was compiled using Microsoft Visual C++. Using this assembler, the
assembly code was then assembled: resulting in an Intel Hex image and a list of
opcodes (these opcodes, which are formatted as MASM EQU statements are used later
in the High-Level ROM programming). The Intel Hex image for the yfROM was then
used to program the M2764 ROM chip. A Topmax Universal Programmer was used for

the programming process.

The second EPROM chip (another M2764 chip) is found on the Memory card. This
chip is referred (by Andrew Holme) to as the High-Level ROM. The High-Level ROM
contains the boot sequence for the computer. Microsoft Macro Assembler (MASM) and
Microsoft Incremental Linker (LINK) were used to generate the Intel Hex image for
this chip. The Intel Hex was then burned into the ROM using the same Topmax

Universal Programmer as above. Assembly code was again provided by Andrew.

Another file of assembly code that was assembled for the Mark 1 FORTH computer is
the FIG-FORTH software. This version of FORTH was originally for the 6502
computer. However, Andrew translated this version of FORTH into a version that
works with his (Mark 1) computer. The assembly code for this translated version of
FORTH is available on his website. MASM and LINK were once again used to
generate the Intel Hex image of the assembly code. However, this Inte]l Hex image was
not burned directly into a ROM chip. As in Andrew Holme’s Mark 1, The FORTH will

be downloaded via serial port into the computer’s RAM during normal operation.

The flowchart on the next page graphically shows the procedures as explained above.
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3.5 Testing and Troubleshooting

Wire wrapping of each system card was time consuming and tedious, but it was easy.
The testing and troubleshooting process was the hardest part of completing the project.

This section describes the process of testing and troubleshooting the computer.

The system cards were first tested individually. Each card was first subjected to
continuity testing. Then each card was checked for short circuits. After these two tests
were completed, a test circuit was used to logically test each card. This circuit was used
to input control bits to each system card using DIP switches. A very low frequency
clock signal (about 1 Hz) was then sent to the card being tested (except the System
Clock and Instruction Decoder card). Results were observed either via the LEDs on the
test circuit, an oscilloscope, or a logic probe. As each system card is different from the
other cards, the control bits for each card are also different. However, the same circuit
can be used. The most important thing is to ensure that the correct control lines are
connected to the DIP switches. The picture below shows the logical test circuit. Figure

3.3 on the next page shows the schematic for the logical testing circuit.

Photograph 3.1: Logical Testing Circuit
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Figure 3.3: Schematic for Logical Testing Circuit
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The sections below describe the individual test results from each system card:

351 ALU

The ALU is capable of handling 8-bit arithmetic and logical operations. It was tested by
performing arithmetic calculations step by step. Test results have verified that the ALU
is working properly. It transmits the correct results to the data bus. The ALU also has
conditional flags that have been verified to be working propetly. Table 3.4 below shows

test results of an ADD operation done on the ALU card:

Input Input Output Flags
A B d Sign | Cout | A=B | IRQ
0000 0001 0000 0010 0000 0011 0 1 0 0
0101 0101 0010 1010 0111 1111 0 1 0 0
0111 0000 0000 1111 01111111 0 1 0 0
0111 1111 0111 1111 1111111 1 0 1 0

Table 3.4: Results from ADD Operation on ALU Card

3.5.2 System Clock and Instruction Decoder

This card has two functions. The first is to provide accurate clock signals to the clock
buses. The second is to accurately decode control signals (u0-u7) that are input to this
card. The card then transmits the decoded control signals to the control bus of the
computer. Testing of this board has shown accurate CLK1 and CLK2 clock signals that
are in quadrature with each other. All control signals have also been accurately decoded

and transmitted to the control bus.
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3.5.3 Microcode Sequencer

The microcode sequencer contains a microcode counter as well as the instruction
memory stored on a ROM chip. The instruction memory stores 43 routines that will be
used by the Mark 1 FORTH computer. However, a total of 256 routines can actually be
stored. The instruction memory has been verified to accurately output the correct
control bits according to instruction address. The microcode counter has also been
verified to be working correctly. Table 3.5 below shows some test instruction addresses

(inputs) and the respective control bits (outputs).

Input Output
Instruction Address Control Bits (HEX) Control Bits (Binary)

0000 30 ' 0011 0000
0001 70 0111 000
0002 88 1000 1000
0003 88 1000 1000
0004 84 1000 0100
0005 21 0010 0001
0006 88 1000 1000
0007 61 0110 0001
0008 28 0010 1000
0009 89 1000 1001
000A 68 0110 1000
000B 89 1000 1001
000C F3 1111 0011
000D 25 0010 0101
000E 88 1000 1000
Q00K BO 1011 0000
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3.5.4 Diode ROM

The Diode ROM’s purpose is to accurately decode control signals for the ALU card. An
input of 4 bits (u0-u3) is decoded on this card to produce a possible of 16 functions for
the ALU card. Each function consists of a series of 8 bits, which will be used to set the
function (e.g. ADD, SUB, AND) for the ALU. The table below shows the functions for
the ALU.

opPP | DO DIl D2 D3 D4 D5 D6 D7

0 ADD |1 o o |1 L x H H
1 ADC |1 0 0 1 L x X L
2 SUB |0 1 1 0 . |L | x L. |H
3 SBB |0 1 1 0 . |L . |H X L
4 ASL |0 0 1 1 Loolx H H
5 ROL |0 0 1 1 L X X L
6

7

8(a) |0O< 1 1 1 1 H L X X
8(b) A 1 1 1 1 H X X X
9 B 0 |1 0 | H X X X
10 AND |1 1 0 1 H X X X
11 OR |0 = |1 1 1 H X X X
12 NOT |0 0 2|0 0 H L I x X
13 XOR |0 "1 1 0 HH X X X
14 A= 1 0 0 1 H X X X
15

Table 3.6: ALU Functions  [5]

The Diode ROM card has been verified to accurately set the function for all 16 possible

functions.
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3.5.,5 W and IP Index Registers

The 2 index register cards are exactly the same, consisting of counters that are cascaded
to be 16-bit. They have been tested to count in both directions (increment/decrement),

and also to address memory accurately.

3.5.6 Stacks

This card contains the RAM chips that will be used as stack memory. This card also
contains counters that are used as stack pointers (either parameter stack pointer or return
stack pointer), It has been verified that data can be accurately pushed and popped form
cach of the stacks. Both stack pointers have also been shown to be able to accurately

count in both directions (increment/decrement).

3.5.7 Memory

The memory card was tested by reading and writing sample data to the memory. In
other words, this card has been successfully tested to be able to handle read and write
operations. The tables below show sample test data that was written to and read from

the memory card:

Address (Memory Location) Data Bits
(in HEX) Write Read Verified?
2000 11110000 11110000 Correct
4000 10101010 10101010 Correct
6000 11111111 11111 Correct
2001 00001111 00001111 Correct
4001 10101010 10101010 Correct
6001 01010101 01010101 Correct

Table 3.7: Memory Card Test Results
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3.5.8 Input/Output

The Input / Output card was logically tested only up to a certain extent. This is because
the 82C51A chip on this card requires initialization codes that would have been quite
tedious to input manually. Therefore, this chip was not logically tested. However, the
other parts on the board were verified to be working properly. This included the logic
gates for decoding signals, the hex buffer (74LS368), the 14-stage clock divider
(HEF4060BP) and the data transceiver (74L.S245). During testing for the 14-stage clock
divider, an extra component was added to the I/O board. This is the 74HCT04 hex
inverter chip. The chip was added to generate a better clock signal for the 82C51A
USART. Before this chip was added, the clock signal was not a clean one and was of
low magnitude. Putting the clock signal through two hex inverters ensured that it was
clean and about 5V (peak to peak) in magnitude. Testing for the 82C51A USART was

planned for later, after the system cards had been connected together.

3.5.9 The Complete System

With all the system cards verified to be working properly (at that current point in time),
all the cards were connected together using the backplane. The serial cable was
connected to a personal computer and Hyperterminal was started (Hyperterminal is the
program that is used to interface the Mark 1 and the personal computer). The Mark 1
was then switched on. However, no results were detected on Hyperterminal. The
computer system was not properly working yet. The system now required

troubleshooting as a whole, instead of individual card testing.
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Troubleshooting the system as a whole was a problem. Rightfully, since every system
card worked individually the system should work when connected together. However,
this was not so. Using a combination of an oscilloscope, a logic probe and a list of what
could possibly have gone wrong; the system was checked for errors. After weeks of
searching, two errors were detected:

¢ The cable connecting the IO card to the PC was not properly wired

e The Octal buffer on the Diode ROM card (74HCT244) was not suitable for the

Diode ROM card.

Regarding the cable, Andrew Holme’s schematics show a DB25 socket at the 10 card.
This socket was to be used with a null modem DB25 — DE 9 cable (and connected to the
serial port on a PC). However, the assumption was made that the schematic was
showing a direct connection to the PC. Therefore the cable was wrongly wired. The
problem has now been rectified, and the IO card schematic currently shows a direct

connection to the serial port on any normal computer.

Regarding the octal buffer on the Diode ROM card, a 74HCT244 chip had previously
been used. This was to ensure compatibility with the other TTL chips. However, there
was a problem with this configuration. The VOL(max) from the 74HCT138 decoders
added with the voltage drop across the diodes exceeds the VIL(max) of either the
741.8244 or 7T4HCT244 chips. Therefore, in order for the Diode ROM to work, a
74HC244 chip must be used. This problem had not been detected during individual
testing of cards. However, when the cards were assembled together on the backplane,
this problem caused the system to produce unexpected results. Once the 74CHT244
chip was replaced with a 74HC244 chip, the system worked fine.

The following pictures show the completely wire-wrapped cards:
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Photograph 3.4: Underside of Diode ROM
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Photograph 3.7: Underside of Input/Output Card
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Photograph 3.10: Underside of Stacks Card
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results

The Mark 1 FORTH computer is now fully operational. The computer system has been
tested for about 2 weeks now, with no errors, Being a FORTH based computer system
that can be programmed in anyway that the programmer wants, it is obviously
impossible to fulty show the capabilities of the computer in a report. Therefore, this
section will focus on the results of some simple instructions that can be performed on

the Mark 1. The following pictures show the complete Mark 1 FORTH computer:

Photograph 4.1: Angled View of the Mark 1 FORTH Computer

35



Photograph 4.3: Side View of the Mark 1 FORTH Computer

The computer draws between 0.9 to 1.1 amperes of current, operating at 5V. There are

no heat problems, as all the chips remain cool during operation.
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The screenshot below shows the results at Hyperterminal when the computer is booted

up:

Hn £dt view Cal Trur_!stu Hely
Dw of 0B &

. Honitor
3

>
[ g

Motii tor
- >}

p
>3
L >R
‘|o0686

>R
fa000
>A
00009
>A
00097
>B
00168
>B
90153
>B
09255
>8
80181
>B
00069
>B
00159
>B
0oal6
>

Screenshot 4.1: Initial Screen
As seen above, the first words to greet the user are:

Monitor

>

If “Enter” is pressed, the computer will continue to display the “>” symbol, as seen
above. Entering the character “A” followed by a hexadecimal character results in the
computer displaying the decimal value of the character entered. Entering “B” followed
by a byte of hexadecimal characters (e.g. F3, 07, A5) results in the computer displaying

the decimal value of the byte entered. This can also be seen in the screenshot above.

37



%E&MC&Trwquub
De &3 0B &

JKLMNOPQR
H LMNDPURST!L
HBC E %ﬁ LHNOP %ﬂﬁ?z_
JKEM NOPUR i) SR
HBCBEP—*‘GHI%JK NHPQRSTWHH‘ZZ :

ABCDERGHT _
g\FIBCDEFGHIJKLHNDP%%%TI}’VHX\'Z ,
“ABCDEEGHIJKCHNOPGRSTANVWAYZ
*nacggﬁuu_lég ._mpuasmvuxvz nx
15 SPACES 42 EMIT 42 £HIT

Screenshot 4.2: Simple FORTH

The screenshot above shows the results of loading the FIG-FORTH software into the
Mark 1. When the FIG-FORTH is being downloaded into the system, it sends out a
stream of i characters, followed by “Rx OK” if the download was
successful. Hitting the “G” character starts the FORTH software. The screenshot shows

sample arithmetic operations being done on the computer. The results are correct:

111+ 111 =222

200 - 200 =0
25 * 25 =625
goo / 4 =200
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The command “ : Alpha 91 65 DO I EMIT LOOP ; ” seen in the Screenshot 4.2
basically tells the system to save a routine displaying all the characters in the alphabet

(A to Z) as a word called “Alpha”. A word in FORTH refers to a subroutine that can be

called by the system at a later time. This is demonstrated in the next line. When “Alpha”
is entered to the system, it outputs “ABCDEFGHIJKLMNOPQRSTUVWXYZ".

Fla - Edt Wew Cal - Transfer” Hep
Dw #35 OfH &

123 MESSAGE MSG # 123 OK
65 EMIT A 0K
64 EMIT @ OK
42 EMLIT = 0K
1234 4321 + |, 5555 OK
1100900 5080 - . 5000 OK
{10e 100 ~ . 10009 OK LoEE
1256 16 7 . 16 0K T
16 256 / . 0K :
flpha 91 65 DO I EMIT LOOP ; OK
leha ABCDEFGHIJKLMNOPQRSTUVNRYZ OK
Alphabets @ DO CR Alpha LOOP ; OK
10 Rlphabets e
| ABCDEFGHT JKL MNOPQRSTUVKXYZ R &
ABCDEFGHIJKLMNOPQRSTUVMRYZ : iy
ABCDEFGHIJKEMNOPORSTUVHKYZ 4 : b
ABCDEFGHIJKLMNOPQRSTUVHKYZ L &
ABCDEFGHIJKLMNOPORSTUVURYZ -
RBCDEFGHIJKLMNOPQRSTUVWRYZ
ABCDEFGHI JKLMNOPOQRSTUVHKYZ
ABCDEFGHT JKLMNOPQRSTUVHKYZ
JABCDEFCHIJKLHNOPQRSTUVUHKYZ
ABCDEFGHIJKLMNOPQRSTUVHKYZ OK

Screenshot 4.3: Looping the Alphabet

Screenshot 4.3 shows some new commands with their results. The command “65
EMIT” asks the computer to display the character represented in ASCII by the decimal
number 65, which is “A”. Similarly, any other character represented in ASCII can be

displayed by the computer. In the screenshot above, “@” and “*” are displayed.
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The command “ : Alphabets 0 DO CR Alpha LOOP ; ” makes use of the previously
defined “Alpha” word. This command creates a new routine called “Alphabets” that
displays “ABCDEFGHIJKLMNOPQRSTUVWXYZ” on new lines for a specified
number of times. In the Screenshot 4.3, “10 Alphabets” is entered. The system duly

outputs the alphabet 10 times, each time on a new line.

Finally, the next two screenshots show the use of words in displaying the letter “F”

using “*” characters:

:u.E \v'lsw cal Tr .v
Do &3 DG W : : .
ABCOEEGHT JKLMNOPORSTUVRYZ S ———y
HBCDEFBHIJK[HNUPQRSTUVHKVZ : TR T
RBCDE HIﬂﬁLHNﬂPURST IHKYZ : i
ABCDEE L MNOPQRSTUVHRYZ. -
-.ﬂBCDEEﬁﬂI*KLHNUPURSTUQHK?Z UK
AQENLT w OK

| HARGIN

STHR 0K
: ‘BLIP MARGIN: STHR oK

: STARS @ DO STAR LOOP; LOOP,? HSG 0
: STARS @ DO STAR LOQP ;=7 HSG # B
: STARS @-D0 STAR LOOP ; SAR? MSG # ©
STARS @ DO STAR LOOP ; OK
EE:=5 STARS wwwsx 0K
135 STARS 0K

Caphra :
i

Pk aghiy

Screenshot 4.4: Displaying “F” Part 1
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STHR » 0K
BLIP MFIRGI’w

: STRRS 0 DO STHR LUUP LOOP:7 MSG # 8
: STARS @ DO STAR LOOP ;:? MSG i 9
: STARS 0 DO STAR LOOP ; SAR? MSG # 0
STARS 0 DO STAR LOOP ; OK
5 STARS ==wxx 0K
35 STARS 0K
: BAR MARGIN 5 STARS ; OK
BAR BLIP BAR BLIP BLIP CR

L3 2

T

0K
: £ BAR BLIP BAR BLIP BLIP CR ; BLIP? HSG % D
E F BRR BLIP BAR BLIP BLIP CR ; OK

e | EYR R el

Screenshot 4.5: Displaying “F” Part 2

The previous 2 screenshots show the following words being defined:
STAR
STARS
MARGIN
BLIP
BAR
F 16]

Each of these words makes use of words that have been previously been defined. The
final word “F” displays the letter “F” using “*” characters, as seen above. Programming
in FORTH is usually done this way: Creating simple words, then expanding on those
words to create more and more complex words and finally applications. In this way,

FORTH is a simple and small language, yet amazingly powerful.
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4.2  Changes to the Mark 1 FORTH Computer

In the course of doing this project, the original design by Andrew Holme was adhered to
as much as possible. However, several changes were made due to a variety of reasons.

These changes are documented in this section.

42.1 Primary Usage of LS TTL Chips

The original Mark 1 design primarily utilizes HC chips, with only a few TTL chips.
However in this version of the Mark 1 computer system, LS TTL chips are primarily
used. HCT chips are used wherever the schematics state that a HC chip should be used.
The only 2 differences are the Microcode Sequencer (where a 74HC107 chip is used)
and the Diode ROM (where a 74HC244 chip is used). Although the original Mark 1
used mostly HC chips, this version (using mostly TTL chips) also works. This shows

that the design is not component dependent, a hallmark of a robust design.

4.2.2 Addition of 74HCT04 Hex Inverter to Input / Output Card

The original Input / Qutput card connects an output (pin 9) from the HEF4060BP clock
divider directly into the clock input (pin 20} of the 82C51A USART. In our IO card
however, the clock signal obtained from the 4060 clock divider was not a clean square
wave, It was therefore deemed necessary for the output from the clock divider (pin 9) to
be passed through two inverters first, before sending it to the clock input (pin 20) of the

USART. The signal obtained after the inverters is a much better square wave.
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4.2.3 RS-232 Null Modem Cable

The original Input / Qutput card has a DB25 socket for connecting the Mark 1 to a DE9
serial port on a personal computer. This requires the use of a DB25 to DE9 null modem
cable. However, the input / output card that was built here has a “built-in” cable directly
to a DE9 female connector. This connector just needs to be plugged in directly to a DE9
serial port and the two compuiers can start communicating. In short, there is no need for

a null modem cable anymore. It is already “built-in”.

4.3 Performance

It is difficult to ascertain the performance of the Mark 1 computer, because there is no
FORTH-based computer readily available to carry out a comparative study. However,
Andrew Holme’s website compares the performance of the Mark 1 to another FORTH
computer that he built: the Mark 2. The table on the next is reproduced from his
website. It compares the number of CPU cycles taken by each computer to perform a
FORTH primitive. Although the Mark 2 is a more advanced computer, the Mark 1

performs reasonably well, beating the Mark 2 in some categories.
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FORTH Number of Cycles
Primitive Mark 1 Mark 2 Difference

Enter 14 16 -2
S 12 12 0
LIT 14 16 -2
EXECUTE 7 6 1
(DOES) 19 22 -3
BRANCH 14 10 4
0BRANCH 21 16 5
(LOOP) *29/32 * 24/26

(DO) 19 24 -5
LEAVE 15 16 -1
R> 13 16 -3
>R 13 16 -3
R 12 14 -2
AND 19 18 1
OR 19 18 1
XOR 19 18 1
+ 20 18 2
- 18

0= 19 16 3
0< 17 16 1
DUP 14 14 0
SWAP 21 20 1
DROP 10 10 0
OVER 16 16 0
@ i4 14 0
! 16 18 -2
Ca 13 14 -1
C! 14 18 -4
D+ 37 32 5
NEGATE 17 16 1
DNEGATE 25 26 -1
U* * 325/613 * 118/182

U/ 531 * 190/222

Table 4.1: Performance Comparison between Mark 1 and Mark 2 Computers
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

The project has been fully completed and the objectives fully achieved. A fully
operational stack-based computer has been built. The computer runs at 1 MHz, has 8§
kilobytes of ROM and 24 kilobytes of RAM. FIG-FORTH is the software used on the
system. FORTH is used as an assembler, a programming language and as the operating

system on the computer.

5.1 Recommendations for Future Work

The next step for this project will be to use the 8255 chip (currently unused) to display
further Input / Output capabilities. The Input / Output card has a socket and the
architecture for the 8255 chip. However, neither software nor hardware is configured to
use the chip. The 8255 could be used to further show the Mark 1’s capabilities. For
example, the 8255 could be used to light up LEDs, or perhaps control an electrical

device (e.g. a motor). FORTH is after all, a language originally written for control

purposes.

Another recommendation would be to build a front panel for the computer. This front
panel would have a series of LEDs to show the status of all the lines on the backplane.
For example, 8 LEDs to display the status of the Data Bus, 16 LEDs for the Address
Bus, and other LEDs for decoded signals and the Control Bus. This would be

particularly good for demonstration purposes.
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A standalone power supply could also be built for the Mark 1, Currently, it is drawing
power from a laboratory power supply using crocodile clips and wires. Since the
computer draws only about 1 ampere of current, a standard ATX Power Supply Unit
(normally found in Pentium 4 computers) could be modified to constantly supply 5V to
it. The Mark 1 could then be plugged in directly to a typical electrical power socket and

operate. This would greatly increase its portability.

A final enhancement would be to build a case to store the Mark 1 computer in. The
currently used card cage offers very little protection against dust, insects and
particularly water. A large computer casing could be modified to fit the Mark 1
computer. Furthermore, the modified ATX Power Supply Unit (as above) would also fit
perfectly into the computer casing. With the added protection and cooling (from the
computer casing’s fans), the Mark 1 would be a very reliable computer for many years

to come.
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APPENDICES

APPENDIX A: LIST OF COMPONENTS

Card 1: Arithmetic Logic Unit (ALU)

Quantity Part Number Description
3 74LS377 8-bit register
2 741800 Quad NAND Gates
2 7418181 4-bit ALU
1 74LS86 Quad XOR Gates
1 741832 Quad OR Gates
1 741.5242 Quad Bus Transceiver
1 741874 Dual D Flip Flops
1 74L.8244 Octal Buffer
1 1K Resistor Pull-up Resistor

Card 2: Diode ROM

Quantity Part Number Description
2 74HCT138 3 to 8 Inverting Decoder/Demultiplexer
1 74HC244 Octal Buffer

30 1N4001 Diode




Card 3: System Clock and Instruction Decoder

Quantity Part Number Description
4 741.8244 Octal Buffer
2 74LS155 Dual 1 of 4 Decoder/Demultiplexer
1 74L8138 3 to 8 Inverting Decoder/Demultiplexer
1 TAHC107 Dual JK Negative Edge Triggered Flip Flop
1 74L.504 Hex Inverter
1 741832~ Quad OR Gates
1 74LS08 Quad AND Gates
1 2 MHz XTAL 2 MHz Crystal Oscillator
2 470 Q Resistor Resistor
1 22 pF Capacitor Ceramic Capacitor
Card 4: Stacks
Quantity Part Number Description
1 7418245 Octal Transceiver
4 74LS169 Modulo Binary (16} Synchronous Counter
2 HM6116ALP 2KB SRAM
i 741832 Quad OR Gates
1 741508 Quad AND Gates

ii




Card 5: Memory and Power On Reset Circuit

Quantity Part Number Description
3 UT6264CPC 8KB SRAM
1 M2764 8KB EPROM
1 741.8155 Dual 1 of 4 Demultiplexers
1 741.8245 Octal Transceiver
1 741500 Quad NAND Gates
1 741.5132 Quad NAND Schmitt Triggers
1 10 Q2 Resistor Resistor
1 27 kQ Resistor Resistor
1 10 uF Capacitor Ceramic Capacitor
4 1 kQ Resistor Pull-up Resistor

Push Button

RESET Push Button
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Card 6: Microcode Sequencer

Quantity Part Number Description
3 7418163 4-bit synchronous counter
1 7418377 8-bit register
1 M2764 8KB EPROM
1 741.S173 4-bit register
1 74LS169 Modulo Binary (16) Synchronous Counter
| 74L502 Quad NOR Gates
1 74L.S08 Quad AND Gates
1 7415244 Octal Buffer
1 74LS151 1 of 8§ Multiplexer

Card 7: Working (W) Index Register

Quantity Part Number Description
4 74L5244 Octal Buffer
4 7418169 Modulo Binary (16) Synchronous Counter
1 741832 Quad AND Gates

Card 8: Instruction Pointer (IP) Index Register

Quantity Part Number Description
4 74L8244 Octal Buffer
4 74L5169 Modulo Binary (16) Synchronous Counter
1 741832 Quad AND Gates

v




Card 9: Input/Outpuat

Quantity Part Number Description
| 74L8245 Octal Transceiver
1 HEF4060BP 14-Stage Binary Counter
1 7415368 Hex Buffer
1 82C51A USART
1 MAX232 RS-232 Driver
2 74HCT32 Quad OR Gates
1 74HCTO00 Quad NAND Gates
1 74HCTO04 Hex Inverters
1 DE9 Female Socket DE9 Female Connector (Socket)
1 330 kQ Resistor Resistor
1 2.2 kQ Resistor Resistor
1 2.4576 MHz XTAL Crystal Oscillator
1 100 pF Capacitor Ceramic Capacitor
I 10 pF Capacitor Ceramic Capacitor
5 1 pF Capacitor Electrolytic Capacitor




APPENDIX B: CIRCUIT DIAGRAMS

(source: A. Holme, Mark 1 FORTH Computer, Internet Web Page:
hitp://www.holmea.demon.co.uk/Mk1/Architecture.htm, 2003)

Page vii
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Page xii
Page xiii
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Page xv
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APPENDIX C: BACKPLANE SPECIFICATIONS

BUS A BUS C
I +5V
2 CLK1
3 DO 3 uo
4 D1 4 ul
5 D2 5 u2
6 D3 6 u3
7 |Da DATA 7 |4 ”
8 D5 8 us
9 D6 9 ué
10 | D7 10 u7
11 | A0 11 u210=101 Dest=0P
12 | Al 12 p210=110 | Dest=ALU A
13 | A2 13 p210=111 Dest=ALU B
14 | A3 14 1210=000 W
15 | A4 15 p210=001 1P
16 | AS 16 p210=010 | Dest=TOS PSP
17 | A6 17 p210=011 Dest=R RSP
18 | A7 18 SRC=111 ALU
19 | A8 ADDRESS 19 SRC=000 W
20 | A9 20 SRC=001 IP
21 Al0 21 SRC=010 TOS
22 | All 22 SRC=011 R
23 1 Al2 23 p=1000xxxx | INC / DEC
24 | Al13 24 u=1001xxxx | JUMP #
25 Al4 25 1=1010xxxx | ALU Function
26 | Al5 26 u=1011xxxx | JUMP OP
27 | MR Memory Read 27 M@iP Address = [P
28 | MW Memory Write 28 M@Ww Address = W
29 | RESET 29 LO LO-byte
30 |IRQ 30 HI HI-byte
31 CLK2
32 |0V

XvI




