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ABSTRACT

The objective of this project is to build a stack-based central processing unit (CPU)

using discrete Transistor-Transistor Logic (TTL). FORTH is the software that is to be

implemented on the computer system.

The scope of this project is limited to developing and building a stack-based FORTH

computer system. Wire wrapping was used to construct the CPU and the computer

system. The final computer system consists of 9 wire-wrapped Eurocards connected

together through a backplane.

The project is successful. A fully functional stack-based FORTH computer system has

been successfully developed.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Stack data structures (based on the Last In First Out (LIFO) principle) have been in use

in computers since the 1950s. Originally, they were used to increase the execution

efficiency of high-level programming languages. Today, stacks are mostly used as

secondary data handling structures. For example, the program counter (PC) in typical

CPU designs emulates a stack structure. However, computers that use hardware stacks

as their primary data handling mechanism (stack computers) never found widespread

usage and acceptance. On the other hand, register-based machines became more and

more popular over the years.

A reason for this trend is suggested: In the past, stack computers used stacks that were

stored in program memory. This was both slow and expensive. Therefore, much more

research and development work went into register-based machines, which were

perceived as being superior in architecture. However, recent developments have now

made it possible for large, high speed dedicated stack memories to be cost effective.

Stack computers now show a good combination of simplicity, speed and flexibility. The

time has now come again for the stack computer to be considered as an alternative

design to the dominant CISC and RISC designs. [1]



1.2 Problem Statement

Advances in integrated circuit technology have made it possible for many components

of computer systems to be put on a single chip. Hence, more compact and sophisticated

computer systems are possible. However, many electronics engineers have lost sight of

what actually goes on inside a central processing unit (CPU). Many approaches have

been used in attempts to resolve this problem. Unfortunately though, the internal

workings of a CPU are still not clearly understood by many engineers.

To address this problem, engineers need to acquire the knowledge to be able to design

and build their own CPUs. This project provides a hands-on experience in

understanding the workings of a CPU and a computer system.

1.3 Objective and Scope of Study

The objective of this project is to build a central processing unit using discrete

Transistor-Transistor Logic (TTL). The CPU will use a stack-based architecture.

FORTHis the language that will be used to programthe CPU. The final product should

be a completely working stack-based FORTH computer system.

This project will be limited to developing and building a FORTH-based computer

system using the previously mentioned CPU. CPU design will not be attempted in

order to simplify matters. An available CPU design will be used to develop and build

the system. Given the long time frame to develop the system, it is envisaged that the

project is feasible.



1.4 Overview of Report
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CHAPTER2

LITERATURE REVIEW

2.1 Register-based Computer Architecture

Computer architecture refers to a high-level description of the hardware required to

implement a computer. [2] Typically, the architecture for a computer can be divided

into a datapath and a control. The datapath will be discussed in the next section. The

section following that will discuss the instruction set architecture (a set of instructions

that are used to control the computer) for a conventional computer.

2.1.1 Datapaths

The datapath is defined by three basic components:

a set of registers

the microoperations that are performed on data stored in the registers

the control interface

The registers are used to provide temporary, high-speed storage of data. This data will

be used during microoperations that performed.



In order to perform a microoperation, the contents of specified source registers are sent

to the ALU. The ALU is a shared unit; since a large number of registers have access to

it. The ALU performs the operation, and the result of this operation is transferred to a

destination register. Since the ALU is used in most operations, it is an integral part of

the datapath. An example of another component required to perform a microoperation is

a shift register. These shift registers are also found in datapaths.

In addition to the units mentioned on the previous page, the datapath also contains the

digital logic that implements various microoperations. This is the control interface. This

digital logic generally consists of a variety of buses, multiplexers, decoders and

processing circuits. A block diagram of a simple, generic datapath is shown in Figure

2.1 on the next page. This datapath consists of four registers, an ALU, a shifter and the

control interface. [2]
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Figure 2.1: Block Diagram of a Generic Datapath

(Source: M. Mano, C. Kime; Logic and Computer Design Fundamentals; pg 432)

A simplified block diagram for a datapath is shown in the Figure 2.2 on the next page.

In this datapath, the ALU and shifter are combined as a single function unit. The

registers are organized into a single register file. A register file is basically a set of

registers which have common microoperations. This gives the block diagram as shown

in Figure 2.2 on the next page.
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2.1.2 Instruction Set Architecture (ISA)

A computer can only perform a task when it is given an instruction. The instructions

that may be issued by a user are stored in the instruction memory of a computer. When

an instruction is issued, the control unit reads the issued instruction from memory and

decodes and executes the instruction. The way it executes the instruction is by issuing a

sequence of one or more of the previously discussed microoperations. Put simply, this

means that an instruction consists of a combination of microoperations.

An instruction can be more specifically defined as a collection of bits that instructs the

computer to perform a specific operation. The set of instructions that a computer can

handle is called its instruction set. The thorough description of this instruction set is the

Instruction Set Architecture. For a simple register-based computer, the ISA has three

major components: the storage resources, the instruction formats and the instruction

specifications.

Put simply, the storage resources component of the ISA tells the programmer (or user)

which and how much resources are available for storing information. For example, a

programmer might have eight 16-bit registers, a 16-bit program counter, 64 KB of

Instruction Memory, and 64 KB of Data Memory.

The instruction format tells the programmer how the bits of the instruction are arranged.

The instruction bits are typically divided into groups called fields. Each field is assigned

a specific item. For example, one field is for just the operation code, while another field

is just for the destination register address. The operation code or opcode is always at the

most significant bit part of an instruction. The opcode contains control signals that

prepare the datapath (e.g. set the control logic) for a specific operation. Other fields can

contain different items, depending on the operation. An example of a 32-bit instruction

format is shown on the next page.



OPCODE Destination

Register
Source

Register A
Source

Register B
Offset

31 23 22 18 17 13 12

Figure 2.3: Example of a typical 32-bit Instruction Format

The final component of the ISA is the instruction specifications. These specifications

basically describe each of the instructions that can be executed by the computer. The

instruction specifications are usually given in a table as shown in Table 2.1 below.

Therefore, the instruction specifications can be also seen as a detailed list of instructions

that can be executed by the computer. [3]

Status

Instruction Opcode Mnemonic Format Description Bits

Move A 0000000 MOVA RDilA R[DR] «-R[SA] KZ

Increment 0000001 INC RD,RA R[DR] *- R[SA] + 1 N,Z

Add 0000010 ADD RD,RA,RB R[DR] <-R[SA] +R[SB] N,Z

Subtract 0000101 SUB RD,RA,RB R[DR] <-R[SA]-R[SB] N.Z

Decrement 0000110 DEC RD,RA R[DR] «- R[SA] - 1 N,Z

AND 0001000 AND RD,RA.RB R[DR] <-R[SA] aR[SB] N.Z

OR 0001001 OR RD,RA,RB R[DR] <-R[SA] vR[SB] N,Z

Exclusive OR 0001010 XOR RD,RA,RB R[DR] <-R[SA] ©R[SB] N,Z

NOT 0001011 NOT RD.RA R[DR] ^R[SA] N,Z

Table 2.1: An Example of Instruction Specifications

(Source: M. Mano, C. Kime; Logic and Computer Design Fundamentals; pg 454)

As previously mentioned, the architecture of a computer consists of datapath and

control. The control of the computer is done via the ISA, as explained in the previous

section. A generic block diagram combining datapath and control for a simple computer

architecture is shown on the next page.
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2.2 Introduction to Stack Computers and FORTH

A stack computer is a system that is based on the use of stacks, rather than being

register based. A stack is defined as a data structure that is based on the LIFO (Last In

First Out) principle. Stacks are the simplest way of saving information for common

operations, such as evaluating math equations, and calling subroutines. Stack computers

are particularly useful in real time control applications.

FORTH is a programming language that is very often used in stack computers. The

reason for this is that FORTH itself is based on a set of primitives that execute on a

virtual stack machine. Using FORTH, a lot of processing power can be obtained from

small hardware.

FORTH is a procedural and reflective programming language. It does not make use of

type checking. Reflection refers to the ability a program has to modify or improve itself.

FORTH features both interactive execution of commands (making it possible for

FORTH to be used as a shell, in the absence of a formal operating system) and the

ability to compile sequences of commands for later execution. Early FORTH versions

generally compiled threaded code, but many modern versions generate optimized

machine code like other language compilers. [4]

2.3 Advantages of Stack Computing

Stack computers have the following advantages:

• Less processor complexity compared to CISC designs

• Less system complexity compared to RISC and CISC designs

• Easier to write programs and compilers

• More reliable programs

• More efficient than register based machines in running well-modularized

programs

• Provide more processing power with very little hardware [1]

11



2.4 Stack-based Computer Architecture

Stack computers and conventional computers have different architectures. A block

diagram for the architecture of a generic stack computer is shown below.

D
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i""
i

\ ALU /
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CONTROL

LOGIC
&IR

DATA PROGRAM
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Figure 2.5: Architecture for a Generic Stack Computer

(Source: P. Koopman; Stack Computers: The New Wave, Internet Book:

http://www.cs.cmu.edu/~koopman/stack_computers/; 1989)
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The stack computer shown on the previous page is a type of stack computer with

multiple stacks, a large stack memory and 0-operand stack addressing. Each box in the

diagram represents a logical resource for the machine. These resources are the data bus,

the data stack (DS), the return stack (RS), the arithmetic/logic unit (ALU) with its top of

stack register (TOS), the program counter (PC), program memory with a memory

address register (MAR), control logic with an instruction register (IR), and an

input/output component (I/O).

The following sections describe each component in more detail.

2.4.2 Data Bus

The stack computer shown has a single bus connecting the system resources. This is for

the sake of simplicity. Commercial stack computers may have more than one data path

to allow both instruction fetching and calculations to be done at the same time. In the

generic stack computer, the data bus allows a single transmitting functional block and a

single receiving ftinctional block during any single operation cycle.

2.4.3 Data Stack

The data stack is memory with an internal mechanism to implement a LIFO stack. A

common way to do this might be a conventional RAM with an up/down counter used

for address generation. The data stack allows the two original stack operations: push

and pop. The push operation extracts the value on the data bus and writes it onto the top

of the stack. The pop operation extracts the value on the top of the stack and writes it

onto the data bus. It then removes the value at the top of the stack, exposing the second-

topmost value on the stack. This value will be used for the next processor operation.

2.4.4 Return Stack

The return stack is similar to the Data Stack in operation. The only difference is that it is

used to store subroutine return addresses, instead of instruction operands.

13



2.4.5 ALU and Top-of-stack Register

The ALU functional block performs arithmetic and logical operations on pairs of data

elements. One of these data element pairs is the top-of-stack (TOS) register, which

holds the topmost element of the data stack. Thus, to the programmer, the perceived top

data stack element is the data item kept in the TOS register buffer (at the ALU). The

perceived second topmost element is actually the topmost item on the real data stack.

This scheme allows using a single ported data stack memory while allowing operations,

such as addition, on the top two stack elements. The ALU supports the standard

primitive operations for any computer. This includes addition, subtraction, logical

functions (AND, OR, XOR), and test for zero.

2.4.6 Program Counter

The program counter holds the address of the next instruction that is to be executed. The

PC may be incremented (e.g. PC <- PC + 4) to fetch the next sequential instruction

from program memory, or may be loaded directly from the bus to implement branches.

2.4.7 Program Memory

The program memory block has a Memory Address Register (MAR) and a reasonable

amount of RAM. To access the memory, first the MAR is written with the address to be

read or written. Then, on the next system cycle, the program memory is either read onto

or written from the system data bus.

2.4.8 Input/Output

This component handles communications to/from the world outside the CPU.

[1]

14



2.5 Stack Computing versus Register-based Computing

The basic difference between stack computing andregister based computing is thatpure

stack machines make use of 0-operand stack addressing, while register machines use

register based addressing. For example, suppose a stack computer and a register-based

computer need to perform the following operation:

X-(A + B)(C+D)

Stack Computer Register-based Computer

PUSH A LD R1,A

PUSH B LD R2,B

ADD ADD R3,R1,R2

PUSH C LD R1,C

PUSH D LD R2,D

ADD ADD R1,R1,R2

MUL MUL R1,R1,R3

POP X ST X,R1

Table 2.2: Example of a Simple Operation

(Source: M. Mano, C. Kime; Logic and Computer Design Fundamentals; pg 488)

The two computers above perform the same task. However, the way each computer

approaches the operation is clearly different. The stack computer makes full use of a

stack, performing operations on items only at the top of the stack. This is why there is

no need to specify any address (hence the name 0-operand stack addressing). On the

other hand, the register-based computer moves data into registers first. Operations are

performed on this data, and then the results are stored into registers. This method makes

full use of registers, hence the name: Register-based computing. Other significant

differences between the two approaches can be summarized in the following table:

15



Stack Based Register Based

Smaller programs: Larger programs:

• Requires less memory • Uses more memory

Less processor and system complexity CISC

• Tries to strike a balance between • Increase in processor complexity

RISC and CISC for low system complexity

• Limits data on which operations • Goal of a consistent and simple

are performed on to the top of the interface between hardware and

stack software

RISC

• Increase in system complexity for

low processor complexity

• Goal of making processor faster by

only reducing the number of

instructions

Modern processors have features from

both CISC and RISC machines

Compatible with Reverse Polish Notation Uses the more traditional infix notation

(e.g. AB + CxDEx + ) (e.g.(A+B)*C + (D*E))

Not nearly as much research and Popular due to:

development over the years • Cheap cost of memory

• Traditional way of doing

computing

• Lots of research and development

over the years

Table 2.3: Summary of Differences between Stack and Register Based Computing

16



CHAPTER 3

METHODOLOGY / PROJECT WORK

The objective of this project (to build a central processing unit using discrete TTL) will

be achieved by following the steps listed in section 3.1. Equipment required for this

project is listed in section 3.2 and the appendices. Section 3.3 describes the computer

system that will be built in more detail. The next section, Section 3.4 explains the

methods that were used to link the computer's software to its hardware. Finally, Section

3.5 explains the methods that were used to test and troubleshoot the system.

3.1 Procedure Identification

The plannedprocedure can be summarized as follows:

1. Obtain components

2. Plan layout of components on system cards

3. Wire wrap components on system cards

4. Test system cards separately

5. Connect system cards to each other via a backplane

6. Download the software into the system

7. Test and troubleshoot the complete system

17



3.2 Equipment Required

The equipment required for this project can be summarized as follows:

1. Wire wrapping tool and wires

2. Eurocards, backplane and card connectors

3. Electronic components (e.g. Logic ICs, resistors, ROM and RAM chips)

Note: For the sake of brevity, the complete list of components required is not

listed here. A list of components for all system cards can be found in the

appendicessection.

3.3 The Mark 1 FORTH Computer Design

The computer system that will be built in this project is named the Mark 1 FORTH

Computer. It was designed by Andrew Holme, an electronic engineer. The Mark 1

FORTH Computer has no microprocessor. It uses discrete TTL logic chips for its CPU.

Other components of the computer system are also implemented using mainly TTL

chips. Table 3.1 below lists the specifications of the Mark 1 FORTH Computer. [5]

Technology TTLandHCMOS

Clock Speed 1MHz

Data Bus 8-bit

Address Bus 16-bit

Software FIG-FORTH

ROM 8KB

RAM 24 KB

Input/Output RS-232

Table 3.1: Mark 1 FORTH Computer Specifications

18



The architecture of the Mark 1 FORTH Computer is shown in Figure 3.1 below.

Figure 3.1: Mark 1 FORTH Computer Architecture

(Source: A. Holme; Mark 1 FORTH Computer; Internet:

http://www.holmea.demon.co.uk/Mkl/Architecture.htm; 2003)

Table 3.2 on the next page describes each of the components shown in the figure above

in more detail.

19



Module Width

(bits)

Description Comments

ALU 8 Arithmetic

and logic
unit

The ALU data path is a bottleneck. It takes four clock
cycles to load the inputs, set the ALU function, and
read the result. This is the least satisfactory aspect of
the whole design.

OP 8 Operand
register

OP is loaded into the uppermost 8 bits of uPC. The
lower 4 bits are reset to zero.

uPC 12 Microcode

program

counter

W 16 FORTH

Working
register

The 16-bit index registers, IP and W, support
increment, decrement, and can address memory.

IP 16 FORTH

Instruction

Pointer

PSP 8 FORTH

Parameter

stack

pointer

The stack pointers, RSP and PSP, are 8-bit up/down
counters feeding the A1-A9 address inputs of the
stack RAMs. The least significant address input (AO)
selects the upper or lower byte. Logically, the stacks
are 16-bits wide by 256 words deep. The FORTH
word length is 16 bits.

RSP 8 FORTH

Return

stack

pointer

Stack

RAM

16 Dedicated

stack RAM

0 8 Force 00H

on data bus

Table 3.2: Description of Mark 1 FORTH Computer Components

(Source: A. Holme; Mark 1 FORTH Computer; Internet:

http://www.holmea.demon.co.uk/Mkl/Architecture.htm; 2003)

The Mark 1 FORTH Computer has a very elegant design. It resembles the generic stack

computer that was discussed in Section 2.4 in some ways. However, in other ways, it

improves on the generic stack computer's design.

20



The Mark 1 FORTH computer is built using nine system cards connected together via a

DIN41612 64-way backplane. Together, these nine cards implement the architecture

previously shown in Figure 3.1. The system cards are:

• System Clock and Instruction Decoder

• Microcode Sequencer

• Working (W) Index Register

• Instruction Pointer (IP) Index Register

• Stacks

• Memory

• Diode ROM

• Input/Output

• Arithmetic Logic Unit (ALU)

The complete schematics for the computer can be found in the appendices.

3.4 Software

The Mark 1 FORTH computer has both RAM and EPROM chips for its memory. They

RAM chips are only used during normal operation of the computer. The EPROM chips

however, are used not only during normal operation, but during the boot sequence,

interrupts and resets. Therefore they need to be programmed before being placed on

their respective cards. The table below shows the location ofeach memory chip:

System Card Memory Chip Quantity

Memory 6264 8KB RAM 3

M2764 8KB ROM 1

Stacks 6116 2KB RAM 2

Microcode Sequencer M2764 8KB ROM 1

Table 3.3: Location of Memory Chips

21



The first EPROM chip is the M2764 chip on the Microcode Sequencer card. This chip

contains microcode routines for the computer and is referred to as the uROM. Andrew

Holme provided complete software for programming this chip: source code for an

assembler (written in C++), and the assembly code for the uROM. First of all, the

assembler was compiled using Microsoft Visual C++. Using this assembler, the

assembly code was then assembled: resulting in an Intel Hex image and a list of

opcodes (these opcodes, which are formatted as MASM EQU statements are used later

in the High-Level ROM programming). The Intel Hex image for the uROM was then

used to program the M2764 ROM chip. A Topmax Universal Programmer was used for

the programming process.

The second EPROM chip (another M2764 chip) is found on the Memory card. This

chip is referred (by Andrew Holme) to as the High-Level ROM. The High-Level ROM

contains the boot sequence for the computer. Microsoft Macro Assembler (MASM) and

Microsoft Incremental Linker (LINK) were used to generate the Intel Hex image for

this chip. The Intel Hex was then burned into the ROM using the same Topmax

Universal Programmer as above. Assembly code was again provided by Andrew.

Another file of assembly code that was assembled for the Mark 1 FORTH computer is

the FIG-FORTH software. This version of FORTH was originally for the 6502

computer. However, Andrew translated this version of FORTH into a version that

works with his (Mark 1) computer. The assembly code for this translated version of

FORTH is available on his website. MASM and LINK were once again used to

generate the Intel Hex image of the assembly code. However, this Intel Hex image was

not burned directly into a ROM chip. As in Andrew Holme's Mark 1, The FORTH will

be downloaded via serial port into the computer's RAM during normal operation.

The flowchart on the next page graphically shows the procedures as explained above.
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3.5 Testing and Troubleshooting

Wire wrapping of each system card was time consuming and tedious, but it was easy.

The testing and troubleshooting process was the hardest part of completing the project.

This section describes the process of testing and troubleshooting the computer.

The system cards were first tested individually. Each card was first subjected to

continuity testing. Then each card was checked for short circuits. After these two tests

were completed, a test circuit was used to logically test each card. This circuit was used

to input control bits to each system card using DIP switches. A very low frequency

clock signal (about 1 Hz) was then sent to the card being tested (except the System

Clock and Instruction Decoder card). Results were observed either via the LEDs on the

test circuit, an oscilloscope, or a logic probe. As each system card is different from the

other cards, the control bits for each card are also different. However, the same circuit

can be used. The most important thing is to ensure that the correct control lines are

connected to the DIP switches. The picture below shows the logical test circuit. Figure

3.3 on the next page shows the schematic for the logical testing circuit.

Photograph 3.1: Logical Testing Circuit
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The sections below describe the individual test results from each system card:

3.5.1 ALU

The ALU is capable of handling 8-bit arithmetic and logical operations. It was tested by

performing arithmetic calculations step by step. Testresults have verified that the ALU

is working properly. It transmits the correct results to the data bus. The ALU also has

conditional flags that have beenverified to be working properly. Table 3.4belowshows

test results of an ADD operationdone on the ALU card:

Input

A

Input

B

Output

F

Flags

Sign Cout A=B IRQ

0000 0001 0000 0010 0000 0011 0 1 0 0

01010101 0010 1010 oin mi 0 1 0 0

01110000 0000 1111 oin mi 0 1 0 0

oin mi oin mi nn mi 1 0 1 0

Table 3.4: Results from ADD Operation on ALU Card

3.5.2 System Clock and Instruction Decoder

This card has two functions. The first is to provide accurate clock signals to the clock

buses. The second is to accurately decode control signals (u0-u7) that are input to this

card. The card then transmits the decoded control signals to the control bus of the

computer. Testing of this board has shown accurate CLK1 and CLK2 clock signals that

are in quadrature witheach other. All control signals have also been accurately decoded

and transmitted to the control bus.
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3.5.3 Microcode Sequencer

The microcode sequencer contains a microcode counter as well as the instruction

memory stored on a ROM chip. The instruction memory stores 43 routines that will be

used by the Mark 1 FORTH computer. However, a total of 256 routines can actually be

stored. The instruction memory has been verified to accurately output the correct

control bits according to instruction address. The microcode counter has also been

verified to be working correctly. Table 3.5 below shows some test instruction addresses

(inputs) and the respective controlbits (outputs).

Input Output

InstructionAddress Control Bits (HEX) Control Bits (Binary)

0000 30 00110000

0001 70 0111 000

0002 88 1000 1000

0003 88 1000 1000

0004 84 1000 0100

0005 21 0010 0001

0006 88 1000 1000

0007 61 0110 0001

0008 28 0010 1000

0009 89 1000 1001

000A 68 0110 1000

0OOB 89 1000 1001

oooc F3 11110011

000D 25 0010 0101

000E 88 1000 1000

000F B0 10110000

Table 3.5: Test Results from Microcode Sequencer
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3.5.4 Diode ROM

The Diode ROM's purpose is to accurately decode control signals for the ALU card. An

input of4 bits (u0-u3) is decoded onthis card to produce a possible of 16 functions for

the ALU card. Each function consists of a series of 8 bits, which will be used to set the

function (e.g. ADD, SUB, AND) for the ALU. The table below shows the functions for

the ALU.

OPP DO Dl D2 D3 D4 D5 D6 D7

0 ADD 1 0 0 1 L X H H

1 ADC 1 0 0 1 L X X L

2 SUB 0 1 1 0 L X L 11

3 SBB 0 1 1 0 L H X L

4 ASL 0 0 1 1 L X H H

5 ROL 0 0 1 1 L X X L

6

7

8(a) 0< 1 1 1 H L X X

8(b) A 1 1 1 H X X X

9 B 0 0 1 H X X X

10 AND 1 0 1 H X X X

11 OR 0 1 1 H X X X

12 NOT 0 0 0 0 H L X X

13 XOR 0 1 1 0 H X X X

14 A=B 1 0 0 1 H X X X

15

Table 3.6: ALU Functions [5]

The Diode ROM card has been verified to accurately set the function for all 16 possible

functions.
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3.5.5 W and IP Index Registers

The 2 index register cards are exactly the same, consisting of counters that are cascaded

to be 16-bit. They have been tested to count in both directions (increment/decrement),

and also to address memory accurately.

3.5.6 Stacks

This card contains the RAM chips that will be used as stack memory. This card also

contains counters that are used as stack pointers (eitherparameterstack pointer or return

stack pointer). It has been verified that data can be accurately pushed and popped form

each of the stacks. Both stack pointers have also been shown to be able to accurately

count in both directions (increment/decrement).

3.5.7 Memory

The memory card was tested by reading and writing sample data to the memory. In

other words, this card has been successfully tested to be able to handle read and write

operations. The tables below show sample test data that was written to and read from

the memory card:

Address (Memory Location)

(in HEX)

Data Bits

Write Read Verified?

2000 11110000 11110000 Correct

4000 10101010 10101010 Correct

6000 11111111 11111111 Correct

2001 00001111 00001111 Correct

4001 10101010 10101010 Correct

6001 01010101 01010101 Correct

Table 3.7: Memory Card Test Results
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3.5.8 Input / Output

The Input / Output card was logically tested only up to a certain extent. This is because

the 82C51A chip on this card requires initialization codes that would have been quite

tedious to input manually. Therefore, this chip was not logically tested. However, the

other parts on the board were verified to be working properly. This included the logic

gates for decoding signals, the hex buffer (74LS368), the 14-stage clock divider

(HEF4060BP) and the data transceiver (74LS245). During testing for the 14-stage clock

divider, an extra component was added to the I/O board. This is the 74HCT04 hex

inverter chip. The chip was added to generate a better clock signal for the 82C51A

USART. Before this chip was added, the clock signal was not a clean one and was of

low magnitude. Putting the clock signal through two hex inverters ensured that it was

clean and about 5V (peak to peak) in magnitude. Testing for the 82C51A USART was

planned for later, after the system cards had been connected together.

3.5.9 The Complete System

With all the system cards verified to be working properly (atthat current point in time),

all the cards were connected together using the backplane. The serial cable was

connected to a personal computer and Hyperterminal was started (Hyperterminal is the

program that is used to interface the Mark 1 and the personal computer). The Mark 1

was then switched on. However, no results were detected on Hyperterminal. The

computer system was not properly working yet. The system now required

troubleshooting as a whole, instead of individual card testing.
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Troubleshooting the system as a whole was a problem. Rightfully, since every system

card worked individually the system should work when connected together. However,

this was not so. Using a combination of an oscilloscope, a logic probe and a list of what

could possibly have gone wrong; the system was checked for errors. After weeks of

searching, two errors were detected:

• The cable connecting the 10 card to the PC was not properly wired

• The Octal buffer on the Diode ROM card (74HCT244) was not suitable for the

Diode ROM card.

Regarding the cable, Andrew Holme's schematics show a DB25 socket at the 10 card.

This socket was to be used with a null modem DB25 - DE 9 cable (and connected to the

serial port on a PC). However, the assumption was made that the schematic was

showing a direct connection to the PC. Therefore the cable was wrongly wired. The

problem has now been rectified, and the 10 card schematic currently shows a direct

connection to the serial port on any normal computer.

Regarding the octal buffer on the Diode ROM card, a 74HCT244 chip had previously

been used. This was to ensure compatibility with the other TTL chips. However, there

was a problem with this configuration. The VOL(max) from the 74HCT138 decoders

added with the voltage drop across the diodes exceeds the VIL(max) of either the

74LS244 or 74HCT244 chips. Therefore, in order for the Diode ROM to work, a

74HC244 chip must be used. This problem had not been detected during individual

testing of cards. However, when the cards were assembled together on the backplane,

this problem caused the system to produce unexpected results. Once the 74CHT244

chip was replacedwith a 74HC244 chip, the systemworked fine.

The following pictures showthe completely wire-wrapped cards:
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Photograph 3.2: Underside of ALU

Photograph 3.3: Underside ofSystem Clock and Instruction Decoder

Photograph 3.4: Underside of Diode ROM
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Photograph 3.5: Underside of IP Index Register

Photograph 3.6: Underside ofWIndex Register

Photograph 3.7: Underside ofInput/Output Card
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Photograph 3.8: Underside ofMemory Card

Photograph 3.9: Underside of Microcode Sequencer

Photograph 3.10: Underside of Stacks Card
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results

The Mark 1FORTH computer is now fully operational. The computer system has been

tested for about 2 weeks now, with no errors. Being a FORTH based computer system

that can be programmed in anyway that the programmer wants, it is obviously
impossible to fully show the capabilities of the computer in a report. Therefore, this
section will focus on the results of some simple instructions that can be performed on

the Mark 1. The following pictures show the complete Mark 1 FORTH computer:

Photograph 4.1: Angled View ofthe Mark 1FORTH Computer
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Photograph 4.2: TopView of theMark 1 FORTH Computer

«*2V » }% ,m tm i% .?? m ik *

Photograph 4.3: Side View of the Mark 1 FORTH Computer

The computer draws between 0.9 to 1.1 amperes of current, operating at 5V. There are

no heat problems, asall the chips remain cool during operation.
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The screenshot below shows the results at Hyperterminal when the computer is booted

up:

Screenshot 4.1: Initial Screen

As seen above, the first words to greet the user are:

Monitor

>

If "Enter" is pressed, the computer will continue to display the ">" symbol, as seen

above. Entering the character "A" followed by a hexadecimal character results in the

computer displaying the decimal value of the character entered. Entering "B" followed

by a byte of hexadecimal characters (e.g. F3, 07, A5) results in the computerdisplaying

the decimal value of the byte entered. This can also be seen in the screenshot above.
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WHjfpfwetmmlP

Rb &» Vtew Cal .Transfer Hafr

Monitdr
>

>

>

>

>

Rx OK
>3

FORTH ••%
111 111 * . 222 OK
280 200 - . 0 OK,
25 25 - . £25 OK
803 4/ . r208 OK -'; .
65 EMIT O/OK ... ... . , ;T
: Hlpht;9lp65.D0IEHni00P..; OK
Alpha IBCDtFGHIJKILHNpPQRlTUV^XVZ OK
fiBCTlEipiJKLWNOPQRSTUVHXVZ
ABCDEliHllLMNOpQRSTMHkVZ
flBiyJEFGHiyKLflNORQRSJWHKVZ
ABCMFGHldKLMNQPQRSTUVWXVZ
ABCDERGHlJKLHNQBlilTMVHXVZ
abcdefghijklwnopqIIt^wxvz
flBGDEFGHIJKL»QR5TUVWXYZ
ABeDEFGHtJKLHSOPQRSTUVWXVZ OK ,
42 EMIT -.OK
15 SPACES 42 EMIT 42 EMIT; :" OK

Screenshot 4.2: Simple FORTH

The screenshot above shows the results of loading the FIG-FORTH software into the

Mark 1. When the FIG-FORTH is being downloaded into the system, it sends out a

stream of "::::::::::::::::::::::" characters, followed by "Rx OK" if the download was

successful. Hitting the "G" character starts the FORTH software. The screenshot shows

sample arithmetic operations being done on the computer. The results are correct:

111 + 111 = 222

200 - 200 = 0

25 * 25 = 625

800 / 4 = 200
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The command " : Alpha 91 65 DO I EMIT LOOP ; " seen in the Screenshot 4.2

basically tells the system to save a routine displaying all the characters in the alphabet

(A to Z) as a word called "Alpha". A word in FORTHrefers to a subroutine that can be

called by the system at a latertime. This is demonstrated in the next line. When "Alpha"

is enteredto the system, it outputs "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

Fin Edtt Vtow OS Transfer Hslp

D c£ m % soS £?

•Rk-OK
>G

123 MESSAGE HSG tt 123 OK
65 EMIT A OK
64 EMIT 6 OK
42 EMIT * OK
1234 4321 * . 5555 OK
10000 5000 - . 50B0 OK
100 100 " . 10000 OK
256 16 / . 16 OK
16 256 /. 0 OK
: Alpha 91 65 DO I EMIT LOOP ; OK
Alpha ABCDEFGHIJKLMNOPQRSTUVWXVZ OK
: Alphabets 0 DO CR Alpha LOOP ; OK
10 Alphabets
ABCDEFGHIJKLMNOPQRSTUVWXVZ
OBCDEFGHIJKLMNOPQRSTUVHXVZ
ABCDEFGHIJKLMNOPQRSTUVWXVZ
ABCDEFGHIJKLHNQPORSTUVWXVZ
HBCDEFGHIJKLMNOPQRSTUVWXVZ
ABCDEFGHIJKLMNOPQRSTUVWXVZ
ABCDEFGHIJKLMNOPQRSTUVWXVZ
ABCDEFGHIJKLMNOPQRSTUVWXVZ
ABCDEFGHIJKLMNOPQRSTUVWXVZ
ABCDEFGHIJKLMNOPQRSTUVWXVZ OK

Connected 0 08.12 Autodetect 9600 W*-2 j POLL j CdP5 |MiJt! i.su.»t» Prinf-til.

jlte|%3r^^j|^^ |S»qwu f

13

Screenshot 4.3: Looping the Alphabet

Screenshot 4.3 shows some new commands with their results. The command "65

EMIT" asks the computer to display the character represented in ASCII by the decimal

number 65, which is "A". Similarly, any other character represented in ASCII can be

displayed bythe computer. In the screenshot above, "@" and "*" are displayed.
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The command " : Alphabets 0 DO CR Alpha LOOP ; " makes use of the previously

defined "Alpha" word. This command creates a new routine called "Alphabets" that

displays "ABCDEFGHIJKLMNOPQRSTUVWXYZ" on new lines for a specified

number of times. In the Screenshot 4.3, "10 Alphabets" is entered. The system duly

outputs the alphabet 10 times, each time on a new line.

Finally, the next two screenshots show the use of words in displaying the letter "F"

using "*" characters:

IHTOfl^WKItl^P^^^^^W'*'
file Edt View Cal Trensfer Hefc

ABCDEFGHIJKLMNOPQRSTUVWXVZ . ~ [ .. * ,' •' S
ABCDEFGHIJKtHNQPQRSTUVHXVZ
ABCDEFGHIJKLHNOPQRSTUVWXVZ
flBCDEF|HIjkllHNOPQR$T.UVWXVZ •
ABGDEEGHKKLMNOPQRSTUVWXVZ OK .k .
42 EMU «0K , '•'•'••^
15 SPACES 42 EMlf42B4IT - OK -;
: STAR 42 EMIT ; <0K : 4
STAR - OK
CR

OK " "'• -. • "?: 'v " "' "•"''* "'
CR STAR CR.STAR CR STAR
* '. -^ -•••

» OK • .
: MARGIN CR 30 SPACES..; .OK
MARGIN STAR MARGIN STAR MARGIN STRR

STAR? MSG »0
: STAR 42 EMIT ;.STARNS;G » 4 42? MSG
STAR *..0K • • , -••• ft
MARGIN STAR MARGIN STAR MARGIN STAR

it -

• -OK " •• ,.• •/ -.; -, •
MARGIN ,.

. P.K • -. •$ ;. , .
STAR » OKu
: BLIP MARGINiSTAR ; 0K^

STARS 0 DO STAR LOOP; LOOP;? MSG H 0
STARS 0 DO STAR LOOP ;:? NSG « 0
STARS 0 DO STAR LOOP ; SAR? MSG H 0
STARS 0 DO STAR LOOP ; OK

5 STARS -*-«» OK
35 STARS «»-«»-«—«-«»———.—.«»«««-«— OK

Connected Oil 1:45 lAutodetect .J960qWf2 - r''->lL .iC«SJ "'--M t^u"

Screenshot 4.4: Displaying "F" Part 1

40



STAR * OK
MARGIN STAR HARGIH STAR MARGIN STRR

•OK

ok"
MARGIN

STAR - OK
: BLIP MARGINiSTfiR OK

STRRS 0 DO STAR LOOP; LOOP;? MSG » 0
STARS 0 DO STAR LOOP
STARS 0 DO STAR LOOP
STARS 0 DO STAR LOOP

5 STARS »-«— OK
35 STARS **»»*"«*««»«»****

: BAR MARGIN 5 STARS ; OK
BAR BLIP BAR BLIP BLIP CR

:? MSG » 0
SAR? MSG tt
OK

OK

OK
: F BAR BLIP BAR BLIP BLIP CR ; BLIP? MSG B 0
: F BAR BLIP BAR BLIP BLIP CR ; OK
F

OK

Connected 0:11:56 .Modeted jWOOMKi CTCll _]^ .ip |CgBe^

Screenshot 4.5: Displaying "F" Part 2

The previous 2 screenshots show the following words being defined:

STAR

STARS

MARGIN

BLIP

BAR

F

13

»

[6]

Each of these words makes use of words that have been previously been defined. The

final word "F" displays the letter"F" using "*" characters, as seenabove. Programming

in FORTH is usually done this way: Creating simple words, then expanding on those

words to create more and more complex words and finally applications. In this way,

FORTH is a simple and small language, yetamazingly powerful.
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4.2 Changes to the Mark 1 FORTH Computer

In the course of doing this project,the originaldesignby AndrewHolme was adheredto

as much as possible. However, several changes were made due to a variety of reasons.

These changes are documented in this section.

4.2.1 Primary Usage of LS TTL Chips

The original Mark 1 design primarily utilizes HC chips, with only a few TTL chips.

However in this version of the Mark 1 computer system, LS TTL chips are primarily

used. HCT chips are used wherever the schematics state that a HC chip should be used.

The only 2 differences are the Microcode Sequencer (where a 74HC107 chip is used)

and the Diode ROM (where a 74HC244 chip is used). Although the original Mark 1

used mostly HC chips, this version (using mostly TTL chips) also works. This shows

that the design is not component dependent, a hallmark of a robust design.

4.2.2 Addition of 74HCT04 Hex Inverter to Input / Output Card

The original Input / Output card connects an output (pin 9) from the HEF4060BP clock

divider directly into the clock input (pin 20) of the 82C51A USART. In our 10 card

however, the clock signal obtained from the 4060 clock divider was not a clean square

wave. It was therefore deemed necessary for the output from the clock divider (pin 9) to

be passed through two inverters first, before sending it to the clock input (pin 20) of the

USART. The signal obtained afterthe inverters is a muchbettersquare wave.
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4.2.3 RS-232 Null Modem Cable

The original Input / Output card has a DB25 socket for connecting the Mark 1 to a DE9

serial port on a personal computer. This requires the use of a DB25 to DE9 null modem

cable. However, the input/ output cardthat was builthere has a "built-in" cable directly

to a DE9 female connector. This connector just needs to be plugged in directly to a DE9

serial portand the two computers canstart communicating. In short, there is no need for

a null modem cable anymore. It is already "built-in".

4.3 Performance

It is difficult to ascertain the performance of the Mark 1 computer, because there is no

FORTH-based computer readily available to carry out a comparative study. However,

Andrew Holme's website compares the performance of the Mark 1 to another FORTH

computer that he built: the Mark 2. The table on the next is reproduced from his

website. It compares the number of CPU cycles taken by each computer to perform a

FORTH primitive. Although the Mark 2 is a more advanced computer, the Mark 1

performs reasonably well, beating the Mark2 in some categories.
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FORTH

Primitive

Number of Cycles

Markl Mark 2 Difference

Enter 14 16 -2

;S 12 12 0

LIT 14 16 -2

EXECUTE 7 6 1

(DOES) 19 22 -3

BRANCH 14 10 4

OBRANCH 21 16 5

(LOOP) * 29/32 * 24/26

(DO) 19 24 -5

LEAVE 15 16 -1

R> 13 16 -3

>R 13 16 -3

R 12 14 -2

AND 19 18 1

OR 19 18 1

XOR 19 18 1

+ 20 18 2

- 18

0= 19 16 3

0< 17 16 1

DUP 14 14 0

SWAP 21 20 1

DROP 10 10 0

OVER 16 16 0

@ 14 14 0

I 16 18 -2

m 13 14 -1

C! 14 18 -4

D+ 37 32 5

NEGATE 17 16 1

DNEGATE 25 26 -1

u* * 325/613 * 118/182

U/ 531 * 190/222

* Min/Max

Table 4.1: Performance Comparison between Mark 1 and Mark 2 Computers [7]
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

The project has been fully completed and the objectives fully achieved. A fully

operational stack-based computer has been built. The computer runs at 1 MHz, has 8

kilobytes of ROM and 24 kilobytes of RAM. FIG-FORTH is the software used on the

system. FORTH is used as an assembler, a programming language and as the operating

system on the computer.

5.1 Recommendations for Future Work

The next step for this project will be to use the 8255 chip (currently unused) to display

further Input / Output capabilities. The Input / Output card has a socket and the

architecture for the 8255 chip. However, neither software nor hardware is configured to

use the chip. The 8255 could be used to further show the Mark l's capabilities. For

example, the 8255 could be used to light up LEDs, or perhaps control an electrical

device (e.g. a motor). FORTH is after all, a language originally written for control

purposes.

Another recommendation would be to build a front panel for the computer. This front

panel would have a series of LEDs to showthe status of all the lines on the backplane.

For example, 8 LEDs to display the status of the Data Bus, 16 LEDs for the Address

Bus, and other LEDs for decoded signals and the Control Bus. This would be

particularly good for demonstration purposes.
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A standalone power supply could also be built for the Mark 1. Currently, it is drawing

power from a laboratory power supply using crocodile clips and wires. Since the

computer draws only about 1 ampere of current, a standard ATX Power Supply Unit

(normally found in Pentium 4 computers) could be modified to constantly supply 5V to

it. The Mark 1 could then be pluggedin directlyto a typical electrical power socket and

operate. This would greatly increase its portability.

A final enhancement would be to build a case to store the Mark 1 computer in. The

currently used card cage offers very little protection against dust, insects and

particularly water. A large computer casing could be modified to fit the Mark 1

computer. Furthermore, the modified ATX Power Supply Unit (as above) would also fit

perfectly into the computer casing. With the added protection and cooling (from the

computer casing's fans), the Mark 1 would be a very reliable computer for many years

to come.
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APPENDICES

APPENDIX A: LIST OF COMPONENTS

Card 1: Arithmetic Logic Unit (ALU)

Quantity Part Number Description

3 74LS377 8-bit register

2 74LS00 Quad NAND Gates

2 74LS181 4-bit ALU

74LS86 Quad XOR Gates

74LS32 Quad OR Gates

74LS242 Quad Bus Transceiver

74LS74 Dual D Flip Flops

74LS244 Octal Buffer

IK Resistor Pull-up Resistor

Card 2: Diode ROM

Quantity Part Number Description

2 74HCT138 3 to 8 Inverting Decoder/Demultiplexer

1 74HC244 Octal Buffer

30 1N4001 Diode



Card 3: System Clock and Instruction Decoder

Quantity Part Number Description

4 74LS244 Octal Buffer

2 74LS155 Dual 1 of 4 Decoder/Demultiplexer

74LS138 3 to 8 Inverting Decoder/Demultiplexer

74HC107 Dual JK Negative Edge Triggered Flip Flop

74LS04 Hex Inverter

74LS32* Quad OR Gates

74LS08 Quad AND Gates

2MHzXTAL 2 MHz Crystal Oscillator

2 470 H Resistor Resistor

1 22 pF Capacitor Ceramic Capacitor

Card 4: Stacks

Quantity Part Number Description

1 74LS245 Octal Transceiver

4 74LS169 Modulo Binary (16) Synchronous Counter

2 HM6116ALP 2KB SRAM

1 74LS32 Quad OR Gates

1 74LS08 Quad AND Gates
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Card 5: Memory and Power On Reset Circuit

Quantity Part Number Description

3 UT6264CPC 8KB SRAM

M2764 8KB EPROM

74LS155 Dual 1 of 4 Demultiplexers

74LS245 Octal Transceiver

74LS0O Quad NAND Gates

74LS132 Quad NAND Schmitt Triggers

10 Q Resistor Resistor

27 kO Resistor Resistor

10 uF Capacitor Ceramic Capacitor

4 1 kQ Resistor Pull-up Resistor

1 Push Button RESET Push Button
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Card 6: Microcode Sequencer

Quantity Part Number Description

3 74LS163 4-bit synchronous counter

74LS377 8-bit register

M2764 8KB EPROM

74LS173 4-bit register

74LS169 Modulo Binary (16) Synchronous Counter

74LS02 Quad NOR Gates

74LS08 Quad AND Gates

74LS244 Octal Buffer

74LS151 1 of 8 Multiplexer

Card 7: Working (W) Index Register

Quantity Part Number Description

4 74LS244 Octal Buffer

4 74LS169 Modulo Binary (16) Synchronous Counter

1 74LS32 Quad AND Gates

Card 8: Instruction Pointer (IP) Index Register

Quantity Part Number Description

4 74LS244 Octal Buffer

4 74LS169 Modulo Binary (16) Synchronous Counter

1 74LS32 Quad AND Gates
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Card 9: Input/Output

Quantity Part Number Description

74LS245 Octal Transceiver

HEF4060BP 14-Stage Binary Counter

74LS368 Hex Buffer

82C51A USART

MAX232 RS-232 Driver

2 74HCT32 Quad OR Gates

74HCT00 Quad NAND Gates

74HCT04 Hex Inverters

DE9 Female Socket DE9 Female Connector (Socket)

330 kQ Resistor Resistor

2.2 kQ Resistor Resistor

2.4576 MHz XTAL Crystal Oscillator

100 pF Capacitor Ceramic Capacitor

lOpF Capacitor Ceramic Capacitor

5 1 (xF Capacitor Electrolytic Capacitor



APPENDIX B: CIRCUIT DIAGRAMS

(source: A. Holme, Mark 1 FORTHComputer, InternetWeb Page:

http://www.holmea.demon.co.uk/Mkl/Architecture.htm, 2003)

Page vii :ALU

Page viii : Diode ROM

Page ix : System Clock and Instruction Decoder

Pagex : Stacks

Page xi : Memory

Page xii : Power On Reset Circuit

Page xiii : Microcode Sequencer

Page xiv : Index Registers

Page xv : Input/Output
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APPENDIX C: BACKPLANE SPECIFICATIONS

+5V

CLK1

JDO
Dl

D2

D3

D4

_D5
D6
D7

A0

Al

A2

A3

A4

A5

A6

A7

_A8
_A9
A10

All

A12

A13

A14

A15

MR

MW

RESET

IRQ

CLK2

OV

BUS A

DATA

ADDRESS

Memory Read

Memory Write

Ji
J_L
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

JiO

Jil
jx2
J*3
i±4
Ji5
J*6

JiZ
lt210=101

1*210=110

ti210=lll

H210=000

H210=001

Li210=01Q

Li210=011

SRC=111

SRC=000

SRC=0Q1

SRC=010

SRC=011

Li=1000xxxx

u=1001xxxx

li=1010xxxx

ii=101 lxxxx

M@IP

M@W
LP
HI

xvi

BUSC

J*

Dest=OP

Dest=ALUA

Dest=ALU B

_W
JP
Dest=TOS

Dest=R

ALU
_W
JP
TOS

R __
INC/DEC

JUMP#

ALU Function

JUMP OP

Address = IP

Address = W

LO-byte

Hi-byte

PSP

RSP


