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ABSTRACT

Computer is an integral part of human life nowadays and the complexity of computers

grows in parallel with their processing capability. This projectwill build the basis of

understanding the operation of the central processing unit of a computer by

developing an 8-bit central processing unit from discrete TTL logic ICs. This CPU

will also be used as a teaching aid for Computer System Architecture class in UTP.

By building the CPU discretely, detailed operation of a computer can be understood

from the hardware up to software level. The project discusses detailed electrical

operation of blocks in the central processing unit mainly the processor. At the end of

the project, a fullyworking microcomputer was constructed and studied in detail.

in
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CHAPTER 1

INTRODUCTION

To many endusers, the internal workings parts of a CPU are difficult to comprehend.

Computers accelerated economical development as they help to compute and process

data in a way which is unachievable by humans. Societies are very dependent on

computers thatcomputers hadbecome anessential part of human life. Due to this fact,

computers are designed to be more helpful by cramping more features and increasing

their capabilities.

1.1 Background

Computer which is controlled by the central processing unit had been already

available for years. The exact timeline of computers can be traced back to 1950s by

the invention of instruction list which basically list down the operations for an

automated machine.

Today, computers like PCs and Macs are capable of delivering high resolution

graphics and surround sound which has been taken for granted. How many of the

students fully understand the different components like ALU, registers and the

controls which are put together for a computer to function correctly? These machines

are highly complex and it is a challenge to show howall the different components are

assembled to form a functional computer,

1.2 Problem statement

In the view of the previous discussion, teaching Computer System Architecture (CSA)

can be quite a challenge as it involves describing a lot of difficult technical details.

Technical details in a computer systems course can be presented well by using a



suitable teaching platform. This project describes the development of an 8-bit

computer using TTL logic gates as a platform to support the teaching of CSA at

Universiti Teknologi Petronas (UTP).

One of the goals of the CSA course is to explain the role and interaction of the

components of a computer system therefore the teaching platform should have the

following features.

1. A simplemodel architecture, with an easy to teach and learn instruction set

2. An architecture that can easily be used to demonstrate the relationship

between different components of a computer system.

3. In addition, the platform should be able to provide the students the opportunity

to learn the "ins" and "outs" of a computer system at gate level, which programming

simulators does not [1].

A major problem in teaching computer architecture courses is how to help students

make the cognitive leap that connects their theoretical knowledge with practical

examples [2]. Different educators involved in teaching computer architecture and

organization have to resolve this problem using a variety of computer system

simulation software [2]. Although these simulators are useful, they however, still do

not provide the students the "ins" and "outs" of a computer system.

Fundamentals -Organization

:.oftheCPU : '

Computer Arithmetic Main Memory Interfacing and

Communication

• Registers • Single vs • Representation of • Memory • I/O fundamentals:

and register multiple integers (signed. hierarchies handshaking,

file bus unsigned) • Main memory buffering

• Data types datapaths • Basic arithmetic organization • I/O techniques:

• Instruction « Pipelined, algorithms for • Latency, programmed I/O,

types non- integer addition, bandwidth, cycle interrupt driven, DMA

• Addressing pipelined subtraction, time, performance • Interrupt structures:

modes • Control multiplication, and • Virtual memory vectored and

• Instruction unit: division system prioritized, interrupt

formats hardwired • Representation of • Cache memory overhead, interrupts

• Fetch, vs. real numbers • Memory and re-entrant code.

decode, microprogr • Basic arithmetic interleaving • Buses: clock, control,

execution ammed algorithms for • Memory address and data

cycles realization operations on real technologies busses, arbitration



• I/O • Arithmetic numbers (SRAM, DRAM, • Parallel and serial

techniques units • Conversions EPROM, Flash) interfaces

and interrupt implementa between real and • Reliability and • Timers

tion integer numbers error correction

Table 1, Core topics in computer architecture and organization

1.3 Objective and scope of study

As mentioned earlier, the objective of this project is to develop an 8-bit computer

using TTL gates as a platform to support teaching CSA in UTP. This project is

relevant as it only requires basic knowledge of digital systems and microprocessors. A

good working knowledge on digital circuits and practical electrical issues is required

though because circuits in a discrete processor may become complicated and requires

a lot debugging.

In time frame point of view, the project is viewed feasible as there is no major

designing involved. The scope of the project is to build and debug the CPU until it

works as intended and in the process attaining full comprehension of it.

Scope of the project:

Build and test

o The ALU and registers

o The control and instruction sequencing circuit

o Memory circuit

o Clocks

o Devices (Boot ROM, serial ports)

Optional

o Assembler and

o C compiler



CHAPTER 2

LITERATURE REVIEW

A microprocessor executes a collection of machine instructions that tell the processor

what to do. Based on the instructions, a microprocessor performs three basic

operations.

Using its ALU (Arithmetic/Logic Unit), a microprocessor can perform mathematical

operations like addition, subtraction, multiplication and division. Modern

microprocessors contain complete floating point processors that can perform

extremely sophisticated operations on large floating point numbers. A microprocessor

can move data from one memory location to another and a microprocessor can make

decisions andjump to a new set of instructions basedon those decisions.

There may be very sophisticated things that a microprocessor does, but those are its

three basic activities. Other than that, microprocessor comprises of registers as

temporary storage area, buses to transport data and select memory areas and control

lines to control all the blocks inside the microprocessor so that the instruction are

executed correctly [3].

2.1 Page table

A page table is the data structure used by a virtual memory system in a computer

operating system to store the mapping between virtual addresses and physical

addresses. Virtual addresses are those unique to the accessing process. Physical

addresses are those unique to the CPU, i.e., RAM.

Say we have a computer architecture where the word size is 32 bits. This means we

are able to form addresses from 0x00000000 to Oxffffffff - spanning 4GB. These



addresses form what is called as the virtual address space. These addresses have no

physical meaning - if we only have 16MB of memory, all addresses above

0x01000000 would be invalid. However, as mentioned, almost all programs do not

use all 4GB of memory when a program runs, but only parts of it at a time. For

example, the text, data, and stack segments may only be used and together only take 1

megabyte in total over the time where it runs.

The chunks as mentioned above are called special names. This 4GB virtual address

space is split up into chunks, commonly 4K in size, called pages. The physical

memory is also split up into chunks, also commonly 4K in size, called frames. A

program's text segment might start at the virtual address 0x00000004 - page number

0x0, and offset 0x4, but in reality, this may correspond to the physical address

0xff0e0004 - frame number OxffOe, and offset 0x4. What the virtual memory system

does is convert virtual addresses into physical addresses, essentially, mappings

between pages and frames. The page table is used for this purpose.

Many architecture also have direct hardware support for virtual memory, providing

what is known as a translation lookaside buffer (TLB), which is filled with page-

frame mappings initially, and instead of having the virtual memory system entirely in

software, when the hardware looks up a memory address and does the page-frame

translation, which gains us a performance increase.

However, the TLB can only hold a fixed number of page-frame mappings. It is the job

of the virtual memory system to extend this into software, and to hold extra page-

frame mappings. The virtual memory system does so by means of a page table [4].

2.1.1 Role of the page table

Assuming a program is running and it tries to access memory in the virtual address

0xd09fbabe. The virtual address is broken up into two: 0xd09f is the page number and

Oxbabe is the offset, within the page 0xd09f.

With hardware support for virtual memory, the address is looked up within the TLB.

The TLB is specifically designed to perform this lookup in parallel, so this process is



extremely fast. If there is a match for page 0xd09f within the TLB (a TLB hit), the

physical frame number is retrieved, the offset replaced, and the memory access can

continue. However, if there is no match (called a TLB miss), the second port-of-call is

the page table.

Virtual Physical
address

TLB

TLB hit address

TLB miss
TLB write A

Page Table

-•
Page table hit

Page not
present

Pag eTa alewrite A

Disk

Fig. 1, Actions taken upon a virtual to physical address translation. Each translation is

restarted if a TLB miss occurs, so that the lookup can occur correctly through

hardware [4].

When the hardware is unable to find a physical frame for a virtual page, it will

generate a processor interrupt called a page fault. Hardware architectures offer the

chance for an interrupt handler to be installed by the operating system to deal with

such page faults. The handler can look up the address mapping in the page table, and

can see whether a mapping exists in the page table. If one exists, it is written back to

the TLB, as the hardware accesses memory through the TLB in a virtual memory

system, and the faulting instruction is restarted, with the consequence that the



hardware will look in the TLB again, find the mapping, and the translation will

succeed.

However, the page table lookup may not be successful for two reasons:

• there is no translation available for that address - the memory access to that

virtual address is thus bad or invalid, or

• the page is not residentin physical memory (it is full).

In the first case, the memory access is invalid, and the operating system must take

some action to deal with the problem. On modern operating systems, it will send a

segmentation fault to the offending program. In the second case, the page is normally

stored elsewhere, such as on a disk. To handle this case, the page needs to be taken

from disk and put into physical memory. When physical memory is not full, this is

quite simple, one simply needs to write the page into physical memory, modify the

entry in the page table to say that it is present in physical memory (see the next

section), write the mapping into the TLB and restartthe instruction.

However, when physical memory is full, and there are no free frames available, pages

in physical memory may needto be swapped withthe page that needs to be written to

physical memory. The pagetable needsto be updated to mark that the pagesthat were

previously in physical memory are no longer so, andto mark that the page thatwason

disk is no longer so also (and to of coursewrite the mapping into the TLB and restart

the instruction). This process of swapping pagesbetween physical memory and disk is

known sometimes as, obviously, swapping (though the term is sometimes used to

describe swapping entire processes). This process however is extremely slow in

comparison to memory access via the TLB or even the page table, which lies in

physical memory. Which page to swap is the subject of page replacement algorithms

[4]-

2.2 Universal asynchronous receiver transmitter

A UARTor Universal Asynchronous Receiver-Transmitter is a pieceof computer

hardware that translates between parallel bits of dataand serialbits. A UART is



usuallyan integrated circuitused for serialcommunications over a computer or

peripheral device serialport.UARTs are now built into somemicrocontrollers (for

example, PIC16F877).

Bits have to be moved from one place to another using wires or some other medium.

Over many miles, the expense of the wires becomes large. To reduce the expense of

long communication links carrying several bits in parallel, data bits are sent

sequentially, one after another, using a UART to convert the transmitted bits between

sequential and parallel form at each end of the link. Each UART contains a shift

register which is the fundamental method of conversion between serial and parallel

forms.

By convention, teletype-style UARTs send a "start" bit, five to eight data bits, least-

significant-bit first, an optional "parity" bit, and then a "stop" bit. The start bit is the

opposite polarity of the data-line's normal state. The stop-bit is the data-line's normal

state, and provides a space before the next character can start. In mechanical teletypes,

the "stop" bit was often stretched to two bit times to give the mechanism more time to

finish printing a character. A stretched "stop" bit also helps resynchronization. The

parity bit can either make the number of bits odd, or even, or it can be omitted. Odd

parity is more reliable because it assures that there will always be a data transition,

and this permits many UARTs to resynchronize.

Speeds for UARTs are in bits per second (bit/s or bps), although often incorrectly

called the baud rate. Standard mechanical teletype rates are 45.5, 110, and 150 bit/s.

Computers have used from 110 to 230,400 bit/s. Standard speeds are 110, 300, 1200,

2400, 4800, 9600, 19,200, 28,800, 38,400, 57,600, and 115,200 bit/s.

The UART usually does not directly generate or receive the voltage levels that are put

onto the wires interconnecting different equipment. An interface standard is used,

which defines voltage levels and other characteristics of the interconnection.

Examples of interface standards are EIA, RS 232, RS 422 and RS 485. Depending on

the limits of the communication channel to which the UART is ultimately connected,

communication may be "fullduplex" (both sendand receive at the same time) or "half

duplex" (devices take turns transmitting and receiving). Beside traditional wires, the



UART is used for communication over other serial channels such as an optical fiber,

infrared, wireless Bluetooth in its Serial Port Profile (SPP) and the DC-LIN for power

line communication.

Today (2006), UART is commonly used with RS232 for embedded systems

communications. It is useful to communicate between microcontrollers and also with

PCs. Many chips provide UART functionality in silicon, and low cost chips exist to

convert UART to RS232 signals (for example, Maxim MAX232) [4].

2.2.1 Synchronous

The word "asynchronous" indicates that UARTs recover character timing information

from the data stream, using designated "start" and "stop" bits to indicate the framing

of each character. In synchronous transmission, the clock data is recovered separately

from the data stream and no start/stop bits are used. This improves the efficiency of

transmission on suitable channels; more of the bits sent are data. An asynchronous

transmission sends nothing over the interconnection when the transmitting device has

nothing to send; but a synchronous interface must send "pad" characters to maintain

synchronism between the receiver and transmitter. The usual filler is the ASCII

"SYN" character.This may be done automaticallyby the transmitting device.

Some chips have both synchronous and asynchronous modes. These are called

USARTs (for "universal synchronous asynchronous receiver-transmitters") [4].



CHAPTER 3

METHODOLOGY

Identified this project as a development project following the scheme created by the

CPU designer, the CPU will solely be developed using TTL logic ICs. These logic

ICs are the common digital ICs which are available at the everyday electronic stores.

As the projectwill needhundreds of digital ICs,wire wrapping technique is viewedas

the most feasible technique because it offers flexibility in construction and it can be

easily reworked during debugging. Wire wrapping is also preferred because it is a fast

prototyping method for circuit without the time required for designing printed circuit

board.

Parts of the CPU will be divided into functional parts to be mounted on several boards

and later combined on a rack allowing easy access to panels and input output ports for

extension. As was designed, the CPU is concatenated to a few parts installed in cards

form; there are the ALU/register, control, memory, deviceand front panel card.These

cards not only simplifies construction process but also help to ease project

management as construction can be done card by card ensuring all developed cards

are working before merging themtogetherto be the CPU.

On the software side of the CPU, the assembler is needed to assemble program

written for the machine and ROM burner would be needed to write PROM which

stores the microcode for instruction execution. Other required hardware would be

external hard disk to store larger program and a power supply to power up the CPU.

10



3.1 OVERVIEW

Designed machine is an 8-bitmachine withthe ability to run 8-bit or 16-bit arithmetic

and logic operation. The 8-bitspecification comes from the 8-bitdatabus width. Two

length of operation are supported indicates that the ALU can run two different

operand word sizes.

Bit and byte order of the machine is big endian where most significant bit is

numbered as zero and stored first in the memory. External interrupts and DMA is

supported.

*,

1 1
\ /

R

Immediate

~^J ALU
\

MDR

Control

L

-H
IR

1

Fault MSW/Flags

'

Data Bus (8-bits) A

AAA
I T 1 B
T

Devices ROM
RAM

(4Meg x 8)
c

A DP
T f f
I T T

Address Bus(22-bits) SP

j i

SSP

ii i

High 11 ,Low 11
PC

Fault

Logic Page Table
(16-bit entries)

PTB
TPC

i
High 5 MAR

(redrawn from: www.homebrewcpu.com)

Fig. 2, Basic block diagram of the CPU
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3.2 INSTRUCTION SET ARCHITECTURE

3.2.1 Operand Addressing

The machine was initially designed to be a pure one address computer. But in the

design process, the operand addressing mode was slowly converted into a mixed

mode with registers from accumulator was renamed to register A and other smaller

details for easier compiling. So the operand addressing is not consistent throughout

making this computer not an orthogonal machine.

There are nine visible register in the machine which are:

A - Accumulator. Can be addressed as 8 or 16 bits. Implied target of most operations

and also used as a general load/store base register and memop operand.

B - General load/store base register, plus source operand of ALU ops and memops

and target of some loads. Can also addressed as 8 or 16bits

C - Special-purpose count register for block moves and variable shifts.

MSW - (machine status word/flags) Alu flags: Carry, Zero, Sign and oVerflow.

Control flags: Mode (0 for supervisor, 1 for user), Paging enable and EI (Enable

Interrupts). Also, following a memory fault, a status bit, Data, will appear in the

saved MSW describing whether the faulting address was referencing the code or data

portion of the page table.

DP - Globaldata pointer. Mostdata references are relative to a base.

SP - Stack pointer. Always pushes and pop 16bits at a time (though doesn't need to

be aligned).

SSP - Supervisor stack pointer. Used when in supervisor mode.

PC - Program Counter

12



PTB - Base of page table for current process in user mode. Supervisor mode base is

hardwired to 0x0000. Note that the address refers to the special page table memory -

not main memory.

3.2.2 Addressing mode

The available memory addressing modes are:

Register Indirect with offset - uint8(A) and uint8(B)

Frame local with offset - uint8(SP) and uintI6(SP)

Global with offset - uintl6(DP)

Immediate - (PC++)

Push - (~SP)

Pop -(SP++)

3.3 Microcode

The microcode is stored in five 512x8 bit ROM. The lower half will store the starting

microcode while the upper half contains the continuation microcode. Since this

machine is not a single cycle computer, there will be a continuation or more

instructions after an initial instruction. The redirection to the next microcode index in

the microcode ROM is control by the first eight bit of the microcode store. This eight

bit contains exact memory location wherethe next instruction is positioned.

With 5 ROMs with each having a byte to contribute to the control line, there is a total

of 40 control lines out from the microcode store. There are a total of 256 different

instructions available as the lower half is filled with initial microcode and the ROM is

512 words in size. Full microcode listing can be found in Appendix III. The

continuation microcode address of nine bits is made possible by an encoding circuit

which detects the contents of NEXT field. When the NEXT field contains value but

not all ones, it will become the most significant bit for the full 9-bit microcode

address.

13



Some encoding circuit is responsible for the redirection of fetch instruction that is

when the NEXT field is all ones. The circuit selects the buffering of IR (instruction

register) from the DBUS into the address of the ROMs - study in further chapter.

& 3

U1

a lB

§ I"

U2

3 3

a. £L '-, '-, !_ I_ l_ !_

U3

3 3 3 3 fc '=
a b

3

3 3. 3. 3.
D » < ?

U4

3 3 3 l~ fliflitnts
a. a. a. 3 S 5" 5 Q.
=.3.3.3 s-y-y-y-
oSo=!o-»Fjw

U5

HUH

Fig. 3, Control lines (output) from the five ROMs

Outputs from the ROMs as in Figure 3 feed directly to a field decoding logic circuit

decoding the outputs to discrete control lines. This is best as the registers are tri-state

output registers so by encoding the controls we can keep a fairly safe bus driving

scheme. As we know that no more than one driver should drive a bus. The decoding

also minimizes amount of control lines as can be observed LATCH filed is a four bit

outputwherewe can selectup to 16registers to be latched.

Furthermore, some of the conditions do not occur at the same time. Such as a branch

instruction does not needto do a right shift to the ALUresult at the sametime so does

the right shift instruction. This furthermore reduces the number of control line width

but with the cost of decoding circuit. Control field which adopt this concept is the

MISCfield whichencode control signals which never occurat the sametime.

;---0^—

1

'-.-, 2 halt

,;.,.. 3 .
4 trap on overflow

,v. . 5
latch PTE

6' set flags (from alu op)

Ty. -: initjnst (clear
8 right shift ALU output
9 DMA acknowledge
a latch MSW [ie] (interrupt

enable)

\,'.. .&•"-. do branch

''""' • "o:-.' •• latch MSW[in_trap]

• d*J. • commit state

e

f -

Table 2, MISC field output decoding reducing control bit width
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3.3.1 Microcode sequencer

Each microinstruction has an 8-bit "next" field, which tells which microinstruction

follows.

If (next==0x00), then the next microinstructionaddress is the 4-bit output of a 16-line

priority encoder ORed with 0x100. The least priority value is the address of the fetch

microinstruction. The other values represent traps and interrupts, and the encoder

value will vector control off to the appropriate interrupt or trap handling microcode.

The fetch line is tied active, and so will take effect if there are no traps or interrupts

pending.

If (next^Oxff), then the next microinstruction address is the value of the IR

(instruction register). In other words, the value of the 8-bit opcode is treated as a

direct index into the microcode store.

Otherwise, the next field is ORed with 0x100 and that value is the address of the next

microinstruction.

Which of the above three cases is used is determined by two control lines -

MISC[INIT_INST] and a logical line which says whether next equals 0x00.

INITJNST is low active, and is asserted only during the fetch microinstruction.

Next_=0x00 normajiy happens at the end of each sequence of microinstructions

which represents an instruction. However, we also want to interrupt normal execution

in the event of a trap, reset or interrupt. In the interrupt case, we want to recognize

the interrupt only at instruction boundaries. That will happen normally the next time

next — 0x00. For traps and reset, though, the flow needs to be broken immediately -

even in the middle of a microcode instruction sequence. In these cases, there is some

glue logic which will assert the asynchronous clear line of the 8-bit register holding

next and resetting it to 0x00. When that happens, we in effect normalize the

exceptional instruction interrupt events as if they were regular instruction boundaries.

The different microcode vectors for each trap or interrupt case can then handle the

cleanup for any needed state rollback or fault state collection.

15



Conditional microcode branches are handled using the same mechanism as the trap's

next reset scheme. If a conditional microcode branch is indicated and the condition is

not met, next is reset just as it would have been had there been a trap. Care was taken

when writing the microcode to ensure that no traps were possible during a

microinstruction which indicated a conditional branch, so there is no ambiguity.

The conditional logic is handled by computing the various branch conditions based on

the current values of the MSW condition bits. Keep in mind when looking at the

logic is that when a condition is met and the machine instruction branch is taken, that

we do not take the microinstruction branch. The branch microcode is structured so

that if the branch is not to be taken, the microcode sequence aborts before it finished.

If the branch is to be taken, the microcode continues to load the target address into PC

and MAR.

16



CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 ALU card construction and testing

Up until now, the ALU card and control card were constructed with the ALU ICs

substituted with 74181s. This is due to the fact that the 74381 and 74382 ALU ICs

were nowhere to be found. The substitution was done with construction of a daughter

board for the ALU, this is because the size and pin configuration of 74181 and the

two to be substituted are not the same.

B0-

Jfo-

S3-

1 2*

1 23

3 22

-Vcc

*r
O

-%
-fa

-it
s,- 2 18 -Aj S2- 4 21 -A2

*e- 3 13 -Q2 S1- 5 20 ^B2

Bo- 4 17 —A3 so- 6 19 -A3

s0- 5 16 -h c„- ? 18 -gj

*i- S 13 -C, M- 6 17 -G

Sj" ? 14 _p
ra- 9 16 ~^rHM

r0- 8 13 ~G ?i- 10 15 -P
F,- 9 12 -F3 f2- 11 14 -teB

m- 10 11 -F2 CND- 12 15 -F3

Fig. 4(a) Fig. 4(b)

(a) pinout of 74381 and (b)74181 which are not compatible physically

Another problem faced is the control lines configuration of the two different family of

ALU. 74381 and 74382 have the same control line configuration as they are meant to

be paired together while 74181 is a more complicated ALU which supports more

functions thus having more control lines to select the function. So beside of just the

ALU ICs, the daughter board will also consists of the decoding logic which will

translate the function select line for 74181. Design of the decoding logic branch back

to what combination logic will be selected by the control card.
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It is observed that there are two control lines which select the ALU function which are

ALUOP and IR. They are connected in such a way so that ALUOP is superior to IR

where with proper selection of ALUOP will choose IR as the function, this is made

possible with the use of 74153 4-to-l multiplexer. The truth table for the control lines

ALUOP and IR is shown in Table 1.

vcc
5V

IR

ALUOP

U2

10)

1CI

1C3

1C3

ICO

!Ci

ICS

2C8

A

B

0 _1C

0 _jC

74153 N

U1

ico

1Ct

1C3

1G*

SCO

SG1

Id

2C3

A

E

O - 1G

SO

74153 N

S2

S1

SO

Fig. 5, multiplexer circuit to select function of the ALU from ALUOP and IR

ALUOPO ALUOP1

B
•;;S2*-'' Si SO- operation

0 0 IR IR

0 1 l 1 0 AB

1 0 0 1 0 A minus B

1 1 0 1 1 A plus B

Table 3(a), ALUOP input and resulting output
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IR operation
0

1

2 sub

3 add

4 xor

5 or

6 and

7

Table 3(b), corresponding
operation with IR inputs

•^4381/74382:

§2 " :S1 SO S3

^••""7fl81-' •"

S2 SI SO M

110

0 10

0 1 1

1

0

1

0 1 1

110

0 0 1

1

0

0

Table 4, truth table for decoding control
lines for 74181

Fromthe truth table (Table3), the decoding circuitwas constructed, note that only the

part from ALUOP is decoded not the IR means that the circuit will have some

disability compared to the original. The circuit is constructed just to gain the

confidence on the construction of the circuit. Means that, the ALU will only able to

perform binary addition, subtraction and AND operation for the time being. Resulting

decoding circuit is shown as below after analyzing the truth table with K-map. To

emulate the exact operation of 74381 and 382 will need more complex decoding

circuit and is planned to be done in the future if the ICsare stillnowhere to be found.

U1

S2

X>
0R2

SO

U2

HOT

~* S3, SO

U3

-T>0 • S2
NOT

to 74131

S1

-• M

Fig. 6, designed decoding circuit for 74181

So as the substitute was designed, the ALU card can now be tested for operability.

Testing for the operability requires study into the control lines, identifying buses into

and out of the ALU and storage registers.
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Stated requirementsofthe test are

• All input, outputdata lines and control lines are to be interfaced only through

the backplane connectors R and L.

• Confirm that the ALU is working

• Confirm that registers inputandoutput linesare working

• Check on the status flags

Flow of data is then recognized to perform the required operation based on the

requirement. The requirements are set so that most of the lines are tested; these are

due to the high level of uncertainty in the circuit which is the wire-wrapping

technique itself, the point to point soldering of the side connectors, the designed

decoder circuit for the ALU and the connections between the card and the ALU

daughter board.

ALU test bed
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DBUS

Two-way buffer'

D0-D7

a

MUX1

Buffer

z

v —

c —

s -

Register T1

TO-T7

T8-T15

Buffer

~7

H

ALU

v

Z — Zero detect cct

Z0-Z7

A
Z8-Z15

MUX 2

Register T2

Buffer 1

'R0-R15

ALU function

select

A

ALU size buffer

and right shift

/Z0-Z15

1^

T8-T15

T0-T7 T8-T15

Buffer 2

L0-L15

Tri-state output registers

Fig. 7, pseudo
schematic diagram of
the ALU card
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The figure presented previously (Fig. 7), shows the scope of the tested card. From the

figure, there are only two busses available at the backplane to input or read data which

is the L and D bus. It is noted here that each block in the schematic have at least one

control line into them. Testing procedure is done by sequencing control lines from the

DBUS into the ALU and storing the result in a register. The details are as follows:

1. Registers Tl and T2 are cleared (COMMIT = positive pulse)

2. Immediate value is asserted at DBUS (01100110)

3. Two-way buffer direction is selected as B to A (_RW= low)

4. The buffer is then enabled, immediate data on D bus (_DMA_ACK= high)

5. MUX 2 is set to flow D into register T2 (XL_MDR_LO= high)

6. Load register T2 with immediate data (L_MDR_LO= positive pulse)

7. MUX 1 is set to flow D into register Tl (XL_MDR_LO= low, XL_MDR_HI

= high)

8. Load register Tl with immediate data (L_MDR_HI= positive pulse)

9. Buffer 1 and Buffer 2 are set to assert both bus R and L with the same content

of bus T as right and left operand into the ALU - 0110011001100110

C_ER_MDR - low, _EL_MDR = low), content of bus L which is already

connected to LEDs can be viewed

10. ALU operation is set to ADD (ALUOP0 = high, ALUOP1 = high)

11. Use of carry is prohibited (USE_CARRY= low), but in design this line is read

as active low by the substitute ICs, there is a carry in.

12. ALU operation size selected as 16 bits (ALUOPJSZ = low)

13. Result is not shifted right by one bit (_DO_RSHIFT = high), result of the

bitwise addition of the same operands with a carry in is now on the Z bus

14. Result is then stored into one of the registers, selectively register C (L_C =

positive pulse, clock in)

15. To read the content of register C, first disable the buffering of operand into

bus L by Buffer 2 (_EL_MDR = high)

16. Read the content of register C through bus L (_EL_C = low), result of the

addition can now be viewed through the LEDs

17. Reading the flags - only zero flag is connected to the LED in the test

CSET_FLAGS - low, L_MSW = positive pulse)
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4.1.1 Results

Fig. 8, LEDs showing content of L bus

Figure above shows the content of L bus containing 0110011001100110 buffered

from register Tl and T2 which is also the addend and augend of the ALU. Binary

addition is then done with a carry in.

1 1 1 1 1 1 1 1 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

+ 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1

Fig. 9,LEDs on Lbus showing result ofaddition from register C
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Reading from register C where the result is stored confirms the addition operation

concluding the decoding circuit, ALU connections and busses D, T, R, L and Z are

working fine.

4.2 Control card study

On reset, registers U6- U10(74273s, Figure 11) that temporarily store microcode are

cleared. NEXT filed is all zeros and circuit that detects NEXT filed content for all

ones asserts a high value (active low output) which forces the multiplexer input B to

be high. Note that B also signifies the ninth bit into the microcode storage to address

the top half of the PROM. Another glue logic checks for NEXT field for all zeros and

forces the multiplexer input A to low.

C.nn. uo&ie i 1.UULI 3

44

:s r i n :x
T

n Ni :x

»u> £-*F PPR£ <->kioi»

(5©ic< fmr-,R ft?tr%R

H53
UW

74153

3z £
Fig. 10, Instruction multiplexer fromthe schematic

B (also the ninth

bit to PROM)

A Microcode source

0 0 Fault

0 1 IR (D bus)

1 0 Fault

1 1 NEXT

Table 5, Instructionmultiplexing table
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CLKM >

r

IR

£
2 1

MUX

Y

o

address

Microcode PROMs

- data

D

Microcode registers
,.{U6-U10)

Q

INIT INST-

V
74273 (ui9)

I

v

r

r

^

DBUS

Fault

All ones

detector

All zeros

detector

0-^

NEXT (8 bit)

Fig. 11, Simplified blockdiagram of microcode sequencer circuit

With BA = 10, fault circuit is selected as the instruction select. Since the reset button

also clears all faults (0x00 from fault circuit, please refer to the appendix for faults

and interrupts schematic), no fault is pending and fetch instruction (0x100) is now

driven into the microcode PROMs address after the rising edge of clock (CLKS). On

falling edge of clock, FETCH instruction from the microcode PROM is now clocked

into the temporary registers U6-U10. NEXT field is now all high, Oxff causing A =

high, and thus putting B to low.

With BA = 01, the multiplexers select IR as instruction select. Right now all control

lines corresponding the instruction has been relayed to the circuit around the control

card. For the fetch instruction, one example microinstruction is incrementing the

MAR. On rising edge of clock, instruction on D bus is clocked into a register (U19 by

INITJNST line) due to FETCH instruction. And instruction from D bus now is
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driven into the microcode store. Upon falling edge of the clock, selected instruction

from the microcode PROM is now clocked into the temporary registers U6-U10.

NEXT field now would be dependent on the instruction selected.

One clock instruction like NOP (no instruction) would have all zeros NEXT field

which forces A becoming low from the _NEXT0 glue logic. And B equals high. We

had already met this condition before BA = 10. All zeros NEXT field marks the end

of an instruction and where faults and interrupts are checked and served. If there are

no fault and interrupt pending, FETCH is selected.

For multiple clock cycle instructions, NEXT fieldwould be some value between 0x01

to Oxfe as 0x00 marks instruction boundary and Oxff only called by FETCH

instruction. So NEXT field is neither all zeros nor all ones, circuit detecting both

conditions have active low outputs so both B and A will be high causing NEXT

driven into microcode store (refer to table 5).

The process repeats itself as each instruction is executed. Clocks coordinate devices

clocking data onto busses and execution of instruction.

reset

FETCH NOP FETCH

MAR -i >< d»
4 u

CLKS

1 \
Incremt

ch MA

\R

nst

>

Interru

registt
clocked

No i
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itr =

"CH

Original
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La

W

Init

1

' \
Incremf

ch MAI

\R
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only

fie

FE

whi

zer

Phas

NEXT

sldof

ETCH
;h is all

3, 0x00

Original
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La

W
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1

nted

CLKM/

L_MAR1
.

FET

c

:Hin
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/
struct
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into

son

clocked

U19

/
FETCH in struction

clockedmicrocode registers , .*..,„„
and decoded Instruction .nU19

clocked into

microcode registers

Fig. 12, Instructions fetching and execution
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4.3 Clocks

During the build-up, clocks were studied to further understand how the computer

works. Without clocks, the connected logic will be dead, clocks is needed basically to

change content of registers or flip-flops. With sequentially changing content of

registers, data can be passed through the digital circuits. In this computer, there are

basically two clockswhich are CLKS and IOCLK. CLKS and its complement CLKM

are connected to most parts on the control card while the IOCLK clocks the device

and memory card.

J1

-Q Q—

Key - Space

vcc
,5V

R1
U1A

X1

02'5V

4.7kohm O—T33

R2

74LSO0D

U1B

Y^—i

4.7kohm 74LS00D

U2A

0 -1PR

>

<3 MCLK

74LS74N

U2B

>

O -JCLR

74LS74N

CLKS

0£-5V
IOCLK

0 2.5V

Fig. 13, Simplified and simulated schematic of the clock generator

Time (S)

2.867m 5.733m !,600m

XI _n ri n
i

__n n n n ^~L_ r i n :
CLKS lJ l _i i i i r 1 :

IOCLK i ~~i r j i i ] i J L_:
Ttnn4

Ttnui

„ ,

Fig. 14, Clocks waveform with respect to input clock XI
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The skewed clock design is important to make sure proper clocking of data from the

devices to other peripherals. Best example would be the enabling of output of the boot

PROM by IOCLK which is active low and data on the D bus is then clocked into the

instruction register at the microcode store circuit by CLKS rising clock edge.

4.4 Microcode sequencing example

In this example, we will simplify the machine and focus on the basicand mostcritical

part. So we will never turn paging to ON which will be cleared during reset, this will

map A (address) bus to be the same as MAR, this is done by the memory card (page

table in Appendix II). At the device side, we will only consider mapping ranges for

the boot ROM which ranges from 0x00 until 0x3fff. With paging off, we must make

sure that the MAR value does not exceed 0x3fff or another device will be selected.

Following these assumptions, a simplified block diagram is drawn.

Clock

circuit

CLKS

Control Unit

CLKS

Decoding circuit

Dbus

L bus /*

ALU and MDR

Jl Zbus

Devices (boot
PROM)

IOCLK

i A

A

A register

A
MAR(memory

address register)

• <-- MAR bus

Multiplexer on
memory card

A bus

Fig. 15, Simplified CPUfor the example

Now we consider a very simple program in assembly as follows which assumed to be

burnt into the boot PROM.
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Add Inst

00 35 | add. 8 A,#l

01 92 | copy B,A

This program is a two instruction program but it does not indicate that it can be

completed in two clock cycles. As we already know, this is a complex instruction

machine and not all instructions are done in a clock cycle. Now we will look into the

microcode for these instructions extracted from Appendix HI.

0x35 add.8 A,#l ; INC_TO_Z(R_MDR),L(R_MDR,LWORD),NEXT(AluopS)

The add.8 instruction is not a one clock cycle instruction because it calls for another

microinstruction in the next field which is Aluop8.

0x112 Aluop8 ;

E_L(R_A),E_R(ER_MDR),ALU(OP_IR13,BYTE,NO_CARRY),L(R_A,LBYTE),MISC(M_S

ET_FLAGS),NEXT(Fetch)

Aluop8 is the microinstruction needed when doing an 8-bit ALU operation. Means it

is not only called by add.8 but also other 8-bit operations. Only here, the next field is

fetch which marks the end of the instruction. From here we say that add.8 is a two

clock cycles operation as it requires two microinstructions to complete the instruction.

0x92 copy B,A ; TO_Z(R_A),L(R_B,LWORD),NEXT(Fetch)

Copy B,A on the other hand is a one clock cycle instruction because it does not

require another microinstruction to finish the instruction, instead it directly calls the

fetch instruction

As discussed in previous section, at reset, MAR will be cleared yielding all zeros.

Memory card generates the address using the value of MAR produces all zeros for the

address bus too. A little detail were left off in figure 12, actually the address registers

at the memory card are clocked a little later than the MAR which is by CLKM.

Meaning that the A bus and MAR bus content are not the same in time base, see

Figure 16. Anyway, these all zeros memory will map to the boot room and the

corresponding content of the address will now relayed onto the D bus.
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The executed FETCH instruction will latch the content ofD bus at A = 0x00, which is

0x35. 0x35 refers to the location of microcode in the PROMs. The microcode is

retrieved and stored into the microcode registers (U6 - U10). Later, the instruction

was decoded to perform the first wave of microinstruction. With the NEXT field

containing 0x12, which is neither all ones nor all zeros making the instruction

multiplexer selecting NEXT as the instruction (Figure 11 & Table 5).

NEXT from the microcode register is buffered directly into the microcode store

(PROM) with the additional bit from B, we have a complete nine bit instruction

address of 0x112. With the same convention as earlier, mstruction is clocked into the

microcode registers, instruction decoded and initialized. The NEXT field is now being

considered, with all zeros (0x00) marked the end of the instruction; fetch will be

selected as the next instruction. Fetch will basically increment the MAR so that the

next instruction can be executed. Address bus is clocked half a clock period after

MAR being incremented to ensure proper latching of instruction. MAR already at

0x02, address bus is still at 0x01 and instruction copy B,A now latched into U19.

Instruction done, the next field of copy B,A is fetch where MAR is incremented and

the microcode sequencer looks for further instructions.
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L MAR1

/

and decoded

FETCH Add.8 i AluopS • FETCH^ 1 CopyB,A j FETCH
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Dateon i\
FETCH instruction DBUS clocked \ A|UOp8 Instruction

clocked Into ." Into U1S I clocked Into
microcoria registers instruction1 In U19 microcode registers

docked into FETCH Instruction
microcode clocked into microcode FETCH Instruction microcode
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-X-
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Fig. 16, Timing diagram for the example
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4.5 Construction Diary

There was not much problem faced during testing of the front panel except for that

some parts were not available and the high frequency crystal clock did not work the

first time. Also a multiplexer IC (74157) was found broken causing the clock not

redirected. Chips which are not available even from the LS family are

74F533 (Octal Transparent Latch with 3-STATE Outputs)

74F534 (Octal D-Type Flip-Flop with 3-STATE Outputs)

Substitutes were designed for the two ICs, realizing that 74533 is the same to 74373

except with inverted outputs and 74534 is the same to 74374 also with inverted

output. 74373 and 74374 are both available and the substitutes were designed by

pairing each with an inverted buffer (74240) at the output. Other functionality of the

front panel card was also tested like the stop clock, variable clock, manual clock, reset

switch and other switches and LED drivers.

I I

b b

rf rf rf n Mrf
o, 020304% o6

Fig. 17, 74533 logic diagram (from Fairchild semi, 74F533 datasheet)
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Fig. 18, 74373 logic diagram (from Fairchild semi, 74F373 datasheet)

The first time four of the cards - exceptthe memory card - were installed in the cage

and powered up, there was no sign of life at all except for the clock. When the address

line is at OxOOh which is after reset, device selected to drive the D bus is the boot

PROM. The address lines will not be all zeros without the memory card, so the

address lines were hardwired to ground which means the boot PROM will always be

selected independent from the value of MAR. This modification is necessary as there

is not enough space in the cage to accommodate all the cards due to the ALU

substitute breadboard on top of the ALU card.

4.6 Fibonacci counter test

The CPU can now works with switched-in instructionbecause there is no program has

been written for it. In order for a program to run, the address lines would need to

sequence itself and basically increments with each instruction execution. This is not

possible until now because the memory card is not installed and it is responsible of

generating the address from MAR - the MAR (memory address register) already

increments itselfafter each instruction.

To further test the CPU, the ALU substitute board was changed to a lower profile

version allowing all cards to be in the cage. A simple program was arranged in

machine language to show that the machine is actually working. Written program is a

Fibonacci counter that counts up the Fibonacci series. Due to hardware limitation

(using registers to store result, which is 16-bit wide), the CPU will only be able to

count up to 65,535 (2A16-1)
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Fibonacci series [5]:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,

10946, 17711,28657,46368,75025, ...

The program:

Add Instr Mnemonic Description

00 35 add.8 A,#1
01 46 xor.16 A, A A=0

02 35 add.8 A, #1

03 52 sex A A=l

04 3e add.16 A,A A=2

05 3e add.16 A,A A=4

06 3e add.16 A,A A=8

07 3e add.16 A,A A=16

08 cb copy SP,A SP=16i, initialize loop ad<

09 2a nopO

0a 35 add.8 A, #1

0b 46 xor.16 A,A A=0

0c 92 copy B,A B=0

Od 35 add.8 A, #1

Oe 52 sex A A=l

Of b6 copy DP,A DP=1

10 2a nopO

*******************************pibonacci loop*****

11 ba copy A, DP

copy C,A

add.16 A,B

copy DP, A

copy A,C

copy B,A

copy A, DP

***********************************************

18 f6 copy A,SP A=16

19 32 br A MAR=16, copy A into MAR

The Instr column above is burnt into an EPROM as the data corresponding to Add as

address.

12 96

13 3f

14 b6

15 f2

16 92

17 ba
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Some of the results:

etx^-,"*"<>.>v^ ' *•
.'*» *.1 *. •"- *. ty, '~

L = 2A3+2A2 + 2A0-13

%•••••#••

L = 2A10 + 2A9 + 2A5 + 2A4 + 2A3 +2A2 +2A0 = 1597

L = 2A13 + 2A11 + 2A9 + 2A7 + 2A6 + 2A1 - 10946

mm m # .• #
•*/* ••••' ).'.i;,' :̂^M .'#.#* M M-\ 4i.' & ^

,!.,i nniri
S * i * • * * i

L - 2A15 + 2A13 + 2A12 + 2A10 + 2A8 + 2A5 = 46368
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4.7 Case and front panel construction

The CPU casing design started immediately after the successful loading of Fibonacci

test. The casing was designed to house the card cage, power supply, front panel and

other peripherals. Connectors available from the backside of the case are the power

cord and the two serial ports. As for the material, it was build with the same material

used for the card cage.

Giving a platform already used to, design commence smoothly but with added

complexity to enhance ergonomics. The front panel side was designed to slant aiding

visibility for the user of the front panel. Casing of the CPU is covered with acrylic

letting observers to view the inside components.

4.8 Machine validation suite

Missing parts mailed by Bill Buzbee arrived just in time (toward finishing touches of

the front panel). So the hard-to-find parts are now available like the 74381 and 74382

(ALU chips), the substitute ALU board is no longer needed now. Other parts included

in the package are SRAM chips for the memory, page table entry, and device space,

UART chips, real time clock chip and HP hex displays.

Proposed next step is to run the validation suite which is a series of tests. The tests

range from basic like instruction tests to advanced tests like branching and memory

tests (more details at www.homebrewcpu.comwalidation_suite.htm). All these tests

are written in Magic-1 assembly language, tests result and its description is

summarized in the following table. Then the simple memory test will be discussed.

Test name Tested operation Result

B001 Load immediate - 8 bit, no sign extend

nops
Pass

B002 16-bit load immediate Pass

B003 16-bit load immediate using signed
extended 8-bit immediate

Pass

C001 register to register copy Pass

C002 lea

all 16-bit offsets using SP, A, B, DP and
PC. Targets both A and B

Pass

D001 8-bit memory loads Pass
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D002 16-bit memory loads Pass

D003 ldclr Pass

E001 8-bit memory stores Pass

E002 16-bit memory stores Pass

E003 memcopy Pass

E004 memcopy Pass

FOOl push/pop Pass

GOOl add.8 Pass

G002 add.16 Pass

G003 adc a,a

adc a,b
Pass

HOOl sub. 8 Pass

H002 sub.16 Pass

H003 sbc a,b Pass

IOOl and. 8 Pass

1002 and.16 Pass

J 001 or. 8 Pass

J 002 or.16 Pass

J 003 xor.16 a,a

xor.16 a,b
Pass

L001 vvshl.16, vshr.16, sex Pass

L002 shl.16, shr.16 Pass

M001 cmp. 8 Pass

M002 cmp.16 Pass

O001 call, return, enter 8, enter 16 Pass

P001 bset.8 a,mask,d8

bclr.8 b.mask,d8
Pass

P002 bset.16 a,mask,d8

bclr.16 b.mask,d8
Pass

Q001 br

br.eq

br.ne

br.lt

br. ge
br.gt

br.le

Pass

Q002 br.ltu

br.geu

br.gtu

br.leu

Pass

R001 cmpb.eq.8 a,ul6(dp),e8

cmpb.eq.8 a,u8(sp),d8
cmpb.eq.8 a,u8(b),d8
cmpb. e q. 8 a, i 8

cmpb.eq.8 a,0
cmpb.eq.8 a,b

Pass

R002 cmpb.ne.8 a,ul6(dp),e8
cmpb.ne.8 a,u8(sp),d8
cmpb.ne.8 a,u8(b),d8
cmpb.ne.8 a,i8

cmpb.ne.8 a,0
cmpb.ne.8 a,b

Pass

R003 cmpb.eq.16 a,ul6(dp),e8
cmpb.eq.16 a,u8(sp),d8
cmpb.eq.16 a,u8(b),d8

cmpb.eq.16 a,i!6

cmpb.eq.16 a,extii8
cmpb.eq.16 a,0
cmpb.eq.16 a,b

Pass

36



R004 cmpb.ne.16 a,ul6(dp),e8
cmpb.ne.16 a,u8(sp),d8
cmpb.ne.16 a,u8(b),d8
cmpb.ne.16 a,il6
cmpb.ne.16 a,extii8
cmpb.ne.16 a,0

cmpb.ne.16 a,b

Pass

S001 cmpb.lt.8 a,ul6(dp),e8
cmpb.lt.8 a,u8(sp),d8
cmpb.lt.8 a,u8(b),d8
cmpb.lt.8 a,i8

cmpb.lt.8 a,0
cmpb.lt.8 a,b

Pass

S002 cmpb.le.8 a,ul6(dp),e8
cmpb.le.8 a,u8(sp),d8
cmpb.le.8 a,u8(b),d8
cmpb.1e.8 a,i 8
cmpb.le.8 a,0
cmpb.le.8 a,b

Pass

S003 cmpb.lt.16 a,ul6(dp),e8
cmpb.lt.16 a,u8(sp),d8
cmpb.lt.16 a,u8(b),d8
cmpb.lt.16 a,il6

cmpb.lt.16 a,extii8
cmpb.lt.16 a,0
cmpb.lt.16 a,b

Pass

S004 cmpb.le.16 a,ul6(dp),e8
cmpb.le.16 a,u8(sp),d8
cmpb.le.16 a,u8(b),d8
cmpb.le.16 a,il6
cmpb.le.16 a,extii8
cmpb.le.16 a,0
cmpb.le.16 a,b

Pass

UOOl set up page table identical to no paging,
turn paging on,
do a few simple ops, turn paging off do a
few simple ops.

Pass

U002 from sys Pass

U005 ldcode.8, stcode.8 Pass

WOOl sram addressing Pass

Y002 shladd Pass

Pageon All test with paging on Pass

Usermode All test Pass

Memtest Simple memory test Pass

Table 6, validation suite summary

start:

Id.16 a,0
copy ptb, a
Id.16 b,0x0000

Id.16 a,0x8000 +

wcpte a, (b)

wdpte a, (b)

Id.16 b,0x9000

Id.16 a,0x8000 +

wdpte a, (b)

copy a,msw

or. 16 a,0x80

copy msw, a

Id.16 a,0x5335

Id.16 b,0x9000
st.16 0(b),a

; set page table base to supervisor

; address of low 2K bytes of device rom

0x4000 ; flags to set page present,

writeable & device space

; set up paging for first 2K of rom (i.e,
this code that is running now

; pick a virtual address to try

0x4000 + 0x2000 + 2 ; set to present,

writeable, SRAM page #2 [3rd 2K page]

turn paging on

get a word of data

point to newly mapped space

store - should put 0x53 in 0x9000 and
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Id.16 a-0

Id.8 a,0(b)

cmpb.eq.8 a,0x53,goodl

halt

goodl:

Id.8 a,1(b)

cmpb.eq.8 a,0x35,good2

halt

good2:

nopO

nopO

nopO

halt

0x35 in 0x9001, these in turn should map
to physical SRAM address 4096 and 4097

[0x1000 & 0x1001]

clear out A

FAILURE if halted here

FAILURE if halted here

put some distance between fail and pass
to more easily distinguish them
PASS if halted here

Above is the actual lines in 'memtest.s' which test the memory by storing data in a

location and later verifying it by reading back the location and comparing it with the

expected value. Pass or fail is observed by looking at the address at which the

program halts, these addresses are listed in the ".1st" file. In contrary, we can also

check the content of that address (0x1000 and 0x1001) manually through the front

panel switches which should show 0x53 and 0x35 respectively, otherwise the CPU

failed the memory test.

4.9 Serial port and terminal interfacing

Passing all tests in the validation suite, confidence level on the operability of the

machine now had increased. Next step is to run the loader program and interface the

CPU to a computer so to view the output and provide a means to load programs into

the CPU.

UART (universal asynchronous receiver/transmitter) chip is the functional unit which

does serial communication with another computer. It is a monolithic IC which is

dedicated to do just that, but before we are able to use it, it had to be initialized first

setting up the baud rate, parity bit and etc. As it is a specialized chip, it would be a

sure go given a correct electrical connections and terminal settings.

For the CPU, the serial ports are not only used to issue command to and from the CPU

but also used to transfer program images. For the latter, a high speed connection is

always desired so to reduce waiting time. And for a high speed connection to occur,
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the computer had to have the ability to control the flow of information being

transferred. High a mount of data is allowed only if the computer is able to handle it

and this communication between two computers requires handshaking. Serial

connection between two computers require the use of null cable modem where data

transmit line from a header is connected to data receive on the other header.

Schematic of the null cable modem with full handshaking used for the communication

is pictured below.

Fig. 19, Full-handshaking null modem cable connection [6]

Successful communication was established after building the correct null cable

modem. A screenshot of the terminal while the CPU boots up is as follows

Eds <San QJI 3-isfer Hdp

DO-M sQ B

Hagic-1 boot loader

Master IDE drive_

aamtwlq0i51rt3 JMo defied:' feboe-lH F™11 K^5 ft"" Iffi*'*'" ^"*^' ''"

Fig. 20, Screenshot of the terminal
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4.10 Performance

Since the machine was not that complete to run the benchmarking program, result

from Bill Buzbee's benchmarking is included instead. Take note that the comparison

was done to the some of the old machine back in the days, as the CPU is too slow if

compared to computer nowadays.

Magic-Ts new Dhrystone benchmark score is 506. To put that in
perspective, here are some historical numbers:

Machine CPU OS Score !

Apple lie 65C02-1.02Mhz DOS 3.3 37

-CPM- Z80 - 2.5 Mhz
CPM-80

v2.2
91

IBM PC/XT 8088-477 Mhz Coherent 275

PDP-11/34A w/FP-llC Unix V7m 449

Magic-1 Magic-1 -4.0 Mhz
M-1

Homebrew

OS

506

Macintosh 512

i

68000 - 7.7 Mhz
Mac ROM

O/S 625

IBM PC/AT 80286 - 8 Mhz Venix/286 1254

VAX 11/780
Unix

4.2BSD
1441

Table 7, Magic-1 benchmark

As we can see, the original Magic-1 runs at 4MHz. It is in doubt that the clone can run

at 4MHz, this is because some parts are not fast enough compared to what Bill's used

on his machine.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Chapter one of this report mentioned that current computer systems are complexand

it would be a challenge to show how all the different components are assembled to

form a functional computer. Hence, this report justifies the decision to build an 8-bit

CPU from TTL logics as a teaching and learning platform for CSA class in UTP.

Chapter three and four of this dissertation describes the development of the CPU from

ground up. The results in these chapters show that a fully functional computer is

successfully completed and full comprehension of it - from gate level - was attained

and documented.

Future Work

Future work need to be done on the computer would be completing the hardware side

by completing the IDEcontroller. Thenthe rudimentary operating system designed by

Bill Buzbee can be loaded and programs compiled by the C compiler can be run on

the machine. Until now, programs in C were compiled but limited to be burnt onto the

boot PROM only. Also, as we already have a platform to work on, assembler and

compiler can be written for the machine. For the time being, assembler (qas) and the

C compiler (retargeted from LCC) are supplied from the designer, Bill Buzbee.

Next leap would be modifying the CPU at the hardware side, writing new microcode,

increasing the computer's performance, adding I/O devices (an input device like the

keyboard or even a VGA driver maybe), expand the CPU memory capability. There

are a lot more things to be done to this CPU comparing it to the computers today

(2006).
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APPENDICES

All the five cards picturedtogether,fromtop left goingclockwiseis the ALU/register
card,controlcard, front panel card, devicecard and memorycard. The ALUcard is

picturedwith the breadboard ALU substitute on top.

Bottomside ofmemorycard showing the wire-wrapping work
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The wire-wrappedbackplane

Newlow-profile ALU substitute board enables all cards to beput into thecage
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All cardsin the cagewith the temporary frontpanelandboot PROM extension
connected
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Picture showing the card cage in the enclosure (frame only)

Parts from Bill Buzbee arrived in a parcel, contains the ALU chips, SRAM chips, HP
HEX display, real time clock(RTC)chip, UARTchips, digitaldelaydevicesand a

source CD.
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The ALU card now populated with the exact chips, no more substitute board, ALU
chips courtesy ofBill Buzbee

Memory cardwith SRAM chipsformemory andpagetable, a lot of thanks to Bill
Buzbee for the parts
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The enclosure in progress

New front panel on the case
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Picturedtogether, Aaron's stack machinestackedon top of the 8-bitCPU. Standing
from left, Aaron who worked on the Mark 1 Forth computer, Dr Yap our supervisor

and me.

Latest picture ofthe 8-bit CPU.
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Select
Operation

% Si s2

L L L Ctear

H L L B Minus A

L H L A Minus B

H H L A Plus B

L L H A®B

H L H A + B

L H H AB

H H H Preset

H= HIGH VM_tg* Lewi
L= low voltage lewei

74381 and 74381 function select table

Mode Select

Inputs
Active LOWOperands

4 Fn Outputs
Active HIGHOperands

& Fn Outputs

S3 S2 S1 SO

Logic
(M = H)

Artthme.c'*

<M=LMCn=L)
Logic

(M = H)
Arlthme-c"

(M=L)(C- = H)

L

L

L

L

H

H

H

H

L
L

L
L

H

H

H

H

L

L

H

H

L

L

H

H

L

L

H

H

L

L

H

H

L

H

L

H

L

H

L

H

L

H

L

H

L

H

I

H

A" A minus 1

AS minus 1

AB minus 1

minus 1

A plus (A + B)
ABplus {A+ B)
A minus B minus 1

A+ B

A plus (A + B)
Aplus B
ASplus {A + B)
A+ B

A plus A"
AS plus A
AS minus A

A

A + B

AB

: Logic0

! AB
B

AfflB

AB

A+ B

AfflB

B

AB

Logic 1
A + B

A+B

A

A

A+B

A + B

Logic 1
A+B

minus 1

H

H

H

H

H

H

H

H

A+B

B"
A~lT_f

A+B

AB

A.B

B

A+B

logic o
AB

AB

A

Aplus AB
(A + B)pIusAB
A minus B minus 1

ABmt»USl

Aplus AB
A plus B
(A+ B)plusAB
AB minus 1

Aplus A"
(A + B) plus A
(A+ 8) plus A
A minus 1

74181 function select table

Output of the ALU if the result is shifted one bit to the right (_DO_RSHIFT - 0)
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Appendix I - board layouts and backplane pinout

ALU/register card layout

Control card layout
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8 ribbon

L\ ard

Hnbbon***"!?'•/_.

Front panel card layout
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.* ... ** >n
• .* * ••_•: j- :

,|.j!.j(M!v.jV.frS ..
*_• • 9_!->bL--- _• T__ T-H6 J1

Memory card layout

Left backplane pinout
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Kijjhi KiLknl.nie pinout
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Appendix II - schematic diagrams from www.homebrewcpu.com

w—0351

pg-^ U W»,-ftt^ww™a*;ca

MSW vrrs—SOU

_Hi>

(e)200], BJJlBui-«,.H?MMwn.aiy,.CA
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General Registers

•Q3S!
Kcca

I

-<_sa

Mrir n
031 «rs

iSiiSSSBti

ESE>- ___£> ___>

(U7 ,„•{„

WkWTJ
"-!^^i__$_:'"j$'

I

Special Registers

IMS

-flUD «»
' IMS
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ri

Hssslj&J

-as

-WM>

<3_S_

"<M3D

~Wis>

[C)aXO.BlU EujbM, Hilfttooo Biy.CA

(c)2003, 8W___»», MMm fey, CA



<asjl

-< l_Ui«_h]

-^•Cr ccQiW)

BSD-

lb)2O03, Bfll'BuibM, HallMoon Bay,CA

HUM uMIj) jljjjj
-GEjjl>

rasr)—1M>^—

(c| 3001,BU_Buib«,HaltMoonBay,CA
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^ iifowi)^
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"OSiTaH

Field Decode
(g)2003.BinBuzt™, HalfUpon Bay,CA

Field decode 2

lej.2«0,BiU Biobou, Hall Moon Bay, CA



<aTja1..mNSW K L

Faults and Interrupts

-^IrawZ^ql

JS1B-

Iiiil'HnJzjn 1 Ti 1 Ti 1 th
[c)2003,BinBuzbw;HiHMm*Guy,0/

Page table
(o| 2003, BillBmbH,KiitMoon Buy,CA
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^PJfcqEtJD •-'•"•""

UARTS

J—-____ ^'uijujiii
i

\z)IMS,Bill BurfM-i, HalfMoon SiyrCA

SRAM

as (Ml

rzS

!3

** "« a-

s rasfc

;;,i

3
•5fc

dt

t^s esib

=1

fc
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POST Display IDE Interface

JL

SlD-jgi^

c^g-
-Q1^

M

Real time clock tcJ'.WftS.aiBuib«,'lUlt Moon Bay.CA

RAM & ROM
S°HI>—-i

U2MJ CL«ff<tiyurxriAf.

^—&
ste-1

1 l..».jf^r 3 .'i03'

•^S-^Cfe

^^Bt

(c)2003, Bill Buj±««, Hall Moot) Bay/CA
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Device Card Switches

i£» il"3 i^ ifc» 11» ik* iJf* lh* it» it* 1!

if

j:j.ilimi,itf,):
i-^re^^^Il^Xr

[Z^>

i—ES>

iFTFTFTFl^nrFTFTF i>" it" U5" i>' ;>' i>' i>6 i.K i>* *>fl it" il* tH

Itw .ja k» lot iaj ins iuo Jh ^u* feu Tm *is W int tra Jwi few

HI ,»;> III •••'<> IK «f;>

„ w^^wtOTop^raififraiWii

Device LED

l-M2>——w
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Device Ribbon Cable
RgM

(t) 2003, BWBwdMM, HalfMoot Bay.CA
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Front panel LED 1
<m.

(c) K»J, BinBwbe*. Hail Moon Bay, CA

Front Panel LED 2

IcfMW,BUI BuibM,HtHMooo Biy,CA
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Front Panel Ribbon Cable
Rsgtit

fe)2003, Bill BmbH,HaTMoon Bay.'CA
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Appendix DI - Microcode listing (extracted from
www.homebrewcpu.com/working_microcode.htm)

System Microcode
This page is actually the source code for the M-1 microcode to be used
in the microcode-level simulator, as well as the actual bits to be burned

into the proms. It is processed by extracting the text and processing
with cpp and a Perl script (see the Software page for more details). The
created files are:

#>mcode.h - Description of the fields within the microinstruction word.
#mcode.c - An initialized array representing the microcode image,
♦mcdefs.h - #defines for microcode fields.
#>prombits.h - The initialization declaration for the 512 56-bit

microinstruction words.

#prom0.hex.. prom4.hex - Hex images of the slices of the microcode
store to be fed into the PROM programmer,

^opcodes.h - Opcode strings.

II BEGIN mcode.h

/* Define for micro instruction word. Assume I'll be using 512x8 bipolar
* PROMs. This version is quite a bit more compact than previous ones,

* but at the cost of having addition field decoding logic. Initial plan

* is to send these signals across the backplane and do decoding on the
* appropriate card.
*

* Note that the encoding here is getting pretty ugly. I'm trying hard to

* keep the microcode store down to 5 PROMS - 16 bits for enable signals,

* 16 bits for latch signals and 8 bits for the next field.

*/
typedef struct {

unsigned next:8; // Next micro-op to exec. 0x00 means
// use output of priority encoder, Oxff
// means use IR[0..7]. Also a significant

// bit of !(IR[0. .7]==0xff:) to give the full
// 9-bit microcode address'.

unsigned latch:4; // Register latch signal. Value:

unsigned lmar:l;

unsigned lmdrlo:1

unsigned lmdrhi:l

unsigned emdrlo:l

unsigned emdrhi:!

unsigned priv:l;

unsigned lmode:l;
unsigned lpaging:1;

// 0x0 : none

// Oxl : MSW (flag nibble only, from Z)

// 0x2 : C

// 0x3 : PC

// 0x4 : DP

// 0x5 : SP

// 0x6 : A

// 0x7 : B

// 0x8 : MDR (from Z)

// 0x9 : PTB

// Oxa : [A low placeholder]

// Oxb : [A high placeholder]

// Oxc : [B low placeholder]

// Oxd : [C low placeholder]

// Oxe : [SSP placeholder]

// Oxf : IR_REG (IR[5..7]J
// Latch MAR

// Latch MDR(lo) from dbus

// Latch MDR(hi) from dbus

// Drive dbus with MDR(lo)

// Drive dbus with MDR(hi)

// Priviliged instruction
// Latch (M)ode bit in MSW

1; // Latch (P)aging enable bit in MSW
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unsigned misc:4, //

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

rols signals which never occur at the

time:

none

halt

trap on overflow

latch PTE

set flags (from alu op)

init_inst (clear MDR, PC->TPC, latch IR)
right shift alu output

DMA acknowledge
latch MSW[ie] (Interrupt Enable)
do branch

latch MSW[in_trap]
commit state

Cont

same

0x0

0x1

0x2

0x3

0x4

0x5

0x6

0x7

0x8

0x9

Oxa

Oxb

Oxc

Oxd

Oxe

Oxf

unsigned e 1:4,

unsigned e_r:2;

unsigned immval:2;

unsigned

unsigned

aluop_size:
aluop:2;

unsigned
unsigned

unsigned

unsigned
unsigned

} rocode rec t;

carry:1;
l_size:1;
br sense:1,

user_ptb:1;
code ptb:lj

// Enable L bus

// 0x0 : MAR

// 0x1 : MSW

// 0x2 : C

// 0x3 : PC

// 0x4 : DP

// 0x5 : SP

// 0x6 : A

// 0x7 : B

// 0x8 : MDR

// 0x9 : PTB

// Oxa : SSP

// Oxb : TPC

// Oxc :

// Oxd :

// Oxe :

// Oxf : IR_BASE (4+IR[6..7;
// Enable R bus

// 0x0 : MDR

// 0x1 : Immediate

// 0x2 : Fault code/encoder

// 0x3 :

// Immediate value

// 0x0

// 0x1

// 0x2

// 0x3

0

1

-2

-1

1; // 0x0 -> 16 bits, 0x1 -> 8 bits

// Which alu operation to perform

// 0x0 : IR[1..3]
// Oxl : AND

// 0x2 : SUB

// 0x3 : ADD

// 0x0 -> 0, Oxl -> MSW[c]

// 0x0 -> latch byte, 0x1 -> latch word

// 0x0 -> don't negate, 0x1 -> negate
// Non-negated branch conditions are:

//

//

//

//

//

//

//

//
// User page table base override

// 0 to select data region of PTB, 1 for code

0x0 eq

0x1 eq

0x2 It

0x3 le

0x4 ltu

0x5 leu

0x6 eq

0x7 ne

extern mcode rec t mcode store[512];
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// END mcode.h

// BEGIN mcode.c

//

#include "mcode.h"

mcode_rec_t mcode__store [512] = {
#include "prombits.h"

};

// END mcode.c

// PREPROCESS prombits.h
// BEGIN mcdefs.h

// Register defines for LATCH() and EL'
#define R MSW 1

#define R C 2

#define R PC 3

#define R DP 4

#define R SP 5

#define R A 6

#define R B 7

#define R MDR 8

#define R PTB 9

#define R SSP 10

// Register defines for LATCH()-only

#define R_NONE 0
#define R_IR_REG 15

// Register defines for EL()-only

#define R_MAR 0
#define R_TPC 11
#define R_FCODE 12
#define R_IR_BASE 15

// Register defines for ER()

#define ER_MDR 0
#define ER_IMM 1
#define ER_FAULT 2
// Defines for IMMVAL()

#define IMM_0 0
#define IMM_1 1
#define IMM_NEG1 3
#define IMM_NEG2 2

// Defines for MISC()

#define M_NONE 0
#define M_SYSCALL 1
#define M_HALT 2
#define M_BKPT 3
#define M_TRAPO 4
#define M_LPTE 5
#define M_SET_FLAGS 6
#define M_INIT_INST 7
#define M_RSHIFT 8
#define M_DMA_ACK 9
#define M__LEI 10
#define M_DO_BRANCH 11
#define M_CLRJTRAP 12
#define MjZOMMIT 13

// Defines for ALUOP(op,size,carry)

#define 0P_IR13 0
#define OP_AND 1
ttdefine OP SUB 2
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#define OP ADD 3

#define WORD 0

#define BYTE 1

#define LWORD 1

#define LBYTE 0

#define NO CARRY 0

#define CARRY IN 1

// Defines for CBR()

#define B_NORMAL 0
#define B_NEGATED 1

// END mcdefs.h

#define NEXT_POS 0
#define LATCH_POS 1
#define LMAR_POS 2
#define LMDRLO_POS 3
#define LMDRHI_POS 4
#define EMDRLO_POS 5
#define EMDRHI_POS 6
#define PRIV_POS 7
#define LMODE_POS 8
#define LPAGING_POS 9
#define MISC_POS 10
#define E_L_POS 11
#define E_R_POS 12
#define IMMVAL_POS 13
#define ALUOP_J3IZE_POS 14
#define ALUOP_POS 15
#define CARRY^POS 16
#define L_SIZE_POS 17
#define BR_SENSE_POS 18
#define USER_PTB_POS 19
#define CODE_PTB_POS 20
#define NEXT(VAL) INIT(NEXT_POS,VAL)
#define LATCH(VAL) INIT(LATCH_POS,VAL)
#define LMAR(VAL) INIT(LMAR__POS, VAL)
#define LMDRLO(VAL) INIT(LMDRLO_POS,VAL)
jfdefine LMDRHI(VAL) INIT(LMDRHI_POS, VAL)
#define EMDRLO(VAL) INIT(EMDRLO_POS,VAL)
#define EMDRHI(VAL) INIT(EMDRHI_POS,VAL)
#define PRIV(VAL) INIT(PRIV_POS,VAL)
#define LMODE(VAL) INIT(LMODE_POS,VAL)
#define LPAGING(VAL) INIT(LPAGING_POS,VAL)
#define MISC(VAL) INIT(MISC_POS,VAL)
#define E_L(VAL) INIT(E_L_POS,VAL)
#define E_R(VAL) INIT(E_R_POS,VAL)
#define IMMVAL(VAL) INIT(IMMVAL_POS,VAL)
#define ALUOP_SIZE(VAL) INIT(ALUOP_SIZE_POS,VAL)
#define ALUOP(VAL) INIT(ALUOP_POS,VAL)
#define CARRY(VAL) INIT(CARRY_POS,VAL)
#define L_SIZE(VAL) INIT(L_SIZE_POS, VAL)
#define BR_SENSE(VAL) INIT(BR_SENSE_POS,VAL)
#define USER_PTB(VAL) INIT(USER_PTB_POS,VAL)
#define CODE_PTB(VAL) INIT(CODE_PTB_POS,VAL)
#define CBR(SENSE,TGT) MISC(M_DO_BRANCH),BR_SENSE(SENSE),NEXT(TGT)
#define L(REG,SIZE) LATCH(REG),L_SIZE(SIZE)

#define USE_IR Oxff
#define READLO LMDRLO(l)

^define READHI LMDRHI(l)

#define READEXT LMDRLO(1),LMDRHI(1)

fdefine WRITELO EMDRLO(l)

#define WRITEHI EMDRHI(1)

#define INC_TO_Z(REG)
E_L(REG),E_R(ER_IMM),IMMVAL(IMM_1),ALU(OP_ADD,WORD,NOJZARRY)
#define INC2_TO__Z (REG)
E L(REG),E R(ER_IMM),IMMVAL(IMM_NEG2),ALU(OP_SUB,WORD,NO_CARRY)
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#define DEC_TO_Z(REG)
E_L(REG),E_R(ER_IMM),IMMVAL(IMM_NEG1),ALU(OP_ADD,WORD,NO_CARRY)
#define ZERO_TO_Z
E_L(R_MDR),E_R(ER_IMM),IMMVAL(IMM_0),ALU(OP_AND,WORD,NO_CARRY)
#define NEG1_T0_Z
E_L (R_MDR) ,E_R (ER__IMM) ,IMMVAL(IMM__NEG1) ,ALU (OP_ADD, WORD,NO_CARRY)
#define TO_Z(REG)
E_L(REG),E_R(ER_IMM),IMMVAL (IMM_NEG1), ALU (OP_AND,WORD, NO_CARRY)
#define T0_Z8(REG)
E_L(REG),E_R(ER_IMM),IMMVAL(IMM_NEG1),ALU(OP_AND,BYTE,NO_CARRY)
#define LDHI READHI,INC_TO_Z(R_MAR),LMAR(1)
#define LDLO READLO,TO_Z(R_PC),LMAR(1)
#define STHI WRITEHI, INC_TO_Z(RJYIAR) ,LMAR(1)
#define STLO WRITELO,TO_Z(R_PC),LMAR(l)
#define LDIMMHI CODE_PTB(l),READHI,L(R_PC,LWORD),INC_TO_Z(R_PC),LMAR(1)
#define LDIMMLO CODE_PTB(l),READLO,L(R_PC,LWORD),INC_TO_Z(R_PC),LMAR(1)
#define LDIMMEXT CODE_PTB(l),READEXT,L(R_PC,LWORD),INC_TO_Z(R_PC),LMAR(1)
#define GEN_ADDR(BASE) E_L(BASE),E_R(ER_MDR),ALU(OP_ADD,WORD,NO_CARRY)
#define COMPARE_0(REG)
E_L(REG),E_R(ER__IMM) ,IMMVAL (IMM_0),ALU (OP_SUB, WORD,NO_CARRY)
#define COMPARE8_0(REG)
E_L(REG),E_R(ER_IMM),IMMVAL(IMM_0),ALU(OP_SUB,BYTE,NO_CARRY)
#define ALU(OP,SZ,CRY) ALUOP(OP),ALUOP_SIZE(SZ),CARRY(CRY)
#define FETCH_OP
CODE_PTB(l),READLO,MISC(MJENITJENST),INCJTO_Z(R_MAR),L(R_PC,LWORD),LMAR(1),N
EXT(UNUSABLE)

#define PUSHLO WRITELO,DEC_TO_Z(R_MAR),LMAR(1)
ttdefine PUSHHI WRITEHI,DEC_TO_Z(R_MAR),LMAR(1)
#define POPLO READLO,INC_TO_Z(R_MAR),LMAR(1)
#define POPHI READHI,INC_TO_Z(R_MAR),LMAR(1)
#define TO_MDR(REG) TO_Z(REG) ,L(RJYIDR, LWORD)
#define FROM_MDR(REG) TO_Z(R_MDR),L(REG,LWORD)

Bottom half of PROM - (starting point of each instruction, using opcode as

direct index)

0x00 halt
MISC(M HALT),DEC TO Z(R PC),L(R PC,LWORD),LMAR(1),NEXT(Fet

ch)

0x01

Id. 8

A,#ul6_u8_10(
SP)

'
LDIMMHI,NEXT(Lda8 16)

0x02 push C
>
TO Z(R C),L(R MDR,LWORD),NEXT(Pushl6)

0x03 push PC ; TO Z(R TPC),L(R MDR,LWORD),NEXT(Pushl6)

0x04 push DP
'
TO Z(R DP),L(R MDR,LWORD),NEXT(Pushl6)

0x05

Id. 8

B,#ul6 u8 10(

SP)
•
LDIMMHI,NEXT(Ldb8 16)

0x06 push A TO Z(R A),L(R MDR,LWORD),NEXT(Pushl6)

0x07 push B TO Z(R B),L(R MDR,LWORD),NEXT(Pushl6)

0x08 br.ne #dl6 LDIMMHI,NEXT(BrNegated)

0x09 pop MSW TO Z(R SP),LMAR(1),NEXT(Popl6)

0x0a pop C TO Z(R SP),LMAR(l),NEXT(P0pl6)

0x0b pop PC TO Z(R SP),LMAR(l),NEXT(Popl6)

0x0c pop DP TO Z(R SP),LMAR(l),NEXT(Popl6)
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OxOd pop SP ; TO Z(R SP),LMAR(1),NEXT(Popl6)

OxOe pop A ; TO Z(R SP),LMAR(1),NEXT(Popl6)

OxOf pop B ; TO Z(R SP),LMAR(l),NEXT(Popl6)

OxlO
Id. 8

A,#ul6(DP)
LDIMMHI,NEXT(Lda8 16)

Oxll
Id. 8

A,#u8(SP)
LDIMMLO,NEXT(Lda8 8)

0x12 Id.8 A,#u8(A) ; LDIMMLO,NEXT(Lda8 8)

0x13 Id.8 A,#u8(B) ; LDIMMLO,NEXT(Lda8 8)

0x14
Id. 8

B,#ul6(DP)
LDIMMHI,NEXT(Ldb8 16)

0x15
Id. 8

B,#u8(SP) ;LDIMMLO,NEXT(Ldb8 8)

0x16 Id.8 B,#u8(A) ; LDIMMLO,NEXT(Ldb8 8)

0x17 Id.8 B,#u8(B) ; LDIMMLO,NEXT(Ldb8 8)

0x18
Id.16

A,#ul6(DP)
LDIMMHI,NEXT(Ldal6 16)

0x19

Id.16

A,#ul6_u8_68( ;
SP)

LDIMMHI,NEXT(Ldal6 16)

Oxla
Id.16

A,#u8(A)
LDIMMLO,NEXT(Ldal6 8)

Oxlb
Id.16

A,#u8(B)
LDIMMLO,NEXT(Ldal6 8)

Oxlc
Id.16

B,#ul6(DP)
LDIMMHI,NEXT(Ldbl6 16)

Oxld

Id.16

B,#ul6_u8_68( ,
SP)

LDIMMHI,NEXT(Ldbl6 16)

Oxle
Id.16

B,#u8(A)
LDIMMLO,NEXT(Ldbl6 8)

Oxlf
Id.16

B,#u8(B)
LDIMMLO,NEXT(Ldbl6 8)

0x20
sub. 8

A,#ul6(DP)
LDIMMHI,NEXT(Aluop8 indir!6)

0x21
sub. 8

A,#u8 (SP)
LDIMMLO,NEXT(Aluop8 indir)

0x22 push MSW TO Z(R MSW),L(R MDR,LWORD),NEXT(Pushl6)

0x23
sub. 8

A,#u8(B)
LDIMMLO,NEXT(Aluop8 indir)

0x24 sub.8 A,#i8_l LDIMMLO,NEXT(Aluop8)

0x25 sub.8 A,#1 INC TO Z(R MDR),L(R MDR,LWORD),NEXT(Aluop8)
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0x2 6 push SP
'
TO Z(R SP),L(R MDR,LWORD),NEXT(Pushl6)

0x27 sub.8 A,B i TO Z(R B),L(R MDR,LWORD),NEXT(Aluop8)

0x2 8
sub.16

A,#ul6(DP) •
LDIMMHI,NEXT'(Aluopl6 indirl6)

0x2 9
sub.16

A, #u8(SP) '
LDIMMLO,NEXT(Aluopl6 indir)

0x2a nopO
'
KEXT(Fetch)

0x2b
sub.16

A, #u8(B) '
LDIMMLO,NEXT(Aluopl6 indir)

0x2c
sub.16

A,#il6_exti8 '
LDIMMHI,NEXT(Aluopl6 16)

0x2d
sub.16

A,#exti8 •
LDIMMEXT,NEXT(Aluopl6)

0x2e wcpte A,(B) } PRIV(l),TO Z(R B),LMAR(1),NEXT(Wcpte)

0x2 f sub.16 A,B
•
TO Z(R B),L(R MDR,LWORD),NEXT(Aluopl6)

0x30
add.8

A,#ul6(DP) •
LDIMMHI,NEXT(Aluop8 indirl6)

0x31
add.8

A, #u8(SP) •
LDIMMLO,NEXT(Aluop8 indir)

0x32 br A
•
TO Z(R A),L(R PCLWORD) ,LMAR (1), NEXT (Fetch)

0x33
add.8

A,#u8(B) i LDIMMLO,NEXT(Aluop8 indir)

0x34 add.8 A,#i8_l
•
LDIMMLO,NEXT(AluopS)

0x35 add.8 A,#1
•
INC TO Z(R MDR),L(R MDR,LWORD),NEXT(Aluop8)

0x36 add.8 A,A
•
TO Z(R A),L(R MDR,LWORD),NEXT(Aluop8)

0x37 add.8 A,B : TO Z(R B),L(R MDR,LWORD),NEXT(Aluop8)

0x38
add.16

A,#ul6(DP) '
LDIMMHI,NEXT(Aluopl6 indirl6)

0x39
add.16

A,#u8 (SP) •
LDIMMLO,NEXT(Aluopl6 indir)

0x3a
syscall

#sys num8 •
LDIMMLO,NEXT(Syscall)

0x3b
add.16

A,#u8(B)
} LDIMMLO,NEXT(Aluopl6 indir)

0x3c
add.16

A,#il6 exti8 •
LDIMMHI,NEXT(Aluopl6 16)

0x3d
add.16

A, #exti8 •
LDIMMEXT,NEXT(Aluopl6)

0x3e add.16 A,A
•
TO Z(R A),L(R MDR,LWORD),NEXT(Aluopl6)

0x3f add.16 A,B
•
TO Z(R B),L(R MDR,LWORD),NEXT(Aluopl6)
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0x40
cmp. 8
A,#ul6(DP) '

LDIMMHI,NEXT(Cmp8 indirl6)

0x41
cmp. 8

A, #u8(SP) '
LDIMMLO,NEXT(Cmp8 indir)

0x42 copy C,B
'
TO Z(R B),L(R C,LWORD),NEXT(Fetch)

0x4 3
cmp. 8
A,#u8(B) '

LDIMMLO,NEXT(Cmp8 indir)

0x44 cmp.8 A,#i8_0 ; LDIMMLO,NEXT(Cmp8)

0x4 5 cmp.8 A,#0
-

E L(R A),E R(ER MDR),ALU(OP SUB,BYTE,NO CARRY),MISC(M SET
FLAGS),NEXT(Fetch)

0x4 6 xor.16 A,A •> TO Z(R A),L(R MDR,LWORD),NEXT(Aluopl6)

0x47 cmp.8 A,B
•
TO Z(R B),L(R MDR,LWORD),NEXT(Cmp8)

0x48
cmp.16

A,#ul6(DP) '
LDIMMHI,NEXT(Cmpl6 indirl6)

0x49
cmp.16

A,#u8(SP) '
LDIMMLO,NEXT(Cmpl6 indir)

0x4a shOadd B,A,B •' TO Z(R A),L(R MDR,LWORD),NEXT(LeaBl)

0x4b
cmp.16

A,#u8(B) •
LDIMMLO,NEXT(Cmpl6 indir)

0x4c

cmp.16

A,#116 exti8

0
•
LDIMMHI,NEXT(Cmpl6 16)

0x4d
cmp.16

A,#exti8_0 •
LDIMMEXT,NEXT(Cmpl6)

0x4e cmp.16 A,#0
•

E L(R A),E R(ER MDR),ALU(OP SUB,WORD,NO CARRY),MISC(M SET
FLAGS),NEXT(Fetch)

0x4f cmp.16 A,B
'
TO Z(R B),L(R MDR,LWORD),NEXT(Cmpl6)

0x50
or. 8

A, #ul6(DP) •
LDIMMHI,NEXT(Aluop8 indirl6)

0x51
or. 8

A, #u8(SP) •
LDIMMLO,NEXT(Aluop8 indir)

0x52 sex A
•
TO Z8(R A),L(R A,LWORD),NEXT(Fetch)

0x53 or.8 A,#u8(B)
•
LDIMMLO,NEXT(Aluop8 indir)

0x54 or.8 A,#i8_JL
'
LDIMMLO,NEXT(Aluop8)

0x55 or.8 A,#1
>
INC TO Z(R MDR),L(R MDR,LWORD),NEXT(Aluop8)

0x56 br.leu #dl6
•
LDIMMHI,NEXT(BrNormal)

0x57 or.8 A,B
•
TO Z(R B),L(R MDR,LWORD),NEXT(Aluop8)

0x58
or.16

A,#ul6(DP) '
LDIMMHI,NEXT(Aluopl6 indirl6)
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0x59
or.16

A,#u8(SP) '
LDIMMLO,NEXT(Aluopl6 indir)

0x5a shladd A,B,A
'
TO Z(R A),L(R MDR,LWORD),NEXT(LeaABA2)

0x5b
or. 16

A,#u8(B) '
LDIMMLO,NEXT(Aluopl6 indir)

0x5c
or.16

A,#i!6_exti8 '
LDIMMHI,NEXT(Aluopl6 16)

0x5d
or.16

A,#exti8 '
LDIMMEXT,NEXT(Aluopl6)

0x5e br.gtu #dl6
'
LDIMMHI,NEXT(BrNegated)

0x5f or.16 A,B
'
TO Z(R B),L(R MDR,LWORD),NEXT(Aluopl6)

0x60
and. 8

A,#ul6(DP) '
LDIMMHI,NEXT(AluopS indirl6)

0x61
and. 8

A,#u8(SP) '
LDIMMLO,NEXT(Aluop8 indir)

0x62 shladd B,A,B
'* TO Z(R B),L(R MDR,LWORD), NEXT(LeaBAB2)

0x63
and. 8

A,#u8(B) '
LDIMMLO,NEXT(Aluop8 indir)

0x64 and.8 A,#i8_l
'
LDIMMLO,NEXT(Aluop8)

0x65 and.8 A,#1
'* INC TO Z(R MDR),L(R MDR,LWORD),NEXT(Aluop8)

0x66 nopl
'
NEXT(Fetch)

0x67 and.8 A,B
'
TO Z(R B),L(R MDR,LWORD),NEXT(Aluop8)

0x68
and.16

A,#ul6(DP) '
LDIMMHI,NEXT(Aluopl6 indirl6)

0x69
and.16

A,#u8(SP) '
LDIMMLO,NEXT(Aluopl6 indir)

0x6a shladd B,B,A
'* TO Z(R A),L(R MDR,LWORD),NEXT(LeaBBA2)

0x6b
and.16

A, #u8(B) •
LDIMMLO,NEXT(Aluopl6 indir)

0x6c
and.16

A,#il6_exti8 '
LDIMMHI,NEXT(Aluopl6 16)

0x6d
and.16

A,#exti8 •
LDIMMEXT,NEXT(Aluopl6)

0x6e strcopy
'
TO Z(R B),LMAR(1),NEXT(Strcopy)

0x6f and.16 A,B
'
TO Z(R B),L(R MDR,LWORD),NEXT(Aluopl6)

0x7 0
lea

A, #ul6(DP) '
LDIMMHI,NEXT(LdaA 16)

0x71
lea

A,#ul6(SP) '
LDIMMHI,NEXT(LdaA 16}

0x72 lea A,#ul6(A)
•
LDIMMHI,NEXT(LdaA 16)
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0x73 lea A,#ul6(B) ' LDIMMHI,NEXT(LdaA 16)

0x7 4
lea

B,#ul6(DP) t LDIMMHI,NEXT(LdaB 16)

0x75
lea

B,#ul6(SP) i LDIMMHI,NEXT(LdaB 16)

0x76 lea B,#ul6(A) i LDIMMHI,NEXT(LdaB 16)

0x77 lea B,#ul6(B)
'
LDIMMHI,NEXT(LdaB 16)

0x78 Id.8 A,#u8 •> LDIMMLO,NEXT(LdiA8)

0x79 Id.8 B,#u8 i LDIMMLO,NEXT(LdiB8)

0x7a
Id.16

A,#exti8_ul6 i LDIMMEXT,NEXT(LdiAl6)

0x7b
Id.16

B,#exti8_ul6 i LDIMMEXT,NEXT(LdiBl6)

0x7c Id.16 A,#ul6 : LDIMMHI,NEXT(LdiAl6 lo)

0x7d Id.16 B,#ul6 : LDIMMHI,NEXT(LdiB16 lo)

0x7e adc.16 A,A
•
TO Z(R A),L(R MDR,LWORD),NEXT(Adcl6)

0x7 f adc.16 A,B •> TO Z(R B),L(R MDR, LWORD) ,NEXT (Add6)

0x80 call #dl6
•
INC2 TO Z(R PC),L(R MDR,LWORD),NEXT(CallImm)

0x81
Id.16

A, #u8(SP)
i LDIMMLO,NEXT(Ldal6 8)

0x82 call A
•
TO Z(R PC),L(R MDR,LWORD),NEXT(CallA)

0x83 br #dl6_d8
•
LDIMMHI,NEXT(RelBrLo)

0x8 4 sbr #d8
•
LDIMMEXT,NEXT(RelBr)

0x85
Id.16

B,#u8(SP) •
LDIMMLO,NEXT(Ldbl6 8)

0x8 6
lea

A,#ul6(PC) '
LDIMMHI,NEXT(LeaPC)

0x87
lea

B,#ul6(PC) •
LDIMMHI,NEXT(LeaPC)

0x8 8 copy A,MSW
•
TO Z(R MSW),L(R A,LWORD),NEXT(Fetch)

0x8 9 br.eq #dl6 •> LDIMMHI,NEXT(BrNormal)

0x8a reti i PRIV(l),NEXT(Reti)

0x8b trapo yiISC{M TRAPO) ,NEXT (Fetch)

0x8c
bset.8

A,#mask8,#d8 '
LDIMMLO,NEXT(Bset8)

0x8d
bclr.8

A,#mask8,#d8 -
LDIMMLO,NEXT(Bclr8}
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Ox8e
bset.16

A,#maskl6,#d8 '*
LDIMMHI,NEXT(Bsetl6)

0x8 f
bclr.16

A,#maskl6,#d8 '
LDIMMHI,NEXT(Bclrl6)

0x90

cmpb.eq.8

A,#ul6(DP),#d

8
'
LDIMMHI,NEXT(Cmpb8 indirl6)

0x91
cmpb.eq.8

A,#u8(SP),#d8 '
LDIMMLO,NEXT(Cmpb8 indir)

0x92 copy B,A
'* TO Z(R A),L(R B,LWORD),NEXT(Fetch)

0x93
cmpb.eq.8
A,#u8(B),#d8 '

LDIMMLO,NEXT(Cmpb8 indir)

0x94
cmpb.eq.8

A,#i8_0,#d8 '
LDIMMLO,NEXT(Cmpb8)

0x95
cmpb.eq.8

A,#0,)fd8 '
TO Z(R MDR),L(R MDR,LWORD),NEXT(Cmpb8)

0x96 copy C,A
? TO Z(R A),L(R C,LWORD),NEXT(Fetch)

0x97
cmpb.eq.8

A,B,#d8 '
TO Z(R B),L(R MDR,LWORD),NEXT(Cmpb8)

0x98

cmpb.eq.16

A,#ul6(DP),#d
8

'
LDIMMHI,NEXT(Cmpbl6 indirl6)

0x99
cmpb.eq.16
A,#u8(SP),#d8 '

LDIMMLO,NEXT(Cmpbl6 indir)

0x9a copy A,B
•
TO Z(R B),L(R A,LWORD),NEXT(Fetch)

0x9b
cmpb.eq.16

A,#u8(B),#d8 '
LDIMMLO,NEXT(Cmpbl6 indir)

0x9c

cmpb.eq.16

A,#il6 exti8
0,#d8

'
LDIMMHI,NEXT(Cmpbl6 16)

0x9d

cmpb.eq.16

A,#exti8 0,#d

8
•
LDIMMEXT,NEXT(Cmpbl6)

0x9e
cmpb.eq.16

A,#0,#d8 i TO Z(R MDR),L(R MDR,LWORD),NEXT(Cmpbl6)

0x9f
cmpb.eq.16

A,B,#d8 '
TO Z(R B),L(R MDR,LWORD),NEXT(Cmpbl6)

OxaO

cmpb.lt.8
A,#ul6(DP),#d

8
•
LDIMMHI,NEXT(Cmpb8 indirl6)

Oxal
cmpb.It.8
A,#u8(SP),#d8 '

LDIMMLO,NEXT(Cmpb8 indir)

0xa2 shOadd A,A,B i
TO Z(R B),L(R MDR,LWORD),NEXT(LeaAl)

0xa3
cmpb.It.8

A,#u8(B),#d8 •
LDIMMLO,NEXT(Cmpb8 indir)
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0xa4
cmpb.lt.8

A,#i8_0,#d8 '
LDIMMLO,NEXT(CmpbS)

0xa5
cmpb.It.8

A,#0,#d8 / TO Z(R MDR),L(R MDR,LWORD),NEXT(Cmpb8)

Oxa 6 br.lt #dl6 '* LDIMMHI,NEXT(BrNorraal)

Oxa7
cmpb.lt.8

A,B,#d8 '
TO Z(R B),L(R MDR,LWORD),NEXT(Cmpb8)

Oxa 8

cmpb.It.16

A,#ul6(DP),#d
8

'
LDIMMHI,NEXT(Cmpbl6 indirl6)

Oxa 9
cmpb.lt.16

A,#u8(SP),#d8 '
LDIMMLO,NEXT(Cmpbl6 indir)

Oxaa shladd A,A,B
'* TO Z(R B),L(R MDR,LWORD),NEXT(LeaAAB2)

Oxab
cmpb.lt.16

A,#u8 (B),#d8 '
LDIMMLO,NEXT(Cmpbl6 indir)

Oxac

cmpb.lt.16

A,#il6 exti8,

#d8
'
LDIMMHI,NEXT(Cmpbl6 16)

Oxad
cmpb.lt.16
A, #exti8,#d8 '

LDIMMEXT,NEXT(Cmpbl6)

Oxae br.ge #dl6 '* LDIMMHI,NEXT(BrNegated)

Oxaf
cmpb.It.16
A,B,#d8 '

TO Z(R B),L(R MDR,LWORD),NEXT(Cmpbl6)

OxbO

cmpb.le.8

A,#ul6(DP),#d

8
'
LDIMMHI,NEXT(Cmpb8 indirl6)

Oxbl
cmpb.le.8
A,#u8(SP),#d8 '

LDIMMLO,NEXT(Cmpb8 indir)

Oxb 2 sex B
'* TO Z8(R B),L(R B,LWORD),NEXT(Fetch)

0xb3
cmpb.1e.8
A,#u8(B),#d8 '

LDIMMLO,NEXT(Cmpb8 indir)

Oxb4
cmpb.le.8

A,#i8,#d8 '
LDIMMLO,NEXT(Cmpb8}

Oxb5 br.le #dl6
'*
LDIMMHI,NEXT(BrNormal)

Oxb6 copy DP,A
'
TO Z(R A),L(R DP,LWORD),NEXT(Fetch)

Oxb7
cmpb.le.8
A,B,#d8

TO Z(R B),L(R MDR,LWORD),NEXT(Cmpb8)

Oxb8

cmpb.le.16

A, #ul6(DP) ,#d

8
'
LDIMMHI,NEXT(Cmpb16 indirl6)

Oxb9
cmpb.le.16
A,#u8(SP),#d8 '*

LDIMMLO,NEXT(Cmpbl6 indir)

Oxba copy A,DP
'•
TO Z(R DP),L(R A,LWORD),NEXT(Fetch)
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Oxbb
cmpb.le.16

A,#u8(B),#d8 '
LDIMMLO,NEXT(Cmpbl6 indir)

Oxbc

cmpb.1e.16

A,#il6 exti8,

#d8
'
LDIMMHI,NEXT(Cmpb16 16)

Oxbd
cmpb.le.16

A,#exti8,#d8 '
LDIMMEXT,NEXT(Cmpbl6)

Oxbe br.gt #dl6
'*
LDIMMHI,NEXT(BrNegated)

Oxbf
cmpb.le.16

A,B,#d8 '
TO Z(R B),L(R MDR,LWORD),NEXT(Cmpbl6)

OxcO br.geu #dl6
'*
LDIMMHI,NEXT(BrNegated)

Oxcl

st. 8

#ul6 u8 10(SP

),A
'
LDIMMHI,NEXT(Sta8 16)

Oxc2 shl.16 A '* TO Z(R A),L(R MDR,LWORD),NEXT(Shlal6)

0xc3 shr.16 A
'* TO Z(R A),MISC(M RSHIFT),L(R A,LWORD),NEXT(Fetch)

Oxc4 shl.16 B
'' TO Z(R B),L(R MDR,LWORD),NEXT(Shlbl6)

0xc5

st. 8

#ul6 u8 10(SP

),B

! LDIMMHI,NEXT(Stb8 16)

Oxc6 shr.16 B
•
TO Z(R B),MISC(M RSHIFT),L(R B,LWORD),NEXT(Fetch)

Oxc7 xor.16 A,B
•
TO Z(R B),L(R MDR,LWORD),NEXT(Aluopl6)

Oxc8 copy PTB,A
>
PRIV(l),TO Z(R A),L(R PTB,LWORD),NEXT(Fetch)

Oxc 9

st.16

#ul6 u8 10(SP

),A
i LDIMMHI,NEXT(Stal6 16)

Oxca copy MSW,A •> PRIV(1),NEXT(CopyMSWA)

Oxcb copy SP,A
•
TO Z(R A),L(R SP,LWORD),NEXT(Fetch)

Oxcc
Id.16

C,#exti8 ul6 •
LDIMMEXT,NEXT(LdiC16)

Oxcd

st.16

#ul6 u8 10(SP

),B
'
LDIMMHI,NEXT(Stbl6 16)

Oxce Id.16 C,#ul6
'
LDIMMHI,NEXT(LdiC16 lo)

Oxcf br.ltu #dl6
: LDIMMHI,NEXT(BrNormal)

OxdO
st. 8

#ul6(DP),A '
LDIMMHI,NEXT(Sta8 16)

Oxdl
st. 8

#u8(SP) ,A '
LDIMMLO,NEXT(Sta8 8)

0xd2 st.8 #u8(A),A i LDIMMLO,NEXT(Sta8 8)

0xd3 st.8 #u8(B),A
•
LDIMMLO,NEXT(Sta8 8)
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Oxd4
st. 8

#ul6(DP),B '
LDIMMHI,NEXT(Stb8 16)

0xd5
st.8

#u8(SP) ,B '
LDIMMLO,NEXT(Stb8 8)

0xd6 st.8 #u8(A),B r LDIMMLO,NEXT(Stb8 8)

0xd7 st.8 #u8(B),B ! LDIMMLO,NEXT(Stb8 8)

0xd8
st.16

#ul6(DP),A •
LDIMMHI,NEXT(Stal6 16)

Oxd9
st.16

#u8(SP),A '
LDIMMLO,NEXT(Stal6 8)

Oxda
st.16

#u8(A),A '
LDIMMLO,NEXT(Stal6 8)

Oxdb
st.16

#u8(B),A '
LDIMMLO,NEXT(Stal6 8)

Oxdc
st.16

#ul6(DP),B '
LDIMMHI,NEXT(Stbl6 16)

Oxdd
st.16

#u8(SP) ,B •
LDIMMLO,NEXT(Stbl6 8)

Oxde
st.16

#u8(A),B •
LDIMMLO,NEXT(Stbl6 8)

Oxdf
st.16

#u8(B),B •
LDIMMLO,NEXT(Stbl6 8)

OxeO
ldcode.8

A, (B) '
TO Z(R B),LMAR(1),NEXT(Ldcode8)

Oxel nop2 : NEXT(Fetch)

Oxe2
stcode.8

(B),A
i 10 Z(R B),LMAR(l),NEXT(Stcode8)

0xe3 nop3
•
NEXT(Fetch)

Oxe4
enter

#fsizel6_8 i LDIMMHI,NEXT(Enter)

0xe5 enter #fsize8 i NEG1 TO Z,LATCH(R MDR),NEXT(Enter)

Oxe 6 vshl.16 A
'
TO Z(R A),L(R MDR,LWORD),NEXT(Vshl)

0xe7 vshl.16 B
•
TO Z(R B),L(R MDR,LWORD),NEXT(Vshl)

Oxe8 memcopy
•
COMPARE 0(R C),MISC(M SET FLAGS),NEXT(Bcopy)

0xe9 tosys ; PRIV(l),COMPARE 0(R C),MISC(M SET FLAGS),NEXT(ToSys)

Oxea fromsys i PRIV(l),COMPARE 0(R C),MISC(M SET FLAGS),NEXT(FromSys)

Oxeb ldclr.8 A,(B)
•
TO Z(R B),LMAR(1),NEXT(LdClr)

Oxec wdpte A,(B) •> PRIV(1),T0 Z(R B),LMAR(1),NEXT(Wdpte)

Oxed sbc.16 A,B
'
TO Z(R B),L(R MDR,LWORD),NEXT(Sbcl6)
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Oxee vshr.16 A
'*
TO Z(R A),L(R MDR,LWORD),NEXT(Vshr)

Oxef vshr.16 B
'
TO Z(R B),L(R MDR,LWORD),NEXT(Vshr)

OxfO

cmpb.ne.8

A,#ul6(DP),#d
8

•
LDIMMHI,NEXT(Cmpb8 indirl6)

Oxfl
cmpb.ne.8

A,#u8(SP),#d8 •
LDIMMLO,NEXT(Cmpb8 indir)

0xf2 copy A,C : TO Z(R C),L(R A,LWORD),NEXT(Fetch)

Oxf3
cmpb.ne.8

A,#u8(B),#d8 '
LDIMMLO,NEXT(Cmpb8 indir)

0xf4
cmpb.ne.8

A,#i8_0,#d8 •
LDIMMLO,NEXT(Cmpb8)

Oxf5
cmpb.ne.8
A,#0,#d8 •

TO Z(R MDR),L(R MDR,LWORD),NEXT(Cmpb8)

Oxf6 copy A,SP
>
10 Z(R SP),L(R A,LWORD),NEXT(Fetch)

Oxf7
cmpb.ne.8
A,B,#d8 •

TO Z(R B),L(R MDR,LWORD),NEXT(Cmpb8)

0xf8

cmpb.ne.16
A,#ul6(DP),#d

8
'
LDIMMHI,NEXT(Cmpbl6 indirl6)

Oxf9
cmpb.ne.16

A,#u8(SP),#d8 •

LDIMMLO,NEXT(Cmpbl6 indir)

Oxfa bkpt
>
MISC(M BKPT),NEXT(Unreachable)

Oxfb
cmpb.ne.16
A,#u8(B),#d8 i LDIMMLO,NEXT(Cmpbl6 indir)

Oxfc

cmpb.ne.16

A,#il6 exti8

0,#d8
•

LDIMMHI,NEXT(Cmpbl6 16)

Oxfd

cmpb.ne.16

A,#exti8 0,#d

8
•
LDIMMEXT,NEXT(Cmpbl6)

Oxfe
cmpb.ne.16
A,#0,#d8 •

TO Z(R MDR),L(R MDR,LWORD),NEXT(Cmpbl6)

Oxff
cmpb.ne.16

A,B,#d8 '

TO Z(R B),L(R MDR,LWORD),NEXT(Cmpbl6)

Top half of PROM - continuation microcode.

0x100 Fetch FETCHJ3P

0x101 IRQ5 TO Z(R MAR),MISC(M COMMIT),NEXT(Fault)

0x102 IRQ4 TO Z(R MAR),MISC(M COMMIT),NEXT(Fault)

0x103 IRQ3 TO Z(R MAR),MISC(M COMMIT),NEXT(Fault)

0x104 IRQ2 TO Z(R MAR),MISC(M COMMIT),NEXT(Fault)

0x105 IRQ1 TO Z(R MAR),MISC(M COMMIT),NEXT(Fault)
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0x106 IRQO TO Z(R MAR),MISC(M COMMIT),NEXT(Fault)

0x107 DMA_req yiISC(M DMA ACK) ,NEXT (Fetch)

0x108 Fault syscall TO Z(R MAR),MISC(M COMMIT),NEXT(Fault}

0x109

0x10a Fault ovflo TO Z(R MAR),L(R PC,LWORD),NEXT(Fault)

0x10b Fault priv TO Z(R MAR),L(R PC,LWORD),NEXT(Fault)

0x10c Fault__bkpt TO Z(R MAR),L(R PC,LWORD),NEXT(Fault)

OxlOd Fault nw TO Z(R MAR),L(R PC,LWORD),NEXT(Fault)

OxlOe Fault np TO Z(R MAR),L(R PC,LWORD),NEXT(Fault)

OxlOf

0x110 Aluop8 indir GEN_ADDR(R_IR_BASE),LMAR(1) ,NEXT(FALLTHRU)

Oxlll LDLO,NEXT(FALLTHRU)

0x112 Aluop8
E L(R A),E R(ER MDR),ALU(OP IRl3,BYTE,NO CARRY),L(R A,LBYT
E),MISC(M SET FLAGS),NEXT(Fetch)

0x113
Aluop8 indirl
6

LDIMMLO,NEXT(Aluop8 indir)

0x114 Aluopl6 indir GEN_ADDR(R^IR_BASE),LMAR(1),NEXT(FALLTHRU)

0x115 LDHI,NEXT(FALLTHRU)

0x116 LDLO, NEXT (FALLTHRU:)

0x117 Aluopl6
E L(R A),E:R(ER MDR),ALU(OP IR13,WORD,NO CARRY),L(R A,LWOR
D),MISC(M SET FLAGS),NEXT(Fetch)

0x118
Aluopl6 indir

16
LDIMMLO,NEXT(Aluopl6 indir)

0x119 Cmp8 indir GEN_ADDR(RJER^BASE) ,LMAR(1) ,NEXT(FALLTHRU)

Oxlla LDLO, NEXT (FALLTHRU:)

Oxllb Cmp 8
E L(R A),E'R(ER MDR),ALU(OP SUB,BYTE,NO CARRY),MISC(M SET
FLAGS),NEXT(Fetch)

Oxllc Cmp8_indirl6 LDIMMLO,NEXT(Cmp8 indir).

Oxlld Cmpl6 indir GEN_ADDR(R_^IR_BASE) ,LMAR(1) ,NEXT (FALLTHRU)

Oxlle LDHI,NEXT(FALLTHRU)

Oxllf LDLO,NEXT(FALLTHRU)

0x120 Cmp16
E L(R A),E R(ER MDR),ALU(OP SUB,WORD,NO CARRY),MISC(M SET

FLAGS),NEXT(Fetch)

0x121 Cmpl6 indirl6 LDIMMLO,NEXT(Cmpl6 indir)

0x122 Cmpb8 indir GEN_ADDR (R_IR__BASE) ,LMAR (1) ,NEXT (FALLTHRU)

0x123 LDLO,NEXT(FALLTHRU)
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0x124 Cmpb8
E L(R A),E R(ER MDR),ALU(OP SUB,BYTE,NO CARRY),MISC(M SET

FLAGS),NEXT(CheckBr)

0x125 Cmpb8 indirl6 LDIMMLO,NEXT(Cmpb8 indir)

0x126 Cmpbl6 indir GEN_ADDR(R_IR_BASE),LMAR(1),NEXT(FALLTHRU)

0x127 LDHI,NEXT(FALLTHRU)

0x128 LDLO,NEXT(FALLTHRU)

0x129 Cmpb16
E_L(R_A),E_R(ER_MDR),ALU(OP SUB,WORD,NO CARRY),MISC(M SET
FLAGS),NEXT(CheckBr)

0x12a
Cmpbl6 indirl

6
LDIMMLO,NEXT(Cmpbl6 indir)

0x12b CheckBr LDIMMEXT,CBR(B NORMAL,TakenBr)

0x12c TakenBr
E_L(R_PC),E_R(ER_MDR),ALU(OP ADD,WORD,NO CARRY),L(R PC,LWO
RD),LMAR(1),NEXT(Fetch)

0xl2d BrNormal LDIMMLO,CBR(B NORMAL,TakenBr)

0xl2e BrNegated LDIMMLO,CBR(B NEGATED,TakenBr)

0xl2f Bset8
E_L(R_A),E_R(ER_MDR),ALU(OP_AND,BYTE,NO_CARRY),MISC(M_SET_
FLAGS),NEXT(CheckBrNeq)

0x130 CheckBrNeg LDIMMEXT,CBR(B NEGATED,TakenBr)

0x131 Bclr8
E_L(R_A) ,E_R(ERJVIDR) ,ALU (OP_AND, BYTE,NO_CARRY) ,MISC (M_SET_
FLAGS) ,NEXT(CheckBr)

0x132 Bsetl6 LDIMMLO,NEXT(FALLTHRU)

0x133
E L(R_A),E^R(ER_MDR),ALU(OP_AND,WORD,NO CARRY),MISC(M SET
FLAGS),NEXT(CheckBrNeg)

0x134 Bclrl6 LDIMMLO,NEXT(FALLTHRU)

0x135
E L(R A),E_R(ER_MDR),ALU(OP_AND,WORD,NO CARRY),MISC(M SET
FLAGS),NEXT(CheckBr)

0x136 Pushl6 DEC_TO__Z (R_SP)', LMAR(1) ,NEXT (FALLTHRU)

0x137
WRITELO,DEC TO Z(R MAR),LMAR(1),L(R SP,LWORD),NEXT(FALLTHR

U)

0x138 WRITEHI,TO Z(R PC),LMAR(1),NEXT(Fetch)

0x139 Pop16 LDHI,NEXT(FALLTHRU)

0x13a
READLO,INC TO Z(R MAR),L(R SP, LWORD),LMAR(1),NEXT(FALLTHRU

)

0x13b TO_Z(R_MDR),L(R_IR_REG,LWORD),NEXT(FALLTHRU)

0x13c TO Z(R PC),LMAR(1),NEXT(Fetch)

0x13d Lda8_8 GEN_ADDR(R_IR_BASE),LMAR(1),NEXT(FALLTHRU)

0xl3e LDLO,NEXT(FALLTHRU)

0xl3f TO Z(R MDR),L(R A,LBYTE),NEXT(Fetch)
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0x140 Lda8_16 LDIMMLO,NEXT(Lda8 8)

0x141 Ldb8_8 GEN_ADDR(R_IR_BASE),LMAR(1) ,NEXT(FALLTHRU)

0x142 LDLO,NEXT(FALLTHRU)

0x143 TO Z(R MDR),L(R B,LBYTE),NEXT(Fetch)

0x144 Ldb8_16 LDIMMLO,NEXT(Ldb8 8)

0x145 Ldal6_8 GEN_ADDR(R_IR_BASE),LMAR(1),NEXT(FALLTHRU)

0x146 LDHI,NEXT(FALLTHRU)

0x147 LDLO,NEXT(FALLTHRU)

0x148 TO Z(R MDR),L(R A,LWORD),NEXT(Fetch)

0x149 Ldal6_16 LDIMMLO,NEXT(Ldal6 8)

0x14a Ldbl6_8 GEN_ADDR(R_IR_BASE),LMAR(1),NEXT(FALLTHRU)

0x14b LDHI,NEXT(FALLTHRU}

0x14c LDLO,NEXT(FALLTHRU)

0xl4d TO Z(R MDR),L(R B,LWORD),NEXT(Fetch)

0xl4e Ldbl6_16 LDIMMLO,NEXT(Ldbl6 8)

0xl4f Sta8_8 GEN_ADDR(R_IR_BASE),LMAR(1),NEXT(FALLTHRU)

0x150 TO__Z (R__A) ,L(RJ4DR, LWORD),NEXT (FALLTHRU)

0x151 StaLo STLO,NEXT(Fetch)

0x152 Sta8_16 LDIMMLO,NEXT(Sta8 8)

0x153 Stal6_8 GEN_ADDR(R_IR_BASE),LMAR(1),NEXT(FALLTHRU)

0x154 TO_Z(R_A),L(R_MDR,LWORD),NEXT(FALLTHRU)

0x155 STHI,NEXT(StaLo)

0x156 Stal6_16 LDIMMLO,NEXT(Stal6 8)

0x157 Stb8_8 GEN_ADDR(R_IR_BASE),LMAR(1),NEXT(FALLTHRU)

0x158 TO_Z(R_B),L(R_MDR,LWORD),NEXT(FALLTHRU)

0x159 StbLo STLO,NEXT(Fetch)

0x15a Stb8_16 LDIMMLO,NEXT(Stb8 8)

0x15b Stbl6_8 GEN_ADDR(R_IR_BASE),LMAR(1),NEXT(FALLTHRU)

0x15c TO_Z(R_B),L (RJYIDR,LWORD),NEXT(FALLTHRU)

0xl5d STHI,NEXT(StbLo)

0xl5e Stbl6_16 LDIMMLO,NEXT(Stbl6 8)

0xl5f Sbcl6
E L(R A),E R(ER MDR),ALU(OP SUB,WORD,CARRY_IN),L(R_A,LWORD
),MISC(M SET FLAGS),NEXT(Fetch)
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0x160 Adcl6
E L(R A),E R(ER MDR),ALU(0P ADD,WORD,CARRY IN),L(R A,LWORD

),MISC(M SET FLAGS),NEXT(Fetch)

0x161 LdaA_16 LDIMMLO,NEXT(LdaA)

0x162 LdaA GEN ADDR(R IR BASE),L(R A,LWORD),NEXT(Fetch)

0x163 LdaB_16 ,LDIMMLO,NEXT(LdaB)

0x164 LdaB GEN ADDR(R IR BASE),L(R B,LWORD),NEXT(Fetch)

0x165 LdiA8 TO Z(R MDR),L(R A,LBYTE),NEXT(Fetch)

0x166 LdiB8 TO Z(R MDR),L(R B,LBYTE),NEXT(Fetch)

0x167 LdiA16_lo LDIMMLO,NEXT(LdiAl6)

0x168 LdiA16 TO Z(R MDR),L(R A,LWORD),NEXT(Fetch)

0x169 LdiB16_lo LDIMMLO,NEXT(LdiBl6)

0x16a LdiBl6 TO Z(R MDR),L(R B,LWORD),NEXT(Fetch)

0x16b LdiC16_lo LDIMMLO,NEXT(LdiCl6)

0x16c LdiC16 TO Z(R MDR),L(R C,LWORD),NEXT(Fetch)

0xl6d RelBrLo LDIMMLO,NEXT(RelBr)

0xl6e RelBr GEN ADDR(R PC),L(R PC,LWORD),LMAR(1),NEXT(Fetch)

0xl6f CallImm DEC_TO_Z(R_SP),LMAR(1),NEXT(FALLTHRU)

0x170
WRITELO,DEC TO Z(R MAR),LMAR(1),L(R SP,LWORD),NEXT(FALLTHR

U)

0x171 WRITEHI,TO_Z(R_PC),LMAR(1),NEXT(FALLTHRU)

0x172 LDIMMHI,NEXT(FALLTHRU)

0x173 LDIMMLO,NEXT(FALLTHRU)

0x174 GEN ADDR(R PC),L(R PC,LWORD),LMAR(1),NEXT(Fetch)

0x175 CallA DEC_TO_Z(R_SP),LMAR(1),NEXT(FALLTHRU)

0x176
WRITELO,DEC TO Z(R MAR),LMAR(1),L(R SP,LWORD),NEXT(FALLTHR

U)

0x177 WRITEHI,TO Z(R A),L(R PC, LWORD),LMAR(1),NEXT(Fetch)

0x178 LdClr READLO,NEXT(FALLTHRU)

0x17 9 TO_Z(R_MDR),L(R_A,LBYTE),NEXT(FALLTHRU)

0x17a •WRITEHI,TO Z(R PC),LMAR(1),NEXT(Fetch)

0x17b Wcpte
USER PTB(l),CODE PTB(1),E L(R A),MISC(M LPTE),NEXT(PCtoMAR

)

0x17c Enter ;LDIMMLO,NEXT(FALLTHRU)

0xl7d ;GEN_ADDR(R_SP),LMAR(1),NEXT(FALLTHRU)

0xl7e ;TO_Z(R_SP),L(R_MDR,LWORD),NEXT(FALLTHRU)
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0xl7f DEC_TO_Z(R_MAR),LMAR(1),NEXT(FALLTHRU)

0x180
WRITELO,DEC TO Z(R MAR),LMAR{1),L(R SP,LWORD),NEXT(FALLTHR
U)

0x181 WRITEHI,TO_Z(R_MAR),L(R_SP,LWORD),NEXT(FALLTHRU)

0x182 TO Z(R PC),LMAR(l),NEXT(Fetch)

0x183 Bcopy CBR(B_NEGATED,FALLTHRU)

0x184 TO_Z(R_B),LMAR(1),NEXT(FALLTHRU)

0x185 READLO,TO Z(R A),LMAR(1),NEXT(BcopyO)

0x186 ToSys PRIV(1),CBR(B_NEGATED,FALLTHRU)

0x187 TO_Z(R_B),LMAR(l),NEXT(FALLTHRU)

0x188 USER_PTB(1),READLO,TO_Z(R_A),LMAR(1),NEXT(FALLTHRU)

0x189 BcopyO WRITELO,INC_TO_Z(R_MAR),L(R_A,LWORD),NEXT(FALLTHRU)

0x18a Bcopyl INC_TO_Z(R_B),L(R_B,LWORD),NEXT.(FALLTHRU)

0x18b DEC_TO_Z (R_C) ,L (R_C, LWORD),NEXT;(FALLTHRU)

0x18c BackupPC DEC TO Z(R PC),L(R PC,LWORD),LMAR(1),NEXT(Fetch)

0xl8d FromSys PRIV(l),CBR(B_NEGATED,FALLTHRU)

0xl8e IO_Z(R_B),LMAR(1),NEXT(FALLTHRU)

0xl8f READLO,TO_Z(R_A),LMAR(1),NEXT(FALLTHRU)

0x190
USER PTB(1),WRITELO,INC TO Z(R MAR),L(R A,LWORD),NEXT(Bcop

0x191 Fault DEC_TO_Z(R_SSP),LMAR(1),NEXT(FALLTHRU)

0x192 TO MDRfR MSW),NEXT(FALLTHRU)

0x193 ZERO_TO_Z,MISC(m!_LEI) ,LMODE(1) ,NEXT(FALLTHRU)

0x194 PUSHLO,NEXT(FALLTHRU)

0x195 PUSHHI,NEXT(FALLTHRU)

0x196 TO_MDR(R_SP),NEXT(FALLTHRU)

0x197 PUSHLO,NEXT(FALLTHRU)

0x198 PUSHHI,NEXT(FALLTHRU)

0x199 TO MDRfR TPC),NEXT(FALLTHRU)

0x19a PUSHLO,NEXT(FALLTHRU)

Ox19b PUSHHI,NEXT(FALLTHRU)

0x19c TOJVIDR (R_A) ,NEXT (FALLTHRU)

0xl9d PUSHLO,NEXT(FALLTHRU)

Oxl9e PUSHHI,NEXT(FALLTHRU)
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Oxl9f TO_MDR(R_B),NEXT(FALLTHRU)

OxlaO PUSHLO,NEXT(FALLTHRU)

Oxlal PUSHHI,NEXT(FALLTHRU)

0xla2 TO_MDR(R_C),NEXT(FALLTHRU)

0xla3 PUSHLO,NEXT(FALLTHRU)

Oxla4 PUSHHI,NEXT(FALLTHRU)

0xla5 rO_MDR(R_DP),NEXT(FALLTHRU)

Oxla6 PUSHLO,L(R_S P,LWORD),NEXT(FALLTHRU)

Oxla7 PUSHHI,NEXT(FALLTHRU)

OxlaS IO_Z(R_PC),L(R_A,LWORD) ,NEXT(FALLTHRU)

Oxla9 rO_Z(R_FCODE),LMAR(1),NEXT(FALLTHRU)

Oxlaa POPHI,NEXT(FALLTHRU)

Oxlab POPLO,NEXT(FALLTHRU)

Oxlac FROM MDR(R PC),LMAR(1),MISC(M CLR TRAP),NEXT(Fetch)

Oxlad Reti TO_Z(R_SP),LMAR(1),NEXT(FALLTHRU)

Oxlae POPHI,NEXT(FALLTHRU)

Oxlaf POPLO,NEXT(FALLTHRU)

OxlbO FROM_MDR(R_DP),NEXT(FALLTHRU)

Oxlbl POPHI,NEXT(FALLTHRU)

Oxlb2 POPLO,NEXT(FALLTHRU)

0xlb3 FROM_MDR (R__C) ,NEXT (FALLTHRU)

0xlb4 POPHI,NEXT(FALLTHRU)

0xlb5 POPLO,NEXT(FALLTHRU)

0xlb6 FROM MDR(R B),NEXT(FALLTHRU)

0xlb7 POPHI,NEXT(FALLTHRU)

0xlb8 POPLO,NEXT(FALLTHRU)

Oxlb9 FROM_MDR(R_A),NEXT(FALLTHRU)

Oxlba POPHI,NEXT(FALLTHRU)

Oxlbb POPLO,NEXT(FALLTHRU)

Oxlbc FROM_MDR(R_PC),NEXT(FALLTHRU)

Oxlbd POPHI,NEXT(FALLTHRU)

Oxlbe POPLO,NEXT(FALLTHRU)

Oxlbf TO_Z(R_MDR),MISC(M_COMMIT),NEXT(FALLTHRU)
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OxlcO POPHI,NEXT(FALLTHRU)

Oxlcl READLO,INC_TO_Z(R_MAR),L(R_SP,LWORD),NEXT(FALLTHRU)

Oxlc2
TO Z(R MDR),L(R MSW,LWORD),LMODE(1),LPAGING(1),MISC(M LEI)
,NEXT(FALLTHRU)

0xlc3 TO_Z(R_TPC),L(R__SP, LWORD),NEXT (FALLTHRU)

Oxlc4 TO Z(R PC),LMAR(1),NEXT(Fetch)

0xlc5 Syscall TO_Z(R_MDR),L(R_A,LWORD),NEXT(FALLTHRU)

0xlc6 MISC(M SYSCALL),NEXT(Unreachable)

0xlc7 Ldcode8 CODE_PTB(1),LDLO,NEXT(FALLTHRU)

Oxlc8 TO Z(R MDR),L(R A,LBYTE),NEXT(Fetch)

Oxlc9 Stcode8 TO Z(R A),L(R MDR,LWORD),NEXT(Stcodelo)

Oxlea Stcodelo CODE PTB(l),STLO,NEXT(Fetch)

Oxlcb Wdpte USER PTB(1),E L(R A),MISC(M LPTE),NEXT(PCtoMAR)

Oxlcc Shlbl6
E L(R B),E R(ER MDR),ALU(OP ADD,WORD,NO CARRY),L(R B,LWORD
),NEXT(Fetch)

Oxlcd Shlal6
E L(R A),E R(ER MDR),ALU(OP ADD,WORD,NO CARRY),L(R A,LWORD

),NEXT(Fetch)

Oxlce Aluopl6_16 LDIMMLO,NEXT(Aluopl6)

Oxlcf Cmpbl6 16 LDIMMLO,NEXT(Cmpbl6)

OxldO Cmpl6_16 LDIMMLO,NEXT(Cmpl6)

Oxldl PCtoMAR TO Z(R PC),LMAR(1) ,NEXT(Fetch)

Oxld2 Vshl COMPARE_0(R_C)>MISC(M_SET_FLAGS),NEXT(FALLTHRU)

0xld3 CBR(B_NEGATED,FALLTHRU)

Oxld4 COMPARE_0(R_MDR),MISC(M_SET_FLAGS),NEXT(FALLTHRU)

0xld5 CBR(B_NEGATEDrFALLTHRU)

0xld6
E L(R MDR),E R(ER MDR),ALU(OP ADD,WORD,NO CARRY),L(R IR RE

G,LWORD) ,NEXT (BcQ.pyl)

0xld7 Vshr COMPARE 0(R C),MISC(M SET FLAGS),NEXT(FALLTHRU)

0xld8 CBR(B_NEGATED,FALLTHRU)

Oxld9 COMPARE_0(R„MDR),MISC(M_SET_FLAGS),NEXT(FALLTHRU)

OxIda CBR(B NEGATED,FALLTHRU)

Oxldb TO Z(R MDR),MISC(M RSHIFT),L(R IR REG,LWORD),NEXT(Bcopyl)

Oxide LeaPC LDIMMLO,NEXT(FALLTHRU)

Oxldd GEN ADDR(R PC),L(R IR REG,LWORD),NEXT(Fetch)

Oxide LeaAAB2 E_R(ER_MDR),E_L(R_MDR),ALU(OP_ADD, WORD,NO_CARRY),L(R_MDR, L
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WORD),NEXT(FALLTHRU)

Oxldf LeaAl
E R(ER MDR),E L(R A),ALU(OP ADD,WORD,NO CARRY),L(R A,LWORD
},NEXT(Fetch)

OxleO LeaBBA2
E_R(ER_MDR),E_L(R_MDR) ,ALU(OP_ADD,WORD,NO CARRY), L(R MDR,L
WORD),NEXT(FALLTHRU)

Oxlel LeaBl
E R(ER MDR),E L(R B),ALU(OP ADD,WORD,NO CARRY),L(R B,LWORD

),NEXT(Fetch)

Oxle2 LeaABA2
E R(ER MDR),E L(R MDR),ALU(OP ADD,WORD,NO CARRY),L(R MDR,L

WORD),NEXT(FALLTHRU)

0xle3
E_R(ER_MDR),E_L(R_B),ALU(OP_ADD,WORD,NO CARRY),L(R A,LWORD
),NEXT(Fetch) .

Oxle4 LeaBAB2
E_R(ER_MDR),E_L(R_MDR),ALU(OP_ADD,WORD,NO CARRY),L(R MDR,L
WORD),NEXT(FALLTHRU)

0xle5
E R(ER_MDR),E L(R A),ALU(OP ADD,WORD,NO CARRY),L(R B,LWORD
),NEXT(Fetch)

Oxle6 CopyMSWA
TO_Z(R_A) ,L (R__MSW, LWORD),LMODE (1) ,LPAGING (1) ,MISC (M_LEI) ,N
EXT(FALLTHRU)

0xle7 NEXT (Fetch:)

Oxle8 Strcopy READLO,TO_Z(R_A),LMAR(1),NEXT(FALLTHRU)

0xle9 WRITELO,COMPARE8_0(R_MDR),MISC(M_SET_FLAGS),NEXT(FALLTHRU)

Oxlea TO_Z(R_PC),LMAR(1),NEXT(FALLTHRU)

Oxleb INC_TO_Z(R_A) ,,L(R_A, LWORD) ,NEXT (FALLTHRU)

Oxlec INC TO Z(R B),L(R B,LWORD),CBR(B NEGATED,BackupPC)

Oxled

Oxlee

Oxlef

OxlfO

Oxlfl

Oxlf2

0xlf3

0xlf4

0xlf5

0xlf6

Oxlf7

Oxlf8

0xlf9

Oxlfa



Oxlfb

Oxl fc

Oxlfd

Oxlfe Unreachable NEXT(Unreachable)

Oxlff UNUSABLE

// ENDPREPROCESS prombits.h
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