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ABSTRACT

Computer is an integral part of human life nowadays and the complexity of computers
grows in parallel with their processing capability. This project will build the basis of
understanding the operation of the central processing unit of a computer by
developing an 8-bit central processing unit from discrete TTL logic ICs. This CPU
will also be used as a teaching aid for Computer System Architecture class in UTP.
By building the CPU discretely, detailed operation of a computer can be understood
from the hardware up to software level. The project discusses detailed elecirical
operation of blocks in the central processing unit mainly the processor. At the end of

the project, a fully working microcomputer was constructed and studied in detail.
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CHAPTER 1
INTRODUCTION

To many end users, the internal workings parts of a CPU are difficult to comprehend.
Computers accelerated economical development as they help to compute and process
data in a way which is unachievable by humans. Societies are very dependent on
computers that computers had become an essential part of human life. Due to this fact,
computers are designed to be more helpful by cramping more features and increasing

their capabilities.

1.1  Background

Computer which is controlled by the central processing unit had been already
available for years. The exact timeline of computers can be traced back to 1950s by
the invention of instruction list which basically list down the operations for an

automated machine.

Today, computers like PCs and Macs are capable of delivering high resolution
graphics and surround sound which has been taken for granted. How many of the
students fully understand the different components like ALU, registers and the
controls which are put together for a computer to function correctly? These machines
are highly complex and it is a challenge to show how all the different components are

assembled to form a functional computer.

1.2 Problem statement

In the view of the previous discussion, teaching Computer System Architecture (CSA)
can be quite a challenge as it involves describing a lot of difficult technical details.

Technical details in a computer systems course can be presented well by using a



suitable teaching platform. This project describes the development of an 8-bit
computer using TTL logic gates as a platform to support the teaching of CSA at
Universiti Teknologi Petronas (UTP).

One of the goals of the CSA course is to explain the role and interaction of the

components of a computer system therefore the teaching platform should have the

following features.
1. A simple model architecture, with an easy to teach and learn instruction set
2. An architecture that can easily be used to demonstrate the relationship

between different components of a computer system.
3.

to learn the “ins” and “outs” of a computer system at gate level, which programming

In addition, the platform should be able to provide the students the opportunity

simulators does not [1].

A major problem in teaching computer architecture courses is how to help students
make the cognitive leap that connects their theoretical knowledge with practical
examples [2]. Different educators involved in teaching computer architecture and
organization have to resolve this problem using a variety of computer system
simulation software [2]. Although these simulators are useful, they however, still do

not provide the students the “ins” and “outs” of a computer system.

"Furidamentals -[.Organization. [ €omp [ Main Memory-
: oftheCPU : L N
= Registers " Sir;gié vs . Representation of | = Memo'f'y = I/0 fundém‘en't'als:
and register multiple integers  (signed, hierarchies handshaking,
file bus unsigned) * Main memory buffering
* Data types datapaths » Basic arithmefic organization = I/O techniques: -
» Instruction '« Pipelined, algorithms for | = Latency, programmed 1/0,
types non- integer  addition, bandwidth, cycle interrupt driven, DMA
» Addressing pipelined subtraction, time, performance j = Interrupt structures:
modes * Control multiplication, and | = Virtual memory vectored and
= Instruction unit: division system prioritized,  interrupt
formats hardwired = Representation of | = Cache memory overhead, interrupts
= Fetch, VS, real numbers = Memory and re-entrant code.
decode, microprogr | = Basic  arithmetic interleaving * Buses: clock, control,
execution ammed algorithms for { » Memoary address and data
cycles realization operations on real technologies busses, arbitration




= J/0O » Arithmetic numbers (SRAM, DRAM, | = Parallel
techniques units = Conversions EPROM, Flash) interfaces
and interrupt implementa between real and |  Reliability ' and | » Timers
tion integer numbers error correction

and

serial

Table 1, Core topics in computer architecture and organization

1.3 Objective and scope of study

As mentioned earlier, the objective of this project is to develop an 8-bit computer

using TTL gates as a platform to support teaching CSA in UTP. This project is

relevant as it only requires basic knowledge of digital systems and microprocessors. A

good working knowledge on digital circuits and practical electrical issues is required

though because circuits in a discrete processor may become complicated and requires

a lot debugging.

In time frame point of view, the project is viewed feasible as there is no major

designing involved. The scope of the project is to build and debug the CPU until it

works as intended and in the process attaining full comprehension of it.

Scope of the project:

¢ Build and test

o]

o]

Q

O

o]

The ALU and registers

The control and instruction sequencing circuit
Memory circuit

Clocks

Devices (Boot ROM, serial ports)

e Optional

O

o

Assembler and

C compiler




CHAPTER 2
LITERATURE REVIEW

A microprocessor executes a collection of machine instructions that tell the processor
what to do. Based on the instructions, a microprocessor performs three basic

operations.

Using its ALU (Arithmetic/Logic Unit), a microprocessor can perform mathematical
operations like addition, subtraction, multiplication and division. Modetn
microprocessors contain complete floating point processors that can perform
extremely sophisticated operations on large floating point numbers. A microprocessor
can move data from one memory location to another and a microprocessor can make

decisions and jump to a new set of instructions based on those decisions.

There may be very sophisticated things that:a microprocessor does, but those are its
three basic activities. Other than that, miicroprocessor comprises of registers as
temporary storage area, buses to transport déta and select memory areas and control
lines to control all the blocks inside the méicroprocessor so that the instruction are

executed correctly [3].

2.1  Page table

A page table is the data structure used by a virtual memory system in a computer
operating system to store the mapping between virtual addresses and physical
addresses. Virtual addresses are those unique to the accessing process. Physical

addresses are those unique to the CPU, i.e.,, RAM.

Say we have a computer architecture where the word size is 32 bits. This means we
are able to form addresses from 0x00000000 to Oxffffffff - spanning 4GB. These



addresses form what is called as the virtual address space. These addresses have no
physical meaning - if we only have 16MB of memory, all addresses above
0x01000000 would be invalid. However, as mentioned, almost all programs do not
use all 4GB of memory when a program runs, but only parts of it at a time. For
example, the text, data, and stack segments may only be used and together only take 1

megabyte in total over the time where it runs.

The chunks as mentioned above are called special names. This 4GB virtual address
space is split up into chunks, commonly 4K in size, called pages. The physical
memory is also split up into chunks, also commonly 4K in size, called frames. A
program's text segment might start at the virtual address 0x00000004 - page number
0x0, and offset 0x4, but in reality, this may correspond to the physical address
0xff0e0004 - frame number 0xff0e, and offset 0x4. What the virtual memory system
does is convert virtual addresses into physical addresses, essentially, mappings

between pages and frames. The page table is used for this purpose.

Many architecture also have direct hardware support for virtual memory, providing
what is known as a translation lookaside buffer (TLB), which is filled with page-
frame mappings initially, and instead of having the virtual memory system entirely in
software, when the hardware looks up a memory address and does the page-frame

translation, which gains us a performance increase.

However, the TLB can only hold a fixed number of page-frame mappings. It is the job
of the virtual memory system to extend this into software, and to hold extra page-

frame mappings. The virtual memory system does so by means of a page table [4].
2.1.1 Role of the page table
Assuming a program is running and it tries to access memory in the virtual address

0xd09fbabe. The virtual address is broken up into two: 0xd09f is the page number and
Oxbabe is the offset, within the page 0xd0Sf.

With hardware support for virtual memory, the address is looked up within the TLB.

The TLB is specifically designed to perform this lookup in parallel, so this process is



extremely fast. If there is a match for page Oxd09f within the TLB (a TLB hit), the
physical frame number is retrieved, the offset replaced, and the memory access can

continue. However, if there is no match (called a TLB miss), the second port-of-call is

the page table.
Virtual Physical
address TLB hit address
— —
TLB
TLB miss
TLB write &
-
Page table hit
.._...-.....» 9
Page Table
Page not
present

Page Table write A

L

Disk

Fig. 1, Actions taken upon a virtual to physical address translation. Each translation is
restarted if a TLB miss occurs, so that the lookup can occur correctly through
hardware [4].

When the hardware is unable to find a physical frame for a virtual page, it will
generate a processor interrupt called a page fault. Hardware architectures offer the
chance for an interrupt handler to be installed by the operating system to deal with
such page faults. The handler can look up the address mapping in the page table, and
can see whether a mapping exists in the page table. If one exists, it is written back to
the TLB, as the hardware accesses memory through the TLB in a virtual memory

system, and the faulting instruction is restarted, with the consequence that the



hardware will look in the TLB again, find the mapping, and the translation will

succeed.

However, the page table lookup may not be successful for two reasons:
e there is no translation available for that address - the memory access to that
virtual address is thus bad or invalid, or

o the page is not resident in physical memory (it is full).

In the first case, the memory access is invalid, and the operating system must take
some action to deal with the problem. On modern operating systems, it will send a
segmentation fault to the offending program. In the second case, the page is normally
stored elsewhere, such as on a disk. To handle this case, the page needs to be taken
from disk and put into physical memory. When physical memory is not full, this is
quite simple, one simply needs to write the page into physical memory, modify the
entry in the page table to say that it is present in physical memory (see the next

section), write the mapping into the TLB and restart the instruction.

However, when physical memory is full, and there are no free frames available, pages
in physical memory may need to be swapped with the page that needs to be written to
physical memory. The page table needs to be updated to mark that the pages that were
previously in physical memory are no longer so, and to mark that the page that was on
disk is no longer so also (and to oﬁ course write the mapping into the TLB and restart
the instruction). This process of swépping pages between physical memory and disk is
known sometimes as, obviously, swapping (though the term is sometimes used to
describe swapping entire processés). This process however is extremely slow in
comparison to memory access via the TLB or even the :page table, which lies in

physical memory. Which page to swap is the subject of page replacement algorithms

[41.
2.2 Universal asynchronous receiver transmitter

A UART or Universal Asynchronous Receiver-Transmitter is a piece of computer

hardware that translates between parallel bits of data and serial bits. A UART is



usually an integrated circuit used for serial communications over a computer or
peripheral device serial port. UARTS are now built into some microcontrollers (for
example, PIC16F877).

Bits have to be moved from one place to another using wires or some other medium.
Over many miles, the expense of the wires becomes large. To reduce the expense of
long communication links carrying several bits in parallel, data bits are sent
sequentially, one after another, using a UART to convert the transmitted bits between
sequential and parallel form at each end of the link. Each UART contains a shift
register which is the fundamental method of conversion between serial and parallel

forms.

By convention, teletype-style UARTs send a "start" bit, five to eight data bits, least-
significant-bit first, an optional "parity" bit, and then a "stop" bit. The start bit is the
opposite polarity of the data-line's normal state. The stop-bit is the data-line's normal
state, and provides a space before the next character can start. In mechanical teletypes,
the "stop" bit was often stretched to two bit times to give the mechanistn more time to
finish printing a character. A stretched "stop" bit also helps resynchronization. The
parity bit can either make the number of bits odd, or even, or it can be omitted. Odd
parity is more reliable because it assures that there will always be a data transitioﬁ,

and this permits many UARTS to resynchronize.

Speeds for UARTs are in bits per second (bit/s or bps), although often incorrectly
called the baud rate. Standard mechanica! teletype rates are 45.5, 110, and 150 bit/s.
Computers have used from 110 to 230,400 bit/s. Standard speeds are 110, 300, 1200,
2400, 4800, 9600, 19,200, 28,800, 38,400, 57,600, and 115,200 bit/s.

The UART usually does not directly generate or receive the voltage levels that are put
onto the wires interconnecting different equipment. An interface standard is used,
which defines voltage levels and other characteristics of the interconnection.
Examples of interface standards are EIA, RS 232, RS 422 and RS 485. Depending on
the limits of the communication channel to which the UART is ultimately connected,
communication may be "full duplex" (both send and receive at the same time) or "half

duplex" (devices take turns transmitting and receiving). Beside traditional wires, the



UART is used for communication over other serial channels such as an optical fiber,
infrared, wireless Bluetooth in its Serial Port Profile (SPP) and the DC-LIN for power

line communication.

Today (2006), UART is commonly used with RS232 for embedded systems
communications. It is useful to communicate between microcontrollers and also with
PCs. Many chips provide UART functionality in silicon, and low cost chips exist to
convert UART to RS232 signals (for example, Maxim MAX232) [4].

2.2.1 Synchronous

The word "asynchronous” indicates that UARTS recover character timing information
from the data stream, using designated "start" and "stop" bits to indicate the framing
of each character. In synchronous transmission, the clock data is recovered separately
from the data stream and no start/stop bits are used. This improves the efficiency of
transmission on suitable channels; more of the bits sent are data. An asynchronous
transmission sends nothing over the interconnection when the transmitting device has
nothing to send; but a synchronous interface must send "pad” characters to maintain
synchronism between the receiver and 'Hahsmiuer. The usual filler is the ASCII

"SYN" character. This may be done automatically by the transmitting device.

Some chips have both synchronous and asynchronous modes. These are called

USART: (for "universal synchronous asynchronous receiver-transmitters™) [4].



CHAPTER 3
METHODOLOGY

Identified this project as a development project following the scheme created by the
CPU designer, the CPU will solely be developed using TTL logic ICs. These logic
ICs are the common digital ICs which are available at the everyday electronic stores.
As the project will need hundreds of digital ICs, wire wrapping technique is viewed as
the most feasible technique because it offers flexibility in construction and it can be
casily reworked during debugging. Wire wrapping is also preferred because it is a fast
prototyping method for circuit without the time required for designing printed cireuit
board.

Parts of the CPU will be divided into functional parts to be mounted on several boards
and later combined on a rack allowing easy access to panels and input output ports for
extension. As was designed, the CPU is concatenated to a few parts installed in cards
form; there are the ALU/register, control, memory, device and front panel card. These
cards not only simplifies construction process but also help to ease project
management as construction can be done card by card ensuring all developed cards

are working before merging them together to be the CPU.

On the software side of the CPU, the assembler is needed to assemble program
written for the machine and ROM burner would be needed to write PROM which
stores the microcode for instruction execution. Other required hardware would be

external hard disk to store larger program and a power supply to power up the CPU.

10



3.1 OVERVIEW

Designed machine is an 8-bit machine with the ability to run 8-bit or 16-bit arithmetic
and logic operation. The 8-bit specification comes from the 8-bit data bus width. Two

length of operation are supported indicates that the ALU can run two different

operand word sizes.

Bit and byte order of the machine is big endian where most significant bit is

numbered as zero and stored first in the memory. External interrupts and DMA is

supported.
| : R m Qag_Bus (8-bits) 5w
Devices ROM (4N$¢:ghi )

!

- Addréds Bug'(@2:bits). . -

Low 11

Fault
Logis

Immediate

MSWiFlags

el

5P

High 11 ¢

Page Table
(18-bit entries)

Low 4

—= PTB |-—ii

PC

-

TPC

MAR

(redrawn from: www.homebrewcpu.com)

Fig. 2, Basic block diagram of the CPU
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3.2 INSTRUCTION SET ARCHITECTURE
3.2.1 Operand Addressing

The machine was initially designed to be a pure one address computer. But in the
design process, the operand addressing mode was slowly converted into a mixed
mode with registers from accumulator was renamed to registef A and other smaller
details for easier compiling. So the operand addressing is not consistent throughout

making this computer not an orthogonal machine.
There are nine visible register in the machine which are:

A - Accumulator. Can be addressed as 8 or 16 bits. Implied target of most operations

and also used as a general load/store base register and memop operand.

B - General load/store base register, plus source operand of ALU ops and memops

and target of some loads. Can also addressed as 8 or 16 bits

C - Special-purpose count register for block moves and variable shifts.

MSW - (machine status word/flags) Alu flags: Carry, Zero, Sign and oVerflow.
Control flags: Mode (0 for supervisor, 1 for user), Paging enable and EI (Enable
Interrupts). Also, following a memory fault, a status bit, Data, will appear in the
saved MSW describing whether the faulting address was referencing the code or data
portion of the page table.

DP - Global data pointer. Most data references are relative to a base.

SP - Stack pointer. Always pushes and pop 16 bits at a time (though doesn't need to
be aligned).

SSP - Supervisor stack pointer. Used when in supervisor mode.

PC - Program Counter

12



PTB - Base of page table for current process in user mode. Supervisor mode base is
hardwired to 0x0000. Note that the address refers to the special page table memory -

not main memory.
3.2.2 Addressing mode
The available memory addressing modes are:

Register Indirect with offset - uint8(A) and uint8(B)
Frame local with offset - uint8(SP) and uint16(SP)
Global with offset - uint16(DP)

Immediate - (PC++)

Push - (--SP)

Pop - (SP++)

33 Microcode

The microcode is stored in five 512x8 bit ROM. The lower half will store the starting
microcode while the upper half contains the continuation microcode. Since this
machine is not a single cycle computer, there will be a continuation or more
instructions after an initial instruction. The redirection to the next microcode index in
the microcode ROM is control by the first eight bit of the microcode store. This eight

bit contains exact memory location where the next instruction is positioned.

With 5 ROMs with each having a byte to contribute to the control line, thgre is a total
of 40 control lines out from the microcode store. There are a total of 256 different
instructions available as the lower half is filled with initial microcode and the ROM is
512 words in size. Full microcode listing can be found in Appendix III. The
continuation microcode address of nine bits is made possible by an encoding circuit
which detects the contents of NEXT field. When the NEXT field contains value but
not all ones, it will become the most significant bit for the full 9-bit microcode

address.

13



Some éncoding circuit is responsible for the redirection of fetch instruction that is
when the NEXT field is all ones. The circuit selects the buffering of IR (instruction
register) from the DBUS into the address of the ROMs — study in further chapter.

u1 u2 U3 U4 us
Bﬁg wl|s = I [0 I .
S g1 _ waz|3 3 b il i sl P RN
o K I - al2 3 3 3 3 3 2 3 3|z 3 3~ & & B 8|2 23 2 3 3 3 3
L S BESO[sZr PPl e g a2 - B|lE & a3 g sle 2 @ 8 2 & @
T3 i faes 8850000 CEBRE 5555333284333 3

Fig. 3, Control lines (output) from the five ROMs

Outputs from the ROMs as in Figure 3 feed directly to a field decoding logic circuit
decoding the outputs to discrete control lines. This is best as the registers are tri-state
output registers so by encoding the controls we can keep a fairly safe bus driving
scheme. As we know that no more than one driver should drive a bus. The decoding
also minimizes amount of control lines as can be observed LATCH filed is a four bit

output where we can select up to 16 registers to be latched.

Furthermore, some of the conditions do not occur at the same time. Such as a branch
instruction does not need to do a right shift to the ALU result at the same time so does
the right shift instruction. This furthermore reduces the number of control line width
but with the cost of decoding circuit. Control field which adopt this concept is the

MISC field which encode control signals which never occur at the same time.

9. .| DMA acknowledge
an latch MSW [ie] (interrupt
' enable)
:i| do branch
| latch MSW[in_trap]
& 5. | commit state

Table 2, MISC field output decoding reducing control bit width
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3.3.1 Microcode sequencer

Each microinstruction has an 8-bit "next" field, which tells which microinstruction

follows,

If (next==0x00), then the next microinstruction address is the 4-bit output of a 16-line
priority encoder ORed with 0x100. The least priority value is the address of the fetch
microinstruction. The other values represent traps and interrupts, and the encoder
value will vector control off to the appropriate interrupt or trap handling microcode.
The fetch line is tied active, and so will take effect if there are no traps or interrupts

pending.

If (next==0x{f), then the next microinstruction address is the value of the IR
(instruction register). In other words, the value of the 8-bit opcode is treated as a

direct index into the microcode store,

Otherwise, the next field is ORed with 0x100 and that value is the address of the next

microinstruction,

Which of the above three cases is used is determined by two control lines -
MISC[INIT_INST] and a logical line which says whether next equals 0x00,

INIT_INST is low active, and is asserted only during the fetch microinstruction.

Next==0x00 normally happens at the end of each sequence of microinstructions
which represents an instruction. However, we also want to interrupt normal execution
in the event of a trap, reset or interrupt. In the interrupt case, we want to recognize
the interrupt only at instruction boundaries. That will happen normally the next time
next == 0x00. For traps and reset, though, the flow needs to be broken immediately -
even in the middle of a microcode instruction sequence. In these cases, there is some
glue logic which will assert the asynchronous clear line of the 8-bit register holding
next and resetting it to 0x00. When that happens, we in effect normalize the
exceptional instruction interrupt events as if they were regular instruction boundaries.
The different microcode vectors for each trap or interrupt case can then handle the

cleanup for any needed state rollback or fault state collection.

15



Conditional microcode branches are handled using the same mechanism as the trap's
next reset scheme. If a conditional microcode branch is indicated and the condition is
not met, next is reset just as it would have been had there been a trap. Care was taken
when writing the microcode to ensure that no traps were possible during a

microinstruction which indicated a conditional branch, so there is no ambiguity.

The conditional logic is handled by computing the various branch conditions based on
the current values of the MSW condition bits. Keep in mind when looking at the
logic is that when a condition is met and the machine instruction branch is taken, that
we do not take the microinstruction branch. The branch microcode is structured so
that if the branch is not to be taken, the microcode sequence aborts before it finished.
If the branch is to be taken, the microcode continues to load the target address into PC
and MAR.

16



CHAPTER 4
RESULTS AND DISCUSSIONS

4,1  ALU card construction and testing

Up until now, the ALU card and control card were constructed with the ALU ICs
substituted with 74181s. This is due to the fact that the 74381 and 74382 ALU ICs
wete nowhere to be found. The substitution was done with construction of a daughter
board for the ALU, this is because the size and pin configuration of 74181 and the

two to be substituted are not the same.

N W/
Bo—{ 1 v
o -2 21—t
At P-Vor  s3-43 22|=B
B2 Lid T 2= I 1] SV
hg—13 L] I T | =82
By—4 74 go-ds 7] =+
Sk B 6By ¢ -7 18}~ B3
i G u-ds ] -
S2-1? K i [ 18}=Cpa
For]8 3I~6  f-dio 151—F
il 2 12p=Fy  Fa—d11 14|-4=8
GHD—q®0 FIE-Fy  gnp-diz 13-F
Fig. 4(a) Fig. 4(b)

(2) pinout of 74381 and (b)74181 which are not compatible physically

Another problem faced is the control lines configuration of the two different family of
ALU. 74381 and 74382 have the same control line configuration as they are meant to
be paired together while 74181 is a more complicated ALU which supports more
functions thus having more control lines to select the function. So beside of just the
ALU ICs, the daughter board will also consists of the decoding logic which will
translate the function select line for 74181. Design of the decoding logic branch back

to what combination logic will be selected by the control card.
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It is observed that there are two control lines which select the ALU function which are
ALUOP and IR. They are connected in such a way so that ALUOP is superior to IR
where with proper selection of ALUOP will choose IR as the function, this is made
possible with the use of 74153 4-to-1 multiplexer. The truth table for the control lines
ALUOP and IR is shown in Table 1.

YCC
_

11| C® gy S2

ALUOp - T2 | 2o

— <o
T4153N
Ui

|3 i . S0

 E— -2a
74153N

Fig. 5, multiplexer circuit to select function of the ALU from ALUOP and IR

0 0

0 1 1 1 0 AB

1 0 0 1 0 A minus B
1 1 0 1 1 A plus B

Table 3(a), ALUOP input and resulting output
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0 R T

1 480 |S3 52 81

2 sub 0 1 0 1 1 1
3 add 0 0 1 1 0 0
4 Xor 1 1 0 0 1 0
5 or

6 and Table 4, truth table for decoding control
7 lines for 74181

Table 3(b), corresponding
operation with IR inputs

From the truth table (Table 3), the decoding circuit was constructed, note that only the
part from ALUOP is decoded not the IR means that the circuit will have some
disability compared to the original. The circuit is constructed just to gain the
confidence on the construction of the circuit. Means that, the ALU will only able to
perform binary addition, subtraction and AND operation for the time being. Resulting
decoding circuit is shown as below after analyzing the truth table with K-map. To
emulate the exact operation of 74381 and 382 will need more complex decoding

circuit and is planned to be done in the future if the ICs are still nowhere to be found.

U1

52 et

| s 53,50
OR2 us
Ot 52
NOT
Uz to 74131
S0 - [}o : 51
NOT
+ i

Fig. 6, designed decoding circuit for 74181
So as the substitute was designed, the ALU card can now be tested for operability.

Testing for the operability requires study into the control lines, identifying buses into

and out of the ALU and storage registers.
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Stated requirements of the test are
s All input, output data lines and control lines are to be interfaced only through
the backplane connectors R and L.
¢ Confirm that the ALU is working
» Confirm that registers input and output lines are working
» Check on the status flags

Flow of data is then recognized to perform the required operation based on the
requirement. The requirements are set so that most of the lines are tested; these are
due to the high level of uncertainty in the circuit which is the wire-wrapping
technique itself, the point to point soldering of the side connectors, the designed
decoder circuit for the ALU and the connections between the card and the ALU
daughter board.

w
T
1.
E

ALU test bed
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schematic diagram of
the ALU card
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The figure presented previously (Fig. 7), shows the scope of the tested card. From the

figure, there are only two busses available at the backplane to input or read data which

is the L and D bus. It is noted here that each block in the schematic have at least one

control line into them. Testing procedure is done by sequencing control lines from the

DBUS into the ALU and storing the result in a register. The details are as follows:

I

10.
I1.

12.
13.

14.
15.
16.

17.

Registers T1 and 12 are cleared (COMMIT = positive pulse)

Immediate value is asserted at DBUS (01100110)

Two-way buffer direction is selected as B to A ( RW = low)

The buffer is then enabled, immediate data on D bus (_DMA_ACK = high)
MUX 2 is set to flow D into register T2 (XL_MDR_LO = high)

Load register T2 with immediate data (L_MDR_LO = positive pulse)

MUX 1 is set to flow D into register T1 (XL MDR_TLO = low, XL. MDR_HI
= high)

Load register T1 with immediate data (L_MDR_HI = positive pulse)

Buffer 1 and Buffer 2 are set to assert both bus R and L with the same content
of bus T as right and left operand into the ALU - 0110011001100110
(_ER_MDR =low, EL MDR = low), content of bus L which is already
connected to LEDs can be viewed

ALU operation is set to ADD (ALUOPO = high, ALUOPI = high)

Use of carry is prohibited (USE_CARRY = low), but in design this line is read
as active low by the substitute ICs, there is é carry in.

ALU operation size selected as 16 bits (ALUOP_SZ = low)

Result is not shifted right by one bit ( DO_RSHIFT = high), result of the
bitwise addition of the same operands with a carry in is now on the Z bus
Result is then stored into one of the registers, selectively register C(L_C =
positive pulse, clock in)

To read the content of register C, first disable the buffering of operand into
bus L by Buffer 2 ( EL MDR = high)

Read the content of register C through bus L ( EL_C = low), result of the
addition can now be viewed through the LLEDs

Reading the flags — only zero flag is connected to the LED in the test
{_SET_FLAGS = low, L MSW = positive pulse)
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4.1.1 Results

Fig. 8, LEDs showing content of L bus

Figure above shows the content of L bus containing 0110011001100110 buffered
from register T1 and T2 which is also the addend and augend of the ALU. Binary
addition is then done with a carry in.

11 1 1 1 1 1 1 1
¢c 11 0 ¢ 1t 10 0 1 1 0 0 1 1 60
+ 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
+ 1 0 0 t 1+ 0 0 1 1 0 0 1 1 0 1

Fig. 9, LEDs on L bus showing result of addition from register C
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Reading from register C where the result is stored confirms the addition operation
concluding the decoding circuit, ALU connections and busses D, T, R, L and Z are

working fine.

4.2  Control card study

On reset, registers U6 — U10 (74273s, Figure 11) that temporarily store microcode are
cleared. NEXT filed is all zeros and circuit that detects NEXT filed content for all
ones asserts a high value (active low output) which forces the multiplexer input B to
be high. Note that B also signifies the ninth bit into the microcode storage to address
the top half of the PROM. Another glue logic checks for NEXT field for all zeros and

forces the multiplexer input A to low.

LHULX L LMK F
b - MEXIT 8 N ¥ T
58] |&2°T BoRR do5f
M52 4153

~| WHE .

3 ) b

s s it
T |

e ¥

Fig. 10, Instruction multiplexer from the schematic

B (also the ninth | A Microcode source
bit to PROM)

0 0 Fault

0 1 | IR (D bus)

1 0 Fault

| 1 NEXT

Table 3, Instruction multiplexing table
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INIT_INST

. r—DBUS

Fault

.detector. ..

. - address

detector

/._ All zeros e /

CLKM

:

NEXT (8 bit)

: (32b|t) ik

Fig. 11, Simplified block diagram of microcode sequencer circuit

With BA = 10, fault circuit is selected as the instruction select. Since the reset button
also clears all faults (0x00 from fault cirquit, please refer to the appendix for faults
and interrupts schematic), no fault is pending and fetch instruction (0x100) is now
driven into the microcode PROMs address after the rising edge of clock (CLKS). On
falling edge of clock, FETCH instruction from the microcode PROM is now clocked
into the temporary registers U6-U10. NEXT field is now all high, 0x{f causing A =
high, and thus putting B to low.

With BA = 01, the multiplexers select IR as instruction select. Right now all control
lines corresponding the instruction has been relayed to the circuit around the control
card. For the fetch instruction, one example microinstruction is incrementing the
MAR. On rising edge of clock, instruction on D bus is clocked into a register (U19 by
INIT _INST line) due to FETCH instruction. And instruction from D bus now is
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driven into the microcode store. Upon falling edge of the clock, selected instruction
from the microcode PROM is now clocked into the temporary registers U6-U10.
NEXT field now would be dependent on the instruction selected.

One clock instruction like NOP (no instruction) would have all zeros NEXT field
which forces A becoming low from the NEXTO glue logic. And B equals high. We
had already met this condition before BA = 10. All zeros NEXT field marks the end
of an instruction and where faults and interrupts are checked and served. If there are

no fault and interrupt pending, FETCH is selected.

For multiple clock cycle instructions, NEXT field would be some value between 0x01
to Oxfe as 0x00 marks instruction boundary and Oxff only called by FETCH
instruction. So NEXT field is neither all zeros nor all ones, circuit detecting both
conditions have active low outputs so both B and A will be high causing NEXT

driven into microcode store (refer to table 5).

The process repeats itself as each instruction is executed. Clocks coordinate devices

clocking data onto busses and execution of instruction.

reset
i i FETCH NOP t  FETCH
| | | | |
MAR  ¢——0—F+—>€— — 2
1 1 ] 1
1 1
!
CLKS |
—%—n h 3 h i J ry \ | —
¢ I ] } T, :
L Interrunt | Original | NOPhas | Original :
pImeTup 1 MAR Incremented only NEXT ; MAR Incremented
| rege | Latch MAR  feldof | ath  MAR
 cooe ! MAR ! FETCH | MAR ,
i No infr = | whichisall |
! FETCH ! Init jnst zero, 0x00 ! Init jnst
R ' ¥ ' ;
i f——
CLKM/
L_MAR1
E A E
: Data on ; . ‘:
| FETGH instruction DBUS clocked | B ] :
! clocked into into U19 ! FETCH instruction '
microcode registers A, clocked
and decoded Instruction in U19
clocked into

microcode registers

Fig. 12, Instructions fetching and execution

26



4.3 Clocks

During the build-up, clocks were studied to further understand how the computer

works. Without clocks, the connected logic will be dead, clocks is needed basically to

change content of registers or flip-flops. With sequentially changing content of

registers, data can be passed through the digital circuits. In this computer, there are

basically two clocks which are CLKS and IOCLK. CLKS and its complement CLKM

are connected to most parts on the control card while the IOCLK clocks the device

and memory card.

vee X1 CLKS I0CLK
— BV O 25 O 25V O 25V
1 U1A
1 ' UzA
4
5 4.7kahm }‘_D L p—
H
o 7ALS00D 2 Lol
o o utB :
Key = Space Rz 4 5 $ [ - 12
H O—ae
AP 3 l
4.7kahm 7415000 Bl
74L 574N
. u2e
106
{{ ~IPR
1 k]
L~ .5 20
1 §
P i
13
boenme——E <3CLR
7415744
Fig. 13, Simplified and simulated schematic of the clock generator
Time (S)
0 2867m 5733m )
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Fig. 14, Clocks waveform with respect to input clock X1



The skewed clock design is important to make sure proper clocking of data from the
devices to other peripherals. Best example would be the enabling of output of the boot
PROM by IOCLK which is active low and data on the D bus is then clocked into the

instruction register at the microcode store circuit by CLKS rising clock edge.
44  Microcode sequencing example

In this example, we will simplify the machine and focus on the basic and most critical
part. So we will never turn paging to ON which will be cleared during reset, this will
map A (address) bus to be the same as MAR, this is done by the memory card (page
table in Appendix II). At the device side, we will only consider mapping ranges for
the boot ROM which ranges from 0x00 until 0x3fff. With paging off, we must make
sure that the MAR value does not exceed 0x3fff or another device will be selected.

Following these assumptions, a simplified block diagram is drawn.

Lbus "
ALU and MDR - ' _.
. " ] i A register“ ___________
% 9 Zbus E
T 'MAR {mermory
Clock | CLKs Co ! address register)
-cireuit” Decoding circuit L

\ D bus “Devigés (booi
PROM)

10CLK - -

Fig. 15, Simplified CPU for the example

Now we consider a very simple program in assembly as follows which assumed to be

burnt into the boot PROM.
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Add Inst

00 35 | add.8 A
01 82 | copy B

This program is a two instruction program but it does not indicate that it can be
completed in two clock cycles. As we already know, this is a complex instruction
machine and not all instructions are done in a clock cycle. Now we will look into the

microcode for these instructions extracted from Appendix TII.

0x35 add.8 A,#1 ; INC_TO %(R MDR),L{R MDR, LWORD),NEXT (Aluop8)
The add.8 instruction is not a one clock cycle instruction because it calls for another

microinstruction in the next field which is Aluop8.

0x112 Aluop8 ;
E L(R_A),E_R(ER_MDR),ALU(OP_IR13,BYTE,NO_CARRY),L(R_A,LBYTFE),MISC(M §
ET_FLAGS) ,NEXT (Fetch)

Aluop8 is the microinstruction needed when doing an 8-bit ALU operation. Means it
is not only called by add.8 but also other 8-bit operations. Only here, the next field is
fetch which marks the end of the instruction. From here we say that add.8 is a two

clock cycles operation as it requires two microinstructions to complete the instruction.

0z92 ccpy B,A ; TO Z(R A),L(R_B,LWORD),NEXT (Fetch)
Copy B,A on the other hand is a one clock cycle instruction because it does not
require another microinstruction to finish the instruction, instead it directly calls the

fetch instruction

As discussed in previous section, at reset, MAR will be cleared yielding all zeros.
Memory card generates the address using the value of MAR produces all zeros for the
address bus too. A little detail were lefi off in figure 12, actually the address registers
at the memory card are clocked a little later than the MAR which is by CLKM.
Meaning that the A bus and MAR bus content are not the same in time base, see
Figure 16. Anyway, these all zeros memory will map to the boot room and the

corresponding content of the address will now relayed onto the D bus.
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The executed FETCH instruction will latch the content of D bus at A = 0x00, which is
0x35. 0x35 refers to the location of microcode in the PROMs. The microcode is
retrieved and stored into the microcode registers (U6 — UL0). Later, the instruction
was decoded to perform the first wave of microinstruction. With the NEXT field
containing 0x12, which is neither all ones nor all zeros making the instruction

multiplexer selecting NEXT as the instruction (Figure 11 & Table 5).

NEXT from the microcode register is buffered directly into the microcode store
(PROM) with the additional bit from B, we have a complete nine bit instruction
address of 0x112. With the same convention as earlier, instruction is clocked into the
microcode registers, instruction decoded and initialized. The NEXT field is now being
considered, with all zeros (0x00) marked the end of the instruction; fetch will be
selected as the next instruction. Fetch will basically increment the MAR so that the
next instruction can be executed. Address bus is clocked half a clock period after
MAR being incremented to ensure proper latching of instruction. MAR already at

(%02, address bus is still at 0x01 and instruction copy B,A now latched into U19.

Instruction done, the next field of copy B,A is fetch where MAR is incremented and

the microcode sequencer looks for further instructions.

reset : TR . S
FETCH |  Adds Aluiops i ‘FETCH[. | CopyBA | ‘FETCH

MAR  i¢——0 —

e —

CLKS

it e, Init jnst Init st st it

CLKM/!
L_MAR1
; Data an Dsﬁ on
Nunlpﬂkemahi'ufﬁon DBUS clocked DBUS cocked
] i clocked jnto Tito U189 ntou1g - .-
micracoca reglaters. In U19 micracode registers “ Instryctiorin U1 Instructiont In 19
and decoded dligked into FETCH Insicuclion - clackad info Hocked Into
microcode docked intc .- fiicyocode FETCH Ingiruction microcode
l5, latehes microcde registers. - - registers, latches clockedinte- . . -reglstérs, latches
address registers : ; acdress microcda rapisk address reg

Fig. 16, Timing diagram for the example
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4.5  Construction Diary

There was not much problem faced during testing of the front panel except for that
some parts were not available and the high frequency crystal clock did not work the
first time. Also a multiplexer IC (74157) was found broken causing the clock not

redirected. Chips which are not available even from the LS family are

74E533 (Octal Transparent Latch with 3-STATE Outputs)
74F534 (Octal D-Type Flip-Flop with 3-STATE Outputs)

Substitutes were designed for the two ICs, realizing that 74533 is the same to 74373
except with inverted outputs and 74534 is the same to 74374 also with inverted
output. 74373 and 74374 are both available and the substitutes were designed by
pairing each with an inverted buffer (74240) at the output. Other functionality of the
front panel card was also tested like the stop clock, variable clock, manual clock, reset

switch and other switches and LED drivers.

=i
i

1

TN YNNI

o
% J 9 03 O Og b
Fig: 17, 74533 logic diagram (from Fairchild semi, 74F533 datasheet)
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o>

Fig. 18, 74373 logic diagram (from Fairchild semi, 74F373 datasheet)

N o, G, 0y o, Cy 0 0,

The first time four of the cards — except the memory card - were installed in the cage
and powered up, there was no sign of life at all except for the clock. When the address
line is at 0x00h which is after reset, device selected to drive the D bus is the boot
PROM. The address lines will not be all zeros without the memory card, so the
address lines were hardwired to ground which means the boot PROM will always be
selected independent from the value of MAR. This modification is necessary as there
is not enough space in the cage to accommodate all the cards due to the ALU

substitute breadboard on top of the ALU card.
4.6  Fibonacci counter test

The CPU can now works with switched-in instruction because there is no program has
been written for it. In order for a program to run, the address lines would need to
sequence itself and basically increments with each instruction execution. This is not
possible until now because the memory card is not installed and it is responsible of
generating the "address Ifrom MAR - the MAR (memory address register) already

increments itself after each instruction.

To further test the CPU, the ALU substitute board was changed to a lower profile
version allowing all cards to be in the cage. A simple program was arranged in
machine language to show that the machine is actually working. Written program is a
Fibonacci counter that counts up the Fibonacci series. Due to hardware limitation
(using registers to store result, which is 16-bit wide), the CPU will only be able to
count up to 65,535 (2°16-1)
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Fibonacci series [3] :

0,1,1,2,3,5,8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,
10946, 17711, 28657, 46368, 75025, ...

The program:

Add Instr Mnemonic Description

00 35 add.8a,#1

01 46 xXor.le AA ={)
02 35 add.8 A, #1
03 52 sex A A=]

04 3e add. 16 A
05 3e add.l16 A
06 3e add.16 A
A
S

I
= 0 N

Pl i

07 3e add.l6
G8 cb copy SP,A

)
16, initialize loop address

09 2a nopd

Da 35 add.8 A, #1
O0b 46 xor.1l6 A
0c 92 copy B,A B
0d 35 add.8 A, #1
Oe ¥ sex A =1
0f Jo]3) copy DP,A DP=1

10 2a nop0

*******************************E‘ibonacci loop*****
11 ba copy A,DP

12 96 copy C,A

13 3f add.16 4,B

14 b6 copy DP,A

15 £2 copy A,C

16 92 copy B,A

17 ba copy A,DP

EE R R R R ERELTEEREEE SRS L RS REREEEEEEEEREEE SRS S

18 fo copy A,SP A=16
19 32 br A MAR=16, copy A into MAR

The Instr column above is burnt into an EPROM as the data corresponding to Add as

address.
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Some of the results:

k] ; \ .
« O O ¢ ¢ @
¢ v H - .
' ‘ ' ' ) ..‘ ’
N ' - ! .
) 1 y [ ;
: EVV}: ‘1 .A‘2 ' .

g o W PR i W

0+ 279 + 215 + 2 + 213 4272 +270 = 1597

W W W i

L =275 +2/3 + 272 + 270 + 278 + 275 = 46368
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4.7  Case and front panel construction

The CPU casing design started immediately after the successful loading of Fibonacci
test. The casing was designed to house the card cage, power supply, front panel and
other peripherals. Connectors available from the backside of the case are the power
cord and the two serial ports. As for the material, it was build with the same material

used for the card cage.

Giving a platform already used to, design commence smoothly but with added
complexity to enhance ergonomics. The front panel side was designed to slant aiding
visibility for the user of the front panel. Casing of the CPU is covered with acrylic

letting observers to view the inside components.
4.8  Machine validation suite

Missing parts mailed by Bill Buzbee arrived just in time (toward finishing touches of
the front panel). So the hard-to-find parts are now available like the 74381 and 74382
(ALU chips), the substitute ALU board is no longer needed now. Other parts included
in the package are SRAM chips for the memory, page table entry, and device space,
UART chips, real time clock chip and HP hex displays.

Proposed next step is to run the validation suite which is a series of tests. The tests
range from basic like instruction tests to advanced tests like branching and memory
tests (more details at www. homebrewcpu.com\validation_suite.htm). All these tests
are written in Magic-1 assembly language, tests result and its description is

summarized in the following table. Then the simple memory test will be discussed.

Test name | Tested operation Result

B 001 Load immediate - 8 bit, no sign extend Pass
nops

B 002 16-bit load immediate Pass

B 003 16-bit load immediate using signed Pass
extended B8-bit immediate

C 001 register to register copy Pass

C 002 lea Pass
all 16-bit offsets vsing SP, A, B, DP and
PC. Targets both A and B

D 001 8-bit memory loads Pass
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D002 16-bit memory loads Pass
D 003 ldclr Pass
E 001 8-bit memory stores Pass
E 002 lé-bit memory stores Pass
E 003 MEMCCPY Pass
E 004 memcopy Pass
F 001 push/pop Pass
G 001 add.8 Pass
G 002 add.16 Pass
G 003 adc a,a Pass

adc a,b
H 001 sub. 8 Pass
H 002 sub.16 Pass
H 003 sbc a,b Pass
1001 and.8 Pass
1002 and.16 Pass
T001 or.8 Pass
1002 or.16 Pass
J 003 Xor.l6 a,a Pass

Xor.16 a,b
L 001 vyshl.1l6, vshr.16, sex Pass
L 002 shl.l6, shr.le Pass
M 001 crp. 8 Pass
M 002 cmp. 16 Pass
O 001 call, return, enter 8, enter 16 Pass
P 001 bset.8 a,mask,d8 Pass

bclr.8 b.mask,d8
P 002 bset.16 a,mask,d8 Pass

: belr.1l6é b.mask,d8

Q 001 br Pass

br.eg

br.ne

br.lt

kbr.ge

br.gt

br.le
Q002 br.ltu Pass

br.geu

br.gtu

br.leu :
R 001 cmpb.eqg.8 a,ulé{dp),e8 Pass

cmpb.eq.8 a,u8(sp),ds

cmpk.eg.8 a,u8({b),ds8

cmpb.eg.8 a,1i8

cpb.eqg-8 a,0

cipb.eqg.8 a,b
R 002 cmpb.ne.8 a,uld({dp),e8 Pass

cmpb.ne.8 a,u8{sp),ds

cmpb.ne.8 a,uB(b),ds

cmpb.ne.8 a,i8

cmpb.ne.§ a,0

cmpb.ne.8 a,b
R 003 cmpb.eq.16 a,uléi{dp),e8 Pass

cmpb.eqg.16 a,u8(sp),ds
cmpb.eg.16 a,uB(b),d8
cmpb.eq.16 a,ile
crmpb.eq.16 a,extiis
cmpb.eq.16 a,0
cmpb.eg.16 a,b
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R 004 cmpb.ne.l16 a,ul6(dp),ed Pass
cmpb.ne.l16 a,u8(sp),d8
cmpb.ne.1l6 a,ug(b),ds
cmpb.ne.l16 a,ils
cmpb.ne.16 a,extiiB
crpb.ne.l16 a,0
cmpb.ne.l6 a b
S 001 cmpb.1t.8 a,uls(dp),e8 Pass
cmpb.1t.8 a,uB(sp),d8
cmpb.1t.8 a,u8(b),ds
cmpb.1lt.8 a,18
crpb.1t.8 a,0
cmpb.1t.8 a,b
S 002 cmpb.le.8 a,ul6{dp),e8 Pass
cmpb.le.8 a,u(sp),ds8
cmpb.le.8 a,u8({b),ds8
cmpb.le.§ a,1i8
cmpb.le.8 2,0
cmpb.le.8 a,b
S 003 cmpb.lt.16 &,ul6{dp),e8 Pass
cmpb.1t.16 a,u8(sp),d8
cmpb.1t.16 a,u8(b),ds
cmpb.1t.16 a,ile
cmpb.1t.1l6 a,extiis
cmpb.lt.16 &,0
cmpb.lt.16 a,b
SOO4 cmpb.le.lﬁ a,ulG(dp):eS Pass
cmpb.le.16 a,ub(sp),ds
cmpb.le.16 a,u8(b),ds
cmpb.le. 16 a,ilé
crpb.le.16 a,extiig
crpb.le.16 a,0
crpb.le.16 a,b
U001 set up page table identical to no paging, | Pass
turn paging on,
do a few simple ops, turn paging off do a
few simple ops. :
U002 from_sys Pass
T 005 ldcode.8, stcode.$B Pass
W 001 sram addressing Pass
Y 002 shladd Pass
Pageon All test with paging on Pass
Usermode |21l test Pass
Memtest Simple memory test Pass
Table 6, validation suite summary
start:
1d.16 a,0
copy pth,a ; set page tabkle base to superviscr
1d.16 b, 0x0000 ; address of low 2K bytes of device xom
1d.16 a,0x8000 + 0x4000 ; flags to set page present,
writeable & device space
wepte a, (b)
wdpte a, (b) ; set up paging for first 2K of rom {i.e.
this code that is running now
1d.1¢ b, 0x2000 ; pick a virtual address to try
1d.16 a,0x8000 + 0x4000 + 0x2000 + 2 ° ; set to present,
writeable, SRAM page #2 [3rd 2K page]
wdpte a, (b)
copy a,nsw
or.l6 a, 0x80
copy msw, a ; turn paging on
1d,16 a,0x5335 ; get a word of data
1d.18 b, 0x9000 ; point to newly mapped space
st.16 0(b},a ; store - should put 0x53 in 0x9000 and
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0x35 in 0x9%001, these in turn should map
to physical SRAM address 4096 and 4097
- [0x1000 & 0x1001]
1d.16 a,0 ; clear cut A

14.8 a,0{b)
cmpb.eq.8a,0x53,goodl
halt ; FAILURE if halted here
goodl: '
1d.8 a,1(p)
cmpb.eq.8 a, 035, good?2
halt ; FAILURE if halited here
good2:
nopC
nopt
nopd ; put some distance bestween fail and pass
to more easily distinguish them
halt ; BASS if halted here

Above is the actual lines in ‘memtest.s” which test the memory by storing data in a
location and later verifying it by reading back the location and comparing it with the
expected value. Pass or fail is observed by looking at the address at which the
program halts, these addresses are listed in the “.Ist” file. In contrary, we can also
check the content of that address (0x1000 and 0x1001) nianually through the front
panel switches which should show 0x53 and 0x35 respecﬁvely, otherwise the CPU
failed the memory test.

4.9  Serial port and terminal interfacing

Passing all tests in the validation suite, confidence level on the operability of the
machine now had increased. Next step is to run the loader program and interface the
CPU to a computer so to view the output and provide a means to load programs into
the CPU.

UART (universal asynchronous receiver/transmitter) chip is the functional unit which
does serial communication with another computer. It is a monolithic IC which is
dedicated to do just that, but before we are able to use it, it had to Bc initialized first
setting up the baud rate, parity bit and etc. As it is a specialized chip, it would be a

sure go given a correct electrical connections and terminal settings.
For the CPU, the serial ports are not only used to issue command to and from the CPU

but also used to transfer program images. For the latter, a high speed connection is

always desired so to reduce waiting time. And for a high speed connection to occur,
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the computer had to have the ability to control the flow of information being
transferred. High a mount of data is allowed only if the computer is able to handle it
and this communication between two computers requires handshaking. Serial
connection.between two computers require the use of null cable modem where data
transmit line from a header is connected to data receive on the other header.

Schematic of the null cable modem with full handshaking used for the communication

is pictured below.
50« +»0O5
50 Q3
“ Ra®
O+ ~—0
Ot 0
O —+0
Ot— 0
S0 0 £y
10— 3

Fig. 19, Full-handshaking null modem cable connection [6]

Successful communication was established after building the correct null cable

modem. A screenshot of the terminal while the CPU boots up is as follows

‘|Master IDE drive_

i CAPS DO, [

Fig. 20, Screenshot of the terminal
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4,10 Performance

Since the machine was not that complete to run the benchmarking program, result
from Bill Buzbee’s benchmarking is included instead. Take note that the comparison
was done to the some of the old machine back in the days, as the CPU is too slow if

compared to computer nowadays.

Magic-1's new Dhrystone benchmark score is 506. To put that in
perspective, here are some historical numbers:

l Machine | CPU | os | score |
lApple lle 165C02 - 1.02 Mhz DOS33 | 37|
L CPM- 180 - 2.5 Mhz CPM-80 91
) v2.2
IBM PC/XT 18088-4.77 Mhz ICoherent || 275
PDP-11/34A  Iw/FP-11C Unix V7m || 449
M-1
Magic-1 Magic-1 - 4.0 Mhz Homebrew 506
oS
Macintosh 512 68000 - 7.7 Mhz g;:sc ROM 625
|IBM PC/AT 80286 - 8 Mhz IVenix/286 | 1254
Unix
VAX TI780 - azp |

Table 7, Magic-l benchmark
As we can see, the original Magic-1 runs at 4MHz. It is in doubt that the clone ¢an run

at 4MHz, this is because some parts are not fast enough compared to what Bill’s used

on his machine,
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CHAPTER 5
CONCLUSION AND FUTURE WORK

Chapter one of this report mentioned that current computer systems are complex and
it would be a challenge to show how all the different components are assembled to
form a functional computer. Hence, this report justifies the decision to build an 8-bit

CPU from TTL logics as a teaching and learning platform for CSA class in UTP.

Chapter three and four of this dissertation describes the development of the CPU from
ground up. The results in these chapters show that a fully functional computer is
successfully completed and full comprehension of it - from gate level - was attained

and documented.
Future Work

Future work need to be done on the computer would be completing the hardware side
by completing the IDE controller. Then the rudimentary operating system designed by
Bill Buzbee can be loaded and programs compiled by the C compiler can be run on
the machine. Until now, programs in C were compiled but limited to be burnt onto the
boot PROM only. Also, as we already have a platform ﬁ) work on, assembler and
compiler can be written for the machine. For the time being, assembler (qas) and the

C compiler (retargeted from LCC) are supplied from the designer, Bill Buzbee.

Next leap would be modifying the CPU at the hardware side, writing new microcode,
increasing the computer’s performance, adding I/0 devices (an input device like the
keyboard or even a VGA driver mayb.e), expand the CPU memory capability. There
are a lot more things to be done to this CPU comparing it to the computers today
(2006).
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APPENDICES

All the five cards pictured together, from top left going clockwise is the ALU/register
card, control card, front pane! card, device card and memory card. The ALY card is
pictured with the breadboard ALU substitute on top.

Bottom side of cmry card sh(;g eme«wrap work
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All cards in the cage with the temporary front panel and boot PROM extension
connecied
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Parts from Bill Buzbee arrived in a parcel, contains the ALU chips, SRAM chips, HP
HEX display, real time clock (RTC) chip, UART chips, digital delay devices and a
- source CD.
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The ALU card now popﬁiated with the exact chips, no more substitute board, ALU
chips courtesy of Bill Buzbee

DoBICEE0 0

vonasaGAGs

Memory'.c‘ai.rd with SRAM chips for memory and page table, a lot of thanks to Bill
Buzbee for the parts
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‘New front panel on the case




Pictured together, Aaron’s stack machine stacked on top of the 8-bit CPU. Standing
from left, Aaron who worked on the Mark 1 Forth computer, Dr Yap our supervisor
and me.

o il ememe et o T ol

' Latest picture of the Q-Bit CPU.
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Select Qperation

Sp 54 Sy :
L L L Clear
H L L B Minus A&
L H L A Minus B
H H L APlusB
L L H AZB
H L H A+B
L H H |AB
H H H Preset

H = HIGH Vollage Levet

L = LOW Witage Leval

74381 and 74381 function select table

Mode Sefect Active LOW Operanda ; Active HIGH Opsrands
Inputs & Fy Qutputs & F Outputs
Logic Arithmetic** " Logle Arithmate*”

s3 sz $1 s (M = H} M=L{Ch= 1) (M= H) {M= 1}(Cp = H}
L L L L A A minus 1 3 A
L L L H B AB minus ‘ATH Ay B
L L H L ATE AB minus 1 AR A+B
L L H H Logle 1 minus 1 ‘lLoge o minisg 1
L H L L A+B Aplus A + B) I AB Aphs AE
L H L H E ABplus{A + B} 3 A + B plus AF
L H H L LY-x:] Amings B minus 4 ‘AeB A mirug B minus 9
L M H H A+B A+B | AB AB minus 1
M L L L Y APus {A + B) ‘A+ B Aplus AS
H L L H AoB Apus B ADHB Aplus B
H L H L B A plus (A + B} ‘B (A + B) plus AB
H L H H A+ B A+B . AB AB minus 1
H H L L Logic 0 Aplus A* * Logk 1 Apius A"
H H L H AB AB plus A A+ B A+ Bjplusa
H H H L AB AT minus A A+B A+ BiplusA
H H H H A A A A minus 1

74181 function select table

Output of the ALU if the result is shifted one bit to the right ( DO_RSHIFT = 0)
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Appendix I - board layouts and backplane pinout
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Appendix II — schematic diagrams from www.homebrewcpu.com
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Appendix I — Microcode listing (extracted from
www homebrewcpu.com/working_microcode.htm)

System Microcode

This page is actually the source code for the M-1 microcode to be used
in the microcode-level simulator, as well as the actual bits to be bumned
into the proms. [t.is processed by extracting the text and processing
with cpp and a Perl script (see the Software page for more details). The
created files are:

#mcode.h - Description of the fields within the microinstruction word.

#®mcode.c - An initidlized array representing the microcode image.

®mcdefs.h - #defines for microcode fields.

#®prombits.h - The initialization declaration for the 512 56-bit
microinstruction words.

#prom0.hex .. prom4.hex - Hex images of the slices of the microcode
store to be fed into the PROM programmer.

#®opcodes.h - Opcode strings.
/1=
// BEGIN mcode.h
/* Define for micro instruction word. Assume I'll be using 512x8 bipolar
* PROMs. This version is gquite a bit more compact than previous cnes,
but at the cost of having addition field decoding logic. Initial plan
is to send these signals across the backplane and do decoding cn the
appropriate card.

Note that the enccding here is getting pretty ugly. I'm trying hard to
keep the microcode store down to 5 PROMS - 16 bits for enable signals,
* 16 bits for latch signals and 8 bits for the next ;field.

typedef struct {

unsigned next:8; // Next micro-op te exec. 0x00 means
// use output of priority encoder, Oxff
// means use IR[0..7]. Also a-significant
// bit of V{IR[0..7]==0xff) to give the full
// 9-bit microcode address.

unsigned latch:4; // Register latch signal. value:
// 0x0 : ncne
// 0x1 : MSW {(flag nibble only, from 2}

/7 0x2  C
// 0x3 : PC
// 0x4 ; DP
// 0x5 : 8P
/7 0x6 : A
/f 087 B

S/ 0x8 : MDR {from 2}

// 0x9 : PIB

// 0xa : [A low placeholder]

// 0xb : [A high placeholder]

// 0xc : [B low placeholder)

// 0xd : [C low piaceholder]

// Oze : [SSP placeholder]

// 0xf ¢ IR REG (IR[5..7]})
unsigned lmar:1l; // Latch MAR

unsigned lmdrlo:l; // Latch MDR{lec) from dbus

unsigned lmdrhi:1; // Latch MDR(hi) from dbus

unsigned emdrlo:l; // Drive dbus with MDR(lo)

unsigned emdrhi:l; // Drive dbus with MDR{(hi)

unsigned priv:1; // Priwviliged instruction

unsigned lmode:1; // Latch (M)ode bit in MSW

unsigned lpaging:1; // Latch (P)aginyg enable bit in M3W
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unsigned misc:4; // Controls signals which never cgcur at the
// same time:
// 0x0 : none
/7 0x1
// 0x2 : halt
/f 0x3 :
// 04 : trap on overflow
// 0x5 : latch PTE
// 0x6 : set flags {from alu op)
// 0x7 : init_inst {clear MDR, PC->TPC, latch IR)
// 0x8 : right shift alu output
// 0x9 : DMA acknowledge
// Oxa : latch MSW[ie] (Interrupt Enable}
// 0xb : do branch
// O0xc : latch MSW[in_trap}
// 0xd : commit state

// Oxe :
// Ozf

unsigned e_l:4; // Enable L bus

// 0x0 : MAR

/7 0xl © MSW

//0x2  C

// 0x3 : PC

// 0x4 : DP

// 0x5 : 8P

// 0x6 B

// 0x7 : B

// 0x8 : MDR

// 09 : PTB

// 0za : SSP

// 0xb : TEC

// Oxre

// Oxd :

// Oxe :

// 0xf : IR BASE (4+IR[6..7]}
unsigned e r:2; // Enable R bus

// 0x0 : MDR

// 0xl : Immediate

// 02 : Fault code/encoder

// 0x3 :
unsigned immval:2; // Immediate wvalue

// 0x0 : O '

/0%l ¢ 1

//0x2 ¢ -2

//0x3 -1
unsigned aluop_size:l; // 0x0 -> 16 bits, 0xl1 -> 8 bits
unsigned aluop:2; // Which alu operation to perform

// 0x0 : IR[1..3]

// 0xl : AND

/f{ 0x2 : SUB

// 0x3 : ADD
unsigned carry:1l; // 0x0 -> 0, 0x1l -> MSW[c]
unsigned 1 _size:1l; // 0x0 -> latch byte, 0xl -> latch word
unsigned br_sense:l; // 0x0 -> don't negate, Oxl -> negate

// Non-negated branch conditions are:

'y 0x0 : eqg

/' 0xl : eqg

Iy 0x2 : 1t

s 0x3 : le

'y 0x4 : ltu

/7 0x5 : leu

/i 0x6 : eq

/7 0x7 : ne
unsigned user_ptb:1; // User page table base override

unsigned code_ptk:l;// 0 to select data region of PTB, 1 for code
} mcode_rec_t;

extern mcode rec_t mcode_store[512];
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// END mcode.h

// e —

// BEGIN mcode.c

/7

finclude "mcode.h™

mcode_rec_t mcode store[512] = {

#include "prombits.h”
}i

// END mcode.c

/ ===

// PREPROCESS prombits.h
// BEGIN mcdefs.h

// Register defines for LATCH{) and EL{)
#define R_MSW 1

#define R C
#define R _PC
#define R_DP
#define R_SP
#define R_A
#define R B
#define R_MDR
#define R _PTB
#define R_SSP

2w o -] Sy O N

0

// Register defines for LATCH({)-only
#define R_NCNE O
#define R_IR REG 15

// Register defines for EL{)-only
#define R_MAR 0

#define R_TPC 11

#define R_FCCDE 12

$define R_IR_BASE 15

// Register defines fcr ER()
#define ER_MDR

#define ER_IMM 1

#define ER FAULT 2

// Defines for IMMVAL{)
#define IMM_O ]

#define IMM 1 1

#define IMM NEGL 3

fidefine IMM NEG2 2

// Defines for MISC()
#define M _NONE O
#define M_SYSCALL 1
#define ™M HALT 2
#define M_BKPT 3
#define M TRAPO 4
fdefine M_LPTE 5

#define M SET_FLAGS 6

#define M_INIT_ INST 7

fdefine M_RSHIFT 8

#define M_DMA ACK 9

fdefine M _LET 10

#define M_DO_BRANCH 11
#define M_CLR_TRAP 12

#define M_COMMIT 13

// Defines for ALUQP(op,size,carry)
fdefine OP_IR13 0
fdefine OP_AND 1
#define OP_SUB 2
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#define CP_ADD
$define WORD
#define BYTE
#define LWORD
#define LBYTE
#define NO CARRY 0
#define CARRY IN 1

L R = I 7]

// Defines for CRR{)
#define B_NORMAL 0
f#define B_NEGATED . 1

// END mcdefs.h
fdefine NEXT_PCs 0

#define LATCH_PCS 1
fdefine LMAR_PCS 2

fdefine LMDRLO_PCS 3

#define LMDRHI_POS 4

#define EMDRLO POCS 5

#define EMDRHI_POS &

fdefine PRIV_POS 7

#define LMODE_POS 8

#define LPAGING_PCS 9

#define MISC POS 10

#define E_L_POS 11

#define E_R_POS 12

fdefine IMMVAL PGS 13

#define ALUOP _SIZE PGS 14

#define ALUOP_POS 15

#define CARRY POS 16

#define I SIZE_POS 17

#define BR_SENSE_POS 18

#define USER _PTB_POS 19

$define CODE PTB_POS 20

#define NEXT(VAL} INIT(NEXT_POS,VAL)

#define LATCH{VAL)} INIT (LATCH_PCS, VAL)
#define LMAR(VAL} INIT(LMAR POS,VAL)

#define LMDRLO (VAL) INIT (LMDRLO POS, VAL)
#define LMDRHI (VAL} INIT(LMDRHI_POS, VAL)
#define EMDRLO (VAL} INIT (EMDRLO POS, VAL)
#define EMDRHI (VAL} INIT (EMDRHI POS, VAL)
#define PRIV(VAL} INIT(PRIV_POS, VAL)

#define LMODE (VAL} INIT (LMCDE_POS, VAL)
#define LPAGING (VAL) INIT (LPAGING_POS, VAL)

#define MISC(VAL} INIT (MISC_POS, VAL)
#define E_L(VAL) INIT(E L POS,VAL)
#define E_R{VAL) INIT(E R_POS,VAL)

#define IMMVAL (VAL) INIT (IMMVAL_POS, VAL)

#define ALUOP SIZE(VAL) INIT (ALUCP SIZE POS,VAL)

#define ALUOP!{VAL) INIT (ALUCP_PQS,VAL)

fidefine CARRY [VAL) INIT (CARRY POS,VAL)

#define L_S8TZE (VAL) INIT (5,_STZE_POS, VAL)

#define BR_SENSE (VAL) INIT (ER_SENSE_POS, VAL)

#define USER_PTB (VAL) INIT (USER_PTB POS,VAL)

#define CODE_PTB (VAL) INIT (CODE_PTB_POS,VAL)

#define CBR{SENSE,TGT) MISC (M DO BRANCH),BR_SENSE (SENSE) , NEXT (TGT)
#define L(REG,SIZE) LATCE (REG) ,L_SIZE (SIZE)

#define USE_IR  Oxff

fdefine READLO LMDRLC({1)

#define READHI IMDRHI (1)

#define READEXT LMDRLO(1),LMDRHI (1)}

#define WRITELO EMDRLO (1)

#define WRITEHI EMDRHI (1)

#define INC TO_ 2 (REG)

E_L{REG),E_R(ER_IMM), IMMVAL{IMM_l),ALU(0?_ADD,WORD,NO_CARRY}
#define INCZ TO Z(REG)

E_L{REG),E R(ER_IMM), IMMVAL{IMM_NEG2),ALU(QP_SUB,WORD,NO_CARRY)
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#define DEC_TO Z(REG)

E L(REG),E R{ER_ IMM),IMMVAL{IMM NEGL),ALU(OP_ADD,WORD, NGO CARRY)
#tdefine ZERC_TO Z
E_L(R MDR},E R(ER_IMM),IMMVAL(IMM 0),ALU(OP AND,WORD,NO CARRY)
#define NEG1_TO 2
E_L{R_MDR),E_R(ER_IMM),IMMVAL(IMM NEG1),ALU(OP_ADD, WORD,NO_CARRY)
#define TO_Z(REG}
E_L(REG),E_R{ER_IMM), IMMVAL(IMM NEGl),ALU(OP_AND,WORD,NO_CARRY}
#define TO_Z8 (REG}
E_L(REG},E_R({ER_IMM), IMMVAL{IMM NEGLl),ALU{OP_AND,BYTE,NO_CARRY}

#define
#define
#define
#define
#define
$define
#define
#define
#define

LDHI READHI,INC_TO Z{(R_MAR),LMAR(I)

LDLO READLG,TC_Z{R_PC),LMAR (1)

STHI WRITEHI,INC_TO_Z(R_MAR),LMAR (1}

STLO WRITELQ,TO Z(R_PC),IMAR(1)

LDIMMHI CODE_PTB(1),READHI,L(R_PC,LWORD}, INC_TO Z{R_PC},LMAR(1)
LDIMMLO CODE_PTB({1),READLO, L{R_PC,LWORD}, INC_TO Z{R_PC},LMAR(1)
LDIMMEXT CODE_PTB(1),READEXT,L{R_PC, LWORD},INC_TO_Z(R_PC},LMAR(1)
GEN_ADDR (BASE} E_L(BASE),E_R{ER_MDR),ALU{OP_ADD, WORD,NO_CARRY)
COMPARE_0 (REG)

E L(REG),E_R({ER_IMM),IMMVAL(IMM 0),ALU (0P SUB,WORD,NO CARRY)
#define COMPARES_O (REG)
E_L(REG),E_R(ER_IMM}, IMMVAL (IMM 0),ALU(OP_SUE,BYTE,NO_CARRY)
#define ALU(OP,S52Z,CRY} ALUOP(OP),ALUOP_SIZE(S5Z),CARRY (CRY)
#define FETCH_OP
CODE_PTB (1), READLO,MISC{M_INIT_INST),INC TO_Z({R MAR),L{R_PC,LWORD},LMAR(1),N
EXT (UNUSABLE)

#define
#define
#dafine
#define
#define
#define

PUSHLO WRITELC,DEC_TO_Z{R_MAR),LMAR (1)
PUSHHI WRITEHI,DEC_TO Z{R _MAR), LMAR (1)
POPLO READLO, INC_TO_Z(R_MAR),LMAR (1)
POPHI READHI,INC_TC Z(R_MAR),LMAR (1)

TO _MDR(REG)} TO_Z(REG),L (R _MDR, LWORD)
FROM_MDR (REG) TC_Z(R_MDR),L{REG, LWORD)

Bottom half of PROM - (starting :point of each instruction, using opcode as
direct index)

MISC (M HALT),DEC_TO Z(R_PC),L{R_PC,LWORD),LMAR (1}, NEXT (Fet

0x00 |halt ;EE)
1d.8: :
0x01 [A,#ul6_u8_10( |; [LDIMMHI, NEXT (Ldag 16)
SP)
0x02 |push C ;|f0_2(R_C},L(R MDR,LWORD},NEXT (Pushl6)
0203 [push PC ;|TO_Z(R_TPC),L(R_MDR,LWORD), NEXT (Pushl3)
0x04 push.DP. ; TOWZ(R_DP)rL(R_MDR,LWORD),NEXT(PushlG)
1c.8
0x05 [B, #ul6_uB_10( |; [LDIMMHI, NEXT (Ldb8 15)
SP)
0x06 Jpush A ;[TO_Z(R_A),L(R _MDR,LWORD) , NEXT (Pushlé)
0x07 |push B ;|T0_Z (R _B),L(R MDR, LWORD), NEXT (Pushlé)
0x08 |br.ne #d16 ; LDIMMHI, NEXT (BrNegated)
0209 |pop MSW ; TC_Z(R_SP),;LMAR{1l),NEXT (Popl6}
Ox0a [pop C ;['C_Z (R_SP),LMARR{1),NEXT {Poplé)
0x0b |[pop EC :[TC_Z (R_SP);LMAR({1l),NEXT (Poplt)
0x0c |[pop DP ; [f0_Z(R_SP),LMAR{1),NEXT (Poplé6)
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0x0d [pop SP ;|T0_Z(R_SP),LMAR(1),NEXT (Poplé)
0x0e [pop A ;T _Z(R_SP),LMAR (1}, NEXT (Popl6)
0x0f [pop B ; IT0_z{R_SP),LMAR (1}, NEXT (Popl§)

ox10 |98 ; [LDIMMHT , NEXT (Lda8 16)

n, #ul6 (DP) ; ¢ —eal o

ox11 [14:8 ; [LDIMMLO, NEXT (Lda8 8)

7, 4u8 (SP) g ' =g3e &
0x12 [1d.8 A,#u8({A) [; LDIMMLO,NEXT (Lda8 §)
0x13 [1d.8 &, #u8 (B) |: [LDIMMLO, NEXT (1da8 8}
ox14 [9:8 ; [LDIMMHI, NEXT {Ldb8 16)

L4 08 #ule (D) : ' 2Ghe 25
ox15 [19:8  [LoTMMno NEXT(Ldbs 8)

3, $uB (SP) i ! MR
0x16 |1d.8 B, #uB(A) |; [LDIMMLO, NEXT (Ldbs 8)
0x17 [1d.8 B, #ug(B) |; LomMLo, NEXT (LdbE 8)
1d.16
0x18 L0 e ey ; [LDIMMHI, NEXT (Ldalé 16)
1d.16
0x16 [n, #uls u8_68 1 |; [LDIMMHI, NEXT (Ldal6 16)
SE)
1d.16

Oxla R, #u8 (3 ; ILDIMMLO, NEXT {Ldalée 8)
1d.16 :

0x1b 400 By ; {LDIMMLO, NEXT (Lda16:8)
1d.16 :

Oxle |2 e opy ; [LDIMMHT , NEXT (Ldbl6. 16)-
14.16

Ox1d [B, #ul6 u8_68( |; [LDIMMHI, NEXT (Ldb16 16)
5P)
1d.16 _

oxle |70 e a : ILDIMMLO, NEXT (Ldb16 §)
1d.16 :

ox1f |54 2 n) ; [LDIMMLO, NEXT (Ldbl6 8)

x20 3908 ; [LDIMMHI, NEXT {Aluop8 indirlé)
&, $#ul6 (DP) ’ !

ox21 |FUB-8 LOIMMLO, NEXT {Aluop8 indir)

H )

He In, #uB (SP) £2U0pY ERCLL
0%22 |push MSW ; [TO_Z (R_MSW} , L(R_MDR, LWORD) , NEXT (Push16)
0x23 [S20-8 LDIMMLO, NEXT (Aluop8 indir)

H
A, $u8 (B) ' 2110p% 10clr
0x24 {sub.8 A, #i8 1 |; [LDIMMLC, NEXT (Aluop8)
0x25 lsub.g A, #1 ; lTNC_TO_z (R_MDR), L{R_MDR, LWORD} , NEXT (Aluop8)
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0x26 jpush SP ; [TO_%(R_SP),L{R_MDR, LWORD} , NEXT { Fush1§)
0x27 |sub.8 A,B ; [fO_Z(R_B),L(R_MDR, LWORD) , NEXT (Alucp8)
0x28 ;u];ﬁig(np) ; [LDIMMHI, NEXT+{Aluopl6 indirl6)

r
70x29 ;uiﬁé?SP) ; [LDIMMLO, NEXT {Aluoplé indir}

I
0x2a [nopl ; INEXT (Fetch)
0x2b f\uﬁﬁ%?m ; [LDIMMLO, NEXT {Aluopl6 indir}

I H
0x2¢ ;uﬁﬁg extis ; [LDIMMHT, NEXT (Alucpl 16)

r .
0x2d ;?iéigia ; [LDIMMEXT , NEXT {Aluop6)
0x2e [wepte A, (B) ; [PRIV(1),TO_Z{R_B),ILMAR (1) ,NEXT (Wcpte)
0x2f |sub.16 a,B ; [f0_Z (R _B),L{R _MDR,LWORD), NEXT (Alucpl§)
0x30 gdi{;ie(np) ; [LDIMMHI, NEXT {Alucp8 indirl6)

r
0x31 ?\diﬁg(sp) ; [LDIMMLO, NEXT {Alucp8 indir)

I
0232 |or A : [[C_Z(R_A),L(R_PC,LWORD), LMAR (1), NEXT { Fetch)
0x33 :d:ég(B) ; [LDIMMLO, NEXT {Alucp8 indir)

I
0x34 ladd.8 A, #1i8_1 |; [LDIMMLO, NEXT (Alucp8)
0x35 ladd.8 A, #1 ; [INC_TG_Z(R_MDR),L{R_MDR,LWORD} , NEXT (Alucp8)
0x36 |add.8 A,A ; [0 Z(R_A),L(R_MDR, LWORD) , NEXT (Alucp8)
0x37 ladd.8 A,B : [f0_Z (R_B),L(R_MDR, LWORD) , NEXT (Aluop8)
0x38 gdi&ig(DP) ; |LDIMMHY, NEXT (Alucplé indirlé}

r
0x39 ;diﬁéé(;sm ; [LDIMMLO, NEXT (Aluopls indir}

f

syscall
0x3a #sys numé ; {LDIMMLO, NEXT (Syscall)
0x3b ;diﬁé?m ; [LDIMMLO, NEXT {Aluopl6 indir)

r
0x3c ;diﬁg extig |f FPTMMHI,NEXT (Aluopl6 16)

’ —_—
0x3d ;d:éiiia ; [LDIMMEXT , NEXT (Alucplé)

r
0x3e |add.16 A, A ; f0_Z(R_A),L(R MDR, LWORD) , NEXT (Alucplé)
0x3f |add.16 A,B : [f0_Z(R_B),L(R_MDR, LWORD) , NEXT (Alucplé)
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cmp. B8

0x40 &, $u16 (DP} ; ILDIMMHI, NEXT (Cmp8 indirlé)

cmp . 8 . o
041 |00 0 sy ; [LDIMMLO, NEXT (Crp8_indir)
0x42 |copy C,B ; lro_z(R_B),L(R_C,LWORD), NEXT {Fetch)

cmp . § . S
0x43 A, $u (B) ; [LDIMMEG, NEXT (Cp8 indir)
0x44 lemp.8 A, #i8 0 |; [LDIMMLO, NEXT (Cmp8)

[E_L(R_A},E_R(ER MDR),ALU(OP_SUB,BYTE,NO_CARRY),MISC (M SET

0245 (cmp.8 A, #0 ' |FLAGSY , NEXT (Fetch)
0x46 [xor.l16 A,A ; [TO_Z (R_A),L(R_MDR,LWORD) ,NEXT (Aluopl§)
0x47 |cmp.8 A,B :[T0_z (R_B),L(R_MDR, LWORD) , NEXT {Cmp$)
oxag |P-16 ; [LDIMMHT , NEXT (Crpl6 indirl6)

2, #ul6 (DP) i ' SEpSo ANCirld
oxag [MP-16 ; ILDIMMLO, NEXT (Cmp16 indir)

A, #uB (3P} 4 / Loplo 1ndir
Ox¢a [sh0add B,A,B |; [TO_Z{R_A),L{R_MDR,LWORD), NEXT {LeaBl)
oxap [CP-16 : [LDIMMLO, NEXT (Cmp16 indir)

n, #08 (B) ; ’ ~RpLb 1ncir

cmp .16
Ozdc A, #116_exti8 |; [LDIMMHI,NEXT (Cmpl6 16)

0
ox4g |CTP-16 ; [LDIMMEXT, NEXT {Cmp16)
S 0n fextig 0 | ’ =0p-2

_[E_L(R_A),E_R(ER_MDR) ,ALU(OP_SUB,WORD,NO_CARRY),MISC (M SET

Oxde Jomp.16 A, 40 i o7 cey, NEXT (Fetch)
0x4f femp.16 A,B ; f0_% (R_B), L(R_MDR, LWORD) , NEXT (Cmp16)
0x50 [°F:8 ; ILDIMMHI, NEXT (Alucp® indirl6)

7, #u16 (DE) i y £oUOp?e INGLEZD
0x51 [°7: 8 : [LDIMMLC, NEXT (Aluop8 indir)

la, #u8 (SP) i ' ALMOPE IDALT
0x52 |sex A : [ro_z8 (R_A},L{R_A, LWORD) , NEXT (Fetch)
0x53 |or.8 A, #uB(B) |; [LDIMMLO, NEXT (Aluop8 indir)
0x54 lor.8 A, #i8_1 |; LDIMMLO, NEXT {Aluop8})
0x55 |or.8 &, #1 ; [INC_TO % (R _MDR},L (R _MDR, LKORD) , NEXT (Aluop8)
0256 [pr.leu #d16  |; [LDIMMHI, NEXT (BxNormal)
0x57 lor.8 A,B : [t0_z(R_B),L(R_MDR, LHORD) , NEXT {Aluop8 }
0x58 |°F:1¢ ; ILDIMMHI, NEXT (Aluopl6 indirl6)

A, $u16 (DP) y ’ B
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cr.l6

0x59 |24 2 1sp) ; {LDIMMLO, NEXT (Aluopl6 indir)
Ox5a [shladd A,B,A |:fT0_%{R_A),L{R_MDR, LWORD), NEXT (LeaABA2)
oxsp 07219 ; [LDIMMLO, NEXT (Aluopi6 indir)
5, #u8 (B)
oxsc [0F;18 . |; LOIMMHI, NEXT {Aluoplé 16)
A, #116 extis8 e =2
oxsa [PF10 ; [LDIMMEXT , NEXT {Aluopl6)
A, Hextis —_—
0x5e Jbr.gtu #d16 |; WDIMMHI, NEXT (BrNegated)
0x5f Jor.16 A,B ; [TO_7 (R_B), L [R_MDR, LHORD) , NEXT (Aluop1s)
oxeo [FN¢-8 ; [LDIMMEI, NEXT (Aluop8 indirl6)
A, $ul6 (DP) )
oxe1 [2R4-8 ; [LDIMMLO, NEXT (Aluop§ indir)
n, #u8 (5P} A1uops indlr
0x62 |shladd B,A,B [:|[TO_Z(R_B),L(R_MDR,LWCRD), NEXT (LeaBAB2)
oxe3 [PRd-8 ; [LDIMMLO, NEXT (Aluop8 indir)
A, #u8 (B) f-uopt indir
0x64 |and.8 A, #i8 1 |; [LDIMMLO, NEXT (Aluop8)
0x65 [and.8 A, #1 ; [INC_TO_Z (R MDR), L (R‘_MDR, LWORD} , NEXT (Aluop8)
0x€é |nopl i NEXT (Fetch)
0x67 |and.8 A,B ; ff0_2Z (R_B) , L (R_MDR, LWORD) , NEXT (Aluop8)
0x68 Z?i&ig(DP) ; LDIMMHI,NEXT(Aluop%G indirig)
0x69 g?géé?sp) ; [LDIMMLG, NEXT (Aluopls indir)
Ox6a [shladd B,B,A |;|[TO_Z(R_A),L(R_MDR,LWORD) ,NEXT{LeaBBA2)
0x6b ;?:ﬁé?a) ; [LDIMMLO, NEXT (Aluop16 indir)
Ox6c ;?iiig_extis ; [LDIMMHI, NEXT (Aluopl6 16)
ox6d :?iéigis ; [LDIMMEXT, NEXT (Aluoplé)
Oxée |strcopy 7 [TO_Z(R_B),LMAR(1),NEXT (Strcopy)
0x6f [and.16 A,B | ['0_%(R_B),L(R_MDR, LWORD} , NEXT (Aluopl6)
ox70 |82 ; LOIMMHI, NEXT {Ldak 16)
A, $ul6 (DP) 2CdR =0
ox71 [182 ; [LDIMMHI, NEXT (Ldah 16)
A, #u16 (SF) SEER 28
0x72 {lea A,#ulé(a) |; [LDIMMHI, NEXT (Ldah 16)
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0x73 |Lea R, #ul€(B) | [LDIMMHI,NEXT (Ldaa 16}
o0x74 |82 ; [LDIMMHI, NEXT (LdaB 16}
B, $ulé (DP) acab 16
ox75 [1%2 ; [LDIMMHI, NEXT (LdaB 16}
B, $ul6{5P) 2825 29
0x76 |Lea B, #ul6(A) |; [LDIMMHI, NEXT (LdaB 16}
0x77 |lea B,#ul6(B) |; [LDIMMHI,NEXT (LdaB 16}
0x78 |1d.8 A, #us ; [LDIMMLO, NZXT (L&iA8)
0x79 |1d.8 B, #%us ; [LDIMMLO, NEXT (LdiB8)
0x7a i?#igtis_ule ; [LoTMMERT, NEXT (Ldial6)
0x7b é?;#iztie_uls ; [LDIMMEXT, NEXT (LdiB16)
Ox7c |1d.16 A,#ulé |[; |[LDIMMHI,NEXT (LdiR16 lo)
0x7d [1d.16 B,#ul6 |; [LDIMMHI,NEXT |LdiB16 lo)
0x7e |adc.16 A,A  |; [TO_Z(R_A),L{R MDR,LWORD}, NEXT (Adcl6)
0x7f |ade.16 A,B [;[TO_Z(R_B),L{R_MDR, LKORD) , NEXT {Adcl6)
0x80 |call #d16 7 [TNC2_TO_2 (R_PC) , L (R_MDR, LWORD) , NEXT {CallTmm)
0x81 ;?#ig(sp) ; LDIMMLO, NEXT {Ldal6 8)
0x82 |call A ; [P0_Z(R_PC),L{R_MDR, LHORD) , NEXT (Call’)
0x83 [or #d16_d8 ; [LDIMMHT , NEXT (Re1BrLo)
0x84 [sbr #d8 ;LDIMMEXT,NEXT(ggigE)
0285 é?#ig(SP) ; [LDIMMLO, NEXT {Ldb16 8)
0x86 |2 ; LDIMMHI,NEX&(LeaPC)
A, #uls (PC) e
oxg7 {82 ; [LDIMMHI , NEXT { LeaEC)
B, #ulé (BC) ' e
0x88 |copy A,MSW  |; [fO_Z(R_MSW),L(R_A, LKORD) , NEXT (Fetch)
0289 br.eqg #dle s ILDIMMHI , NEXT {BrNormal)
0x8a |reti ; PRIV (1), NEXT (Reti)
0z8b |trapo ; MISC (M_TRAPO) ,NEXT {Fetch)
0x8cC ];\,S;;;zgka,#da ; ILDIMMLO, NEXT (Bset8)
oxgd [PoiE-8 ; LDIMMLO, NEXT (Bclr8)

A, #masks, #d8
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bset .16

0x8Be A #mask16, #ds | LDIMMHI, NEXT (Bset 16}
r r
0x8f z?#;éi§16 4ag |7 [FDTMMHI, NEXT (Belrlé)
cmpb.eg.8
0x90 [A, #ul6(DP), #d |; [LDIMMHI, NEXT (Cmpb& indirls)
2
cmpb . eqg. 8 s
0x91 %, 5uB (SP}, #d8 ; [LDIMMLO, NEXT (Cmpb8 indir)
I r
0x92 |copy B,A :[TO_% (R_A}, L (R_B, LWORD) , NEXT { Fetch)
crpb.eq.8 C
0x93 [N R haqg | [LPTMMLO, NEXT (Cupb8 indir)
cmpb.eg. 8
0x%4 | %ig o pag | [PDIMMLO, NEXT (Crpb8)
r _Mr
0x95 ;mig'zgéa :[T0_2 (R MDR}, L{R_MDR, LHORD) , NEXT {Cmpb8 }
r 1
0x96 [copy G, A :[TO_% (R_A},L{R_C, LWORD) , NEXT {Fetch)
0%97 ;mgb#gg'a :[To_Z (R_B),L(R_MDR, LWORD) , NEXT {Cripb8 }
? !
cmpb.eqg.l16
0x98 [B, $ul6(DP}, #d |; [LDIMMHT, NEXT (Crpb16 indirl6)
8
0x99 ;ﬁizéigéis#da ; [LDIMMLO, NEXT (Cmpb16 _indir)
r I
0x9a |copy A,B ;PO % (R_B),L(R_A, LWORD) , NEXT {Fetch)
0x9b zﬁﬁﬁéigilids ; [LDIMMLG, NEXT (Cmpb16 indir)
r I
crpb . eq. 16
0x9c |A, $116_extif |; [LDIMMEI, NEXT (Cmpbl6 16)
0, 4as
crpb . eq.16
0x9d [B, $exti8 0, #d |; [LDIMMEXT, NEXT (Crupbl6)
8
cmpb.eqg. 16
029¢ |5 4o yas ;[T % (R_MDR), L (R_MDR, LWORD) , NEXT (Capb16)
lcmpb . eq. 16
ox9z [ MO o :T0_z (R_B), L (R_MDR, LWORD) , NEXT (Cmpb16)
r r
cmpb.1t.8
0xa0 &, #ulé (DP), #d |; FLDIMMAT, NEXT (Cmpb8 indirls)
8
0xal ;@iﬁé%;é? 4qg |/ [POTMMLO, NEXT (Cmpb8 indir)
r r
0xza2 |[shOadd A,A,B |; {TO_Z(R_B},L(R_MDR,LWORD),NEXT (LeahAl)
0xa3 [FPB-1C.3 ; LDIMMLO, NEXT (Cmpb8_indir)

B, #uB (B), #d8
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cmpb . 1t. 8

Oxa4 A,#iS_G,#dB # [LDIMMLO, NEXT (Cmpb8 }
cmpb.1t.8 .
0xa5 [ %0 kae i [FO_Z (R_MDR},L(R_MDR, LWORD) , NEXT {Cmpb8 )
Oxab [br.lt #dlé ; [LDIMMHI,NEXT (BrNormal)
Oxa7 [CTPP-1t.8 ; [T0_Z (R_B), L (R_MDR, LWORD) , NEXT { Crapb8)
A, B, #48 == —
cmpb.1lt.16
0xa8 |A, #ulé (DP}, #d |; [LDIMMHI, NEXT (Crpblé indirlé)
8
cmpb.1lt.16 . R
0xa9 A, #u8 (SP}, #d8 | LDIMMLO, NEXT (CmEblﬁ indir}
Oxaa [shladd A,A,B |; (TO_Z(R_B),L(R_MDR,LWORD),NEXT {LealAB?Z)
cmpb.1t.16 . N
Oxab 8, 4#u8 (B), #d8 i [ILDIMMLO, NEXT (Crpblé indir)
cmply . 1t.16
Oxac A, #i16 exti8, |; [LDIMMHI,NEXT (Cmphl6 16)
#d B
cmpb.lt.16 .
Oxad A, fextig, #d8 | LDIMMEXT , NEXT {Cmpb16)
Oxae |br.ge #dlé ; [LDIMMHI, NEXT (BrNegated)
cmpb,1t.16 .
0xaf o % aus i |l0_% (R_B) ,L(R_MDR, LWORD) , NEXT (Cmpb16)
crmpb.le.8
0xb0 [A, #ul6 (DP}, #d [; LDIMMHI, NEXT (CmEbB indirlg)
8
cmpb, le. 8 ) s
Oxbl R, 4u8 (SPY, #d8 | LDIMMLO, NEXT (Cmpb8 indir)
0xb2 [sex B ;[T0_Z8({R_B},L(R_B,LWORD),NEXT (Fetch)
cmpb.le.8 . s
0xb3 2, flus (3}, #d8 ;7 [LDIMMLO, NEXT (Cmpb8 indir)
cmpb.le.$§ )
0xh4 A, 418, 4d8 7 [LDIMMLO, NEXT (Cmpb8 }
Oxb5 lbr.le #dl6 ; ILDIMMHI, NEXT (BrNormal}
0xb6 |copy DB, A ;[TO_Z(R_A),L(R_DP,LWCRD), NEXT {Fetch)
cmpb.le.8
0xb7 ;{TO Z(R B),L{R MDR,LWCRD),NEXT (CmEbB)
n, B, #d8 - —
cmpb.le.16
Oxb8 [A, #ulé (DP), #d |; LDIMMHI, NEXT (Cmpblé indirlé)
8
cmpb . le.16 . -
0xbh9 A, BB (SP}, #d8 | LDIMMLQ, NEXT (Cmpbl6 indir}
Oxba |copy A,DP i [TC_Z (R_DP},L(R_A,TWCRD) ,NEXT {Fetch}
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{cmpb. le.16

Oxbb I, $us (B, #d8 7 [LDIMMLO, NEXT {Cmpbl6 indir)
cmpb.le.l6
Oxbc A, #116 extiB, |; [LDIMMHI,NEXT {Crnpblé 16)
#d8
cmpb.le.lé .
0xbd A, bextis, #d8 | LDIMMEXT , NEXT (Cmpblﬁ_)
Oxbe |br.gt #dle6 ;7 [LDIMMHI, NEXT {BrNegated)
oxpr [FEP-Le. 16 ;[F0_Z(R_B),L(R_MDR, LWORD} , NEXT { Crph16)
2, B, #d8 - - —
0xcO [br.geu #dlé ; [LDIMMHI, NEXT {BrNegated)
st.8
0xcl [#ul6_u8_10 (SP |; [LDIMMHI, NEXT (Sta8 16)
YoB
Oxc2 Ishl.16 A i [TC_Z(R_A) ,L(RﬁMDR,LWORD) yHNEXT {Shlalf)
0xc3 {shr.16 A i [TO_Z(R_A) MISC (M_RSHIFT),L(R_A,LWORD),NEXT (Fetch)
Oxcd |shl.16 B ;TC_Z(R_B),L{R_MDR, LWORD) ,NEXT {3hlbl5}
st.8
Oxc5 [#ulé_u8 10({SP (; [LDIMMHI,NEXT (Stb8 16)
}+B
0xc6 {shr.1o B i [TO_Z(R_B),MISC{M RSHIFT),L(R_B,LWORD},NEXT (Fetch)
0xc7 |xor.16 A,B ;TC_Z(R_B},L(R_MDR,LWORD) ,NEXT (Aluoplé}
0xc8 Jcopy PTB,A i PRIV (1), TO_Z(R_A},L{R_PTB, LWORD), NEXT (Fetch)
st.16
0xc9 #ulé uB 10(SP |; [LDIMMHI,NEXT {Stal6 1§)
P
Oxca jcopy MSW,A ; [PRIV{1) ,NEXT {CopyMSWA)
Oxckb lcopy SPB,A ;|ITC_Z(R_A),L.(R_SP,LWORD),NEXT (Fetch)
1d.16 . .
Oxce C, boxtis uls | LDIMMEXT, NEXT (LdiC16)
st.16
Oxcd #ulG_uS_lO(SP ; |LDIMMHI, NEXT (Stbhl6 186)
)IB
Oxce [Ld.16 C,#uls |; [LDIMMHI,NEXT{1diC1l5 lo)
Oxcf pr.ltu #dlé6 ; |ILDIMMHI, NEXT (BrNormal)
oxao [55:6 ; [LDIMMHI, NEXT (Stag_18)
#ul6 (DP),A ’ ' ===t o=
oxdl 58 ; [LDIMMLG, NFXT (Stag §)
#us (SP) A f RATASLET O
0xd2 {st.8 #uB8(A),A |; [LDIMMLO, NEXT (Sta8 8)
0xd3 |st.8 #u8(B},A |; [LDIMMLO, NEXT (Stag 8)
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st.B

oxds fio 2 by s ; LDIMMHI, NEXT {Stb8 16)
st.8
0xd5 [fo2ion) b ; [ILDIMMLO, NEXT (5tb8 8)
0xd6 |st.8 #uB{A),B |; [LDIMMLO, NEXT (Stb8 8)
0xd7 |st.8 #u8(B),3 |; [LDIMMLO, NEXT (3tb8 8)
0xd8 zziéinp) . | [ommmI, NExT (stals 16)
!
0xd9 iﬁé%gp) N ; [LDIMMLO, NEXT (Stal6 8)
r
Oxda iﬁé%i) N ; [LDIMMLO, NEXT (3talé 8}
r
Oxdb ;Eé%g) A ; [LDIMMLO, NEXT (Stalé 8)
1
t.16
Oxde ;ulﬁ(DP) 5 [pomeMET, NEXT (3£b16 16
!
0xdd iﬁé%gp) 5 ; [LDIMMLO, NEXT (Stb16 8}
r
Oxde iié%g) 5 ; [LDIMMLO, NEXT ($tb16 8)
’
Oxaf ;Eé%g) 5 : ILDIMMLO, NEXT (Sthl6 8)
’
0xe0 id‘?;?e' 8 ;IT0_Z(R_B),LMAR (1}, NEXT (Ldcodes)
r
Oxel |[hop2 ; NEXT (Fetch)
Oxe2 ?;Toge.a ; [T0_Z(R_B),TMAR (1}, NEXT (Stcodes)
I
Oxe3 nop3 ; [NEXT (Fetch)
Oxed ;;Zi;els g ; [LDIMMEI, NEXT (Enter)
Oxe5 |enter #fsizef |; NEG1_TO_Z,LATCH(R MDR) ,NEXT (Enter}
0xe6 |vshl.16 A ;[0 2 (R_A),L(R_MDR,LWORD) , NEXT{Vshl}
0xe7 |vshl.16 B ; [P0_2 (R_B),L(R MDR,LWORD) , NEXT{Vshl)
Oxe8 Imemcopy ; |COMPARE 0 (R_C),MISC (M SET_FLAGS),NEXT (Bcopy)
0xe9 ltosys ; [PRIV (1), COMPARE 0 (R C),MISC{M SET FLAGS),NEXT (ToSys)
Oxea |fromsys ;|PRIV(1}),COMPARE _O(R_C),MISC(M_SET_ FLAGS),NEXT (FromSys)
Oxeb |ldelr.8 &, (B) | [TO_Z(R_Bj,LMAR(1),NEXT{LdClr)
Oxec lwdpte A, (B) ; [PRIV{1),TO_Z(R_B),LMAR(1l),NEXT (Wdpte)
Oxed isbc.16 A,B ;{TO_Z (R B},L{R_MDR, LWORD), NEXT (Sbcl6)
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Oxee [vshr.le A ;iT0_Z(R_A},L{R_MDR,LWORD),NEXT (Vshr)

Oxef [vshr.l6 B ;TO0_Z(R_B),L(R_MDR, LWORD), NEXT (Vshr)

cmph . ne . §
02£0 |A, #ul6 (DP), #d |; [LDIMMHT, NEXT (Cmpb8 indicl6)
]

copb. ne . § ; [LDIMMLO, NEXT (Cmpb8 indir)

OXZ1 b 4us (sp), #ds |/

0xf2 |copy A,C

T0 Z(R_C),L(R_A,LWORD),NEXT (Fetch)

crpb.ne.8 . o
0xf3 n, #us (B), #d8 | LDIMMLO, NEXT {Cmpb8 indir)

crpb.ne. 8

O0xE4 In 4ig 0,4a8 |

LDIMMLO, NEXT (Cmpb8)

oxfs [CPP-ne-B ; [T0 Z (R MDR),L(R MDR,LWCRD), NEXT {Cmpb8}
A, #0, 3d8 SCALE = LIpbo

0xf6 |copy A,SP ; [T0_Z{(R_SP),L(R_A, LWORD) , NEXT {Fetch)

Oxg7 [CPP.ne.8 :[r0 2 (R B),L(R MDR,LWORD), NEXT {Cmpbi)
n, B, $d8 _2(R_ = tmpod
cmpb.ne. 16

0xf8 A, #uls (D), #d |; LDIMMHI,NEXT(CmEblG indirle)
8

loxgo [CTPb-ne.16 : [LDIMMLO, NEXT (Cmpb 16 indir)

A, #uB (SP), #d8 |

Oxfa [bkpt 7 MISC(M_BKPT),NEXT {(Unreachable)
cmpb.ne.1é . ‘

0xfb 5, §us (B), §d8 | LDIMMLO, NEXT (Cmpbl6 indir)
cmpb.ne.l6

Oxfc [A, #116 extif |; [LDIMMHI, NEXT (Cmpblé 16}
0, #d8
cmpb.ne.l6

Oxfd [A, #exti8_0, #d |; [LDIMMEXT, NEXT (Cmpbl6)
8

Oxfe {CMPD-DE-16 ;ITC 7% (R MDR),L{R MDR,LWORD),NEXT (Cmpbl§)
n, #0, #d8 S — HIPO2D
0xff cmgb#zg‘le ; IP0_Z(R_B),L{R_MDR, LWORD} , NEXT (Cinpb16)
r r

Top half of PROM - continuation microcode,

0x100 |Fetch ;[FETCH_OP

0x101 |IRQ5 ;[TO_Z{R_MAR),MISC (M _COMMIT},NEXT {Fault)
0x102 |IRQ4 ;{T0_Z(R_MAR) ,MISC (M_CCMMIT) ,NEXT (Fault)
0x103 [IRQ3 :[T0_Z (R_MAR} ,MISC (M COMMIT) ,NEXT (Fault)
0x104 [TIRQZ ;ITO_Z (R_MAR) ,MISC(M_COMMIT),NEXT (Fault)
0x165 |IRQL ;iT0_E(R_MAR),MISC(M_COMMIT),NEXT (Fault)
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0x106 |IRQO :fT0_2 (R_MAR) ,MISC (M_COMMIT) , NEXT (Fault)
0x107 [DMA_req ;MISC(M_DMA_ ACK),NEXT (Fetch)
0x108 |[Fault_syscall [;|TO_Z(R_MAR) MISC (M _COMMIT) ,NEXT (Fault}
0x109 ;
0x10a |Fault_ovflo [;[TO_Z(R_MAR),L(R_BC, LWORD) , NEXT (Fault)
0x10b |Fault_priv ;TO_Z (R_MAR),L(R_PC, LWORD) , NEXT (Fault)
0x10c [Fault_bkpt  [;|TO_Z (R_MAR),L(R_EC, LWORD) , NEXT (Fault}
0%10d [Fault nw }[f0_% (R_MAR) , L {R_BC, LWORD) , NEXT (Fault)
0x10e [Fault_np ;[TO_Z (R_MAR}),L(R_PC,LWORD),NEXT (Fault}
0x10f ;
0x110 [nluop8_indir |//GEN_ADDR(R IR BASE),LMAR{1),NEXT (FALLTHRU)
0x111 ;|LDLO, NEXT ( FALLTHRU)
J[E_L(R_A),E R(ER_MDR),ALU{OP_IR13,BYTE,NO CARRY},L(R A,LBYT
0x112 (lucps "IE},MISC (M_SET_FLAGS) , NEXT (Fetch)
0x113 élHOPB—lndlrl ;JLDIMMLO, NEXT (Alucp8_indir)
0x114 |Aluopl6_indir [;|GEN_ADDR(R; IR_BASE},LMAR (1}, NEXT (FALLTHRU)
0x11i5 ;ILDHI, NEXT (FALLTHRU)
0x116 HLDLO, NEXT ( FALLTHRU)
T
JE_L(R_A),E:R{ER_MDR),ALU(OF_IR13,WORD,NO_CARRY),L (R_A, LWOR
0x117 iAluopl6 D}, MISC (M_SET_FLAGS) ,NEXT (Fetch)
ox118 TP RN Ly b0, NEXT (ALuopl€ indir)
0x119 [cmp8_indir  [;|GEN_ADDR(R: IR_BASE),LMAR (1}, NEXT (FALLTHRU)
Oxlla ;|LDLO, NEXT ( FALLTHRU)
|E_L(R_A),E.R{ER _MDR),ALU(OP_SUB,BYTE,NO_CARRY),MISC{M SET
0x11b (Crp8 /IFLAGSY , NEXT (Fetch)
Ox1lc [Crp8_indirlé |;[LDIMMLO, NEXT{(Cmp8 indir)
0x11d |[Cmpl6_indir ;GEN_ADDR(R;IR_BASEd,LMAR(l),NEXT(FALLTHRU)
0xlle ;|LDHT , NEXT { FALLTHRU)
0x11f /|JLDLO, NEXT (FALLTHRU)
JE_L(R_A),E R(ER_MDR),ALU{OP_SUR, WORD, NC_CARRY) ,MISC(M_SET_
02120 [Cmp16 "|FLAGS), NEXT (Fetch)
0x121 [Cmplé _indirlé ;LDIMMLO,NEXT(CmQM indir)
0x122 |cmpb8_indir  [;|GEN_ADDR(R_IR_BASE) , LMAR (1) ,NEXT (FALLTHRU)
0x123 ;|LDLO, NEXT ( FALLTHRU)

81




E_L(R A),E_R{ER_MDR},ALU(CP_ SUB,BYTE,NO_CARRY),MISC(M SET

Ox124 [Cmpb8 fIFLAGS) , NEXT {CheckBr)
0x125 [cmpb8_indirlé |;|[LDIMMLO, NEXT (Cmpb8 indir}

0x126

Cmpbl6é_indir

’

;|sEN_ADDR (R_IR_BASE),LMAR (1), NEXT { FALLTHRU}

0x127 +|LDHI , NEXT ( FALLTHRU)
0x128 :{LDLO, NEXT { FALLTHRU)
05129 [cmpb16 JF_L{R_A),E_R{ER MDR),ALU(OP_SUB,WORD, NO_CARRY) ,MISC(M_SET_

FLAGS) , NEXT (CheckBr)

Cmpblé_indirl

Ox12a |- ;|LDIMMLO, NEXT (Cmpbl6 indir}

0x12b |CheckBr ;LDIMMEXT,QER{B_NORMAL}TakenBr)

0x12c [TakenBr ;ia?fiﬁigii?jgéigTﬁgiééﬁLU(OP_ADD,WORD,NO_CARRY),L(R_PC,LWO

0x12d |BrNormal ;LDIMMLO,CBR(B_NORMAL,TakenBr)

0x12e [BrNegated ;LDIMMLO,CB?tB;NEGATED,TakenBr)

ox12f [Bsets ;EiiégT?;éi%ﬁéizgfgigé%?U(OP_AND,BYTE,NO_CARRY),MISC(M_SET_

0x130 |[CheckBrNeg ;LDIMMEXT,CBR(B&NEGATED,TakenBr)

0x131 [Belrs ;giiégTéﬁéiéﬁéﬁzgggii,ALU(OP_AND,BYTE,NO_CARRY),MISC(M_SET_

0x132 Bsetlé ;LDIMMLO,NEXT(FALLTHRU)

0x133 ;E_L(RﬁA),E;R(EB_MDR),ALU(OP_AND,WORD,NO_CARRY),MISC(M_SET_
FLAGS) , NEXT {CheckBrNeg)

0x134 [Belrlé ;LDIMMLO,NE%T(F?LLTHRU)

0x135 ;E_L(R_A),E;ﬁ(E?aMDR),ALU(OPWAND,WORD,N07CARRY),MISC(M_SET_
FLAGS} , NEXT (CheckBz)

0x136 [Pushlé ;DECWEOMZ(RLéP);ZMAR(l),NEXT(FALLTHRU)

%137 FE?ITELO,DEb;ToLZ(R_MAR),LMAR(l),L(R_SP,LWORD),NEXT(FALLTHR

0x138 ;WRITEHI,TO;?(R;PC),LMAR(I),NEXT(EEEEE)

Cx139 [Poplé ;LDH;,NEXT(FALL¢HRU)

ox13a ;READLO,INCLTOJZ(R_MAR),L(RﬂSP,LWORD),LMAR(l),NEXT(FALLTHRU
) .

0x13b ;To_z(R_MDR),L(E_IR_REG,LWORD),NEXT(FALLTHRU)

0x13c {TO_2(R_PC);,LMAR (1) ,NEXT (Fetch)

0x13d [Lda8_8 ;|GEN_ADDR (R TR BASE),LMAR(1),NEXT (FALLTHRU)

0x13e | ;|LDLO, NEXT (FALLTHRU}

0x13f ;[Tc_Z (R MDR},L{R_A,LBYTE) ,NEXT (Fetch)
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0x140 [Ldag_186 ;[LDIMMLC, NEXT (Lda8 8)

0x141 [Ldb8_8 ;|GEN_ADDR (R_IR_BASE),LMAR{1),NEXT (FALLTHRU)
0x142 ;|ILDLO, NEXT ( FALLTHRU)

0x143 ;|TO_2 (R_MDR),L(R_B,LBYTE) , NEXT (Fetch)

0x144 [Ldb8_16 ;[LDIMMLO, NEXT (Ldb8 8)

0x145 [Ldals 8 ;|GEN_ADDR (R_TR_BASE) , LMAR (1) , NEXT (FALLTHRU)
0x146 ;LDHI,NEXT(EALLTHRU)

0x147 ;|LDLO, NEXT (FALLTHRU)

0x148 j[T0_Z{R_MDR},L(R_A,LWORD),NEXT (Fetch)

0x149 lLdals 16 ;[LDIMMLO, NEXT (Ldalé 8}

0x14a [Ldblé 8 ;[GEN_ADDR (R_IR_BASE},LMAR(1),NEXT (FALLTHRU)
0x14b ;|[LDHI, NEXT { FALLTHRU}

Oxldc ;LDLO,NEXT{FALLTHRU)

0x14d ;|ITo_z(R_MDR}, L(R_B, LWORD) , NEXT {Fetch)

Oxl4e [Ldblé_16 ;[LDIMMLO, NEXT (Ldb16 8§)

0x14f |sta8 8 ;|GEN_ADDR (R, IR_BASE}, LMAR (1)}, NEXT { FALLTHRU)
0x150 ;[t0_Z (R _A),L{(R_MDR,LWORD},NEXT {FALLTHRU)
0x151 [staLo |8TLO, NEXT (Fetch)

0x152 |stag_16 J[LDTMMLO, NEXT (Stag )

0x153 |Stalse_8 ;GEN_ADDR(R;IR%BASE),LMAR(l),NEXT(FALLTHRU)
0x154 ;TO_Z{R_A),i(RWMDR,LWORD),NEXT(FALLTHRU)
0x155 ;|STHI, NEXT (StaLo)

0x156 [Stalé6_lé ;LDIMMLO,NE%T(StalG 8}

0x157 {3th8_8 ;\5EN_ADDR (R, IR_BASE) , LMAR (1) , NEXT (FALLTHRU}
0x158 ;TO_Z(R_B),;(R_MDR,LWORD),NEXT(FALLTHRU)
0x159 |StbLo ;|STLO, NEXT (Fetch)

0xl5a [3thB_16 ;|LDIMMLO, NEXT (Stb8 8)

0x15b [Stbl6_8 ;GENﬁADDR(R;IR_BASE),LMAR(l),NEXT(FALLTHRU)
0x1S5c ;ITO_Z(R_B},L(R_MDR, LWORD) , NEXT (FALLTHRU)
0x15d ;|STHI, NEXT (StbLo)

0x15e [Stbls_16 /[LDIMMLO, NEXT (Stb16 8)

ox15F [Sbels ;E#L(R_A),E;R(ER_MDR),ALU(OP_SUB,WORD,CARRY_IN),L(R_A,LWORD

) MISC(M SET_FLAGS),NEXT (Fetch)
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0x160 baacie ;?Tiéga?gigﬁﬁigiigg?j&QigEg;gig?,WORD,CARRY_IN),L(R_A,LWORD
0x161 [LdaA_16 ;|LDIMMLO, NEXT (1dah}

02162 ILdah ;|GEN_ADDR(R_IR BASE),L{R_A, LWORD} , NEXT {Fetch)

0x163 [LdaB_16 ;[ILDIMMLO, NEXT (LdaB)

0x164 [LdaB ;|GEN_ADDR(R_IR BASE),L(R_B, LWORD!,NEXT (Fetch)

02165 [Ldins :lr0_2 (R_MDR),L.(R_A,LBYTE) , NEXT (Fetch}

0x166 [LdiB8 i[f0_z (R_MDR),L(R_B,LBYTE) , NEXT (Fetch)

0x167 [LdiRl6 lo ;[LDIMMLC, NEXT { LdiA16)

0x168 [LdiAl6 :fr0 Z(R MDR),L(R A,LWORD),NEXT (Fetch)

0x169 [LdiB16 lo ;[LDIMMLO, NEXT {LdiB16)

0x16a [LdiB16 ;|ro_2(R_MDR), L{R_B, LKORD} , NEXT {Fetch)

0x16b [LdiC16_lo ;|[LDIMMLO, NEXT { LdiC16)

0x16¢ [LdiC16 ;ff0_%(R_MDR), L{R_C,LHORD} , NEXT (Fetch)

0x16d [RelBrLo ;[LDIMMLO, NEXT (RelBr)

0x16e [RelBr J|GEN_ ADDR (R_PC), 1. (R_PC, LWORD) , LMAR { 1) , NEXT { Fetch)

0x16% [cailTmm }|DEC_TO_2 (R_SP), LMAR (1) , NEXT (FALLTHRU)

0x170 ;ﬁ?ITELO,DEC_TO;Z(R_MAR),LMAR(l),L(R_SP,LWORD),NEXT(FALLTHR
0x171 JMRITEHT, TO 7 (R_PC), LMAR (1), NEXT (FALLTHRU)

0172 j[EDIMMHI, NEXT (FALLTHRU)

0x173 ALDTMMLO, NEXT (FALLTHRU)

0x174 :(GEN_ADDR(R_PC), L(R_PC,LWORD}, LMAR (1} , NEXT (Fetch)

0x175 |calla ;DEc_To_Z(R;SPf,LMAR(l),NEXT(FALLTHRU)

k176 ;g?ITELO,DEt_Td_ZtR_MAR),LMAR(l),L(R_SP,LWORD),NEXT{FALLTHR
0x177 ;FRITEHI,TOTZ(R_AJ,L(R_PC,LWORD),LﬂAR(l),NEXT(EgEgﬁ)

0x178 {LdClr ;|READLO, NEXT ( FALLTHRU}

02179 /|ro_7 (R_MDR), L(R_A, LBYTE) , NEKT (FALLTHRU)

0x17a JWRITEHI, TO_Z (R_EC) , LMAR (1), NEXT (Fetch)

0%175 MWepte ;?SER_PTB(l),CODEMPTB(l),E_L(R_A),MISC(M_LPTE),NEXT(PCtoMAR
Oxi7c [Enter ;[LDIMMLO, NEXT { FALLTHRU)

0x17d :{SEN_ADDR(R_SP),LMAR (1), NEXT (FALLTHRU)

0x17e :lTo_2(R_SP),L{R_MDR, LWORD) , NEXT { FALLTHRU)}
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0x17£

DEC TO_ Z(R_MAR},LMAR(1)},NEXT {FALLTHRU)

WRITELO,DEC TO Z(R_MAR),IMAR{1),L(R_SP, LWORD),NEXT (FALLTHR

pxlBO ;U)

0x181 ;WRITEHI,TO_%(R_MAR),L(R_SP, LWORD) ,NEXT { FALLTHRU)

0x182 ;{T0_7{R_PC), LMAR (1} ,NEXT {Fetch)

0x183 [Beopy :|cBR (B_NEGATED, FALLTHRU)

0x184 ;[ro_z{R_B),TMAR (1}, NEXT ( FALLTHRU)

Ox185; ;[RERDLO, TO_Z({R_A},LMAR (1), NEXT (Bcopy0)

0x186 {ToSys ;[PRIV(1),CBR (B_NEGATED, FALLTHRU)

0x187 ATO_z (R_B) , LMAR (1) , NEXT ( FALLTHRU)

0x188 ;|USER_PTB(1) ,READLO, TO_Z (R_A} , LMAR (1) , NEXT (FALLTHRU)

0x189 [Beopy0 JWRITELO, INC_TO_ZR_MAR} ,L(R_A, LWORD) , NEXT ( FALLTHRU)

0x18a [Bcopyl /[INC_TO_2(R_B), L (R_B, LWORD} , NEXT { FALLTHRO)

OX18D ;DEC_TO_Z(E_C),L(R_C?LWORD),NEXT?FALLTHRU)

0x18¢c [BackupkC j|PEC_T0_a.(R_PC), L(R_EC, LWORD) , LMAR (1) , KEXT (Fetch)

0x18d [FromSys [PRIV (1), CBR(B_NEGATED, FALLTHRU)

0x18e ;TO_Z(RMB),LMAR(I&,NEXT(FALLTHRU?

0x18f ;READLO,To;Z(R_A);LM?R(l),NEXT(F%LLTHRU)

05190 ;USER_PTB(l),WRITELOEINC_TO_Z(R_&AR),L(R_A,LWORD),NEXT(QEQE
L) |

0x191 |Fault /DEC_TO_z (R_SSP) , LMAR{1) , NEXT (FALLTHRU)

0x192 ;TO_MDR(R;M$W),NEXT(?ALLTHRU) '

0193 ;ZERO_TO_Z,QISC(M;LE§),LMODE(l),ﬁEXT(FALLTHRU)

02194 ;PUSHLO,NExi(FALLTHRb) '

0x185 |PUSHHT, NEXT { FALLTHRU)

0x196 ;TO_MDR(R_SP),NEX&(F?LLTHRU)

0x197 ;PUSHLo,NExT(FALLiﬁaﬁ)

0x198 /[PUSHHI, NEXT (FALLTHRU)

0x199 ;IT0_MDR (R_TEC) , NEXT { FALLTHRU}

0x1%a ;|[PUsHLO, NEXT (FALLTHRU)

0x19b :|PUSHHT, NEXT (FALLTHRU)

0x19c TG MDR (R A) ,NEXT { FALLTHRU)

0x19d ;|{PUSHLO, NEXT ( FALLTHRU)

0x19e ;|PUSHHT , NEXT ( FALLTHRU)
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0x19f ;[TO_MDR{R_B}, NEXT { FALLTHRU)

0x1a0 ;[PUSHLO, NEXT (FALLTHRU)

0xlal ;|PUSHHI, NEXT (FALLTHRU)

0xla2 ;[TO_MDR {R_C),NEXT (FALLTHRU)

0xla3 ;|PUSHLO, NEXT (FALLTHRU)

0xla4 ;|PUSHHI, NEXT (FALLTHRU)

0zlas ;[l0_MDR{R. DP} , NEXT ( FALLTHRU)

Oxlag ;PUSHLO,L(R_SP,LWORD),NEXT(FALLTHRU)
Oxla? ;|PUSHHT, NEXT (FALLTHRU}

0xla§ ;TO_Z(R%PC),L(R_A,LWORb),NEXT(FALLTHRU)
0x1a9 ;[TO_Z (R_FCODE), LMAR (1} , NEXT { FALLTHRU)
0xlaa i[POPHI, NEXT (FALLTERU)

Dx1ab /|POPLO, NEXT (FALLTHRU)

Dxlac ;|FROM_MDR(R_PC), LMAR (1) ,MISC(M_CLR_TRAP}, NEXT (Fetch)
Oxlad [Reti ;TO_Z(R_SP),LMAB(lj,NExT(FALLTHRU)
Oxlzae ;POPHI,NEXT(FAL@THEU)

Oxlaf ;POPLO,NEXT(FAL@THRU)

0x1b0 ;FROM_MDR{R_DP);NEgT(EALLTHRU)

0x1bl ;POPHI,NEXT(FAL?TH%U)

0x1b2 ;POPLO,NEXT(FAL?TH%U)

0x1b3 ;FROM_MDR(R_C),SEX%(FALLTHRU)

0x1b4 ;POPHI,NEXT(FALLTH%U)

0x1b5 ;POPLO,NEXT(FALiTHﬁU)

0x1b6 ;FROMLMDRWR?B),NEXﬁ(FALLTHRU)

0x1b7 ;POPHI,NEXT(EAL;THQU)

0x1b8 ;POPLO,NEXT(FALLTH%U)

0x1b9 ;FROM_MDR(R_A),ﬁExT(FALLTHRU)

Ox1lba ;|POPHI , NEXT ( FALLTHRU)

0x1bb ;|POPLO, NEXT { FALLTHRU)

0xlbe :|FROM_MDR (R_PC),NEXT { FALLTHRU)

0xlbd ;|POPHT, NEXT { FALLTHRU)

Oxibe ;|POPLO, NEXT ( FALLTHRU)

0xibE ;[[0_Z{R_MDR),MISC(M_COMMIT), NEXT (FALLTHRU)
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0x1c0 ilpoPEI, NEXT (FALLTHRU)

0xlcl ;[READLO, INC_TC_Z (R_MAR),L{R_SP, LWCRD) , NEXT { FALLTHRU)

0x1c2 [FO_2 (R_MDR} , L (R_MSW, LWORD) , LMODE (1) , LBAGING (1} ,MISC (M_LEI)
, NEXT ( FALLTHRU)

0xlc3 ;[TO_Z (R_TPC},L(R_SE, LWORD) , NEXT ( FALLTHRU}

0x1c4 ;It0_Z (R_PC},LMAR (1), NEXT {Fetch)

0xlcs [Syscall ;|TG_% (R_MDR), L (R_A, LWORD) , NEXT { FALLTHRU)

0xlcé iMISC(M_SYSCALL) ,NEXT (Unreachable)

0xlec? |Ldcodes ;JcObE_PTB (1), LDLO, NEXT (FALLTHRU)

0x1c8 ;{rO_% (R_MDR), L (R_A, LBYTE) , NEXT {Fetch)

0x1cY |Stcode8B ;|TO_Z (R_A}),L{R_MDR, LWORD) ,NEXT (Stcodelo)

Oxlca [Stcodelo }ICODE_PTB(1),STLO,NEXT (Fetch)

0xlcb [Wdpte jlUSER_PTB{1),E_L(R A),MISC{M LPTE},NEXT (PCtoMAR)

oxloc [Shible ;?Tﬁéia?géggngR_MDR),ALU(OP_ADD,WORD,NO_CARRY),L(RMB,LWORD

oxled lsniale ;?Tﬁéifﬁéézgg;Eﬁ_MDR),ALU(OP_ADD,WORD,ND_CARRY),L(RWA,LWORD

Oxlce Aluoplé 16 ;[LDIMMLC, NEXT (Alucplb)

Oxlcf [Cmpblé_16 JJLDIMMLO, NEXT (Cmpbl16)

0x1d0 [Cmpl6_16 +JLDIMMLO, NEXT {Cupl86)

0x1dl |[PCtoMAR ;TO_Z(R_PC),LMA#(l),NEXT(EEEEQ)

0x1d2 |{vshl ;COMPARE_O(R_C);MISC(M_SET_FLAGS),NEXT(FALLTHRU)

0x1d3 ;CBR(B_NEGATED,?ALLTHRU)

Ox1d4 ;COMPARE_O(R_MD?),MISC(M_SET_FLAGS),NEXT(FALLTHRU)

0x1d5 ;CBR(B_NEGATED,%ALLTHRU)

s 1ds ;E_L(R_MDR),E_Q(ER_MDR),ALU(op_ADD,WORD,No_CARRY),L(R_IR_RE
G, LWORD) , NEXT (Bcopyl)

0x1d7 [Vshr ;[coMPARE_0 (R_C)T,MISC {M_SET FLAGS),NEXT (FALLTHRU)

0x1d8 ;CBR{B_NEGATED,fALLTHRU)

0x1d9 ;|COMPARE 0 (R_MDR),MISC(M_SET_FLAGS) , NEXT (FALLTHRU)

0xlda ;/|CBR (B_NEGATED, FALLTHRU)

0x1db ;|TO_2 (R_MDR),MISC (M RSHIFT),L(R_IR_REG, LWORD), NEXT (Bcopyl)

Oxlde |LeaPC ;[LDIMMLO, NEXT { FALLTHRU}

0xldd ;[GEN_ADDR(R_FC), L(R_IR_REG,LWORD},NEXT{Fetch}

Oxlde [LeaRRB2 ;E_R(ER_MDﬁ),E;L(R_MDR),ALU(OPWADD,WORD,NO_CARRY),L(R_MDR,L
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[WORD) , NEXT (FALLTHRU)

0x1df Meahl ;?Tﬁégingi;é?_L(R_A),ALU(OP_ADD,WORD,NO_CARRY),L(R_A,LWORD

0x1e0 lLeaBBAZ ’quaié??ﬁgii )( ,Fiiiéiﬁig?R) ¢ ALU (OP_ADD, WORD, NO CARRY),L(R_MDR,L

0xlel ILeaBl ;?Tﬁéiingigé?_L(R_B),ALU(OP_ADD,WORD,NO_CARRY),L(R_B,LWORD

0xla? |[LeaABA2 :E%aié??ggﬁ )( ,Fiiiégﬁgﬁl)]R) (ALU{OF_ADD,WORD, NO_CARRY),L(R_MDR,L

0xle3 ;E_R(ER_MDR),E_L(R_B),ALU(OP_ADD,WORD,NO_CARRY),L(R_A,LWORD
)« NEXT (Fetch)

0x1led [LeaRAR? réagéi)ﬂljﬁ[;;?‘}( %‘giill(lgﬁﬁgm) yALU{OP_ADD,WCRD, NO CARRY),L(R_MLR,L

0xle5 ;E_R(ER_MﬁRb,E_L(R_A),ALU(OP_ADD,WORD,NO_CARRY),L(R_B,LWORD
)+ NEXT (Fetch)

0x1e6 |CopyMSWA ; Eg‘f?éiﬁigﬁié?ﬂbﬁsw, LWORD) , LMODE (.1)  LPAGING(1l),MISC(M LEI) ,N

Oxle’? JNEXT (Fetch)

OxleB |Strcopy ;READLO,To;é(R;A),LMAR(l),NEXT(FALLTHRU)

Oxle9 ;WRITELO,COMPAKES_O(R_MDR),MISC(M_SET_FLAGS),NEXT(FALLTHRU)

Oxlea HTO0_Z{R_PC), LMP;iR {1} ,NEXT (FALLTHR;U)

Oxleb ;INC_TO_Z(R_A)AL(R_A,LWORD),NEXT*FALLTHRU)

Oxlec ;/|[INC_TO Z (R_B) ,L (R_B, LWORD}, CBR(;E_NEGATED,BackuEPC)

Oxled | .

Oxlee

Oxlef

0x1£0

0x1fl

0x1£2 }

0x1£3 :

Ox1f4 ;

0x1f5 ;

0x1f6 ;

0x1E7 ;

0x1£8 H

0x1f9 ;

O0x1lfa ;
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0x1fb H

Oxlfc ) E

Ox1fd 7

Oxlfe |[Unreachable ;[NEXT (Unreachable)

0x1ff [UNUSARLE ;

// ENDPREPROCESS prombits.h
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