CHAOS AND PUBLIC KEY INFRASTRUCTURE (PKI)

By

CHEW JUN YEE

DISSERTATION

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfillment of the Requirements
for the Degree
Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Supervised by:
Dr Varun Jeoti
Dr Abdul Hug b. M. Abdul Wahab

JUNE 2004

Universiti Teknologi Petronas
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Chaos & Public Key Infrastructure

by

Chew Jun Yee

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

I

(Dr Varun Jeotiy™

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

June 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am respensible for the work submitted in this project, that the
original work is my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

[P

CHEW JUN YEE

ABSTRACT

The emergence of chaos theory promised a new era in the field of cryptography as
the propertics of a chaotic system are exploited. Many studies have been done in this
area, in which various schemes employing chaotic systems have been proposed.
Schemes ranging from different aspects of chaotic systems to the both symmetric and
asymmetric encryption arc published. However, according to [1], the author
suggested a more comprehensive insight into both chaotic systems and cryptography
algorithms is needed before doing any design to avoid having a “both weak and slow
ciphers”. The author of [1] has a published work entitled “Public-key Encryption
Based on Chebyshev Maps” [2] and this is utilized as the core of a new public key
encryption scheme. The new scheme proposed here is “Public-Key Encryption based

on Logistic Map” which employs many similar concepts as [2].

A thorough study on various polynomials has been conducted and implementation on
MATLAB has been done which includes conventional public key encryption scheme
such as RSA algorithm. It is continued with the implementation of {2] to test for its
workability in MATLAB platform. A major problem faced in this implementation
has been solved while implementing the new logistic map scheme. Consequently, the
new scheme is able to provide higher precision, thus higher security level, although
at the price of the performance. Most importantly, however, is the proof of the
workability of the whole new scheme. The project thus concludes with comparison of
the new public key scheme based on logistic map with RSA algorithm on MATLARB

platform.

ACKNOWLEDGEMENT

I would like to take this opportunity to thank my supervisor, Dr Varun Jeoti for his
great supervision and selfless help. He has been providing me with useful advices
and guidance to lead this project into completion. Thank you for being understanding

and patient with me.

I would also like to express my deepest gratitude to Ms Easwari Sivanandan for her
amazing help, discussion and moral support throughout the whole project. She is my
partner doing on symmetric chaotic encryption, and has been providing me with

technical help in the same area. Thank you for being supportive and understanding.

Thank you to Dr Abdul Huq b. M. Abdul Wahab for his help in programming; Mr
Ong Boon Leong for his references in starting in cryptography; any other lecturers or
people for any of their direct or indirect help to me throughout the project.

Last but not least, thank you to both of my parents for their moral support without

which I would have great difficulties in finishing this project.

il

TABLE OF CONTENTS

LIST OF TABLES ..ottt stcsnssss st s s sas s st asa s v

LIST OF FIGURES ..ottt sttt s e sasss s smns s ssseinnes vi
CHAPTER 1 INTRODUCTIONeiiiciireeei ettt s sns s sssssessesnsssass 1
1.1 Background of Study ..c.cooeoviiivvinirmeceee e 1

1.2 Problem Statement........cccomerreieimrrenine e ie e s 2

1.3 Objective and Scope of Study........oovviiveiree 2

CHAPTER 2 THEORY ...oovitiiiivreesi vttt s ssasesnss s nsasss s sbass s sssnssass e 4
2.1 Cryptography Fundamentals........coccoceiiiniionirenenenenienisieneeenns 4

2.1.1 Public Key Encryption (Asymmetric Encryption)................... 4

2.1.2 Public Key Infrastructure (PKI)}.......ccooovivniiiiimniiiiinn 5

2.1.2.1 Cryptographic Hash.......ccoooviveriinccniiiiinne e 6

2.1.2.2 Digital Signature.........cocorveeeociminiinirnnineniseneie e 6

2.1.2.3 Digital Certificateoovouiimiiiivinrirereiee e 6

2.1.2.4 Non-repudiation......cccoiiierecevinanmiiniinneens oo 7

2.2 Chaos TREOTY ... 7

2.2.1 Chaotic Mapscccceeviiinieniierieeereierit s 7

2.3 Chaos-based Cryptographiy.........ccvvvmivreerreremcerceinisi s 8

2.3.1 Chebyshev Polynomial of the First Kind................coni 9

2.3.2 Other Polynomials and Maps........cccocvuevivnmneneeeiiisnninas 9

2.3.3 Chebyshev Polynomial of the Second Kindccuevveecennens. 9

2.3.4 Bessel Polynomial..........cccooonveniiiiininsncicscesseninennn 10

2.3.5 Legendre Polynomial ... 10

2.3.6 Laguerre Polynomial...........ccccoocimimnmnnnniiiessnsnnnn 10

2.3.7 TN AP ..ecvv e et s ssssa s 10

2.4 LoGIStC MAP oottt 12

CHAPTER 3 METHODOLOGY ..ottt e rssss s sesna s sessesnses 15
3.1 RSA Algorithm (Public Key Scheme)...........cooovvvemvreeeecciiainnn 15

3.1.1 Koy Generationcocoiiveninimnnienienienernsnnns s s s 15

3.1.2 Message ENcryption ... oo 15

3.1.3 Message Decryption.......ccccoiiiniiinnininninnnneesn e 16

3.2 Algorithm for Public-Key Encryption Using Chebyshev Maps..... 16

il

3.2.1 K&y Generationcccovuvvriiiiiecimesensssissenssnsnsnesssnssnsssssnnaens 16

3.2.2 Message ENCIyptioncccoiviiiiinninsisssssnisnssssnneeseceninne 16
3.2.3 Message Decryplion....ccccicnvvneniiinie s 17
3.3 Public Key Encryption Scheme Based on Logistic Map................ 18
3.3.1 Key GENerationcocvcievecunerinnisisresernsssvinne e abasees s 18
3.3.2 Message ENCryplion..........c.ocomimniinnnreimnenenreersisss e 18
3.3.3 Message Decryption......cecieniineeneee e 18
3.3.4 Implementation on MATLAB......ccoiiiicen, 19

CHAPTER 4 RESULTS & DISCUSSION......cccovmnininiisisssssssssnnssssanen 21
4.1 MATLAB Implementation of RSA & AES Algorithms (Hybrid

O£ 1311) SO O OO UOUUO VPP PRSP POOTOR 21
4.1.1 Analysis of MATLAB Implementationcceceecevivivenninnnnrs 24
4.1.2 Precision of the Implementationccocoovvnnnniiincnnnn, 25
4.1.3 Performance ObServation........cocovveciiiniiinsnsemse e 25

4.2 MATLAB Implementation of Public Key Encryption Based on

Chebyshev Maps.......cccooveiiiiisin e s 26
43 MATLAB Implementation of Public Key Scheme Based on
LOGISTIC MAP ..ttt e 28
4.3.1 Analysis of MATLAB Implementation.......c.cccoceneinennns. 31
4.3.2 Precision of the Implementationccovvvveeeecciiiinnns 32
4.3.3 Performance ObServation.........cociiniiniiiississnsse e 32

44 Comparison between Public Key Encryption Based on RSA

Algorithm (MATLAB Comparison) and Logistic Mapccceees 33
CHAPTER 5 CONCLUSION & RECOMMENDATION......ccoviieaeceene 34

5.1 Recommendationcciieeercnnennien e sccnssissscssieses s snsasseens 34

5.2 CONCIUSION ..vcviveeeer e eeberssases e saesaeneear e et bsabass s s eaeennateraaeaas 34
REFERENCES ..ottt ree e ee e e et s a et e s s n s e s e s o nrmne s e e s s s eaananasabsssbnaeans 35
APPENDIX A PUBLIC-KEY ENCRYPTION BASED ON LOGISTIC MAP
(MATLAB IMPLEMENTATION). ...cotiiiiiermcreinnsis s 37
APPENDIX B MATLAB IMPLEMENTATION OF RSA ALGORITHM WITH
N OO PP PPPPPPPRS 44
APPENDIX C..oooveevrvereec i nisinsrinans ERROR! BOOKMARK NOT DEFINED.

v

LIST OF TABLES

Table 1 Comparison between Chaotic Systems and Cryptographic Systems (Source:
“Chaos-Based Cryptography: A Brief Overview [1]) ..o 1

Table 2 Values of r and its effect on the behaviour of the logistic map (Source:
“Logistic Map” WIKIPedia).........ocecerivirimmmmerii s ssnnes 13

LIST OF FIGURES

Figure 1 Public Key EncTyplion ..o teicsnnenins e 5
Figure 2 Bifurcation diagram for logistic Map...........ocveveveminnnninnnnse e 14
Figure 3 Screenshot of the MATLAB GUI Implementation of RSA Algorithm....... 21
Figure 4 AES Secret Key Outpul ..ot 22
FIZUIE 5 PHINE P vttt s 22
FGUIE 6 PIIINE G wvvvincrieeniiccic et e s e s 22
Figure 7 RSA MOUIUS, 71..co..vioeiiiiiiiiesin et 22
Figure 8 Enciphering EXPONENL, @......cocooivvirrermeminisinsiiinssssesssssssssse s 22
Figure 9 CIPREITEXLE, € ..vovrereriicieeci it st 23
Figure 10 Deciphering Exponent, d (Public Key) ..o 23
Figure 11 Decrypted Ciphertext, the AES Secret Key ..o 23
Figre 12 CIPRETIEXL, € .vovvvireeccirirericiisesiis et raes e sn nana s s et e s 24
Figure 13 Auto-correlation of normalized ciphertext, € ... 25
Figure 14 Web diagram using initial x,=0.18, r=3.76693 and a total iteration of 7

(ST wrrererertenines ettt et a e R s 29
Figure 15 Encrypted message, X seesssnsne e 31
Figure 16 Auto-correlation of the normalized encrypted message, X......ooovvrvnircnee 32

vi

CHAPTER 1
INTRODUCTION

1.1 Background of Study

Many efforts have been put into developing chaos-based cryptographic systems in
recent years as emerging chaotic systems promised a new direction for innovation in
cryptography since the development of public-key cryptography. Many of these
works are published, which shows a great deal of improvements and advancement
over the years. However, a strong telationship between cryptographic systems and
chaos-based systems is yet to be established, according to Kocarev in [1].
Cryptography and chaotic systems have many similaritics as well as many
differences. It has been pointed the properties of both for a clearer comparison (refer
to Table 1):

Table 1 Comparison between Chaotic Systems and Cryptographic
Systems (Source: “Chaos-Based Cryptography: A Brief Overview”[1])

CRYPT.
Phase space: fi
Iterations Rounds
Parameters Key
Sensitivity to a change in initial Diffusion
conditions and parameters ,
7777 (No known counterpart) Security & performance

Based on Table 1, designers of any new scheme must be able to overcome many the
differences in order to integrate chaotic systems into cryptography. Many of the
recently published works on this area have outlined the algorithm for software
implementation. The focus of this project was such implementation, whereby a
thorough study has being done on the followiﬁg paper: “Public-Key Encryption
Based on Chebyshev Maps™ by Kocarev and Tasev [2].

1.2 Problem Statement

The introduction of chaotic systems into cryptography marks a very interesting area
for research into innovating novel encryption schemes. In both symmetric (private
key) and asymmetric (public key) encryption, chaos-based elements have been
integrated to varying degree of success in terms of implementation, security and
performance aspects. The focus of the project will be on encryption that uses chaotic
maps, especially on Chebyshev maps. The work done is based on [2]. A new chaos-
based public key scheme is first needed to be created and later on compare for its

advantages and disadvantages with other similar schemes.

The reason of using chaos is that it has strong dynamical properties which give

strong cryptographical properties.

1.3 Objective and Scope of Study

The objectives of the project for the first semester are:

1. To learn and study existing Public Key Infrastructure (PKI) schemes based

security
2. To implement RSA algorithm in JAVA and MATLAB
The objectives of the project are for the second semester:
1. To study and understand Chebyshev maps-based public-key encryption

2. To create a new public key encryption scheme using another polynomial as a

map substituting Chebyshev polynomial in [2]
3. To compare this new scheme with RSA algorithm on MATLAB platform

The coverage will be based on the implementation of public-key encryption scheme

based on Chebyshev maps [2].

1.4 Justification

A new public key encryption scheme based on chaos has been created and defined in
this project. It is based on logistic map. The whole scheme is modeled after work
done by Kocarev and Tasev in “Public-Key Encryption Based on Chebyshev Maps™
with modifications done to adapt logistic map. In the conclusion of the

aforementioned paper, the authors say [2]:

The algorithm described here works with Chebyshev
polynomials, but can be generalized to work with any
chaotic maP Xn+1=Fp(x,) for which F can be written as
Fo(x)=f{pf " (x)), so that F,(Fy)=Fp. Is there any other
(chaotic)y map with the semi-group property
FplFo)=Fp?

They also cited work by Kohda and Fujisaki [10] on Jacobian elliptic Chebyshev

rational maps which exhibits semi-group property, as their future research topic.

In this groundwork laid out, it is organic to proceed to look for a chaotic map with a
semi-group property and replaces Chebyshev maps with this new map into the
scheme with little or no modification, since it is general for any chaotic map with
semi-group property as claimed by the authors. Thus came with the realization that
logistic map can used due its property F (Fy)=Fp+ (which is slightly different than
the semi-group property mentioned). From here onwards, there is just some

modification done to the scheme in [2] to adapt logistic map.

The usage of chaos provides security if implemented properly in a scheme; and with
the current progress in ¢ haos-based cryptography listed in [1], it can be seen that
chaos-based schemes are having advantage in simplicity as well. This is true for

scheme in [2] and the scheme proposed in this project.

The scheme proposed here is feasible for implementation for practical usage,
provided with proper optimization for better performance without compromising
security. It offers a new exciting topic for further research for wider implementation

of chaos-based encryption.

CHAPTER 2
THEORY

2.1 Cryptography Fundamentals

In this section, the will be review on basic concepts of cryptography.

2.1.1 Public Key Encryption (Asymmetric Encryption)

Public key encryption (also known as asymmetric encryption) is a unique encryption
scheme. Unlike symmetric encryption where a single secret key is used to encrypt
and decrypt a message, public key encryption is asymmetric encryption. This means
there are two different keys involved — a private key and a public key. These key
pairs are mathematically linked. Encryption is done with one key and decryption can
only be done with the other key. This solves the problem of secret key transmission
of the symmetric encryption scheme. In this system, it is the recipient who genecrates
a public and private key pair and post only the public key in the public domain. The
sender looks up the recipient’s public key in a public directory and encrypts his or
her message using that key. The encrypted message is sent over the network to the
recipient, Due to the uniqueness of asymmetric encryption, the encrypted message
can be only decrypted with the other key — in this case is the recipient’s private key.
The private key is kept secret by the recipient. Thus, a hacker cannot decrypt the
message even though he or she has intercepted the message and get hold of the
recipient’s public key. The encrypted message can be securely retrieved and

decrypted by the recipient with his or her private key.

However, the scheme does not stop here. Asymmetric encryption has disadvantages
as compared with symmetric encryption — it produces a large encrypted message and
it takes more computiation, thus slower. This is not suitable for transmission over the
Internet. However, there is a novel way to get the best of symmetric and asymmetric
encryption schemes. It is done by encrypting a message with a secret key (of
symmetric encryption) and then encrypting only the secret key using the recipient’s
public key (of asymmetric encryption). The encrypted private key is not large in size

because a key is usually small. This poses no problem for transmission over the
Internet. Both encrypted secret key and the encrypted message are sent over the
network. This solves the problem of transfer while maintaining the security of an
asymmetric system. This method - also referred as hybrid system - gets the best of

both encryption schemes.

Bob’s ‘\ubmt.\
/Db'am/ P
Public Key

Public directory

Private key

kept secret

-

MESSAGE encryptiont—»| Ciphertext | I MESSAGE
(Bob's Public Key) No needto (Hob's Private Key)
! |
: send any key :
| |
| |
Sender | Transmission | Receiver
1 |

medium

Figure 1 Public Key Encryption

2.1.2 Public Key Infrastructure (PKi)

Public Key Infrastructure is a multi-defined term. Generally it refers to a system of
protocols, services and standards that support public key encryption. In extension to
that definition, it usually includes the public key certificates, encryption schemes,
digital signatures, digital certificates and non-repudiation as well. All these
components arc necessary to allow registration authorities to authenticate and verify

the validity of parties that are involved in an electronic transaction.

However, there is no any particular standard or any strong emerging model of PKI.
Much work is being currently done in this field and PKI is still subjected to evolution

and modification. Below are the major components of PKI system.

2.1.2.1 Cryptographic Hash

Cryptographic hash is a way creating digest of an original data or file. Hash
algorithm computes equation across a data or file and create a hash value. The unique

features of cryptographic hash are:

o there is no possible way that the original data can be reconstructed from the

hash value

o if there is a change, for example just ! bit, the hash value output will be

entirely different

Cryptographic hash is therefore used to check a data’s or file’s integrity.

2.1.2.2 Digital Signature

The purpose of digital signature is to ensure that a data comes from a specific user,
not from a substituted data from a third party. It uses cryptographic hash to create a
digest of a file. The digest itself will be then encrypted with the sender’s private key.
The encrypted digest is attached with the encrypted file (which is encrypted with the
recipient’s public key). At the recipient’s side, the person will first decrypt the file
using his or her private key and then create a digest of the file using the same hash
algorithm as the sender’s. Then, the person will decrypt the attached encrypted digest
with the sender’s public key. The decrypted digest will be compared with the digest
that the digest the recipient has just created. If both digests matches, the recipient can
be assured that the file has not been deliberately changed by a third party.

2.1.2.3 Digital Certificate

However, a third party can change someone’s public key in the directory, which
makes the entire process failed right at the beginning. One way to ensure that public
key belongs to the right person is through digital certificates. A digital certificate is a
document that guarantees a public is associated with a particular user and. The digital
certificate is issued by a trusted authority. To check for validity of a digital
certificate, the trusted authority’s public key is used. The digital certificate contains

information on:
e Name, address, organization

e Owner’s public key

o Certificate validity dates

o Certifying authority’s digital signature

2.1.2.4 Non-repudiation

Non-repudiation is a way to prevent someone from cheating by breaking their
promise. It is an extension to digital signatures whereby the time (before the digital
signature is created) is encoded to the document. A trusted time source is used to

ensure a reliable system.

2.2 Chaos Theory

Chaos theory describes unpredictable behaviour of natural, dynamic systems that are
susceptible to slight changes in initial conditions. Although chaotic systems are
complex, they are mathematically deterministic [4]. They obey mathematical laws,

but their behaviour appears random.

From [4],

Thus, while chaotic systems share many of the
properties of stochastic processes, they also possess a
deterministic structure which makes it possible to
generate “noiselike” chaotic signals in a theoretical
reproducible manner. :

Using this property, cryptologists have adapted chaos into cryptography due toits
random nature. The adaptation is in form chaotic mapping, which are thoroughly

discussed in [5].

2.2.1 Chaotic Maps

Chaotic map isa function that transforms initial p oint into new location o ver and
over again sequentially. Each round of such transformation is called iteration. It is

chaotic in nature because a slight change in the initial condition will produce a totally

different outcome at a final fixed iteration, There are mainly three types of chaotic

maps:
¢ One dimensional maps
e Multi-dimensional maps — coupled and uncoupled maps
¢ Phase space maps

The usage of chaotic maps in encryption schemes is obvious: to encrypt (as an
algorithm) through the properties of diffusion and confusion of a chaotic map.
Different schemes may use different maps according to the designer’s justification.
Chaotic maps in discussion in this paper will be only deterministic chaotic discrete

time dynamical system [3] which in form of:
x(n+1) = f (x(n) (1)

where f, 1§ € R” — R" is a nonlinear function, and & denotes its parameters.

2.3 Chaos-based Cryptography

As discussed earlier in Section 1.1, many differences of the both chaotic systems and
cryptography needed to be fully understood, in which will lead to gaining a better
view on the relationship between the two. Referring to Table 2, it can be seen that the
chaotic systems operates on set or subset of real numbers only while cryptographic
systems ona finite set of integers [1]. This causes difficulty in having a practical
implementation in form of circuitry. Another setback is that there is no known
equivalent of security and performance in chaotic systems. However, these does not
hinder from developing any chaos-based encryption schemes because there are three
crucial similarities between cryptography and chaos. The equivalent of rounds, key
and diffusion in cryptographic algorithms in chaotic systems are iterations,

parameters and initial changes sensitivity, respectively.

In [1], it is suggested two general guiding principles for designing a practical
algorithm:

o diffusion: spreading out the influence of a single plaintext digit over
many ciphertext digits so as to hide the statistical structure of the
plaintext

o confusion: use of transformations which complicate dependence of the

statistics of ciphertext on the statistics of plaintext

2.3.1 Chebyshev Polynomial of the First Kind

Chebyshev map presented in [2] is based on Chebyshev Polynomial of the First
Kind, which is defined as [2]:

T, (x) = 25T, (x) = T, (x) @)
where degree p=1,2,..., Tp=1, and T;=x. It has semi-group properties:
LT () =T,(x) ()
from where the following equation is derived:

%, =T, (1, (1, (5)) =T, (%) (4)

2.3.2 Other Polynomials and Maps

Moving from Chebyshev Polynomial of the First Kind, there many polynomials that
are potential candidates for a new chaotic map scheme similar to [2]. In this section,
the objective is to identify which polynomial will be suitable for a new chaos-based

public key encryption.

2.3.3 Chebyshev Polynomial of the Second Kind

Chebyshev Polynomials of the Second Kind has the same recursive formula as the
First Kind, except it has different initial values. Chebyshev Polynomial of the Second

Kind is defined as follows:

U, (%) =2xU,,(x) - U, ,(x) (5)

where Upfx)=1, U(x)=2x etc.

2.3.4 Bessel Polynomial

Bessel polynomial has the following recursive formula:

B,(x)=(2n-1B,,(x) - 5’B, ,(x)

(6)

where By(x)=1, B,(x)=1+jx eic.
2.3.5 Legendre Polynomial
Legendre polynomial has the following recursive formula:

PP () = Q2n = DiP (0= (= DP, ;0 .
where P,(t)=1, Pi(t)=t elc.
2.3.6 Laguerre Polynomial
Laguerre polynomial has the following recursive formula:

L{#H)=02n-1-1)L, () _(n_l)an—z(t) (8)

where Lo(t)=1, Li(t)=1-t etc.

2.3.7 Tent Map

Tent map is defined as:

Q= mod[x—rﬁ-aﬂ
? ©

where -1<x<1

10

Al the aforementioned polynomials and maps do not have one particular
characteristic to be a substitution polynomial for the scheme in [2], which is the
semi-group property (see Equation (3)). In addition, Bessel function involves
imaginary component which makes finding the terms even more difficult. These
factors make a direct substitution of a polynomial to Chebyshev Polynomial of the
First Kind is not possible. It requires a different scheme to make it work. This might

a very time consuming process. A map that has the semi-group is highly desired.

11

2.4 Logistic Map

Logistic map is a non-linear dynamic equation, which demonstrates complex chaotic

behaviour despite its simplicity.
Logistic map has the following recursive formula:

x(n+1) = r(m)[l - x(m)] (10)
where (0<x(0))<J and r and is a constant.

The behaviour of the map is dependent on the constant ». The value of » must be
chose in such a way that the logistic map exhibits chaotic behaviour. Referring to

Table 2, the suitable value will be within 3.57<r<4.

Semi-group property is exhibited here:

@, (@, (x) =@, (x) (11)

12

Table 2 Values of r and its effect on the behaviour of the logistic map
(Source: “Logistic Map” Wikipedia)

the populéﬁon)w111 eventually die, independent of the initial

population

l<r<2

the population will quickly stabilize on a single value

this value depends on » but does not depend on the initial
population

2<r<3

the population will also eventually stabilize on a single value,
but first oscillates around that value for some time

the final value does not depend on the initial population

3<r<3.45

the population will oscillate between two values forever

these two values are dependent on » but independent of the
initial population

3.45<r<3.54

the population will oscillate between four values forever

this behavior does not depend on the initial population

3.54=<r<3.57

the population will oscillate between 8 values, then 16, 32, etc

the lengths of the parameter intervals which yield the same
number of oscillations decrease rapidly

the ratio between the lengths of two successive such bifurcation
intervals approaches the Feigenbaum constant d = 4.669

all of these behaviors do not depend on the initial population

=3.57

the onset of chaos
no any further oscillations observed

slight variations in the initial population yield dramatically
different results over time, a prime characteristic of chaos

3.57<r<4

exhibit chaotic behaviour, but there are still certain isolated of r
that appear to show non-chaotic behavior; for instance around
3.82 there is a range of parameters r which show oscillation
between three values, and for slightly higher values of r
oscillation between 6 values, then 12 eic

there are other ranges which yield oscillation between 5 values
etc

all oscillation periods do occur

these behaviours are independent of the initial value

>4

the values eventually leave the interval [0,1] and diverge for
almost all initial values

13

Using MATLAB, the bifurcation diagram for logistic map is drawn. Bifurcation is
where the period doubles, quadruples, etc that accompanies the onset of chaos. In
following diagram (Figure 2) is generated using MATLAB. The range for r is from 0
to 4. The first bifurcation occurs at »=3. The chaotic behaviour shows when »=3.57.

This bifurcation diagram is a fractal.

Bifurcation Diagram

E 3 iy Y 3
03} i
s

ST o7 T o
» g:‘t

07 r R LORE
ot ;g*

Q& ,".‘ . 451,“
* «° * L
e + e

%05 ‘-a *¢ atg.“m
: ' *yih

D4l * ,;* 3~
; i

BE" 4 1”—-
90

*» :

02t f.
*

a~‘§"”' * i“‘

a X A .) 1 i i E, i
0 (£ 1 1.5 3 25 K a5 4

b}

Figure 2 Bifurcation diagram for logistic map

14

CHAPTER 3
METHODOLOGY

3.1 RSA Algorithm (Public Key Scheme})

RSA algorithm involves many steps. The mathematics of RSA algorithm will be
described here as two parts — encryption and decryption. Assuming Alice is the
sender and Bob is the receiver in this example. In asymmetric encryption, Alice will
take the Bob’s public key for encryption. That means Bob must firstly generate a key

pair.

3.1.1 Key Generation
The algorithm for key pair generation as follows:

1. Generate two large prime numbers, p and ¢, of more or less the same size

with condition that p # ¢.

2. Calculate n = pg. This will result # with a bit length of at least 1024 bits. The

integer n is also referred as RSA modulus.
3. Calculate @(n) = (p-1)}{g-1).

4, Select a random integer ¢, the RSA enciphering exponent, such that

1<e<®d(n) and ged(e, P(n))=1. This is done using Euclidean algorithm

5. Compute d, the RSA deciphering exponent, such that [<d<®(n) and
ed=1(mod $(n)).

Bob’s RSA public key will be (n,ej and his RSA private key will be d.

3.1.2 Message Encryption.

Encryption process is done by Alice, and she has to retrieve Bob’s public key which
is (me). The algorithm for encryption of message m as follows (assuming
ged(m,n)=1): ‘

1. Compute c=m(mod n).

15

2. Send ¢, the encrypted message to Bob.

3.1.3 Message Decryption

The decryption process is done by Bob after he receives ¢ from Alice. The algorithm

as follows:
1. Compute m=c“(mod n), with d (the private key).

The decryption of the ciphertext is done and Bob is able to read Alice’s message.

3.2 Algorithm for Public-Key Encryption Using Chebyshev Maps

From [2], the following algorithm is suggested.

3.2.1 Key Generation

The following action to generate a set of keys is done by the recipient, in this

example is Alice.
» Generate a large integer s
e Select a random number x [-1,1]

e Calculate Ty(x)

Alice’s public key is (x, Ti(x)) and private key is s.

3.2.2 Message Encryption

Bob, the sender will obtain Alice’s public key and encrypts his message, M using

that key.

e Represent number M [-11]

¢ (Generate a large integer r
o Compute T,(x), Tps(x) and X=M T,y(x)

e Send ciphertext, e=(T,(x),X)

16

3.2.3 Message Decryption

Once Alice receives the ciphertext, she can decrypt it by performing the following

steps.

e Use private key s to calculate Ty, (x)= T (T,{x))

» Recover M by calculating M = })—(—

s

The algorithm is simple as it is based on El Gamal public-key encryption scheme,
However, the software implementation is not easy as it requires careful planning to

put the algorithm into a programming language desired.

17

3.3 Public Kéy Encryption Scheme Based on Logistic Map

The following steps for a fully functional public key encryption scheme are based on
the work in [2].

3.3.1 Key Generation

The following action to generate a set of keys is done by the recipient, in this

example is Alice.
» (Generate a large integer s
s Select a random number x €[0,1]

¢ Calculate gy(x)

Alice’s public key is (xg, @s(x}) and private key is s.

3.3.2 Message Encryption

Bob, the sender will obtain Alice’s public key and encrypts his message, M using that
key.

o Represent number M e[-1,1]
e (enerate a large integer ¢
e Compute @u(x}, Pg+s(x) and X=M @,+s(x)

» Send ciphertext, c=(py(x)},.X)

3.3.3 Message Decryption

Once Alice receives the ciphertext, she can decrypt it by performing the following

steps.

o Use private key s to calculate gs+q0x)= @5 (p4(x})

. X
e Recover M by calculating M =——
Pivg

18

3.3.4 Implementation on MATLAB

Implementation of this scheme in MATLAB faces one major problem — the
limitation of maximum 16 decimal places for floating point numbers using long g
format. 16 decimal places is sufficient to prove the workability of the scheme and the
concept, however it does not provide security. Thus, as it can be seen in codes (refer
to Appendix A), the student has created a method which allows virtually unlimited
decimal places for the operation. This is done using arrays to represent decimal
numbers. F or example, 0.125669 is represented. as[01 2 56 6 9], whereby each
element of the array corresponds to the decimal digit. Arithmetic operations — such as
multiplication, addition, etc. — have to be re-written to ensure the operations affects
the array as a whole, rather then individual elements of the array as in usual
MATLAB array operations. For example, 0.31 * 0.456 is done such that [0 3 1]
multiplies with [0 4 5 6] equals to [0 1 4 1 3 6] (which corresponds to 0.14136),
rather than error message returned by MATLAB if using normal array multiplication
(*) due to different array dimensions or normal matrix element-by-element

multiplication.

This task requires a lot of extra coding, and the codes are based on the format that the
decimal place is located after the first element of the array. Thus, if given an array [3
7 6 4 2], it corresponds to 3.7642. The reason on how the student came to this
formatting is due to observation of the numeral range o f the numbers usedin the
scheme. All calculated numbers are within 0 and 1 range, except for r, which 1s
within 3.57 and 4 (the chaotic region); and all multiplication or division results never
exceeds 4. Large integers, such as s & ¢, are never involved in arithmetic
calculations, only as number of iterations. To simplify further, this MATLAB
implementation uses a message representation M between 0 and 1. With these
observations, the new array arithmetic operations are simpler and consequently allow
decimal places representation more 16 decimal places than allowed in a direct

MATLARB representation of floating point numbers.

The scheme begins with initialization by generating xp, r and s, by using the randint
built in to MATLAB. As explained above, xo, r and s are represented in array form.
Then, xy is mapped to logistic equation, which is done by passing it to a separate
function. The rest of the code follows what the scheme lays out on Section 3.4.1,

with most operations done using function calling.

19

For display of a full floating number that is more than 16 decimal places, the student
have written a function which will convert the array representation of the decimal
number a string output of the floating point number. This function allows the decimal
number to be seen clearly rather reading the elements of the array representation of

floating number.

20

CHAPTER 4
RESULTS & DISCUSSION

41 MATLAB Implementation of RSA & AES Algorithms (Hybrid
System)

The MATLAB implementation of the RSA algorithm is based on the work by
Thunyawat Rajatasereekul and Voranon Kiettrisalpipop from -Oregon State
University. It is then further modified to accommodate the objectives of the project.
The program accepts a string and it will generate the public and private k ey pair.
Using the keys, it will encrypt and decrypt the input string and show all the
aforementioned steps of RSA algorithm. The modification made to the program is for
the purpose of integration with AES encryption. This is to achieve a hybrid system.

For the essential codes, refer to Appendix D.

The program has a graphical user interface (GUI) and the screenshot is as follows

(refer to Figure 3):

Figure 3 Screenshot of the MATLAB GUI Implementation of RSA
Algorithm

21

The first listbox of the RSA program shows the secret key from AES which is
obtained from Ms Easwari’s M-files. The program initialized from a function named
pro2. This function will then call AES function. The AES part is further discussed in
Ms Easwari’s report. At the point whereby the AES secret key is generated, it is
passed to this function and it will be displayed out. Figure 4 shows the secret, display
in ASCII character format.

SecretKey
(from AES).

Figure 4 AES Secret Key Output

Then, the program will calculate the prime numbers; p and g. (Refer to Figure 5 and
Figure 6)

Figure 5 Primep

Figure 6 Primegqg

The integer # is then calculated. (Refer to Figure 7)

Figure 7 RSA Modulus, #

The following step will be computation of e. (Refer to Figure 8)

Figure 8 Enciphering Exponent, e

22

The encryption process ensues to obtain c. (Refer to Figure 9)

Figure 9 Ciphertext, c

After encryption, ¢ is sent and the receiver uses his or her private key d to decrypt.

(Refer to Figure 10)

g ‘4;§_S'ém:;$'f.?."i_izha_r1 1

Figure 10 Deciphering Exponent, d (Public Key)

The decryption result m will be the secret key so that the receiver can use it to

decrypt the encrypted message. (Refer to Figure 11)

Step 5 Decrypted Cigher

" Docrypted
‘BecretKey |

Figure 11 Decrypted Ciphertext, the AES Secret Key

23

4.1.1 Analysis of MATLAB Iimplementation

From Figure 12, the encrypted message, ¢ (which is c=m°(mod n}) appears to look
random and noise-like. A further testing involves auto-correlation of the encrypted

message, X. Auto-correlation is defined as:

o

r.[11= "> xlnldn—1]= x[n]® x{-1] (12)

n=—-w

The result is seen in Figure 13. In a pure white noise, the auto-correlation will
produce a delta function, with the peak at 0. In comparison, Figure 13 shows an
almost linearly rising and decreasing graph and peaks at 0. This shows that it does

not resemble an exact pure white noise, but shows that is a noise-like signal.

Q. e AEy e e

Figure 12 Ciphertext, ¢

24

L3
i
T

o o
iy o
E3 T

£33
T

=
[
T

©
et
T

0.1 -fﬁf

0 : . . -
1 0 20 Ry 400 SR EOQ 7iE

Figure 13 Auto-correlation of normalized ciphertext, ¢

4.1.2 Precision of the Implementation

This implementation supports up to 1024 bits precision which translates to 309 digits

of integer.

4.1.3 Performance Observation

This program gives an overview of how a hybrid system will perform. The strength |
of a hybrid system comes from both types of cryptographic systems, in this case —
RSA and AES. A GUI provides a user-friendly interactivity and understanding of the
encryption process. T he prominent weakness ofthe system is the slow encryption |

process due to:
¢ Not optimized AES encryption
o GUI processing

Another weakness lies in the generation ofkeys, in both RSA and AES schemes.

MATLARB is not designed to have a secure random number generator.

25

4.2 MATLAB Implementation of Public Key Encryption Based on
Chebyshev Maps

An implementation of the algorithm is carried on MATLAB. The objective is to

replicate the result as presented in [2]. The given values are as of below:

§= 26436361 1321238]5948 ~ 2910
r= 3547334155133193170
x=0.25749480

M =0.11111111114444444444

The expected values are as of below:

T,(x)=-0.0176128306

by

T (x) = 0.9921943793
T.(T.(x)) = 0.6571609510

X =—-0.7301788346

However, the result obtained through MATLAB implementation does not match the
expected values. Through thorough checking, it is found out that the precision used
in MATLAB cannot match the precision used in [2] which is 2048-bit precision. It
uses GNU MP, which is a library for arbitrary precision arithmetic. As discussed in
earlier sections, MATLAB allows up to 16 decimal places of a floating point number.
For this implementation, the mcthod used in MATLAB implementation of logistic
map is not employed because that it was done later. The solution to the limitation of
MATLAB decimal places is thus the same as discussed in Section 3.3.4, by using
arrays. Due to the fact that Chebyshev Polynomial of the First Kind is a chaotic map

26

in nature, any small variant in the initial condition will cause a huge difference in the

end result. The huge difference is what been observed here.

‘The solution to this problem is to reduce the size of the values s and r to a smaller
number. By doing so, the method proposed in [2] is confirmed working, however at
the cost of security. The smaller the number used the easier to break the system.
However, the objective here is to prove that the scheme proposed works and the

conclusion is positive: the scheme is proven working.

27

4.3 MATLAB Implementation of Public Key Scheme Based on Logistic
Map

A MATLAB implementation has been to done to prove the workability of this
scheme. Due to limitation of MATLAB precision, the chosen s, r and M are small.
For demonstration sake, any number within the specified range will work. The values

for xq, 1, 5, q and M are as below:

x1l = 0.18

r = 3.76693

5 = 3

q =4

M = 0.459195589

The MATLARB results are as of below:

Xs 0.92991988510162608549168

H

tg = 0.245486655826501228105891845881475813367908B593664768
tgs =

0.794468304350858218226072554906779129509526500218432108733680295353
261533592515523670182093876062418592184178989166328144889322447856779
71947964123361854357744936074675075458291950148685252302586342334157
01920279054778368

X =

0.364816659540013646867957430662247800086465235699038148876945959568
03332964693342248209770007769141975860987333267431327157315861872817
34149837614111628840040500088297137040179035757558008413445915028630
5110878744163521652434432

tsg =

0.794468304350858218226072554906779129509526500218432109733680295353
2615335925155236701820938760624189218417898916632814488932244785677%
71947964123361854357744936074675079458291950148689252302586342334197
01920279054778368

M2 = 0.4591859%

28

From the MATLAB results, it can be seen that the public key is
[xo, @s(x), ¥] =[0.18, 0.92991988510162608549168, 3.76693]
the private key is s=[3].

The ciphertext, ¢ is

[po(x),X] = [0.2454866558265012261058918456881475813367908593664768,

0.364816659540013646867957430662247800086465235699038148876945955568
23332964693342248209770007769141575860987333267431327157315861872817
341498317614111628840040500088297137040172035757558008413445915028630

5110878744163521692434432l

Alice successfully decrypts the message M.

This MATLAB implementation has proven the workability of the scheme.

} 1 3 % i 1
1 ¥ E 4 3 1
1 %] $ 1
i ‘ i ,M%
.) # 3 % ¢ .
(B2 S NS SO SR "L S ..
4 T 1 1 & 1
4 ’ 4 % i
* d ¥]
i=376693/ 5 .
ks s m Wews womafa wdbewdd ey
ik e]) ¥ T A A
E & ' i i i)
* ' i % i .
3 t 3 ¥ 1 Iy
B L) i +) 2l
barm o oam B & 4 = £ e £
[1 i S i i
%] 1 13 1 SOF L
®] 1 & [3
L3 i i £ e A
p |) i g’:}? B T
_______ P A . Y S —
x 1 3 3 1 ¢ }
K i [4 &) i
4 i * 1 b 1
3 i i 1 ¥ 1
L3 r 1 1 ¥] 1
Juebaup e N LI L
e [} 2 ' i § '
B3 L s 1 Ed £ [}
* L] £ 1 £ ¥)
ig 1 ¥ 1 ¥ + ?S' 1
oo e o b s koo o oy b o ar o et
N l 3 i h + |
L] ' & 1) 4 E 1
Tor] £ 1) 4 ¥
& i & i 4 1
H ' [] i ["‘r
PR e L LT AT R L 3 P
% rl + 1 8 I’%(
. gl] % i ¥ & I
M i " .
e] + Y 1 £ ¥ [
% t 5 ¥ 1 8 5 ' X
. AR = mm—— e g o y = o
fri s i s % | H & ' 3‘,
ST) i %) & € §
e ¥ 1 b ¥ 1] % Ll
d ¥ 1 1 * i 1 ¥ 1
Fansunhoreawinsnsdonoamhmwa vaboworduoswsboondud
L] i)) & i ¥ V
] i 1 % 5 4 ¥ 1
y 1 1 ¥ ' 1 I 1
5 1] ¥ t 1 ¥ '
AN NN DU SRR RENE RO S

02 03 04 05 06 0F 08 08 1

Figure 14 Web diagram using initial x,=0./8, r=3.76693 and a total
iteration of 7 (s+q)

29

In Figure 14, it shows the results of the implementation in form of a web diagram fﬁr
a logistic map. It shows how the initial point being mapped for each iteration. The
parabolic curve corresponds to r*x*(1-x) and the linear line corresponds to y=x. The
other line shows the trajectory as the initial point being mapped to a new point. Only
at a certain range of r (which discussed earlier) will the graph show this chaotic
behaviour as seen in this cobweb diagram. Out of this range of r, the behaviour as
seen on a cobweb diagram will show the trajectory flies to infinity or the trajectory

will stick to a defined orbit and loop on that.

30

4.3.1 Analysis of MATLAB Implementation

From Figure 15, the encrypted message, X (which is equals to M @,+:(x}) appears to
look random and noise-like. The importance of checking whether an encrypted
message appears noise-like is because the objective of a chaotic encryption is to
make the encrypted output appears as noise-like as possible. A further testing
involves auto-correlation of the encrypted message, X. Auto-correlation is defined in
Equation 12. The result is seen in Figure 16. In a pure white noise, the auto-
correlation will produce a delta function, with the peak at 0. In comparison, Figure 16
shows an almost linearly rising graph, peaks at 0 and almost linearly decreasing
components of the auto-correlation result. This shows that it does not resemble an

exact pure white noise, but shows that is a noise-like signal.

Figure 15 Encrypted message, X

31

03

E i — 1 i % L I Y
i 5 100 150 X0 25} 300 30 400 48D 500

Figure 16 Auto-correlation of the normalized encrypted message, X

4.3.2 Precision of the Implementation

Precision wise, this implementation allows virtually unlimited decimal places
representation as opposed to only 16 decimal places as restrained by MATLAB core.
The higher the number of decimal places, the more precise the implementation.
However, high precision comes with the price of much slower performance (see next

section, Section 4.3.3).

4.3.3 Performance Observation

The performance of this implementation varies because it is dependent on the length
of xp, 1, 5, g and M. The longer the length (the decimal numbers are represented in
arrays), the slower is the entire processing due to many calculations involved. An
enormous slowdown in processing is seen when 10 decimal places for each xo, 1, 5, q

and M are set. Thus, on a machine with high processing speed and huge memory, the

32

implementation allows high precision at a high speed. However, for a normal
machine, this is not very practical. For faster processing, precision, and thus security,
must be compromised. This implementation, however, can be further enhanced by
optimizing the codes or perhaps by using different language. Thus, this
implementation is excellent to show the workability of the scheme and to prove it is

possible to have higher precision than what is offered in MATLAB itself.

4.4 Comparison between Public Key Encryption Based on RSA
Algorithm (MATLAB Comparison) and Logistic Map

The comparison between public key encryption based on logistic map and RSA
algorithm is done based on MATLAB platform as a common platform. For RSA
algorithm implementation, it was able to achieve 1024-bit of integer for its
calculation. However, initially for the logistic map implementation, it can only go up
to 16 decimal places of floating point number before MATLAB cuts off and exhibit
rounding error. Thus, the student has written MATLAB codes that will allow
theoretically unlimited decimal places by using arrays. Yet, this high precision costs
performance by slows down the processing time until to an unpractical level. Yet, the
codes written has given the scheme as high precision as needed for comparison, only

limited by the machine.

On the ciphertext of RSA and its auto-correlation are almost identical to the
encrypted message of Logistic Map scheme. Both appear noise-like and their auto-
correlation shares a similar shape. Itis safe to say that the encrypted message of
logistic map scheme has the more or less the same degree of noise-likeliness as the

ciphertext of RSA scheme based on the observation on the auto-correlation graph.

33

CHAPTER 5
CONCLUSION & RECOMMENDATION

5.1 Recommendation

The MATLAB implementation of the RSA algorithm can be improved in terms of
efficiency and security. As discussed, both programs are not optimized for speed and
security although it follows industrial standards. It was developed for academic

demonstration only.

The implementation of the new scheme can be further optimized for performance
without compromising security. The current codes provides the means to have higher
security level, but is limited by machine factor. With optimization, it can show the

scheme can perform encryption at a practical level with security worries at bay.

A thorough cryptanalysis will be needed on the new public key encryption scheme

based on logistic map. This is essential for a good encryption scheme.

5.2 Conclusion

The student has learned the fundamentals of cryptography and specifically on RSA
algorithm. In addition, the student has ramped up on learning JAVA programming
and produced a JAVA implementation of the RSA algorithm. An integrated working
MATLAB implementation of RSA algorithm with AES algorithm was also jointly
produced with Ms Easwari. This simulates the real life application of both

asymmetric and symmetric encryption in a single unit.

A new public key encryption based on logistic map has been proposed. The scheme
is based on the work in [2]. MATLAB implementation has proven the workability of
the scheme. In addition, it has also solve a major problem faced when
implementation due to limitation of MATLAB floating point precision. The scheme
can have a higher level of security, comparable with RSA, with only limitation of

computing power and memory.

All objectives are met for this project.

34

REFERENCES

Books/Papers

10.

. Kocarev; Chaos-Based Cryptography: A Brief Overview; IEEE; 2001

Kocarev, Tasev; Public-Key Encryption Based on Chebyshev Maps; 1EEE;
2003

Kocarev, Jakimoski, Stojanovski, Parlitz; From Chaotic Maps fo Encryption
Schemes; IEEE; 1998

Kennedy, Rovatti, Setti; Chaotic Electronics in Telecommunications; Florida,
USA; CRC Press; 2000

Tsimring, Tenny; Security Issues in Chaos-based Communication and
Encryption, 2003; UCSD, UCLA, Standford

Nash, Duane, Joseph, Brink; PKI: Implementing & Managing E-Security;
California, USA; Osborne / McGraw-Hill, 2001

Mollin; RSA & Public-Key Cryptography; USA; Chapman & Hall / CRC;
2003

Mel, Baker; Cryptography D ecrypted, New Jersey, USA; A ddison W esley;
2001

Naccache, Paillier; Public Key Cryptography — 4" International Workshop on
Practice and Theory in Public Key Cryptosystems, PKC 2002; Germany;
Springer; 2002 '

Kohda, Fujisaki; Jacobian Elliptic Chebyshev Rational Maps; Physica D,
148:242-254; 2001

Websites

. Interactive Chaos (http://order.ph.utexas.edu/standardmap/index.htm])

Background of Chaos (http://www.math arizona.edu/~lega/UG/1998-
1999/sync2/node2.html)

3. Logistic Map - Wikipedia (http://en.wikipedia.org/wiki/Logistic_map)

A

o N o w

Logistic Map — Wolfram Research
(http://mathworld.wolfram.com/LogisticMap.html)

RSA Security (http://www.rsasecurity.com/)

PKI Whitepapers (http://www.pkiforum.org/whitepapers.html)
The PKI Page (http://www.pki-page.org/)

An Introduction to Encryption & PKI
(http://www itsecurity.com/papers/upag.htm)

35

9. Data Security & Cryptography - Oregon State University
(http://islab.oregonstate eduw/koc/ece575/)

10. Cryptography — RSA (http://pajhome.org.uk/crypt/rsa/)
11. Open Source PKI Book (http://ospkibook.sourceforge.net/)

12. The Java Developers Almanac 1.4 - java.security
(http://javaalmanac.com/egs/java.security/pkg.html)

13. Topics in Pure and Experimental Mathematics: Number Theory and
Cryptography Module (http://www.ma.umist.ac.uk/avb/117topics.html)

36

APPENDIX A
PUBLIC-KEY ENCRYPTION BASED ON LOGISTIC MAP
(MATLAB IMPLEMENTATION)

%logistic_pk scheme.m

¥Public Key Implementation Based on Logistic Map
%Chew Jun Yee

$Universiti Teknologi PETRONAS

%$5/4/2004

format long g %¥To set the output format

clear %To clear the workspace data

ginitial value‘

ral=randint (1,1, [2 5]} ;

x1=0;

xl=cat (2,x1,randint (1, ral, [0 9]));

#x1_dec=arr2dec(xl)

$constant

ra2=randint (1,1, [2 5]};

r=3;

r=cat (2,r,randint (1,1, [6 9]});
r=cat (2, r,randint (1, raz, [C 9]));

r_dec=arr2dec{r)

TEE T TR R TLTTTILLRR IR ARYYRNY
%Receiver: Alice

$Generate public & private keys

g=randint (1,1, [2 5]};

xs=mapping(xl,r,s8); %find xs

xs_dec=arr2dec(xs)

sprivate key: [g]

$public key: [x(1),xs,r]

37

PP R R L EEEEEEEEE R AR L
%¥8ender: Bob

$0btain public key

g=randint (1,1, [2 5]1);

tl=x1; $¥info from public key

tg=mapping(tl,r,.q); %find tg
tg_dec=arr2dec(tq)

tencryption

tgs=xs; %info from public key

tgs=mapping (tges,r, gl ;
tgs_dec=arr2dec{tgs}

fmessage

ra2=randint (1,1, [8 13]);

M=0;

M=cat (2,M, randint (1,ra2, [0 8]));
M_dec=arr2dec (M)

X=mul (M, tgs) ;
X_dec=arr2dec{X)
% acorr_cipher=xcorr(X);

% plot{acorr_cipher)

$ciphertext=[(tq,X]

PR EEEEEEE RS E LA AL LR L £

%Alice received ciphertext

teg=tg; %info from ciphertext
%decryption

teg=mapping(tsaq,r,s); %find teqg

tsg dec=arr2dec(tsqg)

M2=division{X,tsq); $info from ciphertext

M2_dec=arr2dec (M2} smessage successfully recovered

38

fmapping.m

function y = mapping{x,r,trans)

a0

Usage

a0

Inputs: r - constant

trans - number of iterations before cutputting

ot o

o0

based on the work by C. Savage

a0

% modified by Chew Jun Yee
3/4/2004

o

a

for i = i:trans-1 % transient iterations
templ=mul {r,x};
temp2=subtraction(x);
x = mul (templ, temp2) ; % logistic map

end

return

fmul.m

function v = mul {(arrayl,arravz)

larl=length(arrayl) ;
lar2=length (array2) ;

if lar2=larl
temp_ array=arraysd;
array<Z=arrayl;
arrayl=temp_ array;
laril=length{arrayl};
lar2=length (array2};
lar=larl;

else
lar=larl;

end

39

count=lar;
countl=laril;

count2=1lar2;
leng=larl+lar2-1;
$initialization
for k=1:leng

arrmul (k) =0;
end

regult=arrmul ;

for m=1l:1lar2

arr2=array2{count2) ;

A{1,m}=multiplication{arrayl,arr2,arrmul, {(count+lar2-1));

countZ=count2-1;
count=count-1;

end

for g=1:lar2

result=addition(result,a{i,q});

end

y=regult;

return

gmultiplication.m

function
count)

array_return

larl=length{arrayl} ;

lar2=length(array2);

smulitplication

if lar2slarl

lar=lar2;

else

multiplication{arrayl,

40

arrayz,

arrmul,

lar=lari;

end
% count=lar;
countl=1larl;

countz=lar2;

$initialization

o

for k=1:{countl+count2-1)

e

arrmul (k} =0;

oe

end

for n=1l:lar

if counts0

arrmul {count) ={array2 (count2) *arrayl {countl)) +arrmul (count) ;

if arrmul (count) »>=10

if counts>1l

arrmul (count-
1)=floor {arrmul (count) /10) +arrmul (count-1) ;

end
arrmul {count) =rem{arrmul {(count), 10} ;
end

end

count=¢count-1;

countl=countl-1;

end

array_return=arrmul;

return

taddition.m

function arradd = additionf{arrl,arrz)

41

arradd=arrl+arr?;

arrlen=length (arradd) ;

arrcount=arrien;

for p=l:arrlen

if arradd(arrcount)>=10

if arrcounts>1

arradd (arrcount-
1)=floor (arradd{arrcount) /10)+arradd (arrcount-1) ;

end

arradd (arrcount) =rem{arradd (arrcount) , 10) ;
end
arrcount=arrcount-1;

end

return

$zubtraction.m

functien y = subtraction{array)

k=length({array) ;

result=0;

for m=2:k

result=cat (2, result, [9]);

end

result (k) =result (k) +1;

y=result-array;

o,

% division.m

42

function y = division(arrayl, array2)

format long g

arrllen=length(arrayl) ;
lel=arrllen;
arrzZlen=length(array2) ;

lez=arr2len;

arrlrep=0;

arr2rep=0;

for k=l:arrllen
arrlrep=arrlrep+{10”{k-1))* (arrayl (lel));
lel=1lel-1;

end

for m=1:arrZlen
arr2rep=arr2rep+ {10~ (m-1))* (array2 (le2));
le2=1le2-1;

end

y=arrlrep/arrirep;

%¥arr2dec.m
function dec = arr2dec{array)

format compact

n=length(array) ;

dec="'"';

for k=1:n
if k==
dec=strcat (dec,'.');
end
temp=num2str (array(k));
dec=gtrcat (dec, temp) ;

end

43

APPENDIX B ,
MATLAB IMPLEMENTATION OF RSA ALGORITHM WITH AES

Partial RSA only, other parts are used for GUI. For AES, please refer to Ms
Easwari’s report.

[

% Computation core of RSA algorithm
function [¢,out,p,q,n,e,d] = rsaccore{val)

c=[];
out=[];
p=1(];
g=1[1;
n=[];
e=[];

d=[1;
format long g
cut_length = 50; % Chunk of characters to be transmitted in cne time

bit = 1024; % Number of bit for RSA modulus n

e bit = 64; % Number of bit for e

X = bit/2;

>
[

num2str {X) ;

maple ('x:=',X);
maple ((y:=2"%"');
maple('ﬁ::y*Z');

maple ('pp:=rand(y..z) "} ;

FEETIETTRTVLLESLIRLY
% Generate p and g %

3Lt L AR R R L L LR L

de

44

temp = randint(1,1,3000);
for j = l:temp

maple ('pp() ') ;
end
maple ('p:=nextprime{pp())');
maple {'q:=nextprime{pp(}) ") ;

TETTIFERERERR

% Compute e %

FEFTEFEELYRYY

maple {'temp:=(p-1)*(g-1) ") ;

TEMP = 0O;

while TEMP ~= '1°
XX = num2str{e bit);
maple ('xx:=',¥XX};
maple ("xx:=2"xx"} ;
maple ('zz:=rand (xx..{10%xx))"');
maple ('e:=nextprime(zz(})"');
TEMP = maple{'gcd(e,temp) ') ;

end

FEEEEEFRLRERR
% Compute d %
FEEELEHITIEYY

maple{‘d:=e&”{-1) mod temp'};

p = maple(‘'p');
g = maple('q'};
n = maple('n');

e = maple('e');

d = maple('d");
R E R R R R R T R T
% End of Intialization %

TR T TTTIILISH IR AIIITT LR EFRERRY

45

St AL Rt i A A Lt R LR s R E R LRt L AR T T

]

% Make n and e public
% Encryption of m using available n and e %
EE AR R R R TR EL LSRR R SRR R L LR R
m = val;

[m_int2 padd] = mesgcut (m, cut_length) ;
m_int2 = double(m_int2});

m_char = intconcat{m_int2);

[1 82] = size(m_char);

S AR SRR R R E R R R R R R R E R R E R R R RS P LA L PR E S LR TR LR EA T LR 1
% Repeatedly tramsmiss of 50(cut length) characters wessage chunk %
Q.

% from verylong message %

S A R R R AR L R R R R R R R e E R R R Tt R e T e bR R R E RS R PR R R TR

% Compute Cipher text %
Lt R LI R et T LT 1
maple('m:=',m char(j,:});
maple ('c:=({m&™e) med n)'};
¢ temp = maple('c'};

¢ = [¢c c_temp];

EEETTETEEEREEY
% Decryption %
LR R EEEETEEE X 4
maple{'m:=((c&™d) mod n)');

m out = maple('m');

if length{m_ocut) == ((cut_length*3}-1)
m_out = ['0' m_outl;

elseif length{m out) == ({cut_length*3)-2)
m_out = ['0' '0*' m_out];

end

46

m_out_int = [];

for k = l:length{m out)/3
m_out_temp = [m_out(l) m out{l+l) m out{l+2)];
m_out_int_temp = str2num(m_out_temp) ;
m_out_int = [m out_int m _ocut_int templ;
1 = 1+3;

end

out = [out char{m_out int)];

end
out = out{l: ((sl*cut_length)-padd)};

glcbal decrypted key
decrypted_key= double (out)

47

