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ABSTRACT

The emergence of chaos theory promised a new era in the field of cryptography as

the properties of a chaotic system are exploited. Many studies have been done in this

area, in which various schemes employing chaotic systems have been proposed.

Schemes ranging from different aspects of chaotic systems to the both symmetric and

asymmetric encryption are published. However, according to [1], the author

suggested a more comprehensive insight into both chaotic systems and cryptography

algorithms is needed before doing any design to avoid having a "bothweak and slow

ciphers". The author of [1] has a published work entitled "Public-key Encryption

Based on Chebyshev Maps" [2] and this is utilized as the core of a new public key

encryption scheme. The new scheme proposed here is "Public-Key Encryption based

on Logistic Map" which employs many similar concepts as [2].

A thorough study on various polynomials has beenconducted and implementation on

MATLAB has been done which includes conventional public key encryption scheme

such as RSA algorithm. It is continued with the implementation of [2] to test for its

workability in MATLAB p latform. A major problem faced in this implementation

has been solvedwhile implementing the new logistic map scheme. Consequently, the

new scheme is able to provide higher precision, thus higher security level, although

at the price of the performance. Most importantly, however, is the proof of the

workability of the whole new scheme. Theproject thus concludes withcomparison of

the new public key scheme based on logistic map with RSA algorithm on MATLAB

platform.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Many efforts have been put into developing chaos-based cryptographic systems in

recent years as emerging chaotic systems promised a new direction for innovation in

cryptography since the development of public-key cryptography. Many of these

works are published, which shows a great deal of improvements and advancement

over the years. However, a strong relationship between cryptographic systems and

chaos-based systems is yet to be established, according to Kocarev in [1].

Cryptography and chaotic systems have many similarities as well as many

differences. It has been pointed the properties of both for a clearer comparison (refer

to Table 1):

Table 1 Comparison between Chaotic Systems and Cryptographic
Systems (Source: "Chaos-Based Cryptography: A Brief Overview"[l])

CHAOTIC SYSTEMS CRYPTOGRAPHIC ALGORITHMS

Phase space: (sub)set of real numbers Phase space: finite set of integers
Iterations Rounds

Parameters Key

Sensitivity to a change in initial
conditions and parameters

Diffusion

???? (No known counterpart) Security & performance

Basedon Table 1, designers of any new scheme must be able to overcome manythe

differences in order to integrate chaotic systems into cryptography. Many of the

recently published works on this area have outlined the algorithm for software

implementation. The focus of this project was such implementation, whereby a

thorough study has being done on the following paper: "Public-Key Encryption

Basedon Chebyshev Maps" by Kocarev and Tasev [2].



1.2 Problem Statement

The introduction of chaotic systems into cryptography marks a very interesting area

for research into innovating novel encryption schemes. In both symmetric (private

key) and asymmetric (public key) encryption, chaos-based elements have been

integrated to varying degree of success in terms of implementation, security and

performance aspects. The focus of the project will be on encryption that uses chaotic

maps, especially on Chebyshev maps. The work done is based on [2]. A new chaos-

based public key scheme is first needed to be created and later on compare for its

advantages and disadvantages with other similar schemes.

The reason of using chaos is that it has strong dynamical properties which give

strong cryptographical properties.

1.3 Objective and Scope of Study

The objectives of the project for the first semester are:

1. To learn and study existing Public Key Infrastructure (PKI) schemes based

security

2. To implement RSA algorithm in JAVAand MATLAB

The objectives of the project are for the second semester:

1. To study andunderstand Chebyshev maps-based public-key encryption

2. To create a new public key encryption scheme using another polynomial as a

map substituting Chebyshev polynomial in [2]

3. To compare this new scheme with RSA algorithm on MATLAB platform

The coverage will be based on the implementation of public-key encryption scheme

based on Chebyshev maps [2].



1.4 Justification

A new public key encryption scheme based on chaos has been created and defined in

this project. It is based on logistic map. The whole scheme is modeled after work

done by Kocarev and Tasev in "Public-Key Encryption Based on Chebyshev Maps"

with modifications done to adapt logistic map. In the conclusion of the

aforementioned paper, the authors say [2]:

The algorithm described here works with Chebyshev
polynomials, but can be generalized to work with any
chaotic map xn+i=Fp(xn) for which F can be written as
Fp(x)=f(pf (x))> so mat Fp(Fs)=Fps. Is there any other
(chaotic) map with the semi-group property
Fp(Fs)=Fps'}

They a lso c ited work by Kohda a nd Fujisaki [ 10] o n Jacobian elliptic Chebyshev

rational maps which exhibits semi-groupproperty, as their future research topic.

In this groundwork laid out, it is organic to proceed to look for a chaotic map with a

semi-group property and replaces Chebyshev maps with this new map into the

scheme with little or no modification, since it is general for any chaotic map with

semi-group property as claimed by the authors. Thus came with the realization that

logistic map can used due its property FP(FS)=FP+S (which is slightly different than

the semi-group property mentioned). From here onwards, there is just some

modification done to the scheme in [2] to adapt logistic map.

The usage of chaos provides security if implemented properly in a scheme; and with

the current progress in chaos-based cryptography listed in [1], it can be seen that

chaos-based schemes are having advantage in simplicity as well. This is true for

scheme in [2] and the scheme proposed in this project.

The scheme proposed here is feasible for implementation for practical usage,

provided with proper optimization for better performance without compromising

security. It offers a new exciting topic for further research for wider implementation

of chaos-based encryption.



CHAPTER 2

THEORY

2.1 Cryptography Fundamentals

In this section, the will be review on basic concepts of cryptography.

2.1.1 Public Key Encryption (Asymmetric Encryption)

Public key encryption (also known as asymmetric encryption) is a unique encryption

scheme. Unlike symmetric encryption where a single secret key is used to encrypt

and decrypt a message, public key encryption is asymmetric encryption. This means

there are two different keys involved - a private key and a public key. These key

pairs are mathematically linked. Encryption is done with one key and decryption can

only be done with the other key. This solves the problem of secret key transmission

of the symmetric encryption scheme. In this system, it is the recipient who generates

a public and private key pair and post only the public key in the public domain. The

sender looks up the recipient's public key in a public directory and encrypts his or

her message using that key. The encrypted message is sent over the network to the

recipient. Due to the uniqueness of asymmetric encryption, the encrypted message

can be only decrypted with the other key - in this case is the recipient's private key.

The private key i s kept secret by the recipient. Thus, a hacker cannot decrypt the

message even though he or she has intercepted the message and get hold of the

recipient's public key. The encrypted message can be securely retrieved and

decrypted by the recipient with his or her private key.

However, the scheme does not stop here. Asymmetric encryption has disadvantages

as compared with symmetric encryption - it produces a large encrypted message and

it takes more computation, thus slower. This is not suitable for transmission over the

Internet. However, there is a novel way to get the best of symmetric and asymmetric

encryption schemes. It is done by encrypting a message with a secret key (of

symmetric encryption) and then encrypting only the secret key using the recipient's

public key (of asymmetric encryption). The encryptedprivate key is not large in size



because a key is usually small. This poses no problem for transmission over the

Internet. Both encrypted secret key and the encrypted message are sent over the

network. This solves the problem of transfer while maintaining the security of an

asymmetric system. This method - also referred as hybrid system - gets the best of

both encryption schemes.

MESSAGE

Sender

(Bob's Public KJey) No need to (^ob's Private Key)
I

' send any key

i

i Transmission
i

1 medium

Figure 1 Public Key Encryption

Private key

kept secret

MESSAGE

Receiver

2.1.2 Public Key Infrastructure (PKI)

Public Key Infrastructure is a multi-defined term. Generally it refers to a system of

protocols, services and standards that support public key encryption. In extension to

that definition, it usually includes the public key certificates, encryption schemes,

digital signatures, digital certificates and non-repudiation as well. All these

components are necessary to allow registration authorities to authenticate and verity

the validity of parties that are involved in an electronic transaction.

However, there is no any particular standard or any strong emerging model of PKI.

Muchwork is being currentlydone in this field and PKI is still subjected to evolution

and modification. Below are the major components of PKI system.



2.1.2.1 Cryptographic Hash

Cryptographic hash is a way creating digest of an original data or file. Hash

algorithm computes equation across a data or file and create a hash value. The unique

features of cryptographic hash are:

• there is no possible way that the original data can be reconstructed from the

hash value

• if there is a change, for example just 1 bit, the hash value output will be

entirely different

Cryptographic hash is therefore used to checka data's or file's integrity.

2.1.2.2 Digital Signature

The purpose of digital signature is to ensure that a data comes from a specific user,

not from a substituted data from a third party. It uses cryptographic hash to create a

digest of a file. The digest itself will be then encryptedwith the sender's privatekey.

The encrypteddigest is attached with the encrypted file (which is encryptedwith the

recipient's public key). At the recipient's side, the person will first decrypt the file

using his or her private key and then create a digest of the file using the same hash

algorithm as the sender's. Then, the person will decrypt the attached encrypted digest

with the sender's public key. The decrypted digest will be compared with the digest

that the digest the recipient hasjust created. If bothdigests matches, the recipient can

be assured that the file has not been deliberately changed by a third party.

2.1.2.3 Digital Certificate

However, a third party can change someone's public key in the directory, which

makes the entire process failed right at the beginning. One way to ensure that public

key belongs to the right person is through digital certificates. A digital certificate is a

document that guarantees a public is associated with a particular user and. The digital

certificate is issued by a trusted authority. To check for validity of a digital

certificate, the trusted authority's public key is used. The digital certificate contains

information on:

• Name, address, organization

• Owner's public key



• Certificate validity dates

• Certifying authority's digital signature

2.1.2.4 Non-repudiation

Non-repudiation is a way to prevent someone from cheating by breaking their

promise. It is an extension to digital signatures whereby the time (before the digital

signature is created) is encoded to the document. A trusted time source is used to

ensure a reliable system.

2.2 Chaos Theory

Chaos theory describes unpredictable behaviour ofnatural, dynamic systems that are

susceptible to slight changes in initial conditions. Although chaotic systems are

complex, they are mathematically deterministic [4]. They obey mathematical laws,

but their behaviour appears random.

From [4],

Thus, while chaotic systems share many of the
properties of stochastic processes, they also possess a
deterministic structure which makes it possible to
generate "noiselike" chaotic signals in a theoretical
reproducible manner.

Using this property, cryptologists have adapted chaos into cryptography due to its

random nature. The adaptation is in form chaotic mapping, which are thoroughly

discussed in [5].

2.2.1 Chaotic Maps

Chaotic map is a function that transforms initial point into new 1ocation over and

over again sequentially. Each round ofsuch transformation is called iteration. It is
chaotic innature because a slight change in the initial condition will produce a totally



different outcome at a final fixed iteration. There are mainly three types of chaotic

maps:

• One dimensional maps

• Multi-dimensional maps - coupled and uncoupled maps

• Phase space maps

The usage of chaotic maps in encryption schemes is obvious: to encrypt (as an

algorithm) through the properties of diffusion and confusion of a chaotic map.

Different schemes may use different maps according to the designer's justification.

Chaotic maps in discussion in this paper will be only deterministic chaotic discrete

time dynamical system [3] which in form of:

where fk :S e RN -> RN is anonlinear function, and kdenotes its parameters.

2.3 Chaos-based Cryptography

As discussed earlier in Section 1.1, many differences of theboth chaotic systems and

cryptography needed to be fully understood, in which will lead to gaining a better

view on the relationship between the two. Referring toTable 2, it can be seen that the

chaotic systems operates on set or subset ofreal numbers only while cryptographic

systems ona finite set of integers [1]. This causes difficulty in having a practical
implementation in form of circuitry. Another setback is that there is no known

equivalent of security and performance in chaotic systems. However, these does not
hinder from developing any chaos-based encryption schemes because there are three

crucial similarities between cryptography and chaos. The equivalent of rounds, key

and diffusion in cryptographic algorithms in chaotic systems are iterations,

parameters and initial changes sensitivity, respectively.

In [1], it is suggested two general guiding principles for designing a practical

algorithm:



o diffusion', spreading out the influence of a single plaintext digit over

many ciphertext digits so as to hide the statistical structure of the

plaintext

o confusion: use of transformations which complicate dependence of the

statistics of ciphertext on the statistics ofplaintext

2.3.1 Chebyshev Polynomial of the First Kind

Chebyshev map presented in [2] is based on Chebyshev Polynomial of the First

Kind, which is defined as [2]:

Tp+l(x) = 2xTp(x)-Tp_l(x) (2)

where degreep=l,2,..., To=h and Ti~x. It has semi-group properties:

Tr(Ts(x)) = Trs(x) (3)

from where the following equation is derived:

xn=Tp(Tp(...Tp(x0))) =Tp>l(xQ) (4)

2.3.2 Other Polynomials and Maps

Moving from Chebyshev Polynomial of the First Kind, there many polynomials that

are potential candidates for a new chaotic map scheme similar to [2]. In this section,

the objective is to identify which polynomial will be suitable for a new chaos-based

public key encryption.

2.3.3 Chebyshev Polynomial of the Second Kind

Chebyshev Polynomials of the Second Kind has the same recursive formula as the

First Kind, except it has different initial values. Chebyshev Polynomial of the Second

Kind is defined as follows:

Un(x) =2xUn+i(x)-Un+2(x) (5)

where Uq(x)=1, Ui(x)=2x etc.



2.3.4 Bessel Polynomial

Bessel polynomial has the following recursive formula:

Bn{x) ={2n-X)Bn_l{x)-x1Bn_2(x)

where Bo(x)=l, Bi(x)=l+jx etc.

2.3.5 Legendre Polynomial

Legendre polynomial has the following recursive formula:

nPn (0 = (2n -\)tPn_, (0 - (« - 1)PW_2 (0

where P0(t)=l, Pi(t)=t etc.

2.3.6 Laguerre Polynomial

Laguerre polynomial has the following recursive formula:

Ln(t) = (2n-l-t)Ln_l(t)-(n-l)2Ln_2(t)

where L0(t)=l, Li(t)=l-t etc.

2.3.7 Tent Map

Tent map is defined as:

where -1<x<1

(p -mod x-
x + a

10

(6)

(7)

(8)

(9)



All the aforementioned polynomials and maps do not have one particular

characteristic to be a substitution polynomial for the scheme in [2], which is the

semi-group property (see Equation (3)). In addition, Bessel function involves

imaginary component which makes finding the terms even more difficult. These

factors make a direct substitution of a polynomial to Chebyshev Polynomial of the

First Kind is not possible. It requires a different scheme to make it work. This might

a very time consuming process. A map that has the semi-group is highly desired.

11



2.4 Logistic Map

Logistic map is a non-linear dynamic equation, which demonstrates complex chaotic

behaviour despite its simplicity.

Logistic map has the following recursive formula:

x(n +1) =7"x(/7)[l - x(n)\ /,Q\

where 0<x(0)<l and r and is a constant.

The behaviour of the map is dependent on the constant r. The value of r must be

chose in such a way that the logistic map exhibits chaotic behaviour. Referring to

Table 2, the suitable value will be within 3.57<r<4.

Semi-group property is exhibited here:

12



Table 2 Values of r and its effect on the behaviour of the logistic map
(Source: "Logistic Map" Wikipedia)

r Range : Logistic Map Behaviour

0<r<l • the population will eventually die, independent of the initial
population

Kr<2 • the population will quickly stabilize on a single value

• this value depends on r but does not depend on the initial
population

2<r<3 • the population will also eventually stabilize on a single value,
but first oscillates around that value for some time

• the final value does not depend on the initial population

3<K3.45 • the population will oscillate between two values forever

• these two values are dependent on r but independent of the
initial population

3.45<r<3.54 • the population will oscillate between four values forever

• this behavior does not depend on the initial population

3.54<K3.57 • the population will oscillate between 8 values, then 16, 32, etc

• the lengths of the parameter intervals which yield the same
number of oscillations decrease rapidly

• the ratio between the lengths of two successive such bifurcation
intervals approaches the Feigenbaum constant 8 = 4.669

• all of these behaviors do not depend on the initial population

r-3.57 • the onset of chaos

• no any further oscillations observed

• slight variations in the initial population yield dramatically
different results over time, a prime characteristic of chaos

3.57<r<4 • exhibit chaotic behaviour, but there are still certain isolated of r
that appear to show non-chaotic behavior; for instance around
3.82 there is a range of parameters r which show oscillation
between three values, and for slightly higher values of r
oscillation between 6 values, then 12 etc

• there are other ranges which yield oscillation between 5 values
etc

• all oscillation periods do occur

• these behaviours are independent of the initial value

r>4 • the values eventually leave the interval [0,1] and diverge for
almost all initial values

13



Using MATLAB, the bifurcation diagram for logistic map is drawn. Bifurcation is

where the period doubles, quadruples, etc that accompanies the onset of chaos. In

following diagram (Figure 2) is generated using MATLAB. The range for r is from 0

to 4. The first bifurcation occurs at r~3. The chaotic behaviour shows when r=3.57.

This bifurcation diagram is a fractal.
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Figure 2 Bifurcation diagram for logistic map
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CHAPTER 3

METHODOLOGY

3.1 RSA Algorithm (Public Key Scheme)

RSA algorithm involves many steps. The mathematics of RSA algorithm will be

described here as two parts - encryption and decryption. Assuming Alice is the

sender and Bob is the receiver in this example. In asymmetric encryption, Alice will

take the Bob's public key for encryption. That means Bob must firstly generate a key

pair.

3.1.1 Key Generation

The algorithm for key pair generation as follows:

1. Generate two large prime numbers, p and q, of more or less the same size

with condition thatp ^ q.

2. Calculate n =pq. This will result n with a bit length of at least 1024 bits. The

integer n is also referred as RSA modulus.

3. Calculate &(n) = (p-l)(q-l).

4. Select a random integer e, the RSA enciphering exponent, such that

Ke<0(n) and gcdfe, &(n))=l. This is done using Euclidean algorithm

5. Compute d, the RSA deciphering exponent, such that Kd«P(n) and

ed=l(moA <P(n)).

Bob's RSA publickey will be (n,e) and his RSA private key will be d.

3.1.2 Message Encryption

Encryption process is done by Alice, and she has to retrieve Bob's public key which

is (n,e). The algorithm for encryption of message m as follows (assuming

gcd(m,n)=l):

1. Compute c=mYmod n).

15



2. Send c, the encrypted message to Bob.

3.1.3 Message Decryption

The decryption process is done by Bob afterhe receives c from Alice. The algorithm

as follows:

1. Compute m=cd(mod n), with d(the private key).

The decryption of the ciphertextis done and Bob is able to read Alice's message.

3.2 Algorithm for Public-Key Encryption Using Chebyshev Maps

From [2], the following algorithm is suggested.

3.2.1 Key Generation

The following action to generate a set of keys is done by the recipient, in this

example is Alice.

• Generate a large integer s

• Select a random number x e [-1,1]

• Calculate Ts(x)

Alice's public key is (x, Ts(x)) and private key is s.

3.2.2 Message Encryption

Bob, the sender will obtain Alice's public key and encrypts his message, M using

that key.

• Represent number M e [-1,1]

• Generate a large integer r

• Compute Tr(x), Trs(x) and X=M Trs(x)

• Send ciphertext, c=(Tr(x),X)

16



3.2.3 Message Decryption

Once Alice receives the ciphertext, she can decrypt it by performing the following

steps.

• Use private key s to calculate Tsr(x)= Ts (Tr(x))

y

• Recover M by calculating M - —

The algorithm is simple as it is based on El Gamal public-key encryption scheme.

However, the software implementation is not easy as it requires careful planning to

put the algorithm into a programming language desired.

17



3.3 Public Key Encryption Scheme Based on Logistic Map

The following steps for a fully functional public key encryption scheme are based on

the work in [2].

3.3.1 Key Generation

The following action to generate a set of keys is done by the recipient, in this

example is Alice.

• Generate a large integer s

• Select a random number x e [0,1]

• Calculate q>s(x)

Alice's public key is (xo, <ps(x)) and private key is s.

3.3.2 Message Encryption

Bob, the sender will obtain Alice's public key and encrypts his message, Musing that

key.

• Represent number M e [-1,1]

• Generate a large integer q

• Compute (pq(x), (pq+s(x) andX=M<pq+s(x)

• Send ciphertext, c-((pq(x),X)

3.3.3 Message Decryption

Once Alice receives the ciphertext, she can decrypt it by performing the following

steps.

• Use private key s to calculate <ps+g(x)= (ps (<pq(x))

X
Recover M by calculating M =

<Ps+q



3.3.4 Implementation on MATLAB

Implementation of this scheme in MATLAB faces one major problem - the

limitation of maximum 16 decimal places for floating point numbers using longg

format. 16 decimal places is sufficient to prove the workability of the scheme and the

concept, however it does not provide security. Thus, as it can be seen in codes (refer

to Appendix A), the student has created a method which allows virtually unlimited

decimal places for the operation. This is done using arrays to represent decimal

numbers. For example, 0.125669 is represented as [0 1 2 5 6 6 9], whereby each

element of the array corresponds to the decimal digit. Arithmetic operations - such as

multiplication, addition, etc. - have to be re-written to ensure the operations affects

the array as a whole, rather then individual elements of the array as in usual

MATLAB array operations. For example, 0.31 * 0.456 is done such that [0 3 1]

multiplies with [0 4 5 6] equals to [0 1 4 1 3 6] (which corresponds to 0.14136),

rather than error message returnedby MATLAB if using normal array multiplication

(*) due to different array dimensions or normal matrix element-by-element

multiplication.

This task requires a lot of extra coding, and the codes are based on the format that the

decimal place is located after the first element of the array. Thus, if given an array [3

7 6 4 2], it corresponds to 3.7642. The reason on how the student came to this

formatting i s d ue t o observation of t he n umeral r ange o f t he n umbers u sed i n t he

scheme. All calculated numbers are within 0 and 1 range, except for r, which is

within 3.57 and 4 (the chaotic region); and all multiplication or division results never

exceeds 4. Large integers, such as s & q, are never involved in arithmetic

calculations, only as number of iterations. To simplify further, this MATLAB

implementation uses a message representation M between 0 and 1. With these

observations, the new array arithmetic operations are simpler and consequently allow

decimal places representation more 16 decimal places than allowed in a direct

MATLAB representation of floating point numbers.

The scheme begins with initialization by generating xo, r and s, by using the randint

built in to MATLAB. As explained above, xo, r and s are represented in array form.

Then, xg is mapped to logistic equation, which is done by passing it to a separate

function. The rest of the code follows what the scheme lays out on Section 3.4.1,

with most operations done using function calling.
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For display of a full floating number that is more than 16 decimal places, the student

have written a fimetion which will convert the array representation of the decimal

number a string output of the floating point number. This function allows the decimal

number to be seen clearly rather reading the elements of the array representation of

floating number.
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CHAPTER 4

RESULTS & DISCUSSION

4.1 MATLAB Implementation of RSA & AES Algorithms (Hybrid
System)

The MATLAB implementation of the RSA algorithm is based on the work by

Thunyawat Rajatasereekul and Voranon Kiettrisalpipop from Oregon State

University. It is then further modified to accommodate the objectives of the project.

The program acceptsa string and it will generate the public and private key p air.

Using the keys, it will encrypt and decrypt the input string and show all the

aforementioned steps of RSA algorithm. The modification made to the program is for

the purpose of integration with AES encryption. This is to achieve a hybrid system.

For the essential codes, refer to Appendix D.

The program has a graphical user interface (GUI) and the screenshot is as follows

(refer to Figure 3):

Secret Key
(from AES)

Ckk on the tetboa and check the command window

Stapl Choose secret primes o and ct

P q

and compete n*pq

n

Step 2 Choose e withgcd(B.(p-rj(q-1)H

e

Step 3. Make n and e public endkeepp,a ariddsecret. Compute Ciphertexi om %odn.

Encrypted
Secret Key

Step A Send Qphertext tadestinaSon,

d

Step 5 Decrypted Siphsr text m«e d,nod n.

Decrypted
Secret Key

Help I

Figure 3 Screenshot of the MATLAB GUI Implementation of RSA
Algorithm
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The first listbox of the RSA program shows the secret key from AES which is

obtained from Ms Easwari's M-files. The program initialized from a function named

pro2. This function will then call AES function. The AES part is further discussed in

Ms Easwari's report. At the point whereby the AES secret key is generated, it is

passed to this function and it will be displayed out. Figure 4 shows the secret, display

in ASCII character format.

(from AES) p*™™™

Figure 4 AES Secret Key Output

Then, the program will calculate the prime numbers; p and q. (Refer to Figure 5 and

Figure 6)

Step 1:Choosesecretprimeso^dj

Figure 5 Prime p

Figure 6 Prime q

The integer n is then calculated. (Refer to Figure 7)

Figure 7 RSA Modulus, n

The following step will be computation of e. (Refer to Figure 8)

Step 2:Chanse e with gcd(e,(p-1)[q-1 ))-1.

Figure 8 Enciphering Exponent, e
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The encryption process ensues to obtain c. (Refer to Figure 9)

Step 3 Make nend e publicandkeep p q.and d secret. Compute Cipher text c* m"nod n.

Encrypted
Secret Key

Figure 9 Ciphertext, c

After encryption, c is sent and the receiver uses his or her private key d to decrypt.

(Refer to Figure 10)

Step A. Send Ciphertext to destination

:<

Figure 10 Deciphering Exponent, d (Public Key)

The decryption result m will be the secret key so that the receiver can use it to

decrypt the encrypted message. (Refer to Figure 11)

Step 5: Decrypted Ciphertext m=c d.nod n.

Decrypted
Secret Key

Figure 11 Decrypted Ciphertext, the AES Secret Key
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4.1.1 Analysis ofMATLAB Implementation

From Figure 12, the encrypted message, c (which is c=me(mod n)) appears to look

random and noise-like. A further testing involves auto-correlation of the encrypted

message, X. Auto-correlation is defined as:

r„ P] =Z ^ W"- ^ =*M®*H] (12)

The result is seen in Figure 13. In a pure white noise, the auto-correlation will

produce a delta function, with the peak at 0. In comparison, Figure 13 shows an

almost linearly rising and decreasing graph and peaks at 0. This shows that it does

not resemblean exact pure white noise, but showsthat is a noise-like signal.

Figure 12 Ciphertext, c
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Figure 13 Auto-correlation of normalized ciphertext, c

4.1.2 Precision of the Implementation

This implementation supports up to 1024 bits precision which translates to 309 digits

of integer.

4.1.3 Performance Observation

This program gives an overview of how a hybrid system will perform. The strength

of a hybrid system comes from both types of cryptographic systems, in this case -

RSA and AES. A GUI provides a user-friendly interactivity and understanding of the

encryption process. The prominent weakness of the system is the slow encryption

process due to:

• Not optimized AES encryption

• GUI processing

Another weakness lies in the generation of keys, in both RSA and AES schemes.

MATLAB is not designed to have a secure random number generator.
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4.2 MATLAB Implementation of Public Key Encryption Based on
Chebyshev Maps

An implementation of the algorithm is carried on MATLAB. The objective is to

replicate the result as presentedin [2]. The givenvalues are as of below:

5 = 264363611321238,5948«2910

r = 3547334155133,93170

x = 0.25749480

M = 0.11111111114444444444

The expected values are as ofbelow:

Ts(x) = -0.0176128306

^(^-0.9921943793

Tr(Ts(x)) = 0.6571609510

X = -0.7301788346

However, the result obtained through MATLAB implementation does not match the

expected values. Through thorough checking, it is found out that the precision used

in MATLAB cannot match the precision used in [2] which is 2048-bit precision. It

uses GNU MP, which is a library for arbitrary precision arithmetic. As discussed in

earlier sections, MATLAB allows up to 16 decimal places of a floating point number.

For this implementation, the method used in MATLAB implementation of logistic

map is not employed because that it was done later. The solution to the limitation of

MATLAB decimal places is thus the same as discussed in Section 3.3.4, by using

arrays. Due to the fact that Chebyshev Polynomial of the First Kind is a chaotic map
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in nature, any small variant in the initial condition will cause a huge difference in the

end result. The huge difference is what been observed here.

The solution to this problem is to reduce the size of the values s and r to a smaller

number. By doing so, the method proposed in [2] is confirmed working, however at

the c ost of security. The smaller the number used the e asier to break the system.

However, the objective here is to prove that the scheme proposed works and the

conclusion is positive: the scheme is proven working.
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4.3 MATLAB Implementation of Public Key Scheme Based on Logistic
Map

A MATLAB implementation has been to done to prove the workability of this

scheme. Due to limitation ofMATLAB precision, the chosen s, r and M are small.

For demonstration sake, any numberwithinthe specified range will work. The values

for xo, r, s, q and M are as below:

xl = 0.18

r = 3.76693

s = 3

q = 4

M = 0.45919599

The MATLAB results are as ofbelow:

xs = 0.92991988510162608549168

tq = 0.245486655826501228105891845881475813367908593664768

tqs =

0.7944683 043 5 08582182 26072554 90677912 95 095265 0021843 2109733 68 02 95353

261533 592 515523 670182 093 876062418921841789891663 2814488932244 785677 9

7194796412336185435774493607467507945829195014 868 9252302586342334197

01920279054778368

X =

0.36481665954001364686795743066224780 008646523569903814887694"5959568

233 329646 93 34224 82097 70 00776914197586 09873 332 674313 27157315 861872 817

34149837614111628 84004 05 0008829713704 0179035757558008413445915028630

51108787441635216 92434432

tsq =

0.7944683 04 35085821822607255490677912950952 65 002184321097336802953 53

261533592515523670182 093 876 062418921841789891663281448893 22447856779

7194 79641233618543 57744 93 6074 67507945 829195 01486892523 02586342334197

01920279054778368

M2 = 0.45919599
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From the MATLAB results, it can be seen that the public key is

[xo,<ps(x), r] = [0.18, 0.92991988510162608549168, 3.76693]

the private key is s=[3].

The ciphertext, c is

[<pq(x),X\ = [0.245486655826501228105891845881475813367908593664768,

0.3 64 81665954 0013 64 686795 743 066224780008646523569903814 8876945959568

2333 29646 9334224 82 097700 077691419 758 6098 7333267431327157315 861872 817

3414 98376141116288400405 000882 97137 04017903 5757558008413 445915028630

5110878744163521692434432].

Alice successfully decrypts the message M.

This MATLAB implementation hasproven the workability of the scheme.

Figure 14 Web diagram using initial x0=0.18, r=3.76693 and a total
iteration of 7 (s+q)
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In Figure 14, it shows the results of the implementation in form of a web diagram for

a logistic map. It shows how the initial point being mapped for each iteration. The

parabolic curve corresponds to r*x*(l-x) and the linear line corresponds to y=x. The

other line shows the trajectory as the initial point being mapped to a new point. Only

at a certain range of r (which discussed earlier) will the graph show this chaotic

behaviour as seen in this cobweb diagram. Out of this range of r, the behaviour as

seen on a cobweb diagram will show the trajectory flies to infinity or the trajectory

will stick to a defined orbit and loop on that.
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4.3.1 Analysis of MA TLAB Implementation

FromFigure 15, the encrypted message, X (which is equals to M q>g+s(x)) appears to

look random and noise-like. The importance of checking whether an encrypted

message appears noise-like is because the objective of a chaotic encryption is to

make the encrypted output appears as noise-like as possible. A further testing

involves auto-correlation of the encrypted message, X. Auto-correlation is defined in

Equation 12. The result is seen in Figure 16. In a pure white noise, the auto

correlation will produce a delta function, with thepeakat 0. In comparison, Figure 16

shows an almost linearly rising graph, peaks at 0 and almost linearly decreasing

components of the auto-correlation result. This shows that it does not resemble an

exactpure white noise,but shows that is a noise-like signal.

Figure 15 Encrypted message, X
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Figure 16 Auto-correlation of the normalized encryptedmessage, X

4.3.2 Precision of the Implementation

Precision wise, this implementation allows virtually unlimited decimal places

representation as opposedto only 16 decimal places as restrained by MATLAB core.

The higher the number of decimal places, the more precise the implementation.

However, high precision comes with the price of much slower performance (see next

section, Section 4.3.3).

4.3.3 Performance Observation

The performance of this implementation varies because it is dependenton the length

of xo, r, s, q and M. The longer the length (the decimal numbers are represented in

arrays), the slower is the entire processing due to many calculations involved. An

enormous slowdown in processing is seen when 10 decimal places for each xo, r, s, q

and M are set. Thus, on a machine with high processing speed and huge memory, the
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implementation allows high precision at a high speed. However, for a normal

machine, this is not very practical. For faster processing, precision, and thus security,

must be compromised. This implementation, however, can be further enhanced by

optimizing the codes or perhaps by using different language. Thus, this

implementation is excellent to show the workability of the scheme and to prove it is

possible to have higherprecisionthan what is offeredin MATLAB itself.

4.4 Comparison between Public Key Encryption Based on RSA
Algorithm (MATLAB Comparison) and Logistic Map

The comparison between public key encryption based on logistic map and RSA

algorithm is done based on MATLAB platform as a common platform. For RSA

algorithm implementation, it was able to achieve 1024-bit of integer for its

calculation. However, initially for the logistic map implementation, it can only go up

to 16 decimal places of floating point number before MATLAB cuts off and exhibit

rounding error. Thus, the student has written MATLAB codes that will allow

theoretically unlimited decimalplaces by using arrays. Yet, this high precision costs

performance by slows downthe processing time until to an unpractical level. Yet, the

codes written has given the scheme as high precision as needed for comparison, only

limited by the machine.

On the ciphertext of RSA and its auto-correlation are almost identical to the

encrypted message of Logistic Map scheme. Both appear noise-like and their auto

correlation shares a similar shape. It is safe to say that the encrypted message of

logistic map scheme has the more or less the same degree of noise-likeliness as the

ciphertextof RSA schemebased on the observation on the auto-correlation graph.
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CHAPTER 5

CONCLUSION & RECOMMENDATION

5.1 Recommendation

The MATLAB implementation of the RSA algorithm can be improved in terms of

efficiency and security. As discussed, both programs are not optimized for speed and

security although it follows industrial standards. It was developed for academic

demonstration only.

The implementation of the new scheme can be further optimized for performance

without compromising security. The current codes provides the means to have higher

security level, but is limited by machine factor. With optimization, it can show the

scheme can perform encryption at a practical level with security worries at bay.

A thorough cryptanalysis will be needed on the new public key encryption scheme

based on logistic map. This is essential for a good encryption scheme.

5.2 Conclusion

The student has learned the fundamentals of cryptography and specifically on RSA

algorithm. In addition, the student has ramped up on learning JAVA programming

and produced a JAVA implementation of the RSA algorithm. An integrated working

MATLAB implementation of RSA algorithm with AES algorithm was also jointly

produced with Ms Easwari. This simulates the real life application of both

asymmetric and symmetric encryption in a single unit.

A new public key encryption based on logistic map has been proposed. The scheme

is based on the work in [2]. MATLAB implementation has proven the workability of

the scheme. In addition, it has also solve a maj or problem faced when

implementation due to limitation of MATLAB floating point precision. The scheme

can have a higher level of security, comparable with RSA, with only limitation of

computing power and memory.

All objectives are met for this project.
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APPENDIX A

PUBLIC-KEY ENCRYPTION BASED ON LOGISTIC MAP

(MATLAB IMPLEMENTATION)

%logistic_pk_scheme.m

%Public Key Impleraentation Based on Logistic Map

%Chew Jun Yee

%Universiti Teknologi PETRONAS

%5/4/2004

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

format long g %To set the output format

clear %To clear the workspace data

%initial value

ral=randint(1,1,[2 5]);

xl = 0;

xl=cat(2,xl,randint(l,ral, [0 9] )) ,-

xl_dec=arr2dec(xl)

%constant

ra2=randint(1,1,[2 5]);

r=3;

r=cat(2,r,randint(1,1, [6 9] )) ;

r=cat(2,r,randint(1,ra2, [0 9] )) ;

r_dec=arr2dec(r)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Receiver: Alice

^Generate public & private keys

s=randint(1,1,[2 5]);

xs=mapping(xl,r,s); %find xs

xs_dec^arr2dec(xs)

%private key: [s]

%public key: [x(l),xs,r]
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%Sender: Bob

%Obtain public key

q=randint(1,1, [2 5] );

tl=xl; %info from public key

tq=mapping(tl,r,q); %find tq

tq_dec=arr2dec(tq)

%encryption

tqs=xs; %info from public key

tqs=mapping(tqs,r, q);

tqs_dec=arr2dec(tqs)

%raessage

ra2=randint(1,1,[8 13]);

M=0;

M=cat(2,M,randint(l,ra2, [0 9] ) ) ;

M_dec=arr2dec (M)

X=mul(M,tqs);

X_dec=arr2dec(X)

% acorr_cipher=xcorr(X);

% plot(acorr_cipher)

%ciphertext=[tq,X]

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Alice received ciphertext

tsq=tq; %info from ciphertext

%decryption

tsq=mapping(tsq,r,s); %find tsq

tsq_dec=arr2dec(tsq)

M2=division(X, tsq) ,• %info from ciphertext

M2 dec=arr2dec(M2) %message successfully recovered
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%mappmg.m

function y = mapping(x,r,trans)

% Usage

% Inputs: r - constant

% trans - number of iterations before outputting

%

% based on the work by C. Savage

%

% modified by Chew Jun Yee

% 3/4/2004

for i = 1:trans-1 % transient iterations

templ=mul (r,x) ,-

temp2=subtraction(x);

x = mul(tempi,temp2); % logistic map

end

return

%mul. m

function y = mul(arrayl,array2)

larl=length(arrayl) ,-

lar2=length(array2);

if lar2>larl

temp_array=array2;

array2=arrayl;

arrayl=temp_array,-

larl=length (arrayl) ,•

lar2=length(array2);

lar=larl;

else

lar=larl;

end
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count=lar ,-

countl=larl;

count2=lar2;

leng=larl+lar2-l ;

%initialization

for k=l:leng

arrmul(k)=0;

end

result=arrmul;

for m=l:lar2

arr2=array2 (count2) ,-

A{1,m}=multiplication(arrayl,arr2,arrmul,{count+lar2-l))

count2=count2-l;

count = count-1;

end

for q=l:lar2

result=addition(result ,A{l, q}) ;

end

y=result;

return

%multiplication.m

function array_return = multiplication(arrayl, array2, arrmul
count)

larl=length(arrayl)

lar2=length(array2)

%mulitplication

if lar2>larl

lar=lar2;

else
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lar=larl;

end

% count=lar

countl=larl

count2=lar2

%initialization

% for k=l:(countl+count2-l!

% arrmul(k)=0;

% end

for n=l:lar

if count>0

arrmul(count)=(array2(count2)*arrayl{count1))+arrmul(count)

if arrmul(count)>=10

if count>1

arrmul(count-

1)=floor(arrmul(count)/10)+arrmul(count-1) ;

end

arrmul(count)=rem(arrmul(count),10};

end

end

end

count=count -1 ,-

countl=countl-l

array return=arrmul

return

%addition.m

function arradd = addition(arrl,arr2)
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arradd=arrl+arr2 ,-

arrlen=length(arradd);

arrcount=arrlen;

for p~l:arrlen

if arradd(arrcount)>=10

if arrcount>l

arradd(arrcount-

1) =floor (arradd(arrcount) /10) +arradd (arrcount-1) ,-

end

arradd(arrcount)~rem(arradd(arrcount),10)

end

arrcount=arrcount-1;

end

return

%subtraction.m

function y = subtraction(array)

% 1-x

k=length(array);

result =0 ,-

for m=2:k

result=cat(2,result,[9]);

end

result(k)=result(k)+1;

y=resuit-array ,•

% division.m
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function y = division(arrayl, array2)

format long g

arrllen=length(arrayl);

lel=arrllen;

arr21en=length(array2);

Ie2=arr21en;

arrlrep=0 ,-

arr2rep=0;

for k=l:arrllen

arrlrep=arrlrep+(10A(k-l))*(arrayl(lei) )

lel=lel-l;

end

for m=l:arr21en

arr2rep=arr2rep+(10A(m-1))*(array2(le2) )

Ie2=le2-1;

end

y=arrlrep/arr2rep;

%arr2dec.ra

function dec = arr2dec(array)

format compact

n=length(array);

dec= •' ,-

for k=l:n

if k==2

dec=strcat(dec,'.');

end

temp=num2str(array(k));

dec=strcat(dec,temp);

end
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APPENDIX B

MATLAB IMPLEMENTATION OF RSA ALGORITHM WITH AES

Partial RSA only, other parts are used for GUI. For AES, please refer to Ms
Easwari's report.

% Computation core of RSA algorithm

function [c,out,p,q,n,e,d] = rsacore(val)

c=[] ;

out= [] ;

p=[:

q=[

n=[

e=[

d=[

format long g

cut__length =50; % Chunk of characters to be transmitted in one time

bit = 1024; % Number of bit for RSA modulus n

e_bit =64; % Number of bit for e

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initial Computation of p q e n d %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

X = bit/2;

X - num2str(X);

maple('x:=',X);

maple('y:=2Ax'),-

maple('z:=y*2');

maple('pp:=rand(y..z)');

£3 % £ £* % % £ % $ $£$ % % s £3 %

% Generate p and q %

%%%%%%%%%%%%%%%%%%%%
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temp = randint{1,1,3 000);

for j = 1:temp

maple('pp()');

end

maple('p:=nextprime(pp())');

maple('q:=nextprime(pp() )');

%%%%%%%%%%%%%

% Compute n %

%%%%%%%%%%%%%

maple ('n: =p*q' ) ,-

%%%%%%%%%%%%%

% Compute e %

%%%%%%%%%%%%%

maple(rtemp: = (p-l) *(q-1) •) ;

TEMP = 0;

while TEMP -= '1'

XX = num2str(e_bit);

maple('xx:=',xx);

maple ('xx: =2Axx' ),-

maple('zz:=rand(xx..(10*xx))')

maple('e:=nextprime(zz())');

TEMP = maple('gcd(e,temp)');

end

%%%%%%%%%%%%%

% Compute d %

%%%%%%%%%%%%%

maple('d:=e&A(-1) mod temp');

p = maple('p')

q = maple('q1)

n = maple('n')

e = maple('e')

d = maple('d')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% End of Intialization %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Make n and e public %

% Encryption of m using available n and e %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

m = val;

[m_int2 padd] = mesgcut(m,cut_length);

m_int2 = double(m_int2);

m_char = intconcat(m_int2);

[si s2] = size(m_char);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Repeatedly tramsmiss of 50(cut_length) characters message chunk %

% from verylong message %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

c = [] ;

out = [] ;

for j = l:sl

%%%%%%%%%%%%%%%%%%%%%%%

% Compute Cipher text %

%%%%%%%%%%%%%%%%%%%%%%%

maple ('m: =',m__char (j ,:) );

maple('c:=((m&Ae) mod n) ');

c__temp = maple (' c ');

c = [c c_temp] ,-

%%%%%%%%%%%%%%

% Decryption %

%%%%%%%%%%%%%%

maple('m:=((c&Ad) mod n)');

m_out = maple('m');

if length(m_out) == ((cut_length*3)-1)

m_out = ['0' m_out];

elseif length(m_out) == ((cut_length*3)-2)

m_out = ['0' '0' m_out];

end

1 = 1;
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m_out__int = [] ;

for k = 1:length(m_out)/3

m_out_temp = [m_out (1) m__out (1 +1) m_out (1 +2) ]

m_out_int_temp = str2num (m_out_temp) ;

m_out_int = [m_jout_int m__out_int_temp] ;

1 = 1+3;

end

out = [out char(m_out_int)];

end

out = out(1:((sl*cut_length)-padd));

global decrypted_key

decrypted key= double(out)
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