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ABSTRACT

A mobile ad-hoc network (MANET) is a self-configuring network of mobile routers

and associated hosts connected by wireless links, the union of which form an arbitrary

topology. The routers are free to move randomly and organise themselves arbitrarily;

thus, the network's wireless topology may change rapidly and unpredictably. The

network is currently applied in many areas suchas for military purposes, in hospitals,

campuses and offices. First of all, the scope of study of this projectwas to understand

current wireless standards, the nature of mobile ad hoc networks, the advantages and

disadvantages to it. The next step was to understand the requirements of file sharing

application in such networks. One of the challenges in MANET is the routing

protocol. The Ad Hoc On Demand Distance Vector (AODV) routing protocol was

chosen and simulated in a hospital scenario whereby patients' records are constantly

uploaded and downloaded by doctors and nurses using mobile devices. The scenario

was simulated using OMNeT++ which is an open source software.

in
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CHAPTER 1

INTRODUCTION

Introduction in this chapterhas three subsections which are the background of study,

problemstatement, the objectives and scope of study for this project.

1.1 Background of Study

Broadband Internet access and wireless computing has become very popular since the

late of last century and we are starting to witness the convergence of wireless

communications and computing.

There are many wireless standards that are tailored for different needs such as for

Personal Area Networks (PANs), Local Area Networks (LANs), Wide Area Networks

(WANs) and Metropolitan Area Networks (MANs). Most of these standards are outlined

and developed by the Institute of Electrical and Electronics Engineers (IEEE) working

group. Currently, most mobile devices are equipped with IEEE 802.11 b/g standards. It

is predicted that in the near future IEEE 802.16 would replace the current standard with

higher capacity, wider coverage and better performance.

As mobile devices move freely in a network, there are many challenges and obstacles

that need to be addressed in such networks.

File sharing applications are used to share files that are popular and important among

community members. This is vital for communities or organizations such as military

defences, hospitals, offices and campuses. For a hospital scenario, patients' bed can be

equipped with wireless monitoring devices. Data can be constantly uploaded to the

database and the information can be downloaded anytime by doctors and nurses who are

constantly on the move by using mobile devices.



1.2 Problem Statement

More and more mobile computing devices (e.g., laptops, handheld digital devices,

personal digital assistants and wearable computers) these days are equipped with

wireless technology devices. Users who have adopted this technology are expecting

better mobility, higherdata transfer rate and moreuseful applications to go with it.

Currently, most organizations still keep their members connected in Local Area

Networks (LANs) via some infrastructure or access points. With the recent introduction

of IEEE 802.11 standards, wireless LAN devices are now equipped with ad hoc

networking features and is becoming popular. By offering an application that enables

people to share information through ad hoc wireless networks, wired infrastructures can

be taken out of the cost equation and the bandwidth for Internet access within the

organization can also be better utilized.



1.3 Objectives and Scope of Study

The specific objective of this study is to develop an application that enables users with

wireless devices to transfer and receive files from peers in ad hoc networks. The focus of

this study is to address issues such as security and privacy of the data transferred,

routing protocols in ad hoc networks and also the compatibility of the application on

different operating system platforms. When this application is successfully developed,

communicating and sharing of information within ad hoc networks will be much easier,

faster and efficient without the need for an access point as every mobile device is a

router by itself.

Researches have to be conducted on wireless standards available, ad hoc network

routing protocols, wireless network simulation tools available, the appropriate

programming language to be used, security andprivacy issues and also the compatibility

of different operating systems. The routing protocols will be evaluated using the

simulation tool. Preliminary research and simulation will be conducted before the

process of developing the application begins.

The next chapter covers literature review and researches conducted throughout the
project.



CHAPTER 2

THEORY / LITERATURE REVIEW

File sharing software such as Kazaa, Napster, Mule, Hopster and many more boomed

over the Internet a few years ago. These applications allow users over the Internet to

share files and stay connected within their communities. The popularity of these

software is due to the virtual bonding formed with people who have similar interests

around the world.

A mobile ad hoc network represents a system of wireless mobile nodes that can freely

anddynamically self-organize into arbitrary and temporary network topologies, allowing

people and devices to seamlessly internetwork in areas without any preexisting

communication infrastructure [1],

2.1 Various Wireless Standards

2.1.1 IEEE 802.11

In 1997, the Institute of Electrical and Electronics Engineers (IEEE) created the first

Wireless LAN (WLAN) standard. They called it 802.11 after the name of the group

formed to oversee its development. Unfortunately, 802.11 only supported a maximum

bandwidth of 2 Mbps - too slow for most applications. For this reason, ordinary 802.11

wireless products are no longer being manufactured.

2.1.2 IEEE 802.11b

IEEE expanded on the original 802.11 standard in July 1999, creating the 802.11b

specification. 802.11b supports bandwidth up to 11 Mbps, comparable to traditional

Ethernet. 802.11b uses the same radio signalling frequency - 2.4 GHz - as the original

802.11 standard. Being an unregulated frequency, 802.11b gear can incur interference

from microwave ovens, cordless phones, and other appliances using the same 2.4 GHz



range. However, by installing 802.1 lb gear a reasonable distance from other appliances,

interference can easily be avoided. Vendors often prefer using unregulated frequencies

to lower their production costs.

• Pros of 802.1 lb - lowest cost; signal range is best and is not easily obstructed

• Cons of 802.1 lb - slowest maximum speed; supports fewer simultaneous users;

appliances may interfere on the unregulated frequency band

2.1.3 IEEE 802.11a

When 802.11b was developed, IEEE created a second extension to the original 802.11

standard called 802.11a. Because 802.11b gained in popularity much faster than did

802.1 la, some folks believe that 802.1 la was created after 802.1 lb. In fact, 802.1 la was

created at the same time. Due to its higher cost, 802.11a fits predominately in the

business market, whereas 802.1 lb better serves the home market.

802.11a supports bandwidth up to 54 Mbps and signals in a regulated 5 GHz range.

Compared to 802.11b, this higher frequency limits the range of 802.11a. The higher

frequency also means 802.11a signals have more difficulty penetrating walls and other

obstructions. Because 802.11a and 802.11b utilize different frequencies, the two

technologies are incompatible with each other. Some vendors offer hybrid 802.1 la/b

network gear, but these products simply implement the two standards side by side.

• Pros of 802.11a - fastest maximum speed; supports more simultaneous users;

regulated frequencies prevent signal interference from other devices

• Cons of 802.11 a - highest cost; shorter range signal that is more easily obstructed

2.1.4 IEEE802.11g

In 2002 and 2003, WLAN products supporting a new standard called 802.1 lg began to

appear on the scene. 802.1 lg attempts to combine the best of both 802.1 la and 802.1lb.

802.1 lg supports bandwidth up to 54 Mbps, and it uses the 2.4 Ghz frequency for



greater range. 802.11g is backwards compatible with 802.11b, meaning that 802.1 lg

access points will work with 802.1 lb wireless network adapters and vice versa.

• Pros of 802.1 lg - fastest maximum speed; supports more simultaneous users;

signal range is best and is not easily obstructed

• Cons of 802.1 lg - costs more than 802.11b; appliances may interfere on the

unregulated signal frequency

2.1.5 IEEE 802.16

Since July 1999, the IEEE 802.16 Working Group on Broadband Wireless Access has

been openly developing voluntary consensus standards for Wireless Metropolitan Area

Networks (WMAN) with global applicability. Addressing the demand for broadband

access to buildings, IEEE 802.16 provides solutions that, in many cases, are more

economical than wired alternatives. The standards set the stage for a revolution in

reliable, high-speed network access in the first mile (also known as the "last mile") by

homes and enterprises.

IEEE 802.16 addresses the "first-mile/last-mile" connection in wireless metropolitan

area networks. It focuses on the efficient use of bandwidth between 10 and 66 GHz (the

2 to 11 GHz region with PMP and optional Mesh topologies by the end of 2002) and

defines a medium access control (MAC) layer that supports multiple physical layer

specifications customized for the frequency bandof use.

The standard covers both the Media Access Control (MAC) and the physical (PHY)

layers. A number of PHY considerations were taken into account for the target

environment. At higher frequencies, line of sight is a must. This requirement eases the

effect of multipath, allowing for wide channels, typically greater than 10 MHz in

bandwidth. Forsub 11 GHz non line of sight capability is a requirement. The standard is

designed to accommodate either Time Division Duplexing (TDD) or Frequency

Division Duplexing (FDD) deployments, allowing for both full and half-duplex

terminals in the FDD case.



The MAC was designed specifically for the PMP wireless access environment. It

supports higher layer or transport protocols such as ATM, Ethernet or Internet Protocol

(IP), and is designed to easily accommodate future protocols that have not yet been

developed.

The frame structure allows terminals to be dynamically assigned uplink and downlink

burst profiles according to their link conditions. This allows a trade-off between capacity

and robustness in real-time, and provides roughly a two times increase in capacity on

average when compared to non-adaptive systems, while maintaining appropriate link

availability.

The 802.16 MAC uses a variable length Protocol Data Unit (PDU) along with a number

of other concepts that greatly increase the efficiency of the standard. Multiple MAC

PDUs may be concatenated into a single burst to save PHY overhead.

The MAC uses a self-correcting bandwidth request/grant scheme that eliminates the

overhead and delay of acknowledgements, while simultaneously allowing better QoS

handling than traditional acknowledged schemes. Terminals have a variety of options

available to them for requesting bandwidth depending upon the QoS and traffic

parameters of their services. They can be polled individually or in groups and can steal

bandwidth already allocated to make requests for more. They can signal the need to be

polled, and they can piggyback requests for bandwidth.

Today, the popular wireless standards are IEEE 802.11b and IEEE 802.1 lg. It is

predicted that IEEE 802.16 would be the new wireless standards.



2.2 The Simulation Tool - OMNeT++

Objective Modular Network Test-bed in C++ (OMNeT++) is a public-source,

component-based, modular simulation framework. It is has been used to simulate

communication networks and other distributed systems. The OMNeT++ model is a

collection of hierarchically nested modules as shown in Figure 1. The top-level module

is also called the System Module or Network. This module contains one or more sub-

modules each of which could contain other sub-modules. The modules can be nested to

any depth and hence it is possible to capture complex system models in OMNeT++.

Modules are distinguished as being either simple or compound. A simple module is

associated with a C++ file that supplies the desired behaviours that encapsulate

algorithms. Simple modules form the lowest level of the module hierarchy. Users

implement simple modules in C++ using the OMNeT++ simulation class library.

Compound modules are aggregates of simple modules and are not directly associated

with a C++ file that supplies behaviours. Modules communicate by exchanging

messages. Messages may be exchanged directly between simple modules or via a series

of gates and connections. Messages represent frames or packets in a computer network.

The structure and interface of the modules are specified using a network description

language. They implement the underlying behaviours of simple modules. Simulation

executions are easily configured via initialization files. It tracks the events generated and

ensures that messages are delivered to the right modules at the right time.

> CM - Compound Module
> SM - Simple Module

-*• Messages between Simple Modules

Figure 1: Simple and Compound Modules of OMNeT++



NS2, perhaps the most widely used network simulator, has been extended to include

some basic facilities to simulate Sensor Networks. However, one of the problems of NS2

is its object-oriented design that introduces much unnecessary interdependency between

modules. Such interdependency sometimes makes the addition of new protocol models

extremely difficult, only mastered by those who have intimate familiarity with the

simulator. Being difficult to extend is not a major problem for simulators targeted at

traditional networks, for there the set of popular protocols is relatively small. For

example, Ethernet is widely used for wired LAN, IEEE 802.11 for wireless LAN, TCP

for reliable transmission over unreliable media. For sensor networks, however, the

situation is quite different. There are no such dominant protocols or algorithms and there

will unlikely be any, because a sensor network is often tailored for a particular

application with specific features, and it isunlikely that a single algorithm can always be

the optimal one under various circumstances.

Many other publicly available network simulators, such as JavaSim, SSFNet, Glomosim

and its descendant Qualnet, attempted to address problems that were left unsolved by

NS2. Among them, JavaSim developers realized the drawback of object-oriented design

and tried to attack this problem by building a component-oriented architecture.

However, they chose Java as the simulation language, inevitably sacrificing the

efficiency of the simulation. SSFNet and Glomosim designers were more concerned

about parallel simulation, with the latter more focused on wireless networks. They are

not superior to NS2 in terms of design andextensibility.



2.3 Challenges of Mobile Ad Hoc Networks

A mobile ad hoc network represents a system of wireless mobile nodes that can

freely and dynamically self-organize into arbitrary and temporary network

topologies, allowing people and devices to seamlessly internetwork in areas without

any preexisting communication infrastructure [2].

Among the challenges faced by ad hoc mobile networks are [2]:

> spectrum allocation and purchase

> media access

> routing

> multicasting

> energy efficiency

> TCP performance

> service location, provision and access

> security & privacy

10



2.4 Ad Hoc Network Routing Protocols

From [1], an ad hoc protocol is a convention or standard that controls how nodes

come to agree which way route packets between computing devices in a mobile ad-

hoc network (MANET).

In ad hoc network nodes do not have a priori knowledge of topology of network

around them, they have to discover it. The idea is that a new node announces its

presence and listens to broadcast announcements from its neighbours. The node

learns about new near nodes and ways on how to reach them and announces that it

can also reach those nodes. As time goes on each node knows about all other nodes

and one or more ways how to reach them [1].

However this naive approach suffers from many deficiencies. Real-world routing

algorithms have to [1]

• keep routing table reasonably small

• choose best route for given destination (this can be the fastest, most reliable,

highest throughput, or cheapest route)

• keep table up-to-date when nodes die, move or add

• require small amount of messages/time to converge

Two predominant routing algorithms for ad hoc networks are dynamic source routing

(DSR) and ad hoc on demand distance vector (AODV) routing [1].

2.4.1 Dynamic Source Routing (DSR)

Dynamic source routing works on the concept of source routing, which means that

the full path (i.e. all nodes that the packet must traverse in order to reach the

destination) is included in the data packet instead ofjust the destination of the packet.

A similar idea is applied to DSR for ad-hoc networks [1].

The process for determining the path from the source to destination is called a route

request. This process triggers a route reply from the destination to source. The routes

11



between source and destination and vice versa need not be the same due to the

existence of unidirectional links in the path. However, some MAC protocols enforce

bidirectional links as a requirement. 802.11 is an example of such a protocol, in

which the destination can simply reverse the route to itself to obtain the reverse route

to the source1. If a node operates in the promiscuous mode, it can learn paths

between nodes even though it may not be a part of the path. In this manner it builds

up a route cache that may contain multiple paths between two nodes. In DSR, for ad-

hoc, routes are determined only when required. Thus, there are no periodic routing

advertisements (heartbeats) to maintain the state of the network current.

2.4.2 Ad Hoc On Demand Distance Vector(AODV)

This is based on the idea of the distance vector, or DV. In DV, each router advertises

to its neighbours its view of the network. The neighbour then computes its distance

to all other nodes based on this advertisement. AODV borrows the reactive approach

to discovering a non-existent route from DSR. However, unlike DSR, AODV

requires neighbours to send periodic "Hello" messages to keep track of the link state

between two nodes. A reactive approach to routing implies that a non-existent route

is determined only when it is determined that the route does not exist in the route

tables (route cache). The routing algorithm does not run continuously, trying to

determine all possible routes to all possible nodes. The reactive approach is followed

to account for the dynamic nature of the ad-hoc networks. Given the existence of

node mobility, the routing algorithm may expend battery power determining all

possible routes only to find that the network topology has changed. AODV involves

periodic exchange of "Hello" messages. This makes AODV more suited for nodes

with high mobility as the link status is continuously updated and the routing table can

quickly adapt to the new topology. However, for networks with low mobility nodes,

these periodic "Hello" messages cause unnecessary usage of the already low

bandwidth of wireless links and, hence, the battery power. The heartbeat messages

may have an adverse reaction on the nodes by not allowing them to go into the

"sleep" mode and consequently resulting in an inadvertent denial-of-service battery

drain attack. DSR is more suited for networks with low mobility nodes. The

inclusion of the full path in the data packet implies that the routing algorithm does

12



not have to run at every node each time a packet is received. Also, periodic

heartbeats need not be exchanged between low mobility nodes [1].

Other known mobile ad hoc routing protocols are [1]:

i) Destination Sequenced Distance Vector (DSDV)

ii) Wireless Routing Protocol (WRP)

iii) Cluster Switch Gateway Routing (CSGR)

iv) Source-Initiated On-Demand Approaches

v) Temporally Ordered Routing Algorithm (TORA)

vi) Signal Stability Routing (SSR)

vii) Location-Aided Routing (LAR)

viii) Power-Aware Routing (PAR)

ix) Zone Routing Protocol (ZRP)

x) Source Tree Adaptive Routing (STAR)

xi) Relative Distance Microdiversity Routing (RDMAR)

These protocols can be classified under 3 categories, reactive, active and hybrid.

Reactive routing is whereby routing information is only required when needed. It

does not have full consistent routing tables and route discovery process is used to

obtain a valid route. Active routing protocols maintain up to date routes between all

nodes in the network. Hybrid is a mix of reactive and proactive routing.

Table 1: Routing Protocols Classification

Routing protocols

Reactive Active ', Hybrid

AODV DSDV ZRP

DSR WRP

TORA CSGR

SSR STAR

RDMAR

13



2.5 Requirements for File Sharing

From [6], the typical requirements of popular networked applications are shown as

below:

Table 2 : Typical Requirements for Popular Networked Applications

Application Delay Jitter Bandwidth Reliability

E-mail Low Low Low High

File Transfer Low Low Medium High

Web Medium Low Medium High

Remote Access Medium Medium Low High

Chat Medium Medium Low High

Audio streaming Low High Medium Low

Video streaming Low High High Low

Voice over IP High High Low Low

Video Conference High High High Low

Multiplayer Games High High Low Medium

The requirements are defined as follows [6]:

Delay:

Determines the end-to-end time it takes to transmit a packet from the source to the

destination. This is often called latency, too. It is important to distinguish between

end-to-end delay and round-trip time (RTT) delay which measures the time it takes

to send a packet to the destination and back to the source. In particular in wireless

networks, the delay might not be symmetric and a connection can experience a

higher delay in one direction than in the other direction.

Jitter:

Describes how much the packets vary in latency and is determined by calculating the

standard deviation of latency.

14



Bandwidth:

Defines the maximum amount of data the network is able to transmit within a certain

time frame.

Reliability:

Specifies to which degree the network prevents transmission errors and thus garbled

packets.

The first five applications require strictly reliable transport mechanism which falls

under the high reliability category. Audio and video streaming applications require

minimal jitter while reliability is of less importance. The remaining applications have

high demands on latency and jitter.

15



2.6 JXTA - The Programming Language

JXTA™ technology is a set of open protocols that allowany connected device on the

network ranging from cell phones and wireless PDAs to PCs and servers to

communicate and collaborate in a P2P manner[11],

JXTA peers create a virtual network where any peer can interact with other peers and

resources directly even when some of the peers and resources are behind firewalls

and Network Address Translations (NATs) or are on different network transports

[11].

Among the JXTA project objectives are [11]:

• Interoperability - across different peer-to-peer systems and

community

• Platform independence - multiple/diverse languages, systems and

networks

• Ubiquity - everydevicewith a digital heartbeat

As the project's objectives are in line with our objectives and with the support of a

large community which includes various companies likeNokia, Siemens andNTTof

Japan and various universities such as Standford University and University of

Southampton, using JXTA as the basis for the application is worth a try.

16



CHAPTER 3

METHODOLOGY

This chapter covers the steps taken to arrive at our objective and the tools used

throughout the project.

3.1 Procedure Identification

Wireless

standards

Ad hoc

network

protocols

Install

Linux

operating
system

Install

OMNeT-H

and

simulator

model

Research

Mobile ad hoc

network

challenges

Test simulation

Coding

Debugging

Testing

Run simulation

Operating
system

platforms

If fail

Programming
languages

Figure 2: Project Methodology Flow Chart

Researches were conducted to explore the various topics to understand the subjects

better. In order to install OMNeT++, Linux operating system must be installed

beforehand. Once the software is in place and running, the simulator model was

installed. As the model itself has bugs, debugging was conducted. A test simulation

17



is run once everything works fine. Coding was conducted to simulate a mobile ad

hoc network for a hospital scenario. Debugging and testing were conducted to ensure

the code works properly. Finally the model is used to simulate for a hospital

environment.

3.2 Tools Required

Among the tools and equipments identified to be used in this project are:

i) Wireless devices (preferably IEEE802.1 lb/g devices).

ii) Personal computers or laptops.

iii) Simulation software tool (OMNeT++)

iv) Programming tools.

v) Linux operating system.



CHAPTER 4

RESULTS AND DISCUSSION

4.1 The Simulator

A simulation of mobile ad hoc networks is run by using the OMNeT-H- v3.2

software. A simulator model developed by Nicola Concer is used to generate and run

the simulations. The simulator depicts an ad hoc network with a parameterizable

number of hosts that move in a field free of obstacles. Each host have a defined

transmission. The signal power degradation is modelled by the Free Space

Propagation Model which states that the received signal strength is inversely

proportional to the node distance square. Each mobile host is a compound module

that has the following simple modules embedded in it:

physical layer

MAC layer

route layer

application layer

mobility layer

Physical

i

'

MAC Mobility

i

1 '

Route

i I

Application

Figure 3: The Composite of a Mobile Node
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4.1.1 The Physical Model

The model implements the physical layer of each host. It has dynamic capability of

on-fly creation of gates thatpermits the exchange of messages between mobile hosts.

Whenever a host moves from its position, a distance check on each mobile node will

be performed. When a host gets close enough to a new neighbour, a gate will be

created on both hosts and their simple physical module. A new link will be created

between the compound module and its simple physical module for each host. A new

link will also be established between the two mobile hosts. This link will have delay,

throughput and error probability characteristics. When the two nodes are too far

apart, the gates and links willbe broken. The IEEE 802.11a standard is used.

20



4.1.2 The Mobility Models

The following five mobility models are randomly chosen for the mobile nodes:

o Random Walk mobility model

o Restricted Random Walk mobility model

o Random Waypoint mobility model

o Random Direction mobility model

o Normal Markovian mobility model

The Random Walk mobility model has unpredictable motion pattern where the speed

and direction are not correlated. It generates an angle uniformly distributed in [0,2je].

The speed is uniformly distributed in between the parameters [minSpeed, maxSpeed].

The chosen speed and direction are maintained until a predefined distance is not

covered. After the direction has been covered new direction and period are chosen.

The Restricted Random Walk mobility model is similar to the Random Walk

mobility model except it differs when there is a need to choose a new direction and

angle. It tries to smooth the randomness of the movements by choosing the new

values within a limited range around the old values.

A host using the Random Waypoint mobility model will choose a destination point

within the movement court, a speed uniformly distributed between the parameters

[minSpeed, maxSpeed] and moves toward its destination for the needed time. Once

the node has reached the chosen point it stays there for a given time called pause

time and then chooses a new destination.

The Random Direction mobility model is a mix of the Random Waypoint and

Random Walk models.

The Normal Walk mobility model is derived from the Markovian model. The

Normal walk model on each step choose a new direction and speed picking a value

from a fixed range of values surrounding the former speed and direction value.

21



4.1.3 TheMACModel

The outgoing messages are let pass through. The incoming one instead is delivered to

the higher levels with a MMl queue policy. When an in-coming message arrives the

module check a flag that advise if the higher level is busy. If it is the message is put

in buffer or, if the buffer is full, it is dropped. When the higher level is not busy

anymore, the MAC module picks the first message in the buffer, send it upward and

schedule to itself an end of service message that will trigger a new pick from the

buffer or set the busy-flag as free.
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4.1.4 The Routing Model

The model uses the AODV protocol and is implemented between the MAC module

and the application module. It receives DATA messages from the higher layers and

tries to find a route to the chosen destination looking in its routing table or by

sending control messages (RREQ) to get a new route. All the AODV control

messages are 512 byte long and all the control fields are stored in the message

attachable parameters. The Data message size instead can be chosen by setting the

correct parameter in the application layer. The AODV model uses many kind of

messages, each one defined with a constant value and with its own parameters. Self

messages are scheduled to trigger some future actions like route expiration or route

request time out.

The following are the messages involved:

- HELLO: a Hello message

- RREQ: a Route Request message

- RREP: a Route Reply message

- RERR: a Route Error, it contains a list of all the no more valid destinations

- DATA: a Data message

- RREP ACK: a RREP acknowledgment message

- DELETE: a self message scheduled to trigger a route expiration event

As the AODV standard states, the first time a DELETE message is processed, it is

scheduled to occur again in the future. In this way a "last chance" is given to this

invalid route before deleting it.

- FLUSH: this message handle the RREP time out. After occurring a fixed

number of time, all messages stored in the data messages directed to the

unknown destination are deleted from the output buffer

- SEND HELLO: a self message that triggers the host to send a new Hello

message

- BLK LIST: a self message that triggers the exit of a neighbor node from the

black list
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Each of these messages has parameters used to exchange control information among

the nodes. The following are the control information generated:

- originator: used in the RREQ and RREP messages, it stores the ID of the

RREQ generator host. Its value is copied in the same RREP field so when a

host processes the message it can understand if it is the final message

destination

- dest: used in the RREQ to specify the host that the originator wants to

communicate with

- seqNumS: stores the sequence number of the message originator. If the

message makes many hops, this field will remain the same

- seqNumD: stores the last known sequence number of the destination node.

The value 0 is used if this host was unknown

source: stores the ID of last hop host. Reading its value a node can

understand from which neighbor the message comes from;

- mac: stores the ID of next hop node. It has the same role of the MAC

address in a wired LAN

- ttl: the time to live value expressed in number of hops

- hopNum: count the number of hops performed by a message so far

4.1.5 The Traffic Model

This module will generate data trafficthat triggers all the routing operations. The

traffic is modelled by generating a packet burst of 64 messages sent to a randomly

chosen destination.

24



4.2 AODV Analysis
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Figure 4: A Snapshot of Simulation Using OMNeT++

The AODV protocol was analysed in a mobile ad hoc network using the following

fixed simulation settings:

Table 3: Fixed Simulation Settings

Simulation time 1 hour

Transmission power 25000 p Watt

Receive threshold 1 /?Watt

Channel bandwidth 54Mb/s

Channel delay 10 //sec

Channel error probability lbitonlO0

Busy time
Normally distributed with a Xaverage

and a y variance

X, average time 15 //sec
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y, variance 7.5 //sec

Input buffer size 1 MB

Control message size 64 bytes

HELLO interval 1 sec

Allowed HELLO loss 2

Delete period 4 sec

RREQ max trials 3

Message packet size 512 bytes

Burst length 64 packets

Send packet rate 3/sec

Burst interval Normally distributed in [0.1,3] sec

With these settings, the protocol was measured based on the following 2

characteristics:

> Per-hop latency: The latency is the average of time that a packet

traverses across on the network. It includes the "on air" time and the

time spent in the intermediate host's buffers. It is measured

considering the number of hops performed by each message.

> Per-hop throughput: The throughput data reflects the effective

network capacity. It is computed by dividing the message size with

the time it took to arrive at its destination.
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The following results were obtained when the number of nodes in the network is set

to 30 and the map size is set to 800m x 800m.
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Figure 5: Graph ofLatency Measured versus Number of Hops
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The following results were obtained when the number of nodes in the network is set

to 30 and the map size is set to 1000mx 1000m.
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The following results were obtained when the number of nodes in the network is set

to 50 and the map size is set to 800m x 800m.
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The following results were obtained when the number of nodes in the network is set

to 50 and the map size is set to 1000m x 1000m.
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Figure 11: Graph of Latency Measured versus Number of Hops
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The following results were obtained when the number of nodes in the network is set

to 80 and the map size is set to 1000m x 1000m.
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The following results were obtained when the number of nodes in the network is set

to 80 and the map size is set to 800m x 800m.
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4.2.1 Latency

From all latency versus number of hops graphs, latency increases as the number of

hops required to traverse in order to reach the destination increases. The relationship

between both is quite linear for a small number of hops (1 to 4 or 5 hops) until it

reaches a larger numberof hops whereby the pattern fluctuates. This could be due to

the MAC layer which queues and holds the incoming messages as higher levels are

busy.

As can be observed from the Figure 5, the maximum number of hops for 800m x

800m area with 30 nodes is only 9 and the maximum latency achieved is 0.1sec. As

the number of nodes in the network is increased to 50 nodes, the maximum number

of hops is 16and the maximum latency achieved is 0.165 sec as seen in Figure 9.

In Figure 7, when the network is set to 30 nodes with a map size of 1000m x 1000m,

the maximum number of hops reached is 16 with a maximum latency of 0.165 sec.

As the number of nodes is increased to 50, the maximum latency is still 0.165 sec

and the maximum number of hops is still 16 as seen in Figure 11.

For a network of 80 nodes in a 1000m x 1000m dimension, the maximum latency

hits 0.18 sec with a maximum hop of 16 as well. This is observed from Figure 13.

When the map size is reduced to 800m x 800m, the maximum latency almosthit 0.3

sec although the maximum number of hops remained at 16. This can be seen in

Figure 15.
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4.2.2 Throughput

For all throughput versus number of hops graphs, the characteristics are similar as

the throughput rate decreases exponentially as the number of hops traversed

increases. From each configuration, the throughput rate is very high for a single hop

which is approximately 6x106 bits/sec. As the number of hops increased to 2, the

throughput rate drops dramatically to approximately 2xl06 bits/sec. Itmakes sense as

the number of hops traversed to reach the destination is increased, the time taken to

reach the destination would also increase as well. This would in fact decrease the

throughput rate as the delay time increases.
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CHAPTER 5

CONCLUSION AND RECOMMENDATION

Since file transferring does not place a high emphasis on both delay and jitter, the Ad

Hoc On Demand Distance Vector (AODV) routing protocol can be used in an

unpredictable environment and dynamic topology. Reactive routing protocols suits

mobile ad hoc networks better as the protocols conserve energy better with the

elimination of constant broadcasting. The simulator can be used to simulate mobile

ad hoc networks and can be expanded to simulate other scenarios as well.

The application to implement the AODV protocol should be developed for the next

step. The usage of JXTA in developing the application is highly recommended as

there is a strong support from the community and it is an open source project with

many people contributing to it. After the application is developed, its performance

should be evaluated in real world by having it installed on different mobile devices.

The AODV protocol can be improved by implementing Quality of Service (QoS) for

it. By specifying minimum requirements for criteria such as link capacity and end-to-

end delay, errors and packet drops will be reduced.

In the future, streaming could be included for the application as well since images

from X-ray and Magnetic Resonance Imaging (MRI) machines can be streamed onto

mobile devices.
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Abstract

The Ad hoc On-Demand Distance Vector (AODV) routing protocol is
intended for use by mobile nodes in an ad hoc network. It offers
quick adaptation to dynamic link conditions, low processing and
memory overhead, low network utilization, and determines unicast

routes to destinations within the ad hoc network. It uses

destination sequence numbers to ensure loop freedom at all times
(even in the face of anomalous delivery of routing control messages),
avoiding problems (such as "counting to infinity") associated with
classical distance vector protocols.
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1. Introduction

The Ad hoc On-Demand Distance Vector (AODV) algorithm enables
dynamic, self-starting, multihop routing between participating mobile
nodes wishing to establish and maintain an ad hoc network. AODV
allows mobile nodes to obtain routes quickly for new destinations,
and does not require nodes to maintain routes to destinations that
are not in active communication. AODV allows mobile nodes to respond

to link breakages and changes in network topology in a timely manner.
The operation of AODV is loop-free, and by avoiding the Bellman-Ford
"counting to infinity" problem offers quick convergence when the ad
hoc network topology changes (typically, when a node moves in the
network). When links break, AODV causes the affected set of nodes to
be notified so that they are able to invalidate the routes using the
lost link.
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One distinguishing feature of AODV is its use of a destination
sequence number for each route entry. The destination sequence
number is created by the destination to be included along with any
route information it sends to requesting nodes. Using destination
sequence numbers ensures loop freedom and is simple to program.
Given the choice between two routes to a destination, a requesting

node is required to select the one with the greatest sequence number.

2. Overview

Route Requests (RREQs), Route Replies (RREPs), and Route Errors
(RERRs) are the message types defined by AODV. These message types
are received via UDP, and normal IP header processing applies. So,
for instance, the requesting node is expected to use its IP address
as the Originator IP address for the messages. For broadcast
messages, the IP limited broadcast address (255.255.255.255) is used.
This means that such messages are not blindly forwarded. However,
AODV operation does require certain messages (e.g., RREQ) to be
disseminated widely, perhaps throughout the ad hoc network. The
range of dissemination of such RREQs is indicated by the TTL in the
IP header. Fragmentation is typically not required.

As long as the endpoints of a communication connection have valid
routes to each other, AODV does not play any role. When a route to a
new destination is needed, the node broadcasts a RREQ to find a route
to the destination. A route can be determined when the RREQ reaches

either the destination itself, or an intermediate node with a 'fresh
enough' route to the destination. A 'fresh enough' route is a valid
route entry for the destination whose associated sequence number is
at least as great as that contained in the RREQ. The route is made
available by unicasting a RREP back to the origination of the RREQ.
Each node receiving the request caches a route back to the originator
of the request, so that the RREP can be unicast from the destination
along a path to that originator, or likewise from any intermediate
node that is able to satisfy the request.

Nodes monitor the link status of next hops in active routes. When a
link break in an active route is detected, a RERR message is used to
notify other nodes that the loss of that link has occurred. The RERR
message indicates those destinations (possibly subnets) which are no
longer reachable by way of the broken link. In order to enable this
reporting mechanism, each node keeps a "precursor list", containing
the IP address for each its neighbors that are likely to use it as a
next hop towards each destination. The information in the precursor
lists is most easily acquired during the processing for generation of
a RREP message, which by definition has to be sent to a node in a
precursor list (see section 6.6). If the RREP has a nonzero prefix
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length, then the originator of the RREQ which solicited the RREP
information is included among the precursors for the subnet route
(not specifically for the particular destination).

A RREQ may also be received for a multicast IP address. In this
document, full processing for such messages is not specified. For
example, the originator of such a RREQ for a multicast IP address may
have to follow special rules. However, it is important to enable
correct multicast operation by intermediate nodes that are not
enabled as originating or destination nodes for IP multicast

addresses, and likewise are not equipped for any special multicast
protocol processing. For such multicast-unaware nodes, processing
for a multicast IP address as a destination IP address MUST be

carried out in the same way as for any other destination IP address.

AODV is a routing protocol, and it deals with route table management.
Route table information must be kept even for short-lived routes,
such as are created to temporarily store reverse paths towards nodes
originating RREQs. AODV uses the following fields with each route
table entry:

Destination IP Address

Destination Sequence Number
Valid Destination Sequence Number flag
Other state and routing flags (e.g., valid, invalid, repairable,
being repaired)

Network Interface

Hop Count (number of hops needed to reach destination)
Next Hop

List of Precursors (described in Section 6.2)

Lifetime (expiration or deletion time of the route)

Managing the sequence number is crucial to avoiding routing loops,
even when links break and a node is no longer reachable to supply its
own information about its sequence number. A destination becomes
unreachable when a link breaks or is deactivated. When these

conditions occur, the route is invalidated by operations involving
the sequence number and marking the route table entry state as
invalid. See section 6.1 for details.

3. AODV Terminology

This protocol specification uses conventional meanings [1] for
capitalized words such as MUST, SHOULD, etc., to indicate requirement
levels for various protocol features. This section defines other
terminology used with AODV that is not already defined in [3].
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active route

A route towards a destination that has a routing table entry

that is marked as valid. Only active routes can be used to
forward data packets.

broadcast

Broadcasting means transmitting to the IP Limited Broadcast
address, 255.255.255.255. A broadcast packet may not be
blindly forwarded, but broadcasting is useful to enable
dissemination of AODV messages throughout the ad hoc network.

destination

An IP address to which data packets are to be transmitted.
Same as "destination node". A node knows it is the destination

node for a typical data packet when its address appears in the
appropriate field of the IP header. Routes for destination
nodes are supplied by action of the AODV protocol, which
carries the IP address of the desired destination node in route

discovery messages.

forwarding node

A node that agrees to forward packets destined for another
node, by retransmitting them to a next hop that is closer to
the unicast destination along a path that has been set up using
routing control messages.

forward route

A route set up to send data packets from a node originating a
Route Discovery operation towards its desired destination.

invalid route

A route that has expired, denoted by a state of invalid in the
routing table entry. An invalid route is used to store
previously valid route information for an extended period of
time. An invalid route cannot be used to forward data packets,

but it can provide information useful for route repairs, and
also for future RREQ messages.
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originating node

A node that initiates an AODV route discovery message to be
processed and possibly retransmitted by other nodes in the ad
hoc network. For instance, the node initiating a Route
Discovery process and broadcasting the RREQ message is called
the originating node of the RREQ message.

reverse route

A route set up to forward a reply (RREP) packet back to the
originator from the destination or from an intermediate node
having a route to the destination.

sequence number

A monotonically increasing number maintained by each
originating node. In AODV routing protocol messages, it is
used by other nodes to determine the freshness of the
information contained from the originating node.

valid route

See active route.

4. Applicability Statement

The AODV routing protocol is designed for mobile ad hoc networks with
populations of tens to thousands of mobile nodes. AODV can handle
low, moderate, and relatively high mobility rates, as well as a
variety of data traffic levels. AODV is designed for use in networks
where the nodes can all trust each other, either by use of
preconfigured keys, or because it is known that there are no
malicious intruder nodes. AODV has been designed to reduce the
dissemination of control traffic and eliminate overhead on data

traffic, in order to improve scalability and performance.
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5. Message Formats

5.1. Route Request (RREQ) Message Format

0 12 3

01234567890123456789012345678901

| Type |j|r|G|d|U) Reserved | Hop Count |
+ - + - + - + _ + - + - + - + - + - + - + -. + -. + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

| RREQ ID |

| Destination IP Address j
+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + -•+•

| Destination Sequence Number |

| Originator IP Address j
+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + --t-

| Originator Sequence Number j

The format of the Route Request message is illustrated above, and
contains the following fields:

Type 1

J Join flag; reserved for multicast.

R Repair flag; reserved for multicast.

G Gratuitous RREP flag; indicates whether a
gratuitous RREP should be unicast to the node
specified in the Destination IP Address field (see
sections 6.3, 6.6.3).

D Destination only flag; indicates only the
destination may respond to this RREQ (see
section 6.5).

U Unknown sequence number; indicates the destination
sequence number is unknown {see section 6.3).

Reserved Sent as 0; ignored on reception.

Hop Count The number of hops from the Originator IP Address
to the node handling the request.
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RREQ ID A sequence number uniquely identifying the
particular RREQ when taken in conjunction with the
originating node's IP address.

Destination IP Address

The IP address of the destination for which a route

is desired.

Destination Sequence Number

The latest sequence number received in the past
by the originator for any route towards the
destination.

Originator IP Address

The IP address of the node which originated the
Route Request.

Originator Sequence Number

The current sequence number to be used in the route
entry pointing towards the originator of the route
request.

5.2. Route Reply (RREP) Message Format

0 12 3

01234567890123456789012345678901

| Type |R|A.| Reserved |Prefix Sz| Hop Count |

| Destination IP address |

| Destination Sequence Number |

| Originator IP address |

| Lifetime |

The format of the Route Reply message is illustrated above, and
contains the following fields:

Type 2

R Repair flag,- used for multicast.

A Acknowledgment required; see sections 5.4 and 6.7.

Reserved Sent as 0; ignored on reception.
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Prefix Size If nonzero, the 5-bit Prefix Size specifies that the
indicated next hop may be used for any nodes with
the same routing prefix (as defined by the Prefix
Size) as the requested destination.

Hop Count The number of hops from the Originator IP Address
to the Destination IP Address. For multicast route

requests this indicates the number of hops to the
multicast tree member sending the RREP.

Destination IP Address

The IP address of the destination for which a route

is supplied.

Destination Sequence Number

The destination sequence number associated to the
route.

Originator IP Address

The IP address of the node which originated the RREQ
for which the route is supplied.

Lifetime The time in milliseconds for which nodes receiving
the RREP consider the route to be valid.

Note that the Prefix Size allows a subnet router to supply a route
for every host in the subnet defined by the routing prefix, which is
determined by the IP address of the subnet router and the Prefix

Size. In order to make use of this feature, the subnet router has to
guarantee reachability to all the hosts sharing the indicated subnet
prefix. See section 7 for details. When the prefix size is nonzero,
any routing information (and precursor data) MUST be kept with
respect to the subnet route, not the individual destination IP
address on that subnet.

The 'A' bit is used when the link over which the RREP message is sent
may be unreliable or unidirectional. When the RREP message contains
the 'A' bit set, the receiver of the RREP is expected to return a
RREP-ACK message. See section 6.8.

Perkins, et. al. Experimental [Page 9]



RFC 3561 AODV Routing July 2003

5.3. Route Error (RERR) Message Format

0 12 3

01234567890123456789012345678901

| Type |Nj Reserved | DestCount |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Unreachable Destination IP Address (1) |
+-+-+-+-+-+-+-+-+-+-+•-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Unreachable Destination Sequence Number (1) |

j Additional Unreachable Destination IP Addresses (if needed) j
+ - + - + - + - + - + - + - + - + - + - + -H—1-- + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

jAdditional Unreachable Destination Sequence Numbers (if needed)|

The format of the Route Error message is illustrated above, and
contains the following fields:

Type 3

N No delete flag; set when a node has performed a local
repair of a link, and upstream nodes should not delete
the route.

Reserved Sent as 0; ignored on reception.

DestCount The number of unreachable destinations included in the

message; MUST be at least 1.

Unreachable Destination IP Address

The IP address of the destination that has become

unreachable due to a link break.

Unreachable Destination Sequence Number
The sequence number in the route table entry for
the destination listed in the previous Unreachable
Destination IP Address field.

The RERR message is sent whenever a link break causes one or more

destinations to become unreachable from some of the node's neighbors.
See section 6.2 for information about how to maintain the appropriate
records for this determination, and section 6.11 for specification
about how to create the list of destinations.
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5.4. Route Reply Acknowledgment (RREP-ACK) Message Format

The Route Reply Acknowledgment (RREP-ACK) message MUST be sent in
response to a RREP message with the 'A' bit set (see section 5.2).
This is typically done when there is danger of unidirectional links
preventing the completion of a Route Discovery cycle (see section
6.8} .

0 1

0123456789012345

| Type j Reserved |

Type 4

Reserved Sent as 0; ignored on reception.

6. AODV Operation

This section describes the scenarios under which nodes generate Route
Request (RREQ), Route Reply (RREP) and Route Error (RERR) messages
for unicast communication towards a destination, and how the message
data are handled. In order to process the messages correctly,
certain state information has to be maintained in the route table

entries for the destinations of interest.

All AODV messages are sent to port 654 using UDP.

6.1. Maintaining Sequence Numbers

Every route table entry at every node MUST include the latest
information available about the sequence number for the IP address of
the destination node for which the route table entry is maintained.
This sequence number is called the "destination sequence number". It
is updated whenever a node receives new (i.e., not stale) information
about the sequence number from RREQ, RREP, or RERR messages that may
be received related to that destination. AODV depends on each node
in the network to own and maintain its destination sequence number to
guarantee the loop-freedom of all routes towards that node. A

destination node increments its own sequence number in two
circumstances:

Immediately before a node originates a route discovery, it MUST
increment its own sequence number. This prevents conflicts with
previously established reverse routes towards the originator of a
RREQ.
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Immediately before a destination node originates a RREP in
response to a RREQ, it MUST update its own sequence number to the
maximum of its current sequence number and the destination
sequence number in the RREQ packet.

When the destination increments its sequence number, it MUST do so by
treating the sequence number value as if it were an unsigned number.
To accomplish sequence number rollover, if the sequence number has
already been assigned to be the largest possible number representable
as a 32-bit unsigned integer (i.e., 4294967295), then when it is
incremented it will then have a value of zero (0). On the other

hand, if the sequence number currently has the value 2147483647,
which is the largest possible positive integer if 2's complement
arithmetic is in use with 32-bit integers, the next value will be
2147483648, which is the most negative possible integer in the same
numbering system. The representation of negative numbers is not
relevant to the increment of AODV sequence numbers. This is in
contrast to the manner in which the result of comparing two AODV
sequence numbers is to be treated (see below}.

In order to ascertain that information about a destination is not

stale, the node compares its current numerical value for the sequence

number with that obtained from the incoming AODV message. This
comparison MUST be done using signed 32-bit arithmetic, this is
necessary to accomplish sequence number rollover. If the result of
subtracting the currently stored sequence number from the value of
the incoming sequence number is less than zero, then the information
related to that destination in the AODV message MUST be discarded,
since that information is stale compared to the node's currently
stored information.

The only other circumstance in which a node may change the
destination sequence number in one of its route table entries is in
response to a lost or expired link to the next hop towards that
destination. The node determines which destinations use a particular
next hop by consulting its routing table. In this case, for each
destination that uses the next hop, the node increments the sequence
number and marks the route as invalid (see also sections 6.11, 6.12).

Whenever any fresh enough (i.e., containing a sequence number at
least equal to the recorded sequence number) routing information for
an affected destination is received by a node that has marked that
route table entry as invalid, the node SHOULD update its route table
information according to the information contained in the update.

Perkins, et. al. Experimental [Page 12]



RFC 3561 AODV Routing July 2003

A node may change the sequence number in the routing table entry of a
destination only if:

it is itself the destination node, and offers a new route to
itself, or

it receives an AODV message with new information about the
sequence number for a destination node, or

the path towards the destination node expires or breaks.

6.2. Route Table Entries and Precursor Lists

When a node receives an AODV control packet from a neighbor, or
creates or updates a route for a particular destination or subnet, it
checks its route table for an entry for the destination. In the
event that there is no corresponding entry for that destination, an
entry is created. The sequence number is either determined from the
information contained in the control packet, or else the valid
sequence number field is set to false. The route is only updated if
the new sequence number is either

(i) higher than the destination sequence number in the route
table, or

(ii) the sequence numbers are equal, but the hop count (of the
new information} plus one, is smaller than the existing hop
count in the routing table, or

(iii) the sequence number is unknown.

The Lifetime field of the routing table entry is either determined
from the control packet, or it is initialized to
ACTIVE_ROUTE_TIMEOUT. This route may now be used to send any queued
data packets and fulfills any outstanding route requests.

Each time a route is used to forward a data packet, its Active Route
Lifetime field of the source, destination and the next hop on the
path to the destination is updated to be no less than the current
time plus ACTIVE_ROUTE_TIMEOUT. Since the route between each
originator and destination pair is expected to be symmetric, the
Active Route Lifetime for the previous hop, along the reverse path
back to the IP source, is also updated to be no less than the current
time plus ACTIVE_ROUTE_TIMEOUT. The lifetime for an Active Route is
updated each time the route is used regardless of whether the
destination is a single node or a subnet.
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For each valid route maintained by a node as a routing table entry,
the node also maintains a list of precursors that may be forwarding
packets on this route. These precursors will receive notifications
from the node in the event of detection of the loss of the next hop

link. The list of precursors in a routing table entry contains those
neighboring nodes to which a route reply was generated or forwarded.

6.3. Generating Route Requests

A node disseminates a RREQ when it determines that it needs a route

to a destination and does not have one available. This can happen if
the destination is previously unknown to the node, or if a previously
valid route to the destination expires or is marked as invalid. The
Destination Sequence Number field in the RREQ message is the last
known destination sequence number for this destination and is copied
from the Destination Sequence Number field in the routing table. If
no sequence number is known, the unknown sequence number flag MUST be
set. The Originator Sequence Number in the RREQ message is the
node's own sequence number, which is incremented prior to insertion
in a RREQ. The RREQ ID field is incremented by one from the last
RREQ ID used by the current node. Each node maintains only one RREQ
ID. The Hop Count field is set to zero.

Before broadcasting the RREQ, the originating node buffers the RREQ
ID and the Originator IP address (its own address) of the RREQ for
PATH_DISCOVERY_TIME. In this way, when the node receives the packet
again from its neighbors, it will not reprocess and re-forward the
packet.

An originating node often expects to have bidirectional
communications with a destination node. In such cases, it is not

sufficient for the originating node to have a route to the
destination node; the destination must also have a route back to the

originating node. In order for this to happen as efficiently as
possible, any generation of a RREP by an intermediate node (as in
section 6.6) for delivery to the originating node SHOULD be
accompanied by some action that notifies the destination about a
route back to the originating node. The originating node selects
this mode of operation in the intermediate nodes by setting the 'G'
flag. See section 6.6.3 for details about actions taken by the
intermediate node in response to a RREQ with the 'G' flag set.

A node SHOULD NOT originate more than RREQ_RATELIMIT RREQ messages
per second. After broadcasting a RREQ, a node waits for a RREP {or
other control message with current information regarding a route to
the appropriate destination). If a route is not received within
NET_TRAVERSAL_TIME milliseconds, the node MAY try again to discover a
route by broadcasting another RREQ, up to a maximum of RREQ_RETRIES
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times at the maximum TTL value. Each new attempt MUST increment and
update the RREQ ID. For each attempt, the TTL field of the IP header
is set according to the mechanism specified in section 6.4, in order
to enable control over how far the RREQ is disseminated for the each

retry.

Data packets waiting for a route (i.e., waiting for a RREP after a
RREQ has been sent) SHOULD be buffered. The buffering SHOULD be
"first-in, first-out" (FIFO). If a route discovery has been
attempted RREQ_RETRIES times at the maximum TTL without receiving any
RREP, all data packets destined for the corresponding destination
SHOULD be dropped from the buffer and a Destination Unreachable
message SHOULD be delivered to the application.

To reduce congestion in a network, repeated attempts by a source node
at route discovery for a single destination MUST utilize a binary
exponential backoff. The first time a source node broadcasts a RREQ,
it waits NET_TRAVERSAL_TIME milliseconds for the reception of a RREP.
If a RREP is not received within that time, the source node sends a

new RREQ. ^When calculating the time to wait for the RREP after
sending the second RREQ, the source node MUST use a binary
exponential backoff. Hence, the waiting time for the RREP
corresponding to the second RREQ is 2 * NET_TRAVERSAL_TIME
milliseconds. If a RREP is not received within this time period,
another RREQ may be sent, up to RREQ_RETRIES additional attempts
after the first RREQ. For each additional attempt, the waiting time
for the RREP is multiplied by 2, so that the time conforms to a
binary exponential backoff.

6.4. Controlling Dissemination of Route Request Messages

To prevent unnecessary network-wide dissemination of RREQs, the
originating node SHOULD use an expanding ring search technique. In
an expanding ring search, the originating node initially uses a TTL =
TTL_START in the RREQ packet IP header and sets the timeout for
receiving a RREP to RING_TRAVERSAL_TIME milliseconds.
RING_TRAVERSAL_TIME is calculated as described in section 10. The
TTL_VALUE used in calculating RING_TRAVERSAL_TIME is set equal to the
value of the TTL field in the IP header. If the RREQ times out

without a corresponding RREP, the originator broadcasts the RREQ
again with the TTL incremented by TTL_INCREMENT. This continues
until the TTL set in the RREQ reaches TTL_THRESHOLD, beyond which a
TTL = NET_DIAMETER is used for each attempt. Each time, the timeout
for receiving a RREP is RING_TRAVERSAL_TIME. When it is desired to
have all retries traverse the entire ad hoc network, this can be
achieved by configuring TTL_START and TTL_INCREMENT both to be the
same value as NET DIAMETER.
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The Hop- Count stored in an invalid routing table entry indicates the
last known hop count to that destination in the routing table. When
a new route to the same destination is required at a later time
(e.g., upon route loss), the TTL in the RREQ IP header is initially
set to the Hop Count plus TTL_INCREMENT. Thereafter, following each
timeout the TTL is incremented by TTL_INCREMENT until TTL =
TTL_THRESHOLD is reached. Beyond this TTL = NETJDIAMETER is used.
Once TTL = NET_DIAMETER, the timeout for waiting for the RREP is set
to NET_TRAVERSAL_TIME, as specified in section 6.3.

An expired routing table entry SHOULD NOT be expunged before
(current_time + DELETE_PERIOD} (see section 6.11). Otherwise, the
soft state corresponding to the route (e.g., last known hop count)
will be lost. Furthermore, a longer routing table entry expunge time
MAY be configured. Any routing table entry waiting for a RREP SHOULD
NOT be expunged before (current_time + 2 * NET_TRAVERSAL_TIME).

6.5. Processing and Forwarding Route Requests

When a node receives a RREQ, it first creates or updates a route to

the previous hop without a valid sequence number (see section 6.2)
then checks to determine whether it has received a RREQ with the same

Originator IP Address and RREQ ID within at least the last
PATH_DISCOVERY_TIME. If such a RREQ has been received, the node
silently discards the newly received RREQ. The rest of this
subsection describes actions taken for RREQs that are not discarded.

First, it first increments the hop count value in the RREQ by one, to
account for the new hop through the intermediate node. Then the node
searches for a reverse route to the Originator IP Address (see
section 6.2), using longest-prefix matching. If need be, the route
is created, or updated using the Originator Sequence Number from the
RREQ in its routing table. This reverse route will be needed if the
node receives a RREP back to the node that originated the RREQ
(identified by the Originator IP Address). When the reverse route is
created or updated, the following actions on the route are also
carried out:

1. the Originator Sequence Number from the RREQ is compared to the
corresponding destination sequence number in the route table entry
and copied if greater than the existing value there

2. the valid sequence number field is set to true;

3. the next hop in the routing table becomes the node from which the
RREQ was received (it is obtained from the source IP address in
the IP header and is often not equal to the Originator IP Address
field in the RREQ message);
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4. the hop count is copied from the Hop Count in the RREQ message;

Whenever a RREQ message is received, the Lifetime of the reverse
route entry for the Originator IP address is set to be the maximum of
(ExistingLifetime, MinimalLifetime), where

MinimalLifetime = (current time + 2*NET_TRAVERSAL_TIME -
2*HopCount*N0DE_TRAVERSAL_TIME).

The current node can use the reverse route to forward data packets in
the same way as for any other route in the routing table.

If a node does not generate a RREP (following the processing rules in
section 6.6), and if the incoming IP header has TTL larger than 1,
the node updates and broadcasts the RREQ to address 255.255.255.255
on each of its configured interfaces (see section 6.14) . To update
the RREQ, the TTL or hop limit field in the outgoing IP header is
decreased by one, and the Hop Count field in the RREQ message is
incremented by one, to account for the new hop through the
intermediate node. Lastly, the Destination Sequence number for the

requested destination is set to the maximum of the corresponding
value received in the RREQ message, and the destination sequence
value currently maintained by the node for the requested destination.
However, the forwarding node MUST NOT modify its maintained value for
the destination sequence number, even if the value received in the
incoming RREQ is larger than the value currently maintained by the
forwarding node.

Otherwise, if a node does generate a RREP, then the node discards the
RREQ. Notice that, if intermediate nodes reply to every transmission
of RREQs for a particular destination, it might turn out that the
destination does not receive any of the discovery messages. In this
situation, the destination does not learn of a route to the

originating node from the RREQ messages. This could cause the
destination to initiate a route discovery (for example, if the
originator is attempting to establish a TCP session). In order that
the destination learn of routes to the originating node, the
originating node SHOULD set the "gratuitous RREP" ('G') flag in the
RREQ if for any reason the destination is likely to need a route to
the originating node. If, in response to a RREQ with the 'G' flag
set, an intermediate node returns a RREP, it MUST also unicast a
gratuitous RREP to the destination node (see section 6.6.3) .
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5.6. Generating Route Replies

A node generates a RREP if either:

(i) it is itself the destination, or

(ii) it has an active route to the destination, the destination
sequence number in the node's existing route table entry
for the destination is valid and greater than or equal to
the Destination Sequence Number of the RREQ {comparison
using signed 32-bit arithmetic), and the "destination only"
('D') flag is NOT set.

When generating a RREP message, a node copies the Destination IP
Address and the Originator Sequence Number from the RREQ message into
the corresponding fields in the RREP message. Processing is slightly
different, depending on whether the node is itself the requested
destination {see section 6.6.1), or instead if it is an intermediate
node with an fresh enough route to the destination (see section
6.6.2) .

Once created, the RREP is unicast to the next hop toward the
originator of the RREQ, as indicated by the route table entry for
that originator. As the RREP is forwarded back towards the node
which originated the RREQ message, the Hop Count field is incremented
by one at each hop. Thus, when the RREP reaches the originator, the
Hop Count represents the distance, in hops, of the destination from
the originator.

6.6.1. Route Reply Generation by the Destination

If the generating node is the destination itself, it MUST increment
its own sequence number by one if the sequence number in the RREQ
packet is equal to that incremented value. Otherwise, the
destination does not change its sequence number before generating the
RREP message. The destination node places its {perhaps newly
incremented) sequence number into the Destination Sequence Number
field of the RREP, and enters the value zero in the Hop Count field

of the RREP.

The destination node copies the value MY_ROUTE_TIMEOUT {see section
10} into the Lifetime field of the RREP. Each node MAY reconfigure
its value for MY__ROUTE_TIMEOUT, within mild constraints (see section
10} .
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6.6.2. Route Reply Generation by an Intermediate Node

If the node generating the RREP is not the destination node, but
instead is an intermediate hop along the path from the originator to
the destination, it copies its known sequence number for the
destination into the Destination Sequence Number field in the RREP

message.

The intermediate node updates the forward route entry by placing the
last hop node {from which it received the RREQ, as indicated by the
source IP address field in the IP header) into the precursor list for
the forward route entry -- i.e., the entry for the Destination IP
Address. The intermediate node also updates its route table entry
for the node originating the RREQ by placing the next hop towards the
destination in the precursor list for the reverse route entry --
i.e., the entry for the Originator IP Address field of the RREQ
message data.

The intermediate node places its distance in hops from the
destination (indicated by the hop count in the routing table) Count
field in the RREP. The Lifetime field of the RREP is calculated by

subtracting the current time from the expiration time in its route
table entry.

6.6.3. Generating Gratuitous RREPs

After a node receives a RREQ and responds with a RREP, it discards
the RREQ. If the RREQ has the 'G' flag set, and the intermediate
node returns a RREP to the originating node, it MUST also unicast a
gratuitous RREP to the destination node. The gratuitous RREP that is
to be sent to the desired destination contains the following values

in the RREP message fields:

Hop Count The Hop Count as indicated in the
node's route table entry for the
originator

Destination IP Address The IP address of the node that

originated the RREQ

Destination Sequence Number The Originator Sequence Number from
the RREQ

Originator IP Address The IP address of the Destination
node in the RREQ
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Lifetime The remaining lifetime of the route
towards the originator of the RREQ,
as known by the intermediate node.

The gratuitous RREP is then sent to the next hop along the path to
the destination node, just as if the destination node had already
issued a RREQ for the originating node and this RREP was produced in
response to that (fictitious) RREQ. The RREP that is sent to the
originator of the RREQ is the same whether or not the 'G' bit is set.

6.7. Receiving and Forwarding Route Replies

When a node receives a RREP message, it searches (using longest-
prefix matching} for a route to the previous hop. If needed, a route
is created for the previous hop, but without a valid sequence number
(see section 6.2). Next, the node then increments the hop count
value in the RREP by one, to account for the new hop through the
intermediate node. Call this incremented value the "New Hop Count".
Then the forward route for this destination is created if it does not

already exist. Otherwise, the node compares the Destination Sequence
Number in the message with its own stored destination sequence number
for the Destination IP Address in the RREP message. Upon comparison,
the existing entry is updated only in the following circumstances:

(i) the sequence number in the routing table is marked as
invalid in route table entry.

(ii) the Destination Sequence Number in the RREP is greater than
the node's copy of the destination sequence number and the
known value is valid, or

(iii) the sequence numbers are the same, but the route is is
marked as inactive, or

(iv) the sequence numbers are the same, and the New Hop Count is
smaller than the hop count in route table entry.

If the route table entry to the destination is created or updated,
then the following actions occur:

the route is marked as active,

the destination sequence number is marked as valid,

the next hop in the route entry is assigned to be the node from
which the RREP is received, which is indicated by the source IP
address field in the IP header,
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the hop count is set to the value of the New Hop Count,

the expiry time is set to the current time plus the value of the
Lifetime in the RREP message,

and the destination sequence number is the Destination Sequence
Number in the RREP message.

The current node can subsequently use this route to forward data
packets to the destination.

If the current node is not the node indicated by the Originator IP
Address in the RREP message AND a forward route has been created or
updated as described above, the node consults its route table entry
for the originating node to determine the next hop for the RREP
packet,'and then forwards the RREP towards the originator using the
information in that route table entry. If a node forwards a RREP
over a link that is likely to have errors or be unidirectional, the
node SHOULD set the 'A' flag to require that the recipient of the
RREP acknowledge receipt of the RREP by sending a RREP-ACK message
back (see section 6.8).

When any node transmits a RREP, the precursor list for the
corresponding destination node is updated by adding to it the next
hop node to which the RREP is forwarded. Also, at each node the
(reverse) route used to forward a RREP has its lifetime changed to be
the maximum of (existing-lifetime, (current time +
ACTIVE_ROUTE_TIMEOUT). Finally, the precursor list for the next hop
towards the destination is updated to contain the next hop towards

the source.

6.8. Operation over Unidirectional Links

It is possible that a RREP transmission may fail, especially if the
RREQ transmission triggering the RREP occurs over a unidirectional ,
link. If no other RREP generated from the same route discovery
attempt reaches the node which originated the RREQ message, the
originator will reattempt route discovery after a timeout (see
section 6.3). However, the same scenario might well be repeated
without any improvement, and no route would be discovered even after
repeated retries. Unless corrective action is taken, this can happen
even when bidirectional routes between originator and destination do
exist. Link layers using broadcast transmissions for the RREQ will
not be able to detect the presence of such unidirectional links. In
AODV, any node acts on only the first RREQ with the same RREQ ID and
ignores any subsequent RREQs. Suppose, for example, that the first
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RREQ arrives along a path that has one or more unidirectional
link(s). A subsequent RREQ may arrive via a bidirectional path
(assuming such paths exist), but it will be ignored.

To prevent this problem, when a node detects that its transmission of
a RREP message has failed, it remembers the next-hop of the failed
RREP in a "blacklist" set. Such failures can be detected via the

absence of a link-layer or network-layer acknowledgment (e.g., RREP-
ACK) . A node ignores all RREQs received from any node in its
blacklist set. Nodes are removed from the blacklist set after a

BLACKLISTJTIMEOUT period {see section 10). This period should be set
to the upper bound of the time it takes to perform the allowed number
of route request retry attempts as described in section 6.3.

Note that the RREP-ACK packet does not contain any information about
which RREP it is acknowledging. The time at which the RREP-ACK is
received will likely come just after the time when the RREP was sent
with the 'A' bit. This information is expected to be sufficient to
provide assurance to the sender of the RREP that the link is
currently bidirectional, without any real dependence on the
particular RREP message being acknowledged. However, that assurance
typically cannot be expected to remain in force permanently.

6.9. Hello Messages

A node MAY offer connectivity information by broadcasting local Hello
messages. A node SHOULD only use hello messages if it is part of an
active route. Every HELLO__INTERVAL milliseconds, the node checks
whether it has sent a broadcast {e.g., a RREQ or an appropriate layer
2 message) within the last HELLO_INTERVAL. If it has not, it MAY
broadcast a RREP with TTL = 1, called a Hello message, with the RREP

message fields set as follows:

Destination IP Address The node's IP address.

Destination Sequence Number The node's latest sequence number.

Hop Count 0

Lifetime ALLOWED_HELLO_LOSS * HELL0_INTERVAL

A node MAY determine connectivity by listening for packets from its
set of neighbors. If, within the past DELETE_PERIOD, it has received
a Hello message from a neighbor, and then for that neighbor does not
receive any packets {Hello messages or otherwise) for more than
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ALLOWED_HELLO_LOSS * HELLO_INTERVAL milliseconds, the node SHOULD
assume that the link to this neighbor is currently lost. When this
happens, the node SHOULD proceed as in Section 6.11.

Whenever a node receives a Hello message from a neighbor, the node
SHOULD make sure that it has an active route to the neighbor, and
create one if necessary. If a route already exists, then the
Lifetime for the route should be increased, if necessary, to be at

least ALLOWED_HELLO_LOSS * HELLO_INTERVAL. The route to the
neighbor, if it exists, MUST subsequently contain the latest
Destination Sequence Number from the Hello message. The current node
can now begin using this route to forward data packets. Routes that
are created by hello messages and not used by any other active routes
will have empty precursor lists and would not trigger a RERR message
if the neighbor moves away and a neighbor timeout occurs.

6.10. Maintaining Local Connectivity

Each forwarding node SHOULD keep track of its continued connectivity
to its active next hops (i.e., which next hops or precursors have
forwarded packets to or from the forwarding node during the last
ACTIVE_ROUTE_TIMEOUT), as well as neighbors that have transmitted
Hello messages during the last {ALLOWED_HELLO_LOSS * HELLO_INTERVAL).
A node can maintain accurate information about its continued

connectivity to these active next hops, using one or more of the
available link or network layer mechanisms, as described below.

Any suitable link layer notification, such as those provided by
IEEE 802.11, can be used to determine connectivity, each time a
packet is transmitted to an active next hop. For example, absence
of a link layer ACK or failure to get a CTS after sending RTS,
even after the maximum number of retransmission attempts,

indicates loss of the link to this active next hop.

If layer-2 notification is not available, passive acknowledgment
SHOULD be used when the next hop is expected to forward the
packet, by listening to the channel for a transmission attempt
made by the next hop. If transmission is not detected within
NEXT_H0P_WAIT milliseconds or the next hop is the destination (and
thus is not supposed to forward the packet) one of the following
methods SHOULD be used to determine connectivity:

* Receiving any packet (including a Hello message) from the next
hop.

* A RREQ unicast to the next hop, asking for a route to the next

hop.
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* An ICMP Echo Request message unicast to the next hop.

If a link to the next hop cannot be detected by any of these methods,
the forwarding node SHOULD assume that the link is lost, and take
corrective action by following the methods specified in Section 6.11.

6.11. Route Error (RERR) Messages, Route Expiry and Route Deletion

Generally, route error and link breakage processing requires the
following steps:

Invalidating existing routes

Listing affected destinations

Determining which, if any, neighbors may be affected

Delivering an appropriate RERR to such neighbors

A Route Error (RERR) message MAY be either broadcast (if there are
many precursors), unicast (if there is only 1 precursor), or
iteratively unicast to all precursors {if broadcast is
inappropriate). Even when the RERR message is iteratively unicast to
several precursors, it is considered to be a single control message
for the purposes of the description in the text that follows. With
that understanding, a node SHOULD NOT generate more than
RERR_RATELIMIT RERR messages per second.

A node initiates processing for a RERR message in three situations:

(i) if it detects a link break for the next hop of an active
route in its routing table while transmitting data (and
route repair, if attempted, was unsuccessful), or

(ii) if it gets a data packet destined to a node for which it
does not have an active route and is not repairing (if
using local repair),, or

<iii) if it receives a RERR from a neighbor for one or more
active routes.

For case (i), the node first makes a list of unreachable destinations
consisting of the unreachable neighbor and any additional
destinations (or subnets, see section 7) in the local routing table
that use the unreachable neighbor as the next hop. In this case, if
a subnet route is found to be newly unreachable, an IP destination
address for the subnet is constructed by appending zeroes to the
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subnet prefix as shown in the route table entry. This is
unambiguous, since the precursor is known to have route table
information with a compatible prefix length for that subnet.

For case (ii), there is only one unreachable destination, which is
the destination of the data packet that cannot be delivered. For
case (iii), the list should consist of those destinations in the RERR

for which there exists a corresponding entry in the local routing
table that has the transmitter of the received RERR as the next hop.

Some of the unreachable destinations in the list could be used by
neighboring nodes, and it may therefore be necessary to send a (new)
RERR. The RERR should contain those destinations that are part of
the created list of unreachable destinations and have a non-empty
precursor list.

The neighboring node(s) that should receive the RERR are all those
that belong to a precursor list of at least one of the unreachable
destination(s) in the newly created RERR. In case there is only one
unique neighbor that needs to receive the RERR, the RERR SHOULD be
unicast toward that neighbor. Otherwise the RERR is typically sent
to the local broadcast address (Destination IP == 255.255.255.255,
TTL == 1) with the unreachable destinations, and their corresponding
destination sequence numbers, included in the packet. The DestCount
field of the RERR packet indicates the number of unreachable
destinations included in the packet.

Just before transmitting the RERR, certain updates are made on the
routing table that may affect the destination sequence numbers for
the unreachable destinations. For each one of these destinations,
the corresponding routing table entry is updated as follows:

1. The destination sequence number of this routing entry, if it
exists and is valid, is incremented for cases (i) and (ii) above,
and copied from the incoming RERR in case (iii) above.

2. The entry is invalidated by marking the route entry as invalid

3. The Lifetime field is updated to current time plus DELETE__PERIOD.
Before this time, the entry SHOULD NOT be deleted.

Note that the Lifetime field in the routing table plays dual role --
for an active route it is the expiry time, and for an invalid route
it is the deletion time. If a data packet is received for an invalid
route, the Lifetime field is updated to current time plus
DELSTE_PERIOD. The determination of DELETE_PERIOD is discussed in
Section 10.
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6 .12. Local Repair

When a link break in an active route occurs, the node upstream of

that break MAY choose to repair the link locally if the destination
was no farther than MAXJREPAIR_TTL hops away. To repair the link
break, the node increments the sequence number for the destination
and then broadcasts a RREQ for that destination. The TTL of the RREQ

should initially be set to the following value:

max(MIN_REPAIR_TTL, 0.5 * #hops) + LOCAL_ADD_TTL,

where #hops is the number of hops to the sender (originator) of the
currently undeliverable packet. Thus, local repair attempts will
often be invisible to the originating node, and will always have TTL
>= MIN_REPAIR_TTL + LOCAL_ADD_TTL. The node initiating the repair
then waits the discovery period to receive RREPs in response to the
RREQ. During local repair data packets SHOULD be buffered. If, at
the end of the discovery period, the repairing node has not received
a RREP (or other control message creating or updating the route) for
that destination, it proceeds as described in Section 6.11 by
transmitting a RERR message for that destination.

On the other hand, if the node receives one or more RREPs (or other
control message creating or updating the route to the desired
destination) during the discovery period, it first compares the hop
count of the new route with the value in the hop count field of the
invalid route table entry for that destination. If the hop count of
the newly determined route to the destination is greater than the hop
count of the previously known route the node SHOULD issue a RERR
message for the destination, with the 'N' bit set. Then it proceeds
as described in Section 6.7, updating its route table entry for that
destination.

A node that receives a RERR message with the 'N' flag set MUST NOT
delete the route to that destination. The only action taken should
be the retransmission of the message, if the RERR arrived from the
next hop along that route, and if there are one or more precursor
nodes for that route to the destination. When the originating node
receives a RERR message with the 'N' flag set, if this message came
from its next hop along its route to the destination then the
originating node MAY choose to reinitiate route discovery, as
described in Section 6.3.

Local repair of link breaks in routes sometimes results in increased
path lengths to those destinations. Repairing the link locally is
likely to increase the number of data packets that are able to be
delivered to the destinations, since data packets will not be dropped
as the RERR travels to the originating node. Sending a RERR to the
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originating node after locally repairing the link break may allow the
originator to find a fresh route to the destination that is better,
based on current node positions. However, it does not require the
originating node to rebuild the route, as the originator may be done,
or nearly done, with the data session.

When a link breaks along an active route, there are often multiple
destinations that become unreachable. The node that is upstream of
the lost link tries an immediate local repair for only the one

destination towards which the data packet was traveling. Other
routes using the same link MUST be marked as invalid, but the node
handling the local repair MAY flag each such newly lost route as
locally repairable,- this local repair flag in the route table MUST be
reset when the route times out (e.g., after the route has been not
been active for ACTIVE_ROUTE_TIMEOUT). Before the timeout occurs,
these other routes will be repaired as needed when packets arrive for
the other destinations. Hence, these routes are repaired as needed;
if a data packet does not arrive for the route, then that route will
not be repaired. Alternatively, depending upon local congestion, the
node MAY begin the process of establishing local repairs for the
other routes, without waiting for new packets to arrive. By
proactively repairing the routes that have broken due to the loss of
the link, incoming data packets for those routes will not be subject
to the delay of repairing the route and can be immediately forwarded.
However, repairing the route before a data packet is received for it
runs the risk of repairing routes that are no longer in use.
Therefore, depending upon the local traffic in the network and
whether congestion is being experienced, the node MAY elect to
proactively repair the routes before a data packet is received;
otherwise, it can wait until a data is received, and then commence
the repair of the route.

6.13. Actions After Reboot

A node participating in the ad hoc network must take certain actions
after reboot as it might lose all sequence number records for all
destinations, including its own sequence number. However, there may
be neighboring nodes that are using this node as an active next hop.
This can potentially create routing loops. To prevent this
possibility, each node on reboot waits for DELETE_PERIOD before
transmitting any route discovery messages. If the node receives a
RREQ, RREP, or RERR control packet, it SHOULD create route entries as
appropriate given the sequence number information in the control
packets, but MUST not forward any control packets. If the node
receives a data packet for some other destination, it SHOULD
broadcast a RERR as described in subsection 6.11 and MUST reset the

waiting timer to expire after current time plus DELETE_PERIOD.
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It can be shown [4] that by the time the rebooted node comes out of
the waiting phase and becomes an active router again, none of its
neighbors will be using it as an active next hop any more. Its own
sequence number gets updated once it receives a RREQ from any other
node, as the RREQ always carries the maximum destination sequence
number seen en route. If no such RREQ arrives, the node MUST

initialize its own sequence number to zero.

6.14. Interfaces

Because AODV should operate smoothly over wired, as well as wireless,
networks, and because it is likely that AODV will also be used with
multiple wireless devices, the particular interface over which
packets arrive must be known to AODV whenever a packet is received.
This includes the reception of RREQ, RREP, and RERR messages.
Whenever a packet is received from a new neighbor, the interface on
which that packet was received is recorded into the route table entry
for that neighbor, along with all the other appropriate routing
information. Similarly, whenever a route to a new destination is
learned, the interface through which the destination can be reached
is also recorded into the destination's route table entry.

When multiple interfaces are available, a node retransmitting a RREQ
message rebroadcasts that message on all interfaces that have been
configured for operation in the ad-hoc network, except those on which
it is known that all of the nodes neighbors have already received the
RREQ For instance, for some broadcast media (e.g., Ethernet) it may
be presumed that all nodes on the same link receive a broadcast
message at the same time. When a node needs to transmit a RERR, it
SHOULD only transmit it on those interfaces that have neighboring
precursor nodes for that route.

7. AODV and Aggregated Networks

AODV has been designed for use by mobile nodes with IP addresses that
are not necessarily related to each other, to create an ad hoc
network. However, in some cases a collection of mobile nodes MAY
operate in a fixed relationship to each other and share a common
subnet prefix, moving together within an area where an ad hoc network
has formed. Call such a collection of nodes a "subnet". In this

case, it is possible for a single node within the subnet to advertise
reachability for all other nodes on the subnet, by responding with a
RREP message to any RREQ message requesting a route to any node with
the subnet routing prefix. Call the single node the "subnet router".
In order for a subnet router to operate the AODV protocol for the
whole subnet, it has to maintain a destination sequence number for
the entire subnet. In any such RREP message sent by the subnet
router, the Prefix Size field of the RREP message MUST be set to the
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length of the subnet prefix. Other nodes sharing the subnet prefix
SHOULD NOT issue RREP messages, and SHOULD forward RREQ messages to
the subnet router.

The processing for RREPs that give routes to subnets (i.e., have
nonzero prefix length) is the same as processing for host-specific
RREP messages. Every node that receives the RREP with prefix size
information SHOULD create or update the route table entry for the
subnet, including the sequence number supplied by the subnet router,
and including the appropriate precursor information. Then, in the
future the node can use the information to avoid sending future RREQs

for other nodes on the same subnet.

When a node uses a subnet route it may be that a packet is routed to
an IP address on the subnet that is not assigned to any existing node

in the ad hoc network. When that happens, the subnet router MUST
return ICMP Host Unreachable message to the sending node. Upstream
nodes receiving such an ICMP message SHOULD record the information
that the particular IP address is unreachable, but MUST NOT
invalidate the route entry for any matching subnet prefix.

If several nodes in the subnet advertise reachability to the subnet
defined by the subnet prefix, the node with the lowest IP address is
elected to be the subnet router, and all other nodes MUST stop
advertising reachability.

The behavior of default routes (i.e., routes with routing prefix
length 0) is not defined in this specification. Selection of routes
sharing prefix bits should be according to longest match first.

8. Using AODV with Other Networks

In some configurations, an ad hoc network may be able to provide

connectivity between external routing domains that do not use AODV.
If the points of contact to the other networks can act as subnet
routers (see Section 7) for any relevant networks within the external
routing domains, then the ad hoc network can maintain connectivity to
the external routing domains. Indeed, the external routing networks
can use the ad hoc network defined by AODV as a transit network.

In order to provide this feature, a point of contact to an external
network (call it an Infrastructure Router) has to act as the subnet

router for every subnet of interest within the external network for
which the Infrastructure Router can provide reachability. This
includes the need for maintaining a destination sequence number for
that external subnet.
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If multiple Infrastructure Routers offer reachability to the same
external subnet, those Infrastructure Routers have to cooperate (by
means outside the scope of this specification) to provide consistent
AODV semantics for ad hoc access to those subnets.

9. Extensions

In this section, the format of extensions to the RREQ and RREP
messages is specified. All such extensions appear after the message
data, and have the following format:

0 12 3

01234567890123456789012345678901

| Type | Length j type-specific data ...

where:

Type 1-255

Length The length of the type-specific data, not including the Type
and Length fields of the extension in bytes.

Extensions with types between 128 and 255 may NOT be skipped. The
rules for extensions will be spelled out more fully, and conform to
the rules for handling IPv6 options.

9.1. Hello Interval Extension Format

0 12 3

01234567890123456789012345678901
+ - + --).-.-(-- + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

| Type j Length | Hello Interval ... |

| ... Hello Interval, continued |

Type 1

Length 4

Hello Interval

The number of milliseconds between successive transmissions

of a Hello message.
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The Hello Interval extension MAY be appended to a RREP message with
TTL == 1, to be used by a neighboring receiver in determine how long
to wait for subsequent such RREP messages (i.e., Hello messages; see
section 6.9).

10. Configuration Parameters

This section gives default values for some important parameters
associated with AODV protocol operations. A particular mobile node
may wish to change certain of the parameters, in particular the
NET_DIAMETER, MY_ROUTE_TIMEOUT, ALLOWED_HELLO_LOSS, RREQ_RETRIES, and
possibly the HELLO_INTERVAL. In the latter case, the node should
advertise the HELLO_INTERVAL in its Hello messages, by appending a
Hello Interval Extension to the RREP message. Choice of these
parameters may affect the performance of the protocol. Changing
NODE_TRAVERSAL_TIME also changes the node's estimate of the
NET_TRAVERSAL_TIME, and so can only be done with suitable knowledge
about the behavior of other nodes in the ad hoc network. The
configured value for MY_ROUTE_TIMEOUT MUST be at least 2 *
PATH DISCOVERY TIME.

Parameter Name

ACTIVE_ROUTE_TIMEOUT
ALL0WED_HELLO_LOSS
BLACKLIST_TIMEOUT
DELETE_PERIOD

HELLO_INTERVAL
LOCAL_ADD_TTL
MAX_REPAIR_TTL
MIN_REPAIR_TTL
MY_ROUTE_TIMEOUT
NET__DIAMETER
NET_TRAVERSAL_TIME
NEXT_HOP_WAIT
NODE_TRAVERSAL_TIME
PATH_DISCOVERY_TIME
RERR_RATELIMIT
RING TRAVERSAL TIME

RREQ_RETRIES
RREQ_RATELIMIT
TIMEOUT_BUFFER
TTL_START

TTL_INCREMENT
TTL_THRESHOLD
TTL VALUE

Perkins, et. al.

Value

3,000 Milliseconds

2

RREQ_RETRIES * NET_TRAVERSAL_TIME
see note below

1,000 Milliseconds

2

0.3 * NET_DIAMETER

see note below

2 * ACTIVE_ROUTE_TIMEOUT

35

2 * NODE_TRAVERSAL_TIME * NET_DIAMETER
NODE_TRAVERSAL_TIME + 10
40 milliseconds

2 * NET_TRAVERSAL_TIME

10

2 * NODE_TRAVERSAL_TIME *
(TTL_VALUE + TIMEOUT_BUFFER)
2

10

2

1

2

7

see note below
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The MIN_REPAIR_TTL should be the last known hop count to the
destination. If Hello messages are used, then the
ACTIVE_ROUTE_TIMEOUT parameter value MUST be more than the value
(ALLOWED_HELLO_LOSS * HELLO_INTERVAL). For a given
ACTIVE_ROUTE_TIMEOUT value, this may require some adjustment to the
value of the HELLO__INTERVAL, and consequently use of the Hello
Interval Extension in the Hello messages.

TTL_VALUE is the value of the TTL field in the IP header while the
expanding ring search is being performed. This is described further
in section 6.4. The TIMEOUT_BUFFER is configurable. Its purpose is
to provide a buffer for the timeout so that if the RREP is delayed
due to congestion, a timeout is less likely to occur while the RREP

is still en route back to the source. To omit this buffer, set
TIMEOUT_BUFFER = 0.

DELETE_PERIOD is intended to provide an upper bound on the time for
which an upstream node A can have a neighbor B as an active next hop
for destination D, while B has invalidated the route to D. Beyond
this time B can delete the (already invalidated) route to D. The
determination of the upper bound depends somewhat on the
characteristics of the underlying link layer. If Hello messages are
used to determine the continued availability of links to next hop
nodes, DELETE_PERIOD must be at least ALLOWED_HELLO_LOSS *
HELLO_INTERVAL. If the link layer feedback is used to detect loss of
link, DELETE_PERIOD must be at least ACTIVE_ROUTE_TIMEOUT. If hello
messages are received from a neighbor but data packets to that
neighbor are lost (e.g., due to temporary link asymmetry), we have to
make more concrete assumptions about the underlying link layer. We
assume that such asymmetry cannot persist beyond a certain time, say,
a multiple K of HELL0_INTERVAL. In other words, a node will
invariably receive at least one out of K subsequent Hello messages
from a neighbor if the link is working and the neighbor is sending no
other traffic. Covering all possibilities,

DELETE__PERIOD = K * max (ACTIVE_ROUTEJTTMEOUT, HELLO_INTERVAL)
(K = 5 is recommended).

NET_DIAMETER measures the maximum possible number of hops between two
nodes in the network. NODE_TRAVERSAL_TIME is a conservative estimate
of the average one hop traversal time for packets and should include
queuing delays, interrupt processing times and transfer times.
ACTIVE_ROUTE_TIMEOUT SHOULD be set to a longer value (at least 10,000
milliseconds) if link-layer indications are used to detect link
breakages such as in IEEE 802.11 [5] standard. TTL_START should be
set to at least 2 if Hello messages are used for local connectivity

information. Performance of the AODV protocol is sensitive to the
chosen values of these constants, which often depend on the
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characteristics of the underlying link layer protocol, radio
technologies etc. BLACKLIST_TIMEOUT should be suitably increased if
an expanding ring search is used. In such cases, it should be
{[(TTL_THRESHOLD - TTL_START)/TTL_INCREMENT] + 1 + RREQ_RETRIES} *
NET_TRAVERSAL_TIME. This is to account for possible additional route
discovery attempts.

11. Security Considerations

Currently, AODV does not specify any special security measures. Route
protocols, however, are prime targets for impersonation attacks. In
networks where the node membership is not known, it is difficult to
determine the occurrence of impersonation attacks, and security
prevention techniques are difficult at best. However, when the
network membership is known and there is a danger of such attacks,
AODV control messages must be protected by use of authentication
techniques, such as those involving generation of unforgeable and
cryptographically strong message digests or digital signatures.
While AODV does not place restrictions on the authentication
mechanism used for this purpose, IPsec AH is an appropriate choice
for cases where the nodes share an appropriate security association
that enables the use of AH.

In particular, RREP messages SHOULD be authenticated to avoid
creation of spurious routes to a desired destination. Otherwise, an
attacker could masquerade as the desired destination, and maliciously
deny service to the destination and/or maliciously inspect and
consume'traffic intended for delivery to the destination. RERR
messages, while less dangerous, SHOULD be authenticated in order to
prevent malicious nodes from disrupting valid routes between nodes
that are communication partners.

AODV does not make any assumption about the method by which addresses
are assigned to the mobile nodes, except that they are presumed to
have unique IP addresses. Therefore, no special consideration, other
than what is natural because of the general protocol specifications,
can be made about the applicability of IPsec authentication headers
or key exchange mechanisms. However, if the mobile nodes in the ad
hoc network have pre-established security associations, it is
presumed that the purposes for which the security associations are
created include that of authorizing the processing of AODV control
messages. Given this understanding, the mobile nodes should be able
to use the same authentication mechanisms based on their IP addresses

as they would have used otherwise.
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12. IANA Considerations

AODV defines a "Type" field for messages sent to port 654. A new
registry has been created for the values for this Type field, and the
following values have been assigned:

Message Type Value

Route Request (RREQ) 1

Route Reply (RREP) 2
Route Error {RERR) 3

Route-Reply Ack (RREP-ACK) 4

AODV control messages can have extensions. Currently, only one
extension is defined. A new registry has been created for the Type
field of the extensions:

Extension Type Value

Hello Interval 1

Future values of the Message Type or Extension Type can be allocated
using standards action [2].

13. IPv6 Considerations

See [6] for detailed operation for IPv6. The only changes to the
protocol are that the address fields are enlarged.

14. Acknowledgments

Special thanks to Ian Chakeres, UCSB, for his extensive suggestions
and contributions to recent revisions.

We acknowledge with gratitude the work done at University of
Pennsylvania within Carl Gunter's group, as well as at Stanford and
CMU, to determine some conditions (especially involving reboots and
lost RERRs) under which previous versions of AODV could suffer from
routing loops. Contributors to those efforts include Karthikeyan
Bhargavan, Joshua Broch, Dave Maltz, Madanlal Musuvathi, and Davor
Obradovic. The idea of a DELETE_J?ERIOD, for which expired routes
(and, in particular, the sequence numbers) to a particular
destination must be maintained, was also suggested by them.

We also acknowledge the comments and improvements suggested by Sung-
Ju Lee (especially regarding local repair), Mahesh Marina, Erik
Nordstrom {who provided text for section 6.11), Yves Prelot, Marc
Mosko, Manel Guerrero Zapata, Philippe Jacquet, and Fred Baker.

Perkins, et. al. Experimental [Page 34]



RFC 3561 AODV Routing July 2003

15. Normative References

[1] Bradner, S. "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.

[2] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

16. Informative References

[3] Manner, J./ et al., "Mobility Related Terminology", Work in
Progress, July 2001.

[4] Karthikeyan Bhargavan, Carl A. Gunter, and Davor Obradovic.
Fault Origin Adjudication. In Proceedings of the Workshop on
Formal Methods in Software Practice, Portland, OR, August 2000.

[5] IEEE 802.11 Committee, AlphaGraphics #35, 10201 N.35th Avenue,
Phoenix AZ 85051. Wireless LAN Medium Access Control MAC and

Physical Layer PHY Specifications, June 1997. IEEE Standard
802.11-97.

[6] Perkins, C., Royer, E. and S. Das, "Ad hoc on demand distance
vector (AODV) routing for ip version 6", Work in Progress.

Perkins, et. al. Experimental [Page 35]



RFC 3561 AODV Routing July 2003

17. Authors' Addresses

Charles E. Perkins

Communications Systems Laboratory

Nokia Research Center

313 Fairchild Drive

Mountain View, CA 943 03

USA

Phone: +1 650 625 2986

Fax: +1 650 691 2170 (fax)

EMail: Charles.Perkins@nokia.com

Elizabeth M. Belding-Royer
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106

Phone: +1 805 893 3411

Fax: +1 805 893 8553

EMail: ebelding@cs.ucsb.edu

Samir R. Das

Department of Electrical and Computer Engineering
& Computer Science
University of Cincinnati
Cincinnati, OH 45221-0030

Phone: +1 513 556 2594

Fax: +1 513 556 7326

EMail: sdas@ececs.uc.edu

Perkins, et. al. Experimental [Page 36]



RFC 3561 AODV Routing July 2003

18. Full Copyright Statement

Copyright (C) The Internet Society (2003). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE,

Acknowledgement

Funding for the RFC Editor function is currently provided by the
Internet Society.

Perkins, et. al. Experimental [Page 37]


