
Implementation of Electrical and Electronics' Department's
Wireless Local Area Network and Central Server

by

Sim Yih Chun

A project dissertation

submitted in partial fulfilment of

the requirements for the

BACHELOR OF ENGINEERING (Hons)

(Electrical & Electronics Engineering)

DECEMBER 2006

Universiti Teknologi PETRONAS
Bandar Sen Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Implementation of Electrical and Electronics' Department's
Wireless Local Area Network and Central Server

by

Sim Yih Chun

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December200&

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or doneby

unspecified sources or persons.

SIM YIN CHUN

84052M3-5501
Matric No: 3459

111

ABSTRACT

This project is designed to overcome two related problems: the Electrical and

Electronics Department is located on two blocks in the new campus, namely Block 22

and Block 23. Currently these blocks are connected through a physically wired local

area network connection under the control of the Information Technology and Media

Services (ITMS) department. Unfortunately, this has the restriction of requiring a

computer to be physically near a port in order to log onto the network, and locations

without a port are essentially cut off from the other computers. Another observed

problem is the excessive dependence on unreliable paper records to track students as

they borrow electronic components from the stores. To overcome these problems, this

project involves the design and implementation of a wireless network that covers both

the blocks. The project itself will have two stages: first, to set up the hardware for a

wireless network in the two blocks, and secondly, to design and implement a centralised

system for recording inventory when they are borrowed by students as a demonstration

of the possibilities offered by such a network.

IV

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, En Azman Zakariya, for his

guidance, support and valuable feedback throughout this project. Also, I would like to

thank the technicians of the Electrical and Electronics Department of University

Teknologi Petronas, especially Kak Siti Hawa and Encik Musa for their invaluable help

in this project.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL h

CERTIFICATION OF ORIGINALITY iii

ABSTRACT iv

ACKNOWLEDGEMENTS v

LIST OF FIGURES viii

LIST OF TABLES x

ABBREVIATIONS AND NOMENCLATURE xi

CHAPTER 1: INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 2

1.3 Objectives 2

CHAPTER 2: THEORY AND LITERATURE REVIEW 3

2.1 Advantages of Wireless Networking 3

2.2 Classificationsof Wireless Technologies 4

2.2 Bluetooth and WiFi 4

2.2 Windows Socket Programming 9

CHAPTER 3: PROJECT WORK 10

3.1 Project layout: Communication between blocks 10

3.2 Project layout: Within a single blocks 11

3.3 Software Organization 12

vi

3.4 Setting up a WiFi Bridge connection 13

3.5 Setting up a Wireless G Network 17

3.6 Setting up a Bluetooth Network 24

CHAPTER 4: RESULTS & DISCUSSION 27

4.1 Final Software Layout: Server 27

4.1.1 Server-Client Communications 29

4.1.2 System Maintenance 31

4.1.3 Simple Database Management 32

4.2 Final Software Layout: Client 34

4.3 Software Training Tool 39

CHAPTER 5: CONCLUSION & RECOMMENDATION 40

5.1 Conclusion 40

5.2 Recommendation 41

REFERENCES

APPENDICES

vn

LIST OF FIGURES

Figure 2.1: Wireless technology categories 4

Figure 2.2: The Wi-Fi logo 5

Figure 2.3: The Bluetooth logo 7

Figure 2.4: The Windows Socket network model 9

Figure 3.1: Layout ofProject Location 10

Figure 3.2: Current Hardware Layout 11

Figure 3.3: Current Software Layout 12

Figure 3.4: The Cisco Aironet 350 overview 13

Figure 3.5: Cable connections for the device 13

Figure 3.6: COM1 port settings 14

Figure 3.7: HyperTerminal showing Cisco device boot-up sequence 14

Figure 3.8: Device configuration screen 15

Figure 3.9: Express Setup options 15

Figure 3.10: Yagi-Uda wall mounted antenna 16

Figure 3.11: Yagi-Uda antenna internal layout 16

Figure 3.12: WiFi bridge setup (Data Communications Laboratory, Block 23) 17

Figure 3.13: D-Link Wireless G Access Point 17

Figure 3.14: Wireless GUSB Adapter 18

Figure 3.15: Access point logon 18

Figure 3.16: Setup welcome screen 19

Figure 3.17: Password change screen 19

Figure 3.18: SSID/Channel selection 20

Figure 3.19: WEP encryption options 21

Figure 3.20: Access point settings 22

Figure 2.21: Wireless Utility screenshot 23

Figure 3.22: Network TCP/IP settings 23

Figure 3.23: A USB Bluetooth dongle with antenna (100 m/378 ft range) 24

Figure 4.1: Visual Basic6.0 server software development window 27

Figure 4.2: Overview of server architecture 28

viii

Figure 4.3: Flow-chart for server-client communications 29

Figure 4.4: Database basic functionality 33

Figure 4.5: Visual Basic 6.0 client software development window 34

Figure 4.6. List of client forms 34

Figure 4.7: Screenshot of ScatterNet Server 36

Figure 4.8: Screenshot of ScatterNet Client 37

Figure 4.9; Screenshot of ScatterNet Client login interface 38

Figure 4.10: Screenshotof inventory management interface 38

Figure 4.11: Screenshot of software training tool 39

IX

LIST OF TABLES

Table 3.1: Various Bluetooth services available 26

ABBREVIATIONS AND NOMENCLATURE

IEEE Institute ofElectrical and Electronics Engineers

AP Access Point

LAN Local Area Network

EE Electrical and Electronics Faculty

TCP/IP Transmission Control Protocol/Internet Protocol

IP Internet Protocol

PC Personal computer

UTP University of Technology Petronas

API Application Programming Interface

VB Visual Basic

MAC Media Access Control

XI

CHAPTER 1

INTRODUCTION

This chapter provides a brief summary of the project. The project background is

explained, with a short explanationon the various wireless technologies that will be used

in this project. The problem statement elaborates on the reasons behind the project, as

one of the pillars of engineering is the ability to solve problems. This is followed by the

objectives, which are the goals that should be achieved once the project has been

completed successfully.

1.1 Background

There are currently two main standards for commercial wireless application, both with

their own unique advantages and disadvantages:

1. WiFi, a wireless Local Area Network compatibility standard based on the

Institute of Electrical and Electronics Engineers' (IEEE) 802.11 specification.

Commercial set-ups of WiFi networks rely on the use of Access Points (APs)

that the clients connect to, and the most common standard of 802.1 lg (Wireless-

G) has typical speeds of around 20Mbps, even though the theoretical maximum

is 54Mbps assuming ideal data transfer conditions. It operates up to a theoretical

maximum range of 300m. Recent models have improved this to a maximum of

108Mbps [1], but with reduced range, or with even longer ranges at reduced data

transfer rates. A complete WiFi set-up is expensive, with an Access Point costing

upwards ofRM300, and each WiFi network adapter costing around RM150.

2. Bluetooth, a wireless Personal Area Network compatibility standard based on

the Institute of Electrical and Electronics Engineers' (IEEE) 802.15.1

specification. Bluetooth utilises the same 2.4GHz frequency band as WiFi, with

three different classes based on the power/ range of the Bluetooth device. A

Class 1 Bluetooth device has a power output of lOOmW, giving it a theoretical

maximum range of approximately 100m, although in practice, the range would

be much lower than this [2]. Its main advantage is its low power consumption/

low cost with dongles costing as little as RM50 each. However, it is bandwidth

limited, allowing a throughput of up to 1 Mbps, or 125 kB/s.

1.2 Problem Statement

The two main problems identified by this project are listed below:

r Currently, there are no set-upsusing wireless technology in the new campus, even

though wireless LANtechnology is becoming one of the fastest growing fields in

telecommunications. Even other projects currently in development have yet to set

up any wireless equipment on campus.

r When students borrow electronic components from the lab, the current system

involves recording the student's name and borrowed components on a paper form,

which is then filed. Even then, different labs use different systems, sothesystem is

actually quite inefficient. A proper, centralised record will speed up the component

borrowing process, as well as allowing the technicians to keep track of all the

components currently on loan.

1.3 Objectives

Based on the problems stated above, this project has a two-fold objective:

r To set up a wireless network infrastructure in Buildings 22 and 23 of the new

campus that will also be connected to the main UTP network.

r To design, program and deploy a centralised inventory record system that keeps

track of the electronics components in all the EE labs, with the results stored on a

central server.

CHAPTER 2

THEORY AND LITERATURE REVIEW

This chapter explores the theories behind this project in greater detail. The following

sections will explain the underlying architecture of the technologies used, as well as the

operation of socket programming in Windows using the WinSock API. Most of this

chapterwill touch on existing information that supportthe design decisions made in this

project.

2.1 Advantages ofWireless Networking

Wireless communications is a rapidly developing field, and technology that involves the

transfer of information across radio waves has improved by leaps and bounds in the past

decade. There are many advantages of wireless networking [3], namely:

• Increased mobility: with wireless communication, it is possible to remain in

contact even if the other person moves between different locations. The wireless

device is accessible as long as it was within operational range, which means that

the people involved are not constrained by the need to remain in the same place.

• Increased flexibility: wireless communications removes the need for complex

wiring, which in turn leads to flexibility in the layout of a network. The design of

a wireless network is not limited by the wiring of the building, and it is much

easier to add or remove elements of the wireless network compared to a fixed

network.

• Aesthetics: another advantage of wireless technology is the lack of unsightly

cables makes for a more aesthetically pleasing environment.

2.2 Classifications of Wireless Technologies

Figure 2.1: Wireless technology categories

Wireless technologies canbe divided into three main categories, as shown inFigure 2.1.

1. Wireless Wide Area Networks (WWAN): large coverage, mostly for voice

telephony such as cellular companies. Latest generations of the technology

include integration of data and video streams.

2. Wireless Local Area Networks (WLAN): medium power and medium coverage.

Includes the IEEE 802.11 family of specifications, such as wireless Ethernet

(Wi-Fi), Home Radio Frequency, and High-Performance Radio Local Area

Networks (HIPERLAN).

3. Wireless Personal Area Networks (WPAN): low-power, short range applications.

Includes Bluetooth, IrDA, and other specifications from the IEEE 802.15 family.

For this project, we will focus on technologies involving WLAN and WPAN

applications.

2.3 Comparison Study: Bluetooth versus WiFi

Although both Bluetooth and WiFi are wireless protocols operating in the 2.4 GHz

frequency range, there are fundamental differences between the two.

WiFi (IEEE 802.11)

Figure 2.2; The Wi-Fi logo

There are several different standards available for the 802.11 specification: each

different flavour is signified by a different alphabet appended to the end, e.g. 802.11a,

802.11b, etc.

The most commonly available standard is Wireless G, or more correctly known as the

802. llg specification. It is compatible with devices designed to follow the 802.11b

specification. However, the wireless access bridges inthelab currently utilise the earlier

802.11b standard. The 802.11b standard uses a variation of direct-sequence spread

spectrum (DSSS) modulation techniques which is similar to the modulation used by

Code Division Multiple Access (CDMA). Devices using the 802.11b standard have a

maximum data throughput of up to 11 Mbps, although operational data rates will be

lower than that. With a high gain external omni-directional antenna, 802.11b devices

have an operational range of several kilometres through open space, and at least a few

hundred meters even through obstacles.

• However, WiFi modulation has been shown to be more vulnerable to

interference, especially from other radio devices operating in the same

frequency band. Also, data rates near the maximum data output is difficult to

achieve in practice, due to much higher susceptibilities to interference as the data

rate increases.

Cost is also an important limitation, since it is quite expensive to set up even a

medium scale network. A single Access Point costs more than RM300, and each

client would require network adapters costing between RM100 and RM200 [4].

This means that for a small network of 7 computers, the total cost would be

RM900 to RM1500, and the cost climbs even higher when more computers are

added. With a project budget of only RM250, this is a critically important factor

to consider when comparing the different options available.

Also, since different manufacturers currently use different techniques to boost

the range or data rate of the wireless transmissions, interoperability is not

guaranteed between different brands. For example, some companies use what is

called the Super-G specification, which quadruples the range and doubles the

data rate, but is not compatible with devices made by other companies, and have

much higher interference potential in the 2.4 GHz spectrum. Even newer

standards are being introduced, using multiple-input multiple-output (MEVIO)

technology to boost the capabilities even further. However, these solutions are

too prohibitively expensive for the scopeof this project.

Another weakness of WiFi is the questionable security. WiFi networks are

secured through Wired Equivalent Privacy (WEP), which is basically a numeric

encryption method. However, this has been shown to be crackable when enough

data is collected from the transmitter, this compromising the security of the

wireless network. WiFi cracking tools are available on the internet, allowing

anyone with a receiver to tap into the bandwidth ofa secured WiFi network.

The main advantage of WiFi systems is its ability to operate reliably across

larger distances compared to Bluetooth. While the reliability of Bluetooth

devices deteriorate with range, the higher powered WiFi devices have a

significantly longer operational range, and are better at penetrating obstacles.

This can be further boosted by deploying a directional antenna.

Bluetooth (IEEE 802.15.1)

Bluetooth

Figure 2.3: The Bluetooth logo

Originally designed as a low-power industrial specification for short-range radio

applications, Bluetooth has emerged as a low cost, secure protocol of communicating

between various different devices, from Personal Digital Assistants (PDA) to cellphones

to printers to other personal computers.

• Bluetooth uses adaptive frequency-hopping spread spectrum modulation, which

makes it less susceptible to electromagnetic interference from other devices in

the same radio frequency range. The Bluetooth transceiver chip divides the

bandwidth into 79 channels and changes channel 1600 times a second,

minimizing the chance of interfering with other transmissions in the same

frequency band.

• Bluetooth is a far more cost-effective option for this project. A single Bluetooth

USB dongle costs RM50, which enables a computerto function as either a client

or a server on the Bluetooth network when connected. This means that no access

points are required in order to set-up a working network, and the network can be

rapidly reconfigured as necessary using only software controls. A network

covering 7 computers for a block would cost just RM350 to set up, and its low

cost means that maintenance and replacement is much easier.

• The design of Bluetooth allows it to talk to other devices besides computers, so

this network can be easily expanded in the future to communicate with mobile

•

phones and other peripherals. Many phones and PDA devices support Bluetooth

due to its low cost and easy usage, so future applications can focus on delivering

services from the EE department to other devices as they pass through the EE

department.

Of course, Bluetooth has its limitations as well. Current specifications of

Bluetooth allows a central master to accept connections from a maximum of 7

slave devices, which means that the network has to consist of several sub

networks joined by other communications medium. The current design allows for

a central master to be connected to an Ethernet connection, and the software side

then bridges the connection to other sub-networks. In Bluetooth terms, the sub

network is called a 'piconet' while a collection of piconets is known as a

'scatternet'.

Another limitation is the lower data rate and shorter range of the devices. A

typical Bluetooth connection has a maximum data transfer rate of 125 kB/s, with

practical rates of around 100 kB/s. This is still fast enough for our applications,

which is why it is not a major concern in the implementation of this project.

However, it is something to bear in mind since the speed is effectively divided by

the number of simultaneous connections, so a fully loaded network might be

slower than expected. Range is a more serious issue: even though the theoretical

maximum range is 100 m, the low-powered Bluetooth devices experience

significant connection problems when the room is enclosed in glass walls (such

as in the laboratories) and there are obstacles in the way.

Bearing these factors in mind, it was decided that a mixed wireless network would be

the most efficient solution for the project. By combining the advantages of WiFi and

Bluetooth, the aim of the project is to provide a high performance wireless networkthat

still remains cost effective.

2.4 Windows Socket Programming

OSt Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

Windows Sockets

Windows

Socket

Application

Protocol Stack

(TCP/IP)

Network Driver

Network Interface

Figure 2.4: The Windows Socket network model

The most common reference model for most networks is the Open Systems Interconnect

(OSI) network model, where the entire system is divided into distinct layers that provide

services to higher layers. Each layer is connected by allowing predetermined function

calls to be used on a lower layer, therefore allowing each layer to be developed

independent of the lower layers. This is an important aspect of the OSI network model in

this project, as it allows us to develop the software separately from the hardware portion.

Windows sockets applications are actually equivalent to the top three layers in the OSI

model [5]. The socket application usually consists of a dynamic link library (DLL) that

provides high-level APIs to other applications that perform functions unique to that

particular application. A WinSock API (WSA) allows the application to access the

network system and transmit information to other points on the network, but the main

advantage of WinSock is that it is easy to understand, and is flexible enough to allow

many different applications to be developed for it.

CHAPTER 3

PROJECT WORK

This chapter identifies the steps involved in the project work. It follows the logical order

of procedures in preparing the project, beginning with an outline of the project layout,

followed by step-by-step instructions to set up each hardware component. It also

identifies and details the equipment required for the project.

3.1 Project Layout: Communication between blocks

The Electrical and Electronics Engineering Faculty covers two buildings, and this has

been demonstrated to be possible when using a pair of WiFi bridges between the two

blocks. For shorter ranges, a Wireless G Access Point will be used to expand the

coverage. Figure3.1 shows a sketchof the layout for the connection between blocks.

t-Lmi UliLI
3lod<, 22 ': Blocks. 1st j'icia." i

(HhtT j.rtbs i i T'K>m'M"'i P-<mn i
{Utefit&l ! Wirni&jifi Acrass ffo'iK •

wireless G ''ii^t«"l '
i,.!5IS Mnf.it.pt I! --*^*T/^ ^3v****»«*-.

Figure 3.1: Layout of Project Location

10

3.2 Project Layout: Within a single block

Figure 3.2 shows the hardware layout for the project. The Wireless G access point is the

hub for the other client computers, and additional clients may be added using Bluetooth

dongles to transmit data. A technician is needed to maintain the main server PC, and

ideally, software design ensures that user intervention is minimal in server operation.

Other technicians will approve student actions at their respective client PCs.

n CD
0

Client PC

0

•User

iTectnicjan)

0 0

Users

[Bluetooth LAN Acce$sJ
10-2CfTh approx 1 MB/s

o

0

Iter

rechmcian)

O 0

-ys)?Hi

fSSutifcf'jt.s}

CZJ
o

Client PC

=•« I 0

Client PC

O

0

rFecbnieian'i

O O

00

iStiidenii'i

[WiFi iJridge Connection]
if approx 11' MB/s

WiFi

USB Adapter

/xii

WiFi

USB Adapter

JX-

v •
i

WsFi i

Access Point

Figure 3.2: CurrentHardwareLayout

11

ZZ2
CD

o

fcfge PC
(Server)

O

ITcdimdani

3.3 Software Organization

Figure 3.3 shows the current layout of the software, consisting of separate client and

server applications.

Implementation of EE Wireless Network and Central Server

software structure overview

database

•Sensitive user information

wiii ho separated in storage
to prevent i&tnperisis.

o

-The server application listens iof
irccoran§ requests from the Clients*
and services, infrse requests, as, necossary.

<(BKyrres)t re(iijf?*b cm fe »f.*k;ed <k#?
to the socketed nature of the- server; each,
incoming request is assigned to a new
socket.

-Ail niedifieaiioris to us<?r isift>rn»ncifin is
*t?qiKrt?c! lo go through Uie •server'
applieaUnn,

-Minimal user intervention is required:
ail tasks (inoiudisig bactojps, system restart!
antf other unforeseen r.ircuiiistaj'icps^
jhw'id Neatly he hs.n<IH*d auUiffsaUMl'y
fey the sofwsre.

server

UJ i£

a: <

> *:a: rj

21 >
LlJ >

Components List

•The list of components that can be
harrowed is maintained by tfce-
cUentsido software.

U
-The client application is me
interface between the sysfen ansf
if* user's.

-A technician with privileged access
to the ciient application perfenns
venrica&an of transactions.

client 1

client 2
•Adjfiff.jn.il rtsents may connw.t ;,n
the system tftirmg aperaUon,.

-Eacn client is cwitraHed by a
different tedirrician, and the same
system can be yse for other purposes
without .tddinq ijidtiitioriril s&rvtrs,

n
-Each client maintains a separate
components list, but the List, carv be

updated Isy t!he central server.

Components List

Figure 3.3: Current Software Layout

12

User

iTecfaiiddri)

O O

0

Users

(Students \

_D

User

iTeciinidan)

O O

Users

^tydrnts'i

3.4 Setting up a WiFi Bridge Connection

For the connection between the two blocks, two Cisco Aironet 350 devices are used. The

350 series uses the IEEE 802.11b standard, and the specification sheet for the bridge

devices can be found in the appendices. The Aironet 350 is powered using an Ethernet

cable instead of a separate power cable, and has its own address on the IP network.

Figure 3.4: The Cisco Aironet 350 overview

I

*\^iP/,r

Figure 3.5: Cable connections for the device

13

In order to use the device for wireless access, the device has to be configured using the

HyperTerminal application in Windows. To do this, the bridge is connected to the PC

using a serial cable to the COMl port, and HyperTerminal is started up. Figure 3.6

shows the settings to use for the connection.

."1

Port Settings

Bits per second' !g^^^^^^|LHU

Data bits: \B .ll

Parity: (None zl

Stop bits: |l zJ

Flow central: Hardware z\

Restore Defaults

OK Cancel Apply

*f.

Figure 3.6: COMl port settings

If the settings are configured correctly, the HyperTerminal connection will acknowledge

the booting up of the WiFi Bridge as soon as the Ethernet/power cable is connected.

His Edit VIbin Call Transfer H*

Testing DRRH...
(press <esc> to bypass)
DRRH Test Bypassed.
Po»er-on reset.

Copyright 1996-2800 Cisco Systems. Inc.
Copyright 1984-2800 Hind Riyer Systems. Inc.

Systen IB: 8049965DEAF5
Motherboard: HPC855 SflNHz, B192KB FLASH, 16384KB ORAM. Revision Bl
Bootstrap Ver. 1.09: FLASH, CRC 710B6415 (OK)
Initialization: OK

Ccnnettetl000-39 flutodetert 96COSH J

Figure 3.7: HyperTenninalshowing Ciscodeviceboot-up sequence

14

\d
fife E* *» Cell TlorBfH Holp

0 e£ $ QS Iff
"V

Motherboard: MPC855 50HHz, 8192KB FLASH. 16384KB DRAM, Revision Bl
bootstrap Ver. 1.09: FLASH, CRC 710B6415 (OK)

'.- Initialization: OK

•Hemory Bank total used left
DRAM 16738168 0 16738168

••;! Config 524288 508 523788
FLRSH 7733248 H40032 6293216

::
Memory Bank:File address
a] Corvfig:BR Installation Key FEB20B00

: b) Config:VAR Installation Key FE020848
: c) Config:flWC ConfigDB FE020074

dJ FLASH :EnterpriseAP Sys 12.00 FE8A00B0
e) FLASH :EnterpriseAP Heb 12.00 FE1B6DAC
fl FLASH :Inflate Ver. cl4o FE1D88R0
g) FLASH :AWC PCMCIA FPGA 0.14 FE1DA624

; h) FLASH :340 Series FHare 05.02B FE1E3828
i) FLASH :PC4880 Finwure 05.82B FE1F186C
j) FLASH :BR Installation Key FE1FF9BC

•: k) FLASH :VAR Installation Key FEIFFBEC

size encoding type flags
64 none Key 8080
52 none Key 0880
392 AiroDBl Data 0060

1142188 gzip Exec 0801
137972 tar.gz Heb 0008
7556 gzip Dcdr 0880

37380 none FPGA 0080
57412 .tar.gz Data 0080
57408 .tar.gz Data 0080

64 none Key 0080
52 none Key 0080

Inflating "EnterpriseflP Sys 12.08'-...

-. "* i
Cor^(^Orte'S5V,'-.:.":;,'Aitoi,daBit: -^•^^a^i-.l.;r-:-'.:^^ ../.^.^^tlM';^

Figure 3.8: Device configuration screen

Once the device has successfully booted up, the Express Setup option allows us to find

or change the MAC address, IP address, subnet mask, gateway IP and the role of the

device in the radio network.

Edt W»r est Transfer Hefe

£ -as &~

Express Setup Uptime; 00:01:19

System IName
(Terminal Type
MAC Address

Config. Server [Protocol
IP [Address
IP [Subnet Mask
Default [Gateway

HAP
][teletype!
: 08:40:96:5d:ea:f5

HNone]
H160. fl.57.180 1
11255.255.255.0 1
11160.0.225.254]

[Seruice Set ID (SSID) HTF.C
[Role in Radio Network 1(Non-Root Bridge w/Clients
[Optimize Radio Netnork For HRange] [Hw Radiol
Ensure Compatibility With: [2Mb/sec Clients]!*]

[Security Setup!
ISNMP Admin. Community Hit

[Apply] I0K1 [Cancel! [Restore Defaults]

[Home! - [Network] - [Associations] - [Setup] - [Logs] - [Help]
IRuto Apply On) :Back, "R, =, <EHTER>. or [Link Tenth _

Cal^pe[ted.fli^l^!3*T.•." ." Auto dried" • •MM'S-Nil.".-

Figure 3.9: Express Setup options

For the purpose of this project, we will need to set up at least two devices. One will

function as the root bridge while the other is a non-root bridge that will be connected to

further clients. An antenna is then connected to the bridge device to boost the signal.

15

The antenna used for both devices is Cisco's AIR-ANT1949 wall mounted Yagi-Uda

antenna. The specification for this antenna can be found in the appendices of this report.

The antenna itself is contained inside a cylindrical shell as shown in Figure 3.10.

Figure 3.10: Yagi-Uda wall mounted antenna

The antenna's internal layout is shown in the diagram below. Basically, it is a dipole

antenna combined with an array of parasitic elements. One element functions as a

reflector, while the rest function as directors. The parasitic elements are spaced at equal

to a quarter of the signal wavelength apart, but get progressively shorter as it approaches

the dipole to direct signals of increasing higher frequencies [6].

Directionality

\ \ Dipole \ Parasitic
Reflector antenna elements

Spread: 30 UH, 25 c V

Figure 3.11: Yagi-Uda antenna internal layout

16

Figure 3.12: WiFi bridge setup (Data Communications Laboratory, Block 23)

3.5 Setting up a Wireless G Network

Setting up a Wireless G network requires configuring a collection of commercial, off-

the-shelf hardware. It consists of two main components: the D-Link DWL-2100AP

AirPlus XtremeG 108G Wireless Access Point, and several D-Link DWL-G122 AirPlus

G USB Adapters.

Figure 3.13: D-Link Wireless G Access Point

17

The main hub of the network will be the access point (pictured in Figure 2.13, previous

page) while each client is connected to the Wireless G networkusing a USB adapter as

pictured in Figure 3.14, below.

•.v»iu'-. G

* «±

Figure 3.14: Wireless G USB Adapter

The access point is first setup for the wireless networkby plugging in the power adapter,

then connecting the LAN connector on the access point to a network switch. A

configuration PC is then connected to the switch, and will be used to set the

configuration for the access point. The default IP for the access point is 192.168.0.50. In

order to access the access point, the address http://192.168.0.50/ is entered into a web

browser on the configuration PC. A logon popup screen appears, prompting for a

username and password (see Figure 3.15). By default, the username is 'admin' and the

password field is blank.

tyfy [-lease tyre jini; user flame and password

Site 132 ISA 050

Hun DYA210GAP

i™ Save Misposswrc i".̂ ourpais/Jsrn list

UK

Figure 3.15: Access point logon

18

? X|'

Cancei

Once the user is verified, the setup wizard will run on the access point. The wizard

allows quick configuration of the access point password, the service set identifier and

also encryption options for wireless packets handled by the access point. The secure set

identifiers (SSID) are special codes, up to 32 characters in length, attached to each

packet of the wireless network that allows the system to identify which packets are

native to the network.

•' Strf!.#i3 Notawfcs forPiMpfe"

r- •*::_-2 1<j«<\.-

Wilard

High-Speed 2.4GHz Wireless Access Point

Home EES£S£;«*Tt" ' WS-J ' ' »• -

Tin* lilhl -/WifJP is .1Wirclw Vrwi Hoint. The1sclii|i wij.inl will ijiihl'- ynn
ihiouijlt Hiecnnfiijui.iliim of til* »WL-21(l0ftP. Hie DWL-2fO0AP'5 easy sctuu wrll
allow you to have wiielessascesgwitlriii minutes. Plcise followtrie setup wiz n I
step liystep to configure the DWI-2100AP.

Hrtp

Figure 3.16: Setup welcome screen

The first setting to be changed is the default access point password. Forobvious security

reasons, the default blankpassword should be changed to a new one, as shown in Figure

3.17 below. A strong password should be chosen, consisting of a mixture of uppercase

and lowercase letters, as well as special characters and numbers.

S*tFa$s*voi<l

Nr.il-• '• : • -

•

a j-3
Uac-h No*l L«il

Figure 3.17:Passwordchange screen

19

The second setting to be changed is the wireless connection settings. This is done by

setting the broadcast channel and SSID for all packets passing through the access point.

The SSID is initially set to a value of 'default', which means that all packets will be

tagged with a value decided by the access point. If the user wishes to use a different

SSID to tag the packets, then it may be changed here. A common SSID allows the

network to be expanded by identifying additional networks as part of the original

wireless network.

The broadcast channel is a numeric value that determines which channel on the

bandwidth is used to broadcast the packets, ranging from a minimum value of 1 to a

maximum value of 11. By default, the value is set to 6. This feature is similar to a

channel selection on a walkie-talkie, where only packets on similar channels are able to

reach one another clearly. This is useful if interference is an issue, otherwise the default

value of 6 can be used.

Set Wireless LAN 802.11g Connection

Enter in the SSID name and Channel number to be used for the
Wifeless LAN 802.11g Connection. Click Next to continue.

SSID:{default

Channel] 3 _^J

Figure 3.18: SSID/Channel selection

20

Back Next Exit

The third setting is the encryption option for the access point. For more securewireless

communications, encryption of packets is highly recommended. For the D-Link access

point, the encryption scheme used is the Wired Equivalent Privacy (WEP) encryption.

WEP is performed by seeding the input string with a stream cipher with a cyclic

redundancy checksum system. As a stream cipher, it splits the key into a smaller sized

initialization vector then uses this vector as the traffic key for all packets passing

through the system. Although initially thought to secure a wireless network from

external attacks, the WEP scheme has been demonstrated to be mathematically

vulnerable to certain types ofattacks.

Despite its known weaknesses, a system with WEP encryption is better than a system

with no encryption at all. There are several key sizes available for the encryption key,

ranging from 64 characters to 152 characters wide. The larger the key size, the less

likely the encryption is cracked by radio eavesdroppers. For this project, a key size of 64

characters is enough for security purposes. The key can be either in hexadecimal or the

American Standard Code for Information Interchange (ASCII).

WEP Encryption for 802.11g

Ifyou wish to use encryption.enable it here and enter the encryption
Key Values.Click Next to continue.

WEP" <=" Disabled r Enabled

Key Type- r Hex <~ ASCII

Key Size: r 64 <~ 128 r 152

First Key:]

21

J
Back Next Exit

Figure 3.19: WEP encryption options

Once all the options have been set, the access point is operational. The access point

control panel now shows all the settings selected, including the wireless band and

transmission frequency, broadcast options and packet encryption settings. These can be

changed as necessary, but once the access point is set up, it can be disconnected from the

network switch and allowed to function as an independent wireless network hub.

'%

Wireless

ausj^-^aM.w^i

«4/>rEMuss

High-Speed 2.4GHz Wireless Access Point

Home *?/:•*- f •"• \r •

Wireless Band

SSID

SSD Broadcast

Channel

Radio Frequency

h • J
[default

|Enable j*j

F3 •
1 " -

•&? '-a^/ %&
Apply Caneel Help

Figure 3.20: Access point settings

After the access point is configured, the clients that wish to connect to the wireless

network require either a wireless network card or another form of network adapter in

order to communicate through radio with the access point. For the purpose of this

project, the Wireless G USB Adapterwill be used. It is compact, cost-effective and easy

to install, thus making it the most suitable solution for the project.

The USB Adapter is plugged into an available USB port on the client computer, and the

required drivers are installed. If a wireless network is detected, the Wireless Utility

allows the user to select and configure connection settings to the wireless network.

22

Figure 2.21: Wireless Utility screenshot

Theutility that is installed with the drivers shows information such as the current status

of the connection, the SSID of the adapter, the frequency used by the adapter, the current

wireless connection mode, encryption settings, transmission rate and broadcast channel.

It also has a status bar showing the signal strength of the transmission. To complete the

setup, the Transmission Control Protocol/Internet Protocol (TCP/IP) settings of the

wireless adapter are configured to connect to the wireless access point.

^ r • • ^

J.

Figure 3.22:NetworkTCP/IP settings

23

3.6 Setting up a Bluetooth Connection

There are a few steps required in order to set up a functioning Bluetooth network. First

of all, of course, a Bluetooth adapter has to be acquired. These are easily available from

electronics stores, with prices ranging from RM35 to RM100. A decent USB Bluetooth

dongle can be purchased for RM50.

Figure 3.23: A USB Bluetoothdonglewith antenna (100 m/378ft range)

Most USB dongles come with their own software drivers to get the device running. The

standard Bluetooth control software is BlueSoleil, a program developed by IVT

Corporation and distributed with commercially available Bluetoothdongles.

IVT Colouration BlueSofeiijHaW ,=MxJ
File View MyBluetooth MyServices Tool

|Rea4i Please insert a Bluetooth device. PAN IP' 0.0.0.0

Figure 3.24: Screenshot of BlueSoleil 1.6.1.4

24

A Bluetooth connection functions in several different stages:

1 Device Inquiry

In the first stage, a Bluetooth scans the frequency band in order to discover all

other devices in range. Devices that are set to 'discoverable' can then be seen by

the Bluetooth device running the inquiry. In BlueSoleil, each discovered device

will be added to the circular ellipse surrounding the central globe in the interface.

Alternatively, if the Bluetooth address is known device can be found directly. A

device's Bluetooth address is always a collection of 12 hexadecimal characters

divided into 6 groups of 2 characters each, separated by colons, e.g.

01:A2:39:00:45:21.

2 Services Discovery

After a device is found, it can be further scanned to find out which services are

available. The services available are the types of connections that a destination

Bluetooth device will accept.

Service Name Description

Bluetooth Personal Area Networking

Service

Allows a PAN connection to be

established between two different

Bluetooth devices.

Bluetooth Serial Port Service Allows the Bluetooth connection to

emulate a serial port connection between

two different devices.

Bluetooth Local Area Network Access

Service

Allows the connecting Bluetooth device to

become part of the local area network on

the receiving Bluetooth device. In effect,

the receiving computer becomes a bridge

between two networks.

25

Bluetooth File Transfer Service Allows a file to be transferred into a

specified folder between two different

devices.

Bluetooth Printer Service Allows a device to send print information

to a Bluetooth enabled printer.

Table 3.1: Various Bluetooth services available

Device Pairing

Usually, before a service can be accessed on the receiving device, a trusted

connection has to be established. In order to preserve the security of the

connection, a passkey is required on both the sender and the receiver, and if it

matches, the authentication process allows data to be exchanged between the

devices. This usually has to be done only once for a given pair of device,

although pairings canbe edited or deleted at any time. All transmissions can also

be encrypted if required, although this is turned off by default to save bandwidth.

26

CHAPTER 4

RESULTS & DISCUSSION

In this chapter, the results of the project are discussed in more detail. The final software

layout, the various components of the final software, and the results of the software

interface are all shown and explained.

4.1 Final Software Layout: Server

The development of the software is done in Microsoft Visual Basic 6.0, and consists of

two distinct programs. The most important one is the server software, which is the

software equivalent of the wireless network's access point. It handles all incoming

requests from clients, processes those requests, then initiates the appropriate actions

based on the requests received.

S ."

• •! •**

_: E

arc

a. f.e. *tcIpi'. r,*t I stiver I

ee.wireless.net

}&&)&?? -i -=

•j|iyi lylil fii b-u11 y\: WHH-.u\\> lyp

1 . U jJ

jfmServer Pom

siiimii
Ifrr^Arvftr *

abearance 1-30

lutoHadraw False

fcckCokx Q&HDOFmwa
tordertyta 1-FbffldSiglo

Uptnn te VhTde»net [s
3pGn*rnl5 FalSO

jwtjdBcw Trjs ~"

>mMode 13-i"tp/Pon

.TawSt/le o-soH

>anM.i(*h i

inatifcd TlUC

nfflColOI' • UKOOaOMOb
illSt^e 1 Traupareni"

-ont Traburh* TO

:onfTrai3Hrent 7ruc

-atoColf* • aHaoonooiss,
HasDC Truu

•toy-t 9510 »l

){<*»wl
|*>«rVon*Btt

Figure 4.1: VisualBasic 6.0 server softwaredevelopmentwindow

27

All Visual Basic applications consist of two portions: the objects, which are the

graphical representation of the program, including the positions and names of buttons,

text edit boxes, text display boxes, graphics and so on. The other part is the raw code

which determines the behaviour of these objects in response to user input. All the codes

used in this project havebeen included in the related appendix section.

The program for the server actually consists of three separate parts. Each part will be

separately described in detail in this report. An overview ofthe server parts

1
Server-Client

Communications

EE Server Software

V

System
Maintenance

1
Simple Database

Management

Figure 4.2: Overview of server architecture

1. Server-Client Communications

The codes for this section controls how the server responds to socket events, the

structure of the packets sent, as well all the housekeeping on the parts of the software

that deals directly with the network.

2. System Maintenance

This section controls the overall system, by processing client requests and servicing

them accordingly, checking login authentications, sending status messages to other

clients on the network and other background services.

3. Simple Database Management

The server software has database functionalities built in, using random access files in

Visual Basic to greatly speed up information retrieval and storage. The database

management part deals with how the software communicates with the database files,

and returns the correct data to the other parts of the system.

28

4.1.1 Server Client Communications

Form„Load

''

imttaliseWtnsock

1 '

getlPAddresses

1 '

showlPAddresses

connectTalkSocket

1 <

sendData

> '

vbSend

> i

startTalkSocket

btnUsten_cMck

t • <r

startLisienSocket starttalkSocket

i' v

vb-Listen vbSocket

tmrSockelCbec'kJTimer

''

vbAccept(Eisten}

i
vbAccept (bridge)

' r

for each socket

with data

i •

emptySobsocket handleAction(msg)

Figure 4.3: Flow-chart for server-client communications

The software codes for server-client communications are identical for both the server

and client programs. It relies on Winsock, which is a socket-based communications

protocol built into all Windows machines.

When the form is loaded, Form_Load initialises the system by calling the function

called InitialiseWinsock. This triggers the module mdWinSock in the application,

which in turn prepares one of Windows' internal dynamic link library (dll) files called

"ws2_32.dll" to be used by the program. The Winsock protocol basically opens virtual

doors in the system, called sockets, at specific ports of a given IP address. Incoming

packets are sent through a socket on the transmitter to a socket on the receiving end of

the network, where an additional socket is then created to hold the data contained in the

29

packet sent. Initialising Winsock allows the ws2_32.dll file to handle all the background

codes required to keep sockets running. Once initialisation is complete, the function

getlPAddresses is called. This returns the list of active IP addresses of the computer,

which is important so that the user can decide which network will be handling the

packets sent by the system. For computers that are located on more than one network

(such as being on both a wired network and a wireless network simultaneously), this lets

the user decide which IP takes precedence. Once all the valid IP addresses have been

returned, the function showlPAddresses is called to display the results onto the

program's interface.

The server is only started when the button named btnListen is clicked. This starts two

sockets: a listen socket, for the clients, and a bridge socket, for other server applications.

Although the second socket is currently not in use, it allows the system to be expanded

to accommodate multiple server programs running side by side. The function

startListenSocket opens a listening socket on the specified IP address on port 550 then

calls the vbListen Winsock function to continue listening for changes on the socket.

Also, the function startTalkSocket opens a transmitting socket on port 552 of the

computer, which is marked as a sending socket by the function vbSocket.

The listening sockets are checked by a countdown timer called tmrSocketCheck which

checks for incoming packets approximately 300 ms apart. The timer accepts connection

requests on both the listen and bridge sockets, using the vbAccept Winsock function

then creates one subsocket ofdata for each request. Then, it loops through all the sockets

with data inside, calling emptySubsocket on each to extract the source of the packet

(including the IP address it originated from) as well as the message contained within the

packet. It then continues to call handleAction on the message within each socket, and

sends this information on to the System Maintenance portion of the program.

When a user wishes to send data, the program simply handles this by running

connectTalkSocket, send Data and startTalkSocket in quick succession with the

destination IP address, port and the appended message as input arguments.

30

4.1.2 System Maintenance

The system maintenance portion of the server program handles the client requests. There

are currently three possible services:

• Create a new user account

If the user is creating a new account, the system first checks if the user already exists

on the system. If not, it passes on the information on the new user to the database

management system in order to add a new entry to the user database file.

• Login to an existing account

If the user is tying to log in, the system first determines if the account exists. If it

does, then the password required is retrieved by the database system and compared

to the password entered by the user. If they are the same, then the server returns an

authentication signal, otherwise the return packet informs the client that the login has

failed.

• Update an existing account

If the user has made changes to the account, then the server updates the components

database based on the changes made. The entire list is sent by the client each time a

component change occurs, and the server then reconstructs the component database

for a particular user to reflect the changes that have occurred. This is a fast and

viable solution because of how the system works: the list of components for each

user never shortens, and only lengthens over time, because older components are

marked as returned on the list instead of being deleted. This allows the program to

accurately predict the minimum length of any new component list, as well as

allowing the administrators to keep track of how often the student borrows

components.

31

4.1.3 Simple Database Management

For this project, a customised mini-database is implemented using Random Access Files

in Visual Basic. Basically, two data types are defined for the Random Access Files, one

for the student record and one for the inventory of each student account. The basic

structure for each record is shown below.

Private Type StudentRecord

StudentName As String * 50

StudentMatric As Long

StudentIC As String * 15

AccountActive As Boolean

Studentlndex As Long

FirstRecordlndex As Long

End Type

The student record consists of six fields: the student's name, the student's matric card

number, the student's identification card/passport number, the status of the account, the

index ofthe current student, and the index ofthe first component in the student's list. All

these information are stored in the file named "StudentRecord.db".

Private Type AccountRecord

isFirst As Boolean

prevRecord As Long
itemDate As String * 10

itemStatus As Boolean

itemName As String * 50
itemQuantity As Long
nextRecord As Long

isLast As Boolean

End Type

The component record consists of eight fields: whether the component is the first in the

user list, the index of the previous record on the user list, the date the item was returned

or borrowed, the status of the item borrowed, the name of the item, the number of items

borrowed or returned, the index of the next record in the list and also whether the item is

the last in the user's component list. All these information are stored in the file named

"AccountRecord. db".

32

Each student record has a FirstRecordlndex, which functions as a pointer to the first

location in the account records. Each account record then points to the next record,

similar to a linked list. This enables the entire account to be loaded quickly, as the next

record is retrieved as soon as the current record has been processed, since the access

times for Random Access Files are the same for any location in the file.

Account Record Database File

, .1„.,.,_„N„

Account Record 1

Student Record Database File Account Record 2

Student Record 1 Account Record 31 J>
First Record

index

^
Student Record 2 Account Record A

J nextRecord

Student Record 3
| nextRecord

Student Record A
J

Account Record 32

Student Record n-1 Account Record n-1

Student Record n Account Record n

End of File End of File

Figure 4.4; Database basic functionality

Once the student is found, the program simply refers to the index of the components, and

then quickly returns a list of components associated with the user of interest. This data is

then processed by the System Maintenance portion of the program, to be formatted

appropriately and then sent back to the client.

33

4.2 Final Software Layout: Client

j$t* ^BfBf F#w-»*« ft" few EW*> &A *fl« W-i*H&*r>

^ ScBHcmrHSnl (c(4YP[l A
YFWITS

ft MWflltf&rtoai
ft (rmCltsfeAct ffimCia.

Q rinioghfttcflrrrt-wv
•O rirayanlyrtiiiVafyfmT]

t Jr
' j.i,?w:«3%>>V<'
rmti«r Perm jj
*****JdaomiSd]

Iftftlett -.
telH^H 1 5)

WoQEcfrw Fake

BadSicr • BHMFFFFFFS.
poieta5t|l- 1 Fbh]5»^c

fcfBWm nMia<(,

pp^onfieh Full.

tonlro&jx True -"*
t»**nte 11 Cowphi

>OA5tyle a Md

>«m*ii]

IiuUs! Two

ICcta BwMDKtmfi
»Srtl I frmpvent

Hinl Tictu-lcfhE

SlrtTrdlKWrait live

"orrtda • SKaXCIBl!!.
»BC Till"

Wilt <*<* jA

Wort

Figure 4.5: Visual Basic 6.0 client software development window

The client was developed with a different objective compared to the server software.

Where the server was meant to be designed to have minimal user intervention, the client

software is designed for maximum user interaction, since it will be the most commonly

used interface between the users and the system. Therefore, the client consists of a series

of forms, each one serving a different function.

Project - ScatlemetClienl

; ScatterrietClieht (eeF¥Ppient.vbp)
KaSForms •"'

v;& frmCreateAcc (FrmQeeteAccfrm) •;.
;: -Q-; frmlnventory (frmInventGry0D.9.Frm) '-.'•
;- Q frrriLoginAcc (frrnLo.ginAGcDOS.frmj .

•---ES. FrmVerify (FmVeriiy.Frrri) .
-tii Modules-." .'•..

-- *^ mdWiiT5oc^(^ .
•:tHi Class.Modtiles . •
.'•'i-'̂ 'CPrbtdcoKcPfptocolids) "•'';.-.

Figure 4.6: List of client forms

34

• fmClient

The main client form initialises the functions required for communication with the

server, then presents the user with a choice of buttons for navigation. It also displays

important data such as the current logged in user, the status of requests as well as the

date and time.

• frmCreateAccount

The account creation form allows the user to input the data required for the new

account, which will be sent to the server for verification.

• frmlnventory

The inventory management form has the most functions. When loaded, it requests

the complete list of components associated with the logged in user from the server,

then retrieves a list of components for the user to be displayed in drop-down lists

categorized by class. The user is then allowed to select the number of components to

be borrowed, which are added to a shopping basket in the form of a Visual Basic

listview. Once the selection is finalised, the items are added to the user account and

the entire list is sent to the server for an account update when the user returns to the

main menu.

• frmLoginAccount

The account login form is a simple one: the user inputs the user name and password,

then awaits verification from the server.

• frmVerify

The verification form requires an authentication code from a technician in order to

complete sensitive requests.

35

Most of the functions in the project have been completed. The server and client

applications were completely coded in Visual Basic 6, and will run on all Windows

machines. Basically, the applications make use of the WinSock API in Windows to

transfer data between different locations. A socket is opened at the receiver, and data is

placed within a dynamically assigned socket. Each application periodically searches for

active sockets, and resolve them as necessary based on the type of data received.

A screenshot of the functioning server application is shown in Figure 4.7. It consists of

a console that records the most recent actions performed, a server control box to stop or

start the server, a list of active sub-sockets, and a packet tester to send test data to a

specified IP address. Most of the processing here is done behind the scenes, since the

server should involve as little user intervention as possible.

*ervci 'onus

Cerwote

Packet Tester

DsMlilttP: «5.a.(Jo

±| 1}

ee.wireless.net

Figure 4.7: Screenshot of ScatterNet Server

The client application is the main concern for this project. It should be user-friendly

while robust, and quick to process data while secure. Because of these requirements, a

lot of attention has gone into the design of the client software in order to make it

36

intuitive yet flexible enough to deal with the many different functions it has to perform.

The client interface has been designed to use well labelled, easily understandable

buttons, as well as helpful text prompts that show the user important information such as

the current server, the client IP address, as well as the login status.

•ii, ee.wireless.net i client I
)i.XJ .*il»

erVte1- -1-li

You are currently not logged in!

new account 22
student login

<£'-*• v/'taiurr r.ux><2^\

admin login

w V
exit

Switch Client IP Address

Server IP;165.Q.1.78 Client IP; (165,0,1,78; Port 552- socket 180;

Figure 4.8: Screenshot of ScatterNet Client

Students are required to log onto the application in order to use it, while technicians will

be able to access a higher level of commands and options using a special key provided.

For now, the login ID of a student is his matric card number, while the password is the

student's identity card (IC) number, which is printed on every matric card. This ensures

that the student does not have to remember additional passwords in order to access the

system. International students may use their passport number instead. An example of the

login process is shown in Figure 4.9.

37

iii, ee.wireless.net [login 1

Matric Number;

IC Number;

(nospaces; e.g. 840101011234)

rr-
Open Account for Viewing Only

(No.Password Required)

Figure 4.9: Screenshot of ScatterNet Client login interface

The inventory interface as seen in Figure 34 is designed to be as intuitive as possible. A

list of available components is shown on the right, and selected components are then

added to a Checkout Basket. Once the user is sure, the items are added to the user

account. Returned items are then marked as returned (together with the date it was

returned), subject to the technician's approval.

e & e.Siat.i'-rrfini

Student flame: Sim Ytli Chun

-lips o»-';i«i!'it lnswrrHi.'iaCtiiRt-ar!

Borrowed Items

« f it if i if-i

IfciiiMam*-
10 i i

.tflS/Mfc Enar-iijiJ PL..GFwT
.3/1G.'20X Bcnov.cd IBOonro ic?;l«

S'I&'ZOjSj ffcroiwd lCt.r-:;Ji>cr
5^!e;2B:e 3crro™d F\ZSJT

Scliralt (hit te,-j;

JjJiciL.

Checkout Components

twin leretci

1icM fS;ntoi

liKclim f eiistor

IK rciirtcr

IJSi riwisiri;

VMt rasteor

IK tzztnui

r Otters]

Checkout Basket

1

fcttt-,»'Ba'i;ot pSTO -r <(0T °"'he

Figure 4.10: Screenshot of inventory management interface

38

4.3 Software Training Tool

In order to quickly familiarise the technicians and students to the new system, a software

training tool was also developed as part of this project. It was designed and programmed

using Macromedia Flash MX 2004. It consists of an interactive series of images that

forms a comprehensive, step-by-step guide on using the system. It is hoped that this

training tool will make it much easier to transition from the old system to the new one.

MJiumuuuiiiu &z -.-r,.^

main menu

Figure 4.11: Screenshots of software training tool

39

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

The final chapter outlines the conclusion that was obtained at the end of the project,

followed by a few recommendations for further improvements to the system in the

future.

5.1 Conclusion

By the end of the project, both the main objectives stated had been successfully

achieved. Firstly, a wireless network has been successfully set up in the designated

blocks, providing wireless capabilities to the Electrical and Electronics faculty. This was

done by using a combination of both WiFi and Bluetooth network components, with a

WiFi access point located in Block 22 of the faculty, WiFi adapters in the central store

and laboratories, as well as Bluetooth dongles to further expand the range of the network

within the same rooms.

The software developed throughout this project brings more practical applications to the

network. A WinSock server-client system enables the different components within the

network to communicate with one another, while the internal database stores the

information required by the inventory management system. A user-friendly, intuitively

designed inventory borrowing interface allows the user to interactwith the system, while

additional security features were implemented to allow the technicians to act as

moderators.

In conclusion, it is hoped that the full implementation of this system in the future to

replace the existing paper-based system will greatly increase productivity and reliability

in the Electrical and Electronics Department's stores, and with further improvements,

the wireless network can be expanded to be even more useful.

40

5.2 Recommendation

For future improvements to the project, additional features can be added to take

advantage of the Bluetooth functionality, perhaps by interfacing the inventory system

with hand-phones and mobile technology. With the widespread penetration of Bluetooh

capabilities in the mobile communication industry, there is great potential in future

applications ofhaving Bluetooth connectivity in the network.

Also, a more efficient sorting algorithm for student data can be used in order to speed up

the internal database even faster. The current algorithm is sufficiently fast for the

existing students, but a better algorithm will allow the system to function fast enough to

be extended even further into the future.

Another recommendation is the addition of further functionalities into the system, such

as utilising the wireless network capabilities to record student attendance, or to deliver

academic material such as notes and important notices. In order for this to be possible,

the wireless network has to be expanded to as many rooms as possible within the

faculty. The existence of an intelligent hotspot on campus will be very useful to the

students.

41

REFERENCES

[1] Wikipedia, "Wi-FF, 15 April 2006, http://en.wikipedia.org/wiki/Wifi

[2] Bluetooth SIG, BluetoothSpecial Interest Group Launches BluetoothCore
Specification Version 2.0 + Enhanced Data Rate, (November 8, 2004), press release.

[3] Daniel Minoli, HotspotNetworks: WiFifor Public Access Locations, McGrawHill,
2003.

[4] Cycom Sdn Bhd, Cycom Sales & Services SdnBhd updated Price Quotes, 1 April
2006, http://www.lowyat.net/v2/pricelist/cycom.pdf

[5] Bob Quinn and David Shute, Windows Sockets NetworkProgramming, Addison-
Wesley, 2000.

[6] Wikipedia, Yagi-Uda antenna, 2006, http://en.wikipedia.org/wiki/Yagi_antenna

Appendix A: Server Software Source Code

Form : fmServer

Function : collects information from clients and does

all central processing functions

By: Sim Yih Chun

Option Explicit

'Prepare array for the last 10 console events
Dim consoleEvents(10) As String

1Prepare array for system's ip addresses
'intValidIp stores the number of valid ip addresses found
'strActivelp is a global variable that stores the active IP
address

Dim arrlp(6) As String
Dim intValidIp As Integer

Dim intListenIP As Integer

Dim intBridgelP As Integer

Dim intMaxSockets As Integer

Dim bolServerStarted As Boolean

'Saves the socket handles as global variables
Dim IngListenSocketHandle As Long
Dim IngBridgeSocketHandle As Long

Dim IngTalkSocketHandle As Long
Dim arrSubsocketHandles(16) As Long

'Return value handles in main procedures

Dim IngRetBridgeSocket As Long
Dim IngRetListenSocket As Long

Dim IngRetTalkSocket As Long

'Stores the port numbers for the bridge/listen IPs
Dim IngBridgePort As Long

Dim IngListenPort As Long

'Define data type for the student record database
Private Type StudentRecord

StudentName As String * 50

StudentMatric As Long

StudentIC As String * 15
AccountActive As Boolean

Studentlndex As Long

FirstRecordlndex As Long

End Type

Dim StudentData As StudentRecord

Dim AllStudentData As StudentRecord

Dim StudentFileS

Dim StudentRecordLengthS
Dim totalStudentRecords&

Dim accountExists As Boolean

'Define data type for the inventory database

Private Type AccountRecord

isFirst As Boolean

prevRecord As Long

itemDate As String * 10

itemStatus As Boolean

itemName As String * 50

itemQuantity As Long
nextRecord As Long

isLast As Boolean

End Type

Dim AccountData As AccountRecord

Dim AllAccountData As AccountRecord

Dim AccountFile&

Dim AccountRecordLength&

Dim totalAccountRecords&

Private Sub btnListenIP_Click{)

'Switch the active listen IP to the next available IP address

If bolServerStarted = False Then

intListenIP = intListenIP + 1

If intListenIP > intValidIp Then

intListenIP - 1

End If

showlPAddresses

updateConsole ("ListenIP changed to " +

arrlp(intListenIP))

Else

updateConsole ("Error: Server is already running.")

End If

End Sub

Private Sub btnBridgeIP_Click()

'Switch the active bridge IP to the next available IP address

iu

If bolServerStarted = False Then

intBridgelP = intBridgelP + 1

If intBridgelP > intValidIp Then

intBridgelP - 1

End If

showlPAddresses

updateConsole ("BridgelP changed to " -\
arrlp(intBridgelP))

Else

updateConsole ("Error: Server is already running.")

End If

End Sub

Private Sub btnListen__Click ()

'triggers the opening/closing of the listen socket
If bolServerStarted = False Then

startListenSocket

startTalkSocket

Else

stopAllSockets

End If

End Sub

Private Sub btnRefreshList_Click()

Dim retValue As Integer

retValue = showAHUsers ()

End Sub

Private Sub btnSend__Click ()

'sends a test packet to the specified ip/port
IngRetTalkSocket = connectTalkSocket(IngTalkSocketHandle,

txtPinglP.Text, CInt(txtPingPort.Text))
sendData (txtMessage.Text)

End Sub

Private Sub Form Load()

IV

'initial values are set.

txtConsole.Caption = ""
txtStatus.Caption = "Disconnected"

IngListenSocketHandle = 0
bolServerStarted = False

intMaxSockets = 8

txtSubsockets-Caption = ""

'set the bridge/listen port numbers
IngListenPort = 550

IngBridgePort = 551

'value returned by the InitializeWinsock function
Dim IngRetValue As Long

'initialize the Winsock service

IngRetValue - mdWinSock.InitializeWinsock(SOCKET_VERSION_22)

If IngRetValue = 0 Then

'if the Winsock service was initialized

'successfully, initialize the controls

updateConsole ("WinSock API enabled.")

Else

'if the Winsock service was not initialized

'successfully, show the error

updateConsole ("Unable to initialise WinSock API!")

End If

getlPAddresses

'prepare the database files: open for random access

StudentFile = FreeFile

StudentRecordLength - Len(StudentData)

Open "StudentRecord.db" For Random As StudentFile Len

StudentRecordLength

totalStudentRecords = LOF(StudentFile) \ StudentRecordLength

AccountFile = FreeFile

AccountRecordLength = Len(AccountData)
Open "AccountRecord.db" For Random As AccountFile Len

AccountRecordLength

totalAccountRecords = LOF(AccountFile) \ AccountRecordLength

End Sub

Private Sub Form_Unload(Cancel As Integer!

'shut down all files and sockets

Close StudentFile, AccountFile

Call WSACleanup

End Sub

Private Sub menuExit_Click()

Unload Me

End Sub

Private Function updateConsole(consoleNewEvent As String)

'updates the console's 10 event buffer

Dim intCount As Integer

'Shifts down the last 9 recorded events

For intCount = 1 To 9

consoleEvents(intCount) = consoleEvents(intCount + 1)

Next intCount

'Records the new event

consoleEvents(10) = "" + CStr(Time) + ": " + consoleNewEvent +

vbCrLf

'Reinitialise events and display

'Clear the console and reload all events

intCount = 1

txtConsole.Caption = ""

For intCount = 1 To 10

txtConsole.Caption = txtConsole.Caption +

consoleEvents(intCount)

Next intCount

End Function

Private Function startListenSocket()

'Update status display and console

txtStatus.Caption = "Starting..."
btnListen.Caption = "Stop Server"

updateConsole ("Starting up server: opening sockets...")

bolServerStarted = True

'This is the handle of the socket to be created

Dim IngSocket As Long

Dim IngAddressFamily As Long

Dim IngSocketType As Long

Dim IngProtocol As Long

IngAddressFamily =2 '2 = AF_INET: inter-network address
family

IngSocketType =1 '1 = SOCK_STREAM: socket streaming
IngProtocol =6 '6 = IPPROTOJTCP: transfer control

protocol

VI

'Create the sockets: 1 bridge socket between servers and 1
listen socket

IngSocket = mdWinSock.vbSocket(IngAddressFamily,

IngSocketType, IngProtocol)

IngListenSocketHandle = IngSocket

IngSocket = mdWinSock.vbSocket(IngAddressFamily,

IngSocketType, IngProtocol)

IngBridgeSocketHandle = IngSocket

If IngSocket = INVALID_SOCKET Then

'If the function has returned the INVALID_SOCKET
'value the socket was not created.

txtStatus.Caption = "Disconnected"

updateConsole ("Socket error: " & __
GetErrorDescription(Err.LastDllError))

Else

'If a new socket was created successfully, add the

'listview's item for that socket

txtStatus.Caption = "ListenIP: (" + arrlp(intListenIP) +

"-sock" &

CStr(IngListenSocketHandle) + ")" &

"/ BridgelP: (" + arrlp(intBridgelP) +
"-sock" &

CStr(IngBridgeSocketHandle) + ")"

updateConsole ("Listen socket opened: " & _
CStr (IngListenSocketHandle))

IngRetListenSocket = bindOneSocket(IngListenSocketHandle,

arrlp(intListenIP), IngListenPort)

IngRetListenSocket =

listenOneSocket(IngListenSocketHandle)

updateConsole ("Bridge socket opened: " & ___
CStr(IngBridgeSocketHandle))

IngRetBridgeSocket = bindOneSocket(IngBridgeSocketHandle,
arrlp(intBridgelP), IngBridgePort)

IngRetBridgeSocket

listenOneSocket(IngBridgeSocketHandle)

End If

End Function

Private Function informClient(IPAddress As String, strMsg As

String)

IngRetTalkSocket = connectTalkSocket(IngTalkSocketHandle,

IPAddress, CInt(txtPingPort.Text))

sendData (strMsg)

End Function

vn

Private Function stopAHSockets ()

updateConsole ("Shutting down server: closing all sockets...")

'shuts down the listen server

'close the listening socket handle

Call closesocket(IngListenSocketHandle)

updateConsole ("Listen socket closed: " +

CStr(IngListenSocketHandle))
IngListenSocketHandle = 0

Call closesocket(IngBridgeSocketHandle)

updateConsole ("Bridge socket closed: " +

CStr(IngBridgeSocketHandle))
IngBridgeSocketHandle = 0

Call closesocket(IngTalkSocketHandle)

updateConsole ("Talk socket closed: " +

CStr(IngTalkSocketHandle))

IngTalkSocketHandle = 0

txtTalkSocket.Caption = "Talk socket: none"

Dim intCount As Integer

For intCount = 1 To 16

If arrSubsocketHandles(intCount) > 0 Then

Call closesocket(arrSubsocketHandles(intCount))

updateConsole ("Subsocket closed: " +
CStr(arrSubsocketHandles(intCount)))

arrSubsocketHandles(intCount) - 0

End If

Next intCount

refreshSubsockets

txtStatus.Caption = "Disconnected"

btnListen.Caption = "Start Server"

updateConsole ("Server disconnected.")

bolServerStarted = False

End Function

Private Sub Form_CjueryUnload (Cancel As Integer, UnloadMode As
Integer)

If Not IngListenSocketHandle = 0 Then

updateConsole ("Error: " + arrlp(intListenIP) + ": socket

vm

CStr(IngListenSocketHandle) + " still open.")

Cancel = 1

End If

If Not IngBridgeSocketHandle = 0 Then

updateConsole ("Error: " + arrlp(intBridgelP) + ": socket

" &

CStr(IngBridgeSocketHandle) + " still open.")

Cancel = 1

End If

End Sub

Private Function getlPAddresses()

•pointer to HOSTENT structure returned by
'the gethostbyname function

Dim IngPtrToHOSTENT As Long

'structure which stores all the host info

Dim udtHostent As HOSTENT

'pointer to the IP address' list

Dim IngPtrToIP As Long

'byte array that contains elemets of an IP address

Dim arrlpAddress() As Byte

'result IP address string to add into the ListBox

Dim strlpAddress As String

'buffer string to receive the local system host name

Dim strHostName As String * 256

'value returned by the gethostname function

Dim IngRetVal As Long

Dim i As Integer

'Get the local host name

IngRetVal = gethostname(strHostName, 256)

If IngRetVal = SOCKET_ERROR Then
MsgBox "Can't resolve the local host address",

vbExclamation

Exit Function

End If

'Call the gethostbyname Winsock API function
'to get pointer to the HOSTENT structure

IngPtrToHOSTENT = gethostbyname(Left(StrHostName, InStr(1,

strHostName, Chr(O)) - 1))

'Check the IngPtrToHOSTENT value

IX

If IngPtrToHOSTENT = 0 Then

'If the gethostbyname function has returned 0
'the function execution is failed.

updateConsole ("Unable to resolve host name")

Else

'Copy retrieved data to udtHostent structure
RtlMoveMemory udtHostent, IngPtrToHOSTENT,

LenB(udtHostent)

'Now udtHostent.hAddrList member contains

'an array of IP addresses

'Get a pointer to the first address

RtlMoveMemory IngPtrToIP, udtHostent.hAddrList, 4

Dim intCount As Integer

intCount = 1

Do Until IngPtrToIP = 0

1Prepare the array to receive IP address values

ReDim arrlpAddress(1 To udtHostent.hLength)

'move IP address values to the array

RtlMoveMemory arrlpAddress(1) , IngPtrToIP,
udtHostent.hLength

'build string with IP address

For i = 1 To udtHostent.hLength
strlpAddress = strlpAddress & arrlpAddress(i) &

n tt

Next

'remove the last dot symbol

strlpAddress = Left$(strlpAddress, Len(strlpAddress) -

'Add IP address to the listbox

arrlp(intCount) = strlpAddress

intCount = intCount + 1

'Clear the buffer

strlpAddress = ""

'Get pointer to the next address

udtHostent.hAddrList = udtHostent.hAddrList

LenB(udtHostent.hAddrList)

RtlMoveMemory IngPtrToIP, udtHostent.hAddrList, 4

Loop

intValidIp = intCount - 1

intListenIP = intCount - 1

intBridgelP - 1

'set ping ip functions initial values
txtPinglP = arrlp(intListenIP)
txtPingPort.Text = "552"

End If

showlPAddresses

End Function

Private Function showlPAddresses()

'print the valid ip addresses to the form
txtlPaddress.Caption = "Available IP Addresses:" + vbCrLf

Dim intCount As Integer

intCount = 1

For intCount = 1 To 6

If Not IsNull(arrlp(intCount)) Then

'show each valid ip address in the address pool
txtlPaddress.Caption = txtlPaddress.Caption +

arrlp(intCount)
If intCount = intListenIP Then txtlPaddress.Caption -

txtlPaddress.Caption + " (listen)"
If intCount = intListenIP Then txtlPaddress.Caption =

txtlPaddress.Caption + " (bridge)"
txtlPaddress.Caption = txtlPaddress.Caption + vbCrLf

End If

Next intCount

End Function

Private Function bindOneSocket(IngTargetSocket As Long,

strTargetIP As String, IngTargetPort As Long)

Dim IngRetValue As Long

'Begin binding the socket to the correct IP
IngRetValue = vbBind(IngTargetSocket, strTargetIP,

IngTargetPort)

If IngRetValue = SOCKET_ERROR Then

'If an error occurs, output the error to the console
updateConsole ("Socket error: " & _

GetErrorDescription(Err.LastDllError))

Else

xi

'If no errors occurs, display a confirmation
'updateConsole ("Socket " + CStr(IngTargetSocket) + "

bound to " & _
strTargetIP + ":" + CStr(IngTargetPort))

End If

End Function

Private Function listenOneSocket(IngTargetSocket As Long)

Dim IngRetValue As Long

'Begin listening on the assigned port
IngRetValue = vbListen(IngTargetSocket)

'Check a value returned by the vbListen function
If IngRetValue = S0CKET_ERR0R Then

'An error occurs - display the error message

updateConsole ("Socket error: " & _
GetErrorDescription(Err.LastDllError))

Elself IngRetValue = 0 Then

'If no errors occurs, display a confirmation
'updateConsole ("Socket " + CStr(IngTargetSocket) + " now

listening")

End If

End Function

Private Function startTalkSocket()

'This is the handle of the socket to be created

Dim IngSocket As Long

Dim IngAddressFamily As Long
Dim IngSocketType As Long
Dim IngProtocol As Long

IngAddressFamily =2 '2 = AF_INET: inter-network address
family

IngSocketType = 1 '1 = S0CKJ3TREAM: socket streaming
IngProtocol - 6 '6 = IPPROTOJTCP: transfer control

protocol

'Create the talk socket

IngSocket = mdWinSock.vbSocket(IngAddressFamily,
IngSocketType, IngProtocol)

IngTalkSocketHandle = IngSocket

If IngSocket = INVALID_SOCKET Then

xn

'If the function has returned the INVALID_SOCKET
'value the socket was not created.

updateConsole ("Socket error: " & _
GetErrorDescription(Err.LastDllError))

Else

'updateConsole ("Talk socket opened: " & _
CStr(IngTalkSocketHandle))

txtTalkSocket.Caption = "Talk socket: " +
CStr(IngTalkSocketHandle)

End If

End Function

Private Function connectTalkSocket(IngTargetSocket As Long,

strTargetIP As String, intTargetPort As Long)

Dim IngRetValue As Long

'Call the vbConnect function in order to establish the

connection

IngRetValue = mdWinSock.vbConnect(IngTargetSocket,
strTargetIP, intTargetPort)

If IngRetValue = SOCKET_ERROR Then

'If the function has returned the INVALID_SOCKET
'value the socket was not connected.

updateConsole ("Socket error: " £ _
GetErrorDescription(Err.LastDllError))

Else

'The connection was established successfully.
'updateConsole ("Connection request: socket " +

CStr(IngTargetSocket) + " to " & _
strTargetIP + ":" + CStr(intTargetPort))

txtTalkSocket = "Talk socket: " + CStr(IngTargetSocket) +

" (CONNECTED)"

End If

End Function

Private Function sendData(strMessage As String)

'Call the vbSend function in order to send data
If vbSend(IngTalkSocketHandle, strMessage) = SOCKET_ERROR Then

'If the vbSend function has returned a value of
'S0CKET_ERR0R, console displays the socket error
updateConsole ("Socket error: " & _

GetErrorDescription(Err.LastDllError))

Xlll

Else

'If execution is successful, clear the textbox

updateConsole ("Message sent by socket " +
CStr(IngTalkSocketHandle))

'updateConsole ("Sent by socket " & _
CStr(IngTalkSocketHandle) & ":" &

strMessage)

'close the talk socket and create a new one

Call closesocket(IngTalkSocketHandle)
'updateConsole ("Refreshing socket " +

CStr(IngTalkSocketHandle))

IngTalkSocketHandle = 0
txtTalkSocket.Caption = "Talk socket: none"

startTalkSocket

End If

End Function

Private Sub tmrSocketCheck_Timer()

Dim udtRead_fd As fd_set
Dim udtWrite_fd As fd_set
Dim udtError_fd As fd_set
Dim IngSocketCount As Long
Dim incomingConnection As Boolean
Dim IngRetValue As Long
Dim intCount As Integer

'Interval Event 1: Listen Socket Checker

'check to see if any clients are attempting to make a
'connection attempt if a socket is defined

If IngListenSocketHandle > 0 Then

'checks listen socket to see if data is readable

udtRead_fd.fd_count = 1
udtRead_fd.fd_array(1) = IngListenSocketHandle

IngSocketCount = vbselect(0&, udtRead_fd, udtWrite_fd,
udtError_fd, OS)

incomingConnection = CBool(IngSocketCount)

If incomingConnection = True Then

'If an incoming connection is detected, output to

console

updateConsole ("Incoming connection on " +
CStr(IngListenSocketHandle))

xiv

'Call the vbAccept function in order to accept the
'connection request and create a new socket
IngRetValue = vbAccept(IngListenSocketHandle)

If IngRetValue = INVALID_SOCKET Then

'An error has occurred - show the error message

updateConsole ("Socket error: " & _
GetErrorDescription(Err.LastDllError))

Else

createSubsocket (IngRetValue)

End If

End If

End If

'Interval Event 2: Bridge Socket Checker

'check to see if any clients are attempting to make a
'connection attempt if a socket is defined

If IngBridgeSocketHandle > 0 Then

'checks listen socket to see if data is readable

udtRead_fd.fd_count = 1
udtRead_fd.fd_array(1) = IngBridgeSocketHandle

IngSocketCount = vbselect(0&, udtRead_fd, udtWrite_fd,
udtError_fd, 0&)

incomingConnection = CBool(IngSocketCount)

If incomingConnection = True Then

'If an incoming connection is detected, output to

console

updateConsole ("Incoming connection on " +
CStr(IngBridgeSocketHandle))

'Call the vbAccept function in order to accept the
'connection request and create a new socket
IngRetValue = vbAccept(IngBridgeSocketHandle)

If IngRetValue = INVALID_SOCKET Then

'An error has occurred - show the error message

updateConsole ("Socket error: " & _
GetErrorDescription(Err.LastDllError))

Else

createSubsocket (IngRetValue)

xv

End If

End If

End If

'Interval Event 3: Subsocket Checker

'check to see if subsockets have any information pending

retrieval

For intCount = 1 To intMaxSockets

If arrSubsocketHandles(intCount) > 0 Then

'checks listen socket to see if data is readable

udtRead_fd.fd_count = 1
udtRead_fd.fd_array(1) = arrSubsocketHandles(intCount)

IngSocketCount = vbselect(0&, udtRead_fd, udtWrite_fd,
udtError_fd, 0&)

incomingConnection = CBool(IngSocketCount)

If incomingConnection = True Then

'If a subsocket contains data, output to console
emptySubsocket (arrSubsocketHandles(intCount))

End If

End If

Next intCount

End Sub

Private Function createSubsocket(IngSocketHandle As Long)

'creates a subsocket when a socket request is accepted
'search for an empty subsocket slot
Dim intCount As Integer
Dim placedSocket As Boolean

placedSocket = False

For intCount = 1 To intMaxSockets

If arrSubsocketHandles(intCount) = 0 And placedSocket =

False Then

arrSubsocketHandles(intCount) = IngSocketHandle

placedSocket = True
'connection accepted

xvi

updateConsole ("Subsocket detected: socket " & _
CStr (IngSocketHandle))

End If

Next intCount

refreshSubsockets

End Function

Private Sub refreshSubsockets()

Dim intCount As Integer

'Display subsockets in the server window
txtSubsockets.Caption = ""
For intCount - 1 To intMaxSockets

If arrSubsocketHandles(intCount) > 0 Then

txtSubsockets.Caption = txtSubsockets.Caption & _
CStr(arrSubsocketHandles(intCount)) + vbCrLf

End If

Next intCount

End Sub

Private Sub emptySubsocket(IngSocketHandle As Long)

Dim strMsg As String
Dim IngBytesReceived As Long

Dim intCount As Integer

'Call the vbRecv function to read data

IngBytesReceived = vbRecv(lngSocketHandle, strMsg)

If IngBytesReceived > 0 Then

'If we have received some data, put it into the console

and

'close the subsocket

updateConsole ("Message received from " +
CStr(IngSocketHandle))

'updateConsole ("From " + CStr(IngSocketHandle) + ": " +
strMsg)

handleAction (strMsg)

For intCount = 1 To 16

If arrSubsocketHandles(intCount) = IngSocketHandle Then

Call closesocket(arrSubsocketHandles(intCount))

updateConsole ("Subsocket closed: " +
CStr(arrSubsocketHandles(intCount)))

arrSubsocketHandles(intCount) - 0 ____

XVII

refreshSubsockets

End If

Next intCount

Elself IngBytesReceived = SOCKET_ERROR Then

'An error has occurred - show the error message

updateConsole ("Socket error: " & _
GetErrorDescription(Err.LastDllError))

End If

End Sub

Private Sub handleAction(strMsg As String)

If InStr(strMsg, "action::") > 0 Then

Dim fields() As String

fieldsf) = Split(strMsg, "::")

Dim actionTaken As String

Dim retValue As Integer

actionTaken = fields(2)

Select Case actionTaken

Case "createAccount"

retValue = createAccount(fields(1), fields(3),

fields(4), fields(5))
Case "loginAccount"

retValue = loginAccount(fields(1), fields(3),

fields(4))

Case "updateAccount"
retValue = updateAccount(fields(1), fields(3),

fields(4), fields(5))

End Select

End If

End Sub

Private Function createAccount(IPAddress As String, matricNumber

As String, StudentName As String, password As String)

Dim dataFilename As String

Dim retValue As Integer

findUser (matricNumber)

'accountExists = False

xvin

If accountExists Then

updateConsole ("Account creation failed: this account

already exists!")

retValue = informClient(IPAddress, "info::Error creating

account: Account already exists!")

Else

'create a new user entry

totalStudentRecords = totalStudentRecords + 1

StudentData.StudentName = StudentName

StudentData.StudentMatric = matricNumber

StudentData.StudentIC = password

StudentData.AccountActive = False

StudentData.FirstRecordlndex = 0

StudentData.Studentlndex = totalStudentRecords

Put StudentFile, totalStudentRecords, StudentData

updateConsole ("New account created: " & matricNumber)
retValue = informClient(IPAddress, "info::Account creation

successful!")

End If

End Function

Private Function findUser(searchMatric As String)

Dim currentlndex As Long

currentlndex = 0

accountExists = False

If Not LOF(StudentFile) = 0 Then

IstUsers.Listltems.Clear

While ({currentlndex < totalStudentRecords) And (Not

accountExists))

currentlndex = currentlndex + 1

Get StudentFile, currentlndex, StudentData

If (StrComp(StudentData.StudentMatric, searchMatric) =
0) Then

accountExists = True

End If

Wend

End If

End Function

Private Function showAllUsers()

Dim currentlndex As Long

xix

currentlndex = 0

'refresh user file

If Not LOFfStudentFile' = 0 Then

IstUsers.Listlterns.Clear

While currentlndex < totalStudentRecords

currentlndex = currentlndex + 1

Get StudentFile, currentlndex, AllStudentData

IstUsers.Listltems.Add ,

Trim$ (AllStudentData.StudentName)

IstUsers.Listltems(currentlndex).Subltems(1)

CStr(AllStudentData.StudentMatric)

IstUsers.Listltems(currentlndex).Subltems(2)

CStr(AllStudentData.AccountActive)

IstUsers.Listltems(currentlndex).Subltems(3)

CStr(AllStudentData.FirstRecordlndex)

Wend

End If

'refresh account file

currentlndex = 0

If Not LOF(AccountFile) = 0 Then

IstAccount.Listltems.Clear

While currentlndex < totalAccountRecords

currentlndex = currentlndex + 1

Get AccountFile, currentlndex, AllAccountData

IstAccount.Listltems

CStr(AllAccountData.prevRecord)

IstAccount.Listltems

CStr (AllAccountData.itemDate)

IstAccount.Listltems

CStr(AllAccountData.itemStatus)

IstAccount.Listltems

Trim$(AllAccountData.itemName)

IstAccount.Listltems

CStr (AllAccountData.itemQuantity

IstAccount.Listltems

CStr(AllAccountData.nextRecord)

Wend

End If

.Add ,

(currentlndex).Subltems(1'

(currentlndex).Subltems(2]

(currentlndex).Subltems[3[

(currentlndex).Subltems(4'

i

(currentlndex).Subltems(5'

End Function

Private Function updateAccount(IPAddress As String, matricNumber

As String, accountlnfo As String, numberOfItems As String)

Dim retValue As Integer

Dim fields() As String

Dim accountfields() As String

xx

Dim accountdatafields() As String
Dim currentltem As Long

Dim prevRecord As Long
Dim currentRecord As Long

Dim nextRecord As Long

Dim firstRecord As Boolean

Dim thisDate As String
Dim thisStatus As String

Dim thisName As String

Dim thisQuantity As String

Dim strLine As String

Dim strCompiled As String

Dim currentlndex As Long

Dim allltemsLoaded As Boolean

'update account file using the list submitted by the client

If CLng(numberOfIterns) > 0 Then
accountfields() = Split(accountlnfo, "++")

End If

findUser (matricNumber)

'check if this student has any records

If StudentData.FirstRecordlndex = 0 Then

firstRecord = True

Else

currentRecord = 0

nextRecord = StudentData.FirstRecordlndex

firstRecord = False

End If

'loop through all items

While currentltem < CLng(numberOfltems)

accountdatafields() = Split(accountfields(currentltem) ,

'if this student has no existing records, create one

If firstRecord Then

totalAccountRecords = totalAccountRecords + 1

StudentData.FirstRecordlndex = totalAccountRecords

'overwrite to point to the new record
Put StudentFile, StudentData.Studentlndex, StudentData

AccountData.isFirst = True

AccountData.isLast ~ True

AccountData.prevRecord = 0

AccountData.nextRecord = 0

'collect the data from the strings

xxi

Then

AccountData.itemDate = accountdatafields(0)

If StrComp(accountdatafields(1), "Borrowed") = 0 Then

AccountData.itemStatus = False

Else

AccountData.itemStatus = True

End If

AccountData.itemName = accountdatafields(2)

AccountData.itemQuantity = accountdatafields(3)

Put AccountFile, totalAccountRecords, AccountData

firstRecord = False

prevRecord = 0

currentRecord = totalAccountRecords

nextRecord = 0

'if the student already has existing records,

Else

'move on to the next record

prevRecord = currentRecord
currentRecord = nextRecord

'end of existing records, time to add new ones.

If currentRecord = 0 Then

'link previous record to this one

If Not prevRecord - 0 Then

Get AccountFile, prevRecord, AccountData

AccountData.isLast = False

AccountData.nextRecord = totalAccountRecords +

Put AccountFile, prevRecord, AccountData

End If

totalAccountRecords = totalAccountRecords + 1

AccountData.isFirst ~ False

AccountData.isLast = True

AccountData.prevRecord = prevRecord

AccountData.nextRecord = 0

'collect the data from the strings
AccountData.itemDate = accountdatafields(0)

If StrComp(accountdatafields (1), "Borrowed") = 0

AccountData.itemStatus - False

Else

AccountData.itemStatus = True

End If

AccountData.itemName = accountdatafields(2)

AccountData.itemQuantity = accountdatafields(3)

Put AccountFile, totalAccountRecords, AccountData

xxn

Then

firstRecord = False

currentRecord = totalAccountRecords

nextRecord = 0

'the next record still exists

Else

Get AccountFile, currentRecord, AccountData

'change the contents

AccountData.itemDate = accountdatafields(0)

If StrComp(accountdatafields (1), "Borrowed") = 0

AccountData.itemStatus = False

Else

AccountData.itemStatus = True

End If

AccountData.itemName = accountdatafields(2)

AccountData.itemQuantity = accountdatafields(3)

Put AccountFile, currentRecord, AccountData

'find the next record

nextRecord = AccountData.nextRecord

End If

End If

currentltem = currentltem + 1

Wend

retValue = informClient(IPAddress, "updateok::")

'Move all data back to the client

If StudentData.FirstRecordlndex > 0 Then

'loop through the record indexes

currentlndex = StudentData.FirstRecordlndex

allltemsLoaded = False

strCompiled = ""

While Not allltemsLoaded

Get AccountFile, currentlndex, AccountData

strLine = ""

strLine = strLine & CStr(currentlndex) & ",,"

strLine = strLine £ CStr(AccountData.itemDate) £ ",,"

If AccountData.itemStatus Then

strLine = strLine £ "True" & ",,"

Else

strLine = strLine & "False" & ",,"
End If

strLine - strLine £ CStr(AccountData.itemName) & ",,"

strLine = strLine & CStr(AccountData.itemQuantity)

XXUl

strCompiled = strCompiled & strLine & "++"

currentlndex = AccountData.nextRecord

'until all the items have been found

If AccountData.isLast Then

allltemsLoaded = True

End If

Wend

retValue - informClient(IPAddress, "write::" £

strCompiled)

End If

updateConsole ("Account updated: " & matricNumber)
retValue = informClient(IPAddress, "info::Account update

successful!")

End Function

Private Function fileExists(ByVal filename As String)

Dim length As Long

On Error GoTo FileDoesntExist

length = FileLen(filename)

fileExists = True

Exit Function

FileDoesntExist:

fileExists = False

End Function

Private Function loginAccount(IPAddress As String, matricNumber As
String, password As String)

Dim retValue As Integer

Dim strCompiled As String

Dim strLine As String
Dim endOfAccount As Boolean

Dim nextlndex As Long
Dim currentlndex As Integer
Dim allltemsLoaded As Boolean

findUser (matricNumber)

If Not accountExists Then

updateConsole ("Account login failed: this account does
not exist!")

retValue = informClient(IPAddress, "info::Invalid
account.")

XXIV

Else

If (StrComp(Trim$(StudentData.StudentIC), password) = 0)
Then

'if password is correct
updateConsole ("Login successful: " £ matricNumber)
retValue = informClient(IPAddress, "info::Account

login successful!"}

'if login is succesful, dump the entire file to the

client

retValue = informClient(IPAddress, "clear::")

'move user data to client

retValue = informClient(IPAddress, "setname::" &

StudentData.StudentName)

retValue = informClient(IPAddress, "setmatric::" £

StudentData.StudentMatric)

If StudentData.AccountActive Then

retValue = informClient(IPAddress,

"setactive::true")

Else

retValue = informClient(IPAddress,

"setactive: .-false")

End If

1move account data to client

If StudentData.FirstRecordlndex > 0 Then

•loop through the record indexes
currentlndex = StudentData.FirstRecordlndex

allltemsLoaded = False

strCompiled = ""

While Not allltemsLoaded

Get AccountFile, currentlndex, AccountData

strLine = ""

strLine = strLine & CStr(currentlndex) & ",,"

strLine = strLine £ CStr(AccountData.itemDate)
SIT TT

f f

If AccountData.itemStatus Then

Else

*

End If

strLine = strLine & CStr (AccountData.itemName)

« t i

strLine = strLine &

CStr(AccountData.itemQuantity)
strCompiled = strCompiled & strLine £ "++"

currentlndex = AccountData.nextRecord

XXV

strCompiled)

'until all the items have been found

If AccountData.isLast Then

allltemsLoaded = True

End If

Wend

retValue = informClient(IPAddress, "write::" £

End If

'inform the client that the file has been transferred

retValue = informClient(IPAddress, "loginok::")

Else

'if password is incorrect

updateConsole ("Login failed: " £ matricNumber)
retValue = informClient(IPAddress, "info::Account

login failed!")

End If

End If

End Function

XXVI

Appendix B: Client Software Source Codes (Main Menu)

Form : fmClient

Function : connects to the server and does all

client side data handling

By: Sim Yih Chun

Option Explicit

'Prepare storage array for the last 10 events

Dim consoleEvents(10) As String

'Prepare array for system's ip addresses
'intValidIp stores the number of valid ip addresses found
'strActivelp is a global variable that stores the active IP address
Dim arrlp(6) As String
Dim intValidIp As Integer

Dim intListenIP As Integer

Dim intMaxSockets As Integer

'Saves the socket handles as global variables
Dim IngListenSocketHandle As Long

Dim IngTalkSocketHandle As Long
Dim arrSubsocketHandles(16) As Long

'Return value handles in main procedures
Dim IngRetListenSocket As Long

Dim IngRetTalkSocket As Long

'Stores the port numbers for the listen IP
Dim IngListenPort As Long

'Stores the default connection values

Dim strServerIP As String
Dim intServerPort As Long

'user data file values

Dim userActive As String
Dim userName As String

Dim userMatric As String

Dim loggedln As Boolean

'time out counter for msges

Dim msgTimer As Integer

'Define data type for the inventory database
Private Type AccountRecord

itemlndex As Long

itemDate As String * 10

itemStatus As Boolean

XXVll

itemName As String * 50
itemQuantity As Long

End Type

Dim AccountData As AccountRecord

Dim AllAccountData As AccountRecord

Dim AccountFile&

Dim AccountRecordLength&
Dim totalAccountRecords£

Private Sub btnBulletin_Click()

'fmClient.Hide

End Sub

Private Sub btnExit^Click()

stopAllSockets

Unload Me

End Sub

Private Sub btnListenIP_Click()

'Switch the active listen IP to the next available IP address

stopAllSockets

intListenIP = intListenIP + 1

If intListenIP > intValidIp Then

intListenIP = 1

End If

'recreate the listen/talk socket pair
startListenSocket

startTalkSocket

End Sub

Private Sub btnNewAccount_Click()

Load frmCreateAcc

frmCreateAcc.Show

fmClient.Hide

End Sub

Private Sub btnLoginAccount_Click()

Dim retValue As Integer

XXV111

'clears the user file

Close AccountFile

Open "ClientRecord.db" For Output As #2
Close #2

AccountFile = FreeFile

AccountRecordLength = Len(AccountData)

Open "ClientRecord.db" For Random As AccountFile Len
AccountRecordLength

totalAccountRecords = LOF(AccountFile) \ AccountRecordLength

'resolve login

If loggedln = False Then

Load frmLoginAcc
fmClient.Hide

frmLoginAcc.Show
Else

loggedln ~ False

btnLoginAccount.Caption = "student login"
retValue = logoutAccount()

End If

End Sub

Private Sub btnInventory_Click()

If loggedln Then

Close AccountFile

Load frmlnventory
fmClient.Hide

frmlnventory.Show
Else

showErrorMsg ("Please login first!")
End If

End Sub

Private Sub Form_Load()

'initial values are set.

txtStatus.Caption = "Disconnected"

IngListenSocketHandle = 0
intMaxSockets = 8

loggedln = False

'initial button conditions are set

btnlnventory.Enabled = False
btnBulletin.Enabled = False

'set the date on the calendar

lblDate.Caption = CStr(Day(Date))

Dim thisMonth As Integer

thisMonth = CInt(DatePart("m", Date))

If thisMonth = 1 Then

XXIX

lblMonth.Caption = "January"

Elself thisMonth = 2 Then

lblMonth.Caption — "February"

Elself thisMonth ~ 3 Then

lblMonth.Caption = "March"

Elself thisMonth = 4 Then

lblMonth.Caption - "April"

Elself thisMonth = 5 Then

lblMonth.Caption = "May"

Elself thisMonth = 6 Then

lblMonth.Caption = "June"

Elself thisMonth = 7 Then

lblMonth.Caption = "July"
Elself thisMonth = 8 Then

lblMonth.Caption - "August"

Elself thisMonth = 9 Then

lblMonth.Caption = "September"

Elself thisMonth = 10 Then

lblMonth.Caption = "October"

Elself thisMonth = 11 Then

lblMonth.Caption = "November"

Elself thisMonth = 12 Then

lblMonth.Caption = "December"

End If

'set the bridge/listen port numbers
IngListenPort = 552

'value returned by the InitializeWinsock function
Dim IngRetValue As Long

'initialize the Winsock service

IngRetValue = mdWinSock.InitializeWinsock(SOCKET_VERSION_22)

If Not IngRetValue - 0 Then

'if the Winsock service was not initialized

'successfully, show the error
showErrorMsg ("Unable to initialise WinSock API!")

End If

getlPAddresses

'if the Winsock service was initialized

'successfully, create listen/talk socket pair

startListenSocket

startTalkSocket

loadDefaultFile

'empty the random access file

Open "ClientRecord.db" For Output As #2
Close #2

'prepare the random access file for the temporary account

XXX

AccountFile = FreeFile

AccountRecordLength = Len(AccountData)

Open "ClientRecord.db" For Random As AccountFile Len =
AccountRecordLength

totalAccountRecords = LOF(AccountFile) \ AccountRecordLength

End Sub

Private Sub Form_Unload(Cancel As Integer)

Call WSACleanup

End Sub

Private Sub menuExit_Click()

Unload Me

End Sub

Private Function showErrorMsg(errorEvent As String)

Dim intResponse As Integer

intResponse ~ MsgBox(errorEvent, vbExclamation, "Error!")

End Function

Private Function startListenSocket()

'Update status display and console
txtStatus.Caption = "Starting..."

'This is the handle of the socket to be created

Dim IngSocket As Long

Dim IngAddressFamily As Long

Dim IngSocketType As Long

Dim IngProtocol As Long

IngAddressFamily =2 '2 = AF_INET: inter-network address
family

IngSocketType - 1 '1 = SOCK_STREAM: socket streaming
IngProtocol =6 '6 = IPPROTO_TCP: transfer control

protocol

'Create the sockets: 1 bridge socket between servers and 1 listen

socket

IngSocket = mdWinSock.vbSocket(IngAddressFamily, IngSocketType,
IngProtocol)

IngListenSocketHandle = IngSocket

If IngSocket = INVALID_SOCKET Then

'If the function has returned the INVALID_SOCKET
'value the socket was not created. Call the

XXXI

'ShowErrorMsg subroutine to show the message box
'with the error description.

txtStatus.Caption - "Disconnected"
showErrorMsg ("Socket error: " & _

GetErrorDescription(Err.LastDllError))

Else

'If a new socket was created successfully, add the

'listview's item for that socket

txtStatus.Caption - "Client IP: (" + arrlp(intListenIP) + ":
Port " 4- CStr (IngListenPort) £

"- socket " + CStr(IngListenSocketHandle) + ")"

IngRetListenSocket = bindOneSocket(IngListenSocketHandle,

arrlp(intListenIP), IngListenPort)
IngRetListenSocket = listenOneSocket(IngListenSocketHandle)

End If

End Function

Private Function stopAHSockets ()

'shuts down the listen server

'close the listening socket handle

Call closesocket(IngListenSocketHandle)
IngListenSocketHandle = 0

Call closesocket(IngTalkSocketHandle)

IngTalkSocketHandle = 0

Dim intCount As Integer

For intCount = 1 To 16

If arrSubsocketHandles(intCount) > 0 Then

Call closesocket(arrSubsocketHandles(intCount))

arrSubsocketHandles(intCount) = 0

End If

Next intCount

txtStatus.Caption - "Disconnected"

End Function

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As
Integer)

If Not IngListenSocketHandle = 0 Then

stopAllSockets

XXXll

End If ~~ ~~

End Sub

Private Function getlPAddresses()

'pointer to HOSTENT structure returned by
'the gethostbyname function
Dim IngPtrToHOSTENT As Long

'structure which stores all the host info
Dim udtHostent As HOSTENT

'pointer to the IP address' list

Dim IngPtrToIP As Long

'byte array that contains elemets of an IP address
Dim arrlpAddress() As Byte

'result IP address string to add into the ListBox
Dim strlpAddress As String

'buffer string to receive the local system host name
Dim strHostName As String * 256
'value returned by the gethostname function
Dim IngRetVal As Long
Dim i As Integer

'Get the local host name

IngRetVal = gethostname(strHostName, 256)

If IngRetVal = SOCKET_ERROR Then
MsgBox "Can't resolve the local host address", vbExclamation
Exit Function

End If

'Call the gethostbyname Winsock API function
'to get pointer to the HOSTENT structure

IngPtrToHOSTENT = gethostbyname(Left(strHostName, InStr(l,
strHostName, Chr(O)) - 1})

'Check the IngPtrToHOSTENT value
If IngPtrToHOSTENT = 0 Then

'If the gethostbyname function has returned 0
'the function execution is failed.

showErrorMsg ("Unable to resolve host name")

Else

'Copy retrieved data to udtHostent structure

RtlMoveMemory udtHostent, IngPtrToHOSTENT, LenB(udtHostent)

'Now udtHostent.hAddrList member contains

'an array of IP addresses

XXXIU

'Get a pointer to the first address

RtlMoveMemory IngPtrToIP, udtHostent.hAddrList, 4

Dim intCount As Integer
intCount - 1

Do Until IngPtrToIP = 0

'Prepare the array to receive IP address values
ReDim arrlpAddress(1 To udtHostent.hLength)

'move IP address values to the array
RtlMoveMemory arrlpAddress(1), IngPtrToIP,

udtHostent.hLength

'build string with IP address
For i - 1 To udtHostent.hLength

strlpAddress = strlpAddress £ arrlpAddress(i) £ "."
Next

'remove the last dot symbol
strlpAddress = Left$(strlpAddress, Len(strlpAddress) - 1)

'Add IP address to the listbox

arrlp(intCount) = strlpAddress
intCount ~ intCount + 1

'Clear the buffer

strlpAddress = ""

'Get pointer to the next address

udtHostent.hAddrList = udtHostent.hAddrList +
LenB(udtHostent. hAddrList)

RtlMoveMemory IngPtrToIP, udtHostent.hAddrList, 4

Loop

intValidIp = intCount - 1
intListenIP = intCount - 1

End If

End Function

Private Function bindOneSocket(IngTargetSocket As Long, strTargetIP
As String, IngTargetPort As Long)

Dim IngRetValue As Long

'Begin binding the socket to the correct IP

IngRetValue = vbBind(IngTargetSocket, strTargetIP, IngTargetPort)

If IngRetValue = SOCKET ERROR Then

XXXIV

'If an error occurs, output the error to the console

showErrorMsg ("Socket error: " £ __
GetErrorDescription(Err.LastDllError))

End If

End Function

Private Function listenOneSocket(IngTargetSocket As Long)

Dim IngRetValue As Long

'Begin listening on the assigned port

IngRetValue = vbListen(IngTargetSocket)

'Check a value returned by the vbListen function

If IngRetValue = S0CKET_ERROR Then

'An error occurs - display the error message

showErrorMsg ("Socket error: " £ _
GetErrorDescription(Err-LastDllError))

End If

End Function

Private Function startTalkSocket()

'This is the handle of the socket to be created

Dim IngSocket As Long

Dim IngAddressFamily As Long

Dim IngSocketType As Long

Dim IngProtocol As Long

IngAddressFamily =2 '2 = AF_INET: inter-network address
family

IngSocketType =1 '1 - SOCK_STREAM: socket streaming
IngProtocol =6 '6 = IPPROTOJTCP: transfer control

protocol

1Create the talk socket

IngSocket = mdWinSock.vbSocket(IngAddressFamily, IngSocketType,
IngProtocol)

IngTalkSocketHandle = IngSocket

If IngSocket = INVALID_SOCKET Then

'If the function has returned the INVALIDJ30CKET
'value the socket was not created.

showErrorMsg ("Socket error: " £ _
GetErrorDescription(Err.LastDllError))

End If

End Function

XXXV

Private Function connectTalkSocket()

Dim IngRetValue As Long

'Call the vbConnect function in order to establish the connection

IngRetValue = mdWinSock.vbConnect(IngTalkSocketHandle,

strServerIP, intServerPort)

If IngRetValue = SOCKET_ERROR Then

'If the function has returned the INVALID_SOCKET
'value the socket was not connected.

showErrorMsg ("Socket error: " £ ___
GetErrorDescription(Err.LastDllError))

End If

End Function

Private Function sendData(strMessage As String)

connectTalkSocket

'Call the vbSend function in order to send data

If vbSend(IngTalkSocketHandle, strMessage) - SOCKET_ERROR Then

'If the vbSend function has returned a value of

•S0CKET_ERROR, console displays the socket error
showErrorMsg ("Socket error: " £ _

GetErrorDescription(Err.LastDllError))

Else

'close the talk socket and create a new one

Call closesocket(IngTalkSocketHandle)

IngTalkSocketHandle = 0

startTalkSocket

End If

End Function

Private Sub tmrSocketCheck_Timer()

Dim udtRead_fd As fd_set
Dim udtWrite_fd As fd_set
Dim udtError_fd As fd_set
Dim IngSocketCount As Long

Dim incomingConnection As Boolean
Dim IngRetValue As Long

Dim intCount As Integer

'Interval Event 1: Listen Socket Checker

XXXVl

'check to see if any clients are attempting to make a
'connection attempt if a socket is defined

If IngListenSocketHandle > 0 Then

'checks listen socket to see if data is readable

udtRead_fd.fd_count = 1
udtRead_fd.fd_array(1) = IngListenSocketHandle

IngSocketCount = vbselect(0&, udtRead_fd, udtWrite_fd,
udtError_fd, OS)

incomingConnection = CBool(IngSocketCount)

If incomingConnection = True Then

'Call the vbAccept function in order to accept the
'connection request and create a new socket
IngRetValue = vbAccept(IngListenSocketHandle)

If IngRetValue = INVALID_SOCKET Then

'An error has occurred - show the error message
showErrorMsg ("Socket error: " £ _

GetErrorDescription(Err.LastDllError))

Else

createSubsocket (IngRetValue)

End If

End If

End If

'Interval Event 2: Subsocket Checker

'check to see if subsockets have any information pending
retrieval

For intCount = 1 To intMaxSockets

If arrSubsocketHandles(intCount) > 0 Then

'checks listen socket to see if data is readable

udtRead_fd.fd_count = 1
udtRead_fd.fd_array(1) = arrSubsocketHandles(intCount)

IngSocketCount = vbselect(0&, udtRead_fd, udtWrite_fd,
udtError_fd, 0£)

incomingConnection = CBool(IngSocketCount)

If incomingConnection = True Then

XXXVll

'If a subsocket contains data, output to console
emptySubsocket (arrSubsocketHandles(intCount))

End If

End If

Next intCount

'Internal Event 3: Perform Pending Actions

If Not pendingAction = "" Then

Dim message As String

message = "action"

message = message £ '

message = message & '

message = message £ '

message = message S '

message = message & '

message = message £ '

sendData (message)

pendingAction = ""

End If

'clear message timer

If msgTimer > 0 Then

msgTimer = msgTimer - 1

If msgTimer = 0 Then

If loggedln Then

lblUser = "Logged in as: " & userName
Else

lblUser = "You are currently not logged in!"
End If

End If

End If

End Sub

Private Function createSubsocket(IngSocketHandle As Long)

'creates a subsocket when a socket request is accepted
'search for an empty subsocket slot

Dim intCount As Integer

Dim placedSocket As Boolean

placedSocket = False

For intCount = 1 To intMaxSockets

If arrSubsocketHandles(intCount) = 0 And placedSocket = False
Then

£ arrlp(intListenIP!

£ pendingAction

S passVariablel

£ passVariable2

£ passVariable3

S passVariable4

XXXVlll

arrSubsocketHandles(intCount) = IngSocketHandle
placedSocket = True

End If

Next intCount

End Function

Private Sub emptySubsocket(IngSocketHandle As Long)

Dim strMsg As String

Dim IngBytesReceived As Long
Dim intCount As Integer
Dim fields() As String
Dim accountfields() As String
Dim datafieldsf) As String
Dim strFileLine As String
Dim retValue As Integer

'Call the vbRecv function to read data

IngBytesReceived = vbRecv(IngSocketHandle, strMsg)

If IngBytesReceived > 0 Then

'If we have received some data, put it into the console and
'close the subsocket

If InStrfstrMsg, "info::") Then
fields() = Split(strMsg, "::")
lblUser.Caption = fields(1)

'retValue - MsgBox(fields(1), vbOKOnly + vblnformation,
"E£E Scatternet Client")

msgTimer = 25

End If

'If this is a clear command, clear the user file

If InStr(strMsg, "clear::") Then
Open "data/user" For Output As #2
Close #2

End If

'If this is a setname command, then set the user name
If InStr(strMsg, "setname ::") Then

fields{) = Split(strMsg, "::")
userName = fields(1)

End If

number

'If this is a setmatric command, then set the user matric

If InStr(strMsg, "setmatric::") Then

fields() = Split(strMsg, "::")
userMatric ~ fields(1)

End If

XXXIX

'If this is a setactive command, then change the status of
the account

If InStr(strMsg, "setactive::") Then
fields(} = SplitfstrMsg, "::")
userActive = fields(1)

End If

'If this is a write command, write to user file

If InStr(strMsg, "write::") Then

fields() = Split(strMsg, "::")
strMsg = fields(1)

datafieldsf) = Split(strMsg, "++"}

Dim i As Integer

For i = 0 To UBound(datafields) - 1

totalAccountRecords = totalAccountRecords + 1

accountfields() = Split(datafields(i), ",,")

AccountData.itemlndex = CLng(accountfields(0))
AccountData.itemDate = accountfields(1)

If StrComp(accountfields(2), "True") = 0 Then

AccountData.itemStatus = True

Else

AccountData.itemStatus = False

End If

AccountData.itemName = accountfields(3)

AccountData.itemQuantity = CLng(accountfields(4))

Put AccountFile, totalAccountRecords, AccountData
Next

End If

If InStr(strMsg, "loginok::") Then

lblUser = "Logged in as: " £ userName

loggedln = True

currentUserName = userName

currentUserMatric = userMatric

currentUserActive = userActive

btnLoginAccount.Caption = "student logout"

btnNewAccount.Enabled = False

btnlnventory.Enabled = True
btnBulletin.Enabled = True

End If

If InStr(strMsg, "updateok::") Then

'prepare the random access file for the temporary account
AccountFile = FreeFile

AccountRecordLength = Len(AccountData)
Open "ClientRecord.db" For Random As AccountFile Len =

AccountRecordLength

totalAccountRecords = LOF(AccountFile) _

xl

AccountRecordLength

End If

For intCount = 1 To 16

If arrSubsocketHandles(intCount) = IngSocketHandle Then

Call closesocket(arrSubsocketHandles(intCount))

arrSubsocketHandles(intCount) = 0

End If

Next intCount

Elself IngBytesReceived = SOCKET_ERROR Then

'An error has occurred - show the error message
showErrorMsg ("Socket error: " £ _

GetErrorDescription(Err.LastDllError))

End If

End Sub

Private Sub loadDefaultFile()

'load default values from the config file

Dim strConfigFilename As String
Dim intConfigFile As Integer

Dim strFileLine As String

Dim strOption As Variant

strConfigFilename = "default.snt"

intConfigFile = FreeFile()

'reads the config file line by line until EOF
Open strConfigFilename For Input As intConfigFile

Do Until EOF(intConfigFile)

Line Input #1, strFileLine

'only extract variables if = is found

If strFileLine Like "*^*" Then

strOption = Split(strFileLine, "=", 2)

Select Case strOption(0)

Case "[ServerAddress]"

strServerIP = strOption(l)

lblServerlnfo.Caption = "Server IP:" + strServerIP

Case "[ServerPort]"

intServerPort = CInt(strOption(1))

End Select

xli

End If

Loop

Close intConfigFile

End Sub

Private Function logout-Account ()

lblUser = "Logging out"

'disables the buttons

btnNewAccount.Enabled = True

btnlnventory.Enabled = False
btnBulletin.Enabled = False

'clears the user file

Close AccountFile

Open "ClientRecord.db" For Output As #2
Close #2

AccountFile = FreeFile

AccountRecordLength = Len(AccountData)

Open "ClientRecord.db" For Random As AccountFile Len
AccountRecordLength

totalAccountRecords = LOF(AccountFile) \ AccountRecordLength

lblUser = "You are currently not logged in!"

End Function

Private Function loadVerifyCode()

verifyPasswordFile = FreeFile()

Open "data\verifycode.pwd" For Input As verifyPasswordFile
Line Input #verifyPasswordFile, veriRawCode
Close verifyPasswordFile

Dim codeOnly As String

Dim shuffledCode As String
Dim hashCode As String

Dim originalScore As String

codeOnly = Mid(veriRawCode, 7, 6) £ Mid(veriRawCode, 14, 6)
shuffledCode = reshuffleCode(codeOnly, -1)
hashCode = hashName (Left(shuffledCode, 10)}

originalScore = obfuscateString(Left(shuffledCode, 4), 36, 10, 7
veriTempCode = CStr(CLng(originalScore))

'Check the validity of the code

If StrComp(hashCode, Right(veriRawCode, 2)) = 0 Then
verifyCode = veriTempCode
verifyCodeValid = True

Else

verifyCodeValid = False
Unload Me

xlii

End If ~~~ "

End Function

Private Function generateCode() As String

Dim scoreString As String
Dim medalStringOne As String
Dim medalStringTwo As String
Dim rawCode As String
Dim footerCode As String
Dim finalCode As String

scoreString = obfuscateString(CStr(CLng(veriTempCode)), 10, 36,
4)

medalStringOne = obfuscateString("000000", 8, 36, 3)
medalStringTwo = obfuscateString("000000", 8, 36, 3)

rawCode = scoreString & medalStringOne S medalStringTwo
footerCode - hashName(rawCode)

finalCode = rawCode £ footerCode

finalCode = reshuffleCode(finalCode, 1)

generateCode = Left(finalCode, 6) & "-" & Right(finalCode, 6)

End Function

Private Function reshuffleCode(inputString As String, direction As
Long) As String

'Verification Code Hashing: general shuffle function
Dim currentCount As Long
Dim activeString As Long
Dim firstChar As String
Dim secondChar As String
Dim finalString As String

currentCount = 1

activeString = Len(inputString) - 2
firstChar = Mid(inputString, activeString + 1, 1)
secondChar = Mid(inputString, activeString + 2, 1)
finalString = ""

While currentCount <= activeString
firstChar = twistLetters(firstChar, secondChar, 1)
finalString = finalString & twistLetters(Mid(inputString,

currentCount, 1), firstChar, direction)

currentCount = currentCount + 1

Wend

reshuffleCode = finalString s Right(inputString, 2)

End Function

Private Function twistLetters(charOne As String, charTwo As String,
direction As Long) As String

xliii

Dim integerA As Long
Dim integerB As Long
Dim integerR As Long

integerA = getCharlndex(charOne)
integerB - getCharlndex(charTwo)
integerR = integerA + integerB * direction
If integerR < 0 Then

integerR = 36 + integerR
End If

If integerR > 35 Then

integerR = integerR - 36
End If

twistLetters = getChar(integerR)

End Function

Private Function hashName(inputString As String) As String

Dim generatedNumber As Long
Dim fullString As String

fullString = modifyName(veriTempName) s inputString

generatedNumber = generateHashNo(fullString)
hashName = obfuscateString(CStr(generatedNumber), 10, 36, 2

End Function

Private Function modifyName(inputString As String) As String

Dim currentCount As Long
Dim strLength As Long
Dim strArray(36) As String
Dim integerX As Long
Dim outputString As String
Dim tempString As String

currentCount = 0

strLength = Len(inputString)
outputString = ""

While currentCount <= 35

strArray(currentCount) = ""

currentCount = currentCount + 1

Wend

currentCount = 1

While currentCount <= strLength

tempString = Mid(inputString, currentCount, 1)
integerX = getCharlndex(tempString)
strArray(integerX) = strArray(integerX) £ tempString

xliv

currentCount = currentCount + 1

Wend

currentCount = 0

While currentCount <= 35

outputString = outputString S strArray(currentCount)
currentCount = currentCount + 1

Wend

modifyName - outputString

End Function

Private Function generateHashNo(inputString As String) As Long

Dim thisCharlndex As Long
Dim currentCount As Long

Dim currentTotal As Long

thisCharlndex = 0

currentTotal = 0

currentCount = 1

While currentCount <= Len(inputString)

thisCharlndex = getCharIndex_Extended(Mid(inputString,
currentCount, 1))

currentTotal = generateTotal(currentTotal, thisCharlndex)
currentCount = currentCount + 1

Wend

generateHashNo = currentTotal

End Function

Private Function generateTotal(total As Long, charlndex As Long) As
Long

Dim currentCount As Long

Dim currentTotal As Double

Dim currentlndex As Double

Dim Fl As Long

Dim F2 As Long

Dim kl As Long

Dim k2 As Long

Dim multiplicand As Double
Dim dividend As Double

Dim intResponse As Integer

currentCount = 1

Fl = 117

F2 = 0

kl = 39

k2 = 7

While currentCount <= 32

xlv

currentTotal = CDbl(total)

multiplicand = CDbl(charlndex) * 16
multiplicand = makeOverflow(multiplicand)
dividend = (charlndex - (charlndex Mod 32)) / 32
dividend = makeOverflow(dividend)

currentTotal = currentTotal + (multiplicand + dividend) +
charlndex + F2 + kl

currentTotal - makeOverflow(currentTotal)
total = CLng(currentTotal)

F2 = F2 + Fl

currentlndex = CDbl(charlndex)

multiplicand = CDbl(total) * 16

multiplicand = makeOverflow(multiplicand)
dividend = (total - (total Mod 32)) / 32
dividend = makeOverflow(dividend)

currentlndex = currentlndex + (multiplicand + dividend) +
total + F2 + k2

currentlndex = makeOverflow(currentlndex)
charlndex = CLng(currentlndex)

currentCount = currentCount + 1

Wend

generateTotal = total

End Function

Private Function obfuscateString(inputString As String, obfBase As
Long, totalChars As Long, outputChars As Long) As String

Dim currentCount As Long
Dim multiplyNumber As Long
Dim multiplyDouble As Double
Dim currentTotal As Long
Dim doubleTotal As Double

Dim strLength As Long

Dim outputString As String
Dim charlndex As Long

currentCount = 0

multiplyNumber = 1

currentTotal = 0

strLength = Len(inputString)
outputString = ""

While currentCount < strLength

doubleTotal = CDbl(currentTotal)

doubleTotal = doubleTotal + multiplyNumber *
getCharlndex(Mid(inputString, strLength - currentCount, 1))

xlvi

doubleTotal = makeOverflow(doubleTotal)
currentTotal = CDbl(doubleTotal)

multiplyDouble = CDbl(multiplyNumber)
multiplyDouble = multiplyDouble * obfBase
multiplyDouble - makeOverflow(multiplyDouble)
multiplyNumber = CLng(multiplyDouble)

currentCount = currentCount + 1

Wend

currentCount = 0

While currentCount < outputChars

charlndex = currentTotal Mod totalChars

If charlndex < 0 Then

charlndex = totalChars + charlndex

End If

If charlndex > (totalChars - 1) Then

charlndex - charlndex - totalChars

End If

outputString = getChar(charlndex) £ outputString
currentTotal = (currentTotal - charlndex) / totalChars
currentCount = currentCount + 1

Wend

obfuscateString = outputString

End Function

Private Function getCharlndex(inputString As String) As Long

Dim currentlndex As Long
Dim thisChar As String

currentlndex = 1

While currentlndex <= Len(strAlpNum)

thisChar = Mid(strAlpNum, currentlndex, 1)
If StrComp(thisChar, inputString) = 0 Then

getCharlndex - currentlndex - 1
Exit Function

End If

currentlndex = currentlndex + 1

Wend

getCharlndex = 1

End Function

Private Function getCharlndex^Extended(inputString As String) As Long

Dim currentlndex As Long

xlvii

Dim thisChar As String
currentlndex = 1

While currentlndex <= Len(strAlpNum2)

thisChar - Mid(strAlpNum2, currentlndex, 1)
If StrComp(thisChar, inputString) = 0 Then

getCharIndex_Extended = currentlndex - 1
Exit Function

End If

currentlndex = currentlndex + 1

Wend

getCharIndex_Extended = 1

End Function

Private Function getChar(inputlnteger As Long) As String

getChar = Mid(strAlpNum, inputlnteger + 1, 1)

End Function

Private Function makeOverflow(inputNumber As Double) As Double

While inputNumber > 2147483647 Or inputNumber < -2147483647
If inputNumber > 2147483647 Then

inputNumber = inputNumber - 4294967296#
Else

inputNumber = inputNumber + 4294967296#
End If

Wend

makeOverflow = inputNumber

End Function

xlviii

Appendix C: Client Software Source Code (Inventory)

'Initiate variables

Dim userName As String
Dim userMatric As String
Dim userActive As String
Dim userPassword As String
Dim userComponents(99) As Boolean

Dim userQuantity(99) As Boolean
Dim componentPicked As Boolean

Dim accountActive As Boolean

Dim itemsAdded As Integer
Dim itemsExisting As Integer
Dim originalltems As Integer

'Define data type for the inventory database
Private Type AccountRecord

itemlndex As Long
itemDate As String * 10
itemStatus As Boolean

itemName As String * 50
itemQuantity As Long

End Type

Dim AccountData As AccountRecord

Dim AllAccountData As AccountRecord

Dim AccountFile£

Dim AccountRecordLengthfi
Dim totalAccountRecordsfi

Private Sub btnActivate_Click()

Load frmVerify
frmVerify.Show

End Sub

Private Sub btnCheckout_Click()

Dim newComponent As String
Dim newCount As Integer
Dim currentLine As String

Dim currentComponent As String
Dim currentCount As Integer
Dim componentLoop As Integer

Dim deletelndex As Integer
Dim fields{) As String

'Sets the name of the borrowed component + quantity

If chkOthers.Value = 0 Then

newComponent = listCom. List(listCom.Listlndex)
Elself chkOthers.Value = 1 Then

newComponent ~ txtComponentName.Text
End If

xlix

newCount = CInt(txtQuantity.Text)

'Check: quantity should be a number
If IsNumeric(txtQuantity.Text) Then

'Has the user selected a component to add?
If componentPicked Or (chkOthers.Value = 1 And

StrComp(txtComponentName.Text, "") <> 0) Then

componentLoop = 0

deletelndex = -1

'Check if the component already exists
For componentLoop = 0 To listBasket.ListCount - 1

currentLine = listBasket.List(componentLoop)

fields(} = Split(currentLine, " x ")
currentComponent = fields(0)

currentCount = CInt(fields(1))

'If component already exists in the basket
If (StrComp(currentComponent, newComponent) = 0) Then

'Mark for deletion

deletelndex = componentLoop
newCount = newCount + CInt(currentCount)

End If

Next componentLoop

'Remove existing entry

If Not deletelndex = -1 Then

listBasket.RemoveItern (deletelndex)

itemsAdded = itemsAdded - 1

End If

'Add to component basket and reset quantity amount

listBasket.Addltem newComponent £ " x " £ CStr(newCount)
itemsAdded = itemsAdded + 1

txtQuantity.Text = "1"

Else

showErrorMsg ("Please select a component first!")
End If

Else

showErrorMsg ("Please enter a numeric quantity.")
End If

End Sub

Private Sub btnConfirm_Click()

Dim confirmMsg As String

Dim finalConfirm As Integer

Dim fields() As String
Dim itemEntry As String
Dim itemName As String
Dim itemQuantity As String

'Confirm selections

confirmMsg = "Are you sure you want to add these " & itemsAdded & "
items to your account?"

finalConfirm = MsgBox(confirmMsg, vbOKCancel + vbQuestion, "Confirm
Items")

'Move items once selection is confirmed

If finalConfirm = 1 And listBasket.ListCount > 0 Then

'For each item in the basket

For basketCount = 0 To listBasket.ListCount - 1

itemEntry = listBasket.List(basketCount)
fields() - Split(itemEntry, " x ")
itemName = fields(0)

itemQuantity = fields(1)

itemsExisting = itemsExisting + 1
Ivlnventory.Listltems.Add , , CStr(Date)
Ivlnventory.Listltems(itemsExisting).Subltems(1) = "Borrowed"
Ivlnventory.Listltems(itemsExisting).Subltems(2) = itemName
Ivlnventory.Listltems(itemsExisting).Subltems(3)

itemQuantity

Next basketCount

End If

'Clear all values

listBasket.Clear

chkOthers.Value = 0

txtComponentName.Text = ""

End Sub

Private Sub btnRemoveItem_Click()

'If an item is selected, remove it
If Not listBasket.Listlndex = -1 Then

listBasket.RemoveItern listBasket.Listlndex

itemsAdded = itemsAdded -- 1

End If

End Sub

Private Sub btnReturn Click()

Dim currentlndex As Integer

Dim accountlnfo As String

currentlndex = 0

accountlnfo = ""

'Send the entire list back to the server

While currentlndex < itemsExisting

currentlndex = currentlndex + 1

accountlnfo = accountlnfo

Ivlnventory.Listltems(currentlndex).Text S ",,"

accountlnfo = accountlnfo

Ivlnventory.Listltems(currentlndex).Subltems(1) £ ",, "
accountlnfo = accountlnfo

Ivlnventory.Listltems(currentlndex).Subltems(2) £ ",,"

accountlnfo = accountlnfo

Ivlnventory.Listltems(currentlndex).Subltems(3) S "++"

Wend

'Send the command line

pendingAction = "updateAccount"

passVariablel = userMatric
passVariable2 = accountlnfo

passVariable3 = CStr(itemsExisting)

'Delete everything

Close AccountFile

Kill "TempRecord.db"
Ivlnventory.Listltems.Clear

'Return to main menu

frmlnventory.Hide

fmClient.Show

Unload frmlnventory

End Sub

Private Sub FormJJnload(Cancel As Integer)

fmClient.Show

End Sub

Private Sub btnReturnItems_Click()

Dim thisLine As String

Dim thisLineSplit() As String

Dim selectedLine As Integer

Dim prevName As String
Dim prevQuantity As String

'Only perform an action if an item is selected
If Not Ivlnventory.Selectedltem Is Nothing Then

If

lii

StrComp(Ivlnventory.Listltems(Ivlnventory.Selectedltem.Index).Subltems(1),
"Borrowed") = 0 Then

prevName

Ivlnventory.Listltems(Ivlnventory.Selectedltem.Index).Subltems(2)
prevQuantity =

Ivlnventory.Listltems(Ivlnventory.Selectedltem.Index).Subltems(3)

Ivlnventory.Listltems.Remove (Ivlnventory.Selectedltem.Index)

Ivlnventory.Listltems.Add , , CStr(Date)
Ivlnventory.Listltems(itemsExisting).Subltems(1) = "Returned"
Ivlnventory.Listltems(itemsExisting).Subltems(2) - prevName
Ivlnventory.Listltems(itemsExisting).Subltems(3)

prevQuantity

Else

showErrorMsg ("That item has already been returned!")

End If

Else

showErrorMsg ("Please select an item first!")

End If

End Sub

Private Sub cboFamily_Click()

'Grabs the list of components for this family
Dim dataFileName As String
Dim strFileLine As String
componentPicked = False

dataFileName - CStr(cboFamily.ItemData(cboFamily.Listlndex))
dataFileName = "data\components\" & dataFileName £ ".dat"

If fileExists(dataFileName) Then

listCom.Clear

Open dataFileName For Input As #5

'Load component list
Do Until E0F(5)

Line Input #5, strFileLine
listCom.Addltem strFileLine

Loop

Close #5

Else

MsgBox ("File not found!")

liii

End If

End Sub

Private Sub Form_Load()

Dim strFileLine As String

Dim strComponents() As String
Dim currentlndex As Integer

componentPicked = False

itemsAdded = 0

itemExisting = 0

userName ~ currentUserName

userMatric = currentUserMatric

userActive ~ currentUserActive

Ivlnventory.Selectedltem = Nothing

lblName.Caption = "Student Name: " & userName

lblMatric.Caption = "Student Matric: " £ userMatric

'Displays the status of this account: active/inactive
If (StrComp(userActive, "true") = 0) Then

lblActive.Caption = "This account is active."

btnActivate.Visible = False

accountActive - True

Else

lblActive.Caption = "This account has NOT been activated!"

btnActivate.Visible = True

accountActive = False

End If

'prepare the random access file for the temporary account
FileCopy "ClientRecord.db", "TempRecord.db"
Open "ClientRecord.db" For Output As #2
Close #2

AccountFile = FreeFile

AccountRecordLength = Len(AccountData)
Open "TempRecord.db" For Random As AccountFile Len

AccountRecordLength

totalAccountRecords = LOF(AccountFile) \ AccountRecordLength

currentlndex = 0

Ivlnventory.Listltems.Clear

If LOF(AccountFile) = 0 Then

itemsExisting - 0

Else

'Load component list

While currentlndex < totalAccountRecords

currentlndex = currentlndex + 1

liv

"Returned"

"Borrowed"

itemsExisting = currentlndex

Get AccountFile, currentlndex, AccountData

'display items in listview

Ivlnventory.Listltems.Add , , Trim$(AccountData.itemDate;
If AccountData.itemStatus = True Then

Ivlnventory.Listltems(itemsExisting).Subltems(1)

Else

Ivlnventory.Listltems(itemsExisting).Subltems(1)

End If

Ivlnventory. Listltems (itemsExisting) .Subltems (2 '.
Trim$ (AccountData.itemName)

Ivlnventory.Listltems(itemsExisting).Subltems{3.
Trim$(AccountData.itemQuantity)

Wend

End If

originalltems = itemsExisting

'call initialise controls

InitControls

End Sub

Private Sub InitControls()

With cboFamily

.Addltem "Capacitors - pF"

.ItemData(O) = 0

.Addltem "Capacitors - Ceramic"

.ItemData(l) = 1

.Addltem "Capacitors - Tantalium"

.ItemData(2) = 2

-Addltem "Capacitors - Electrolytic"

.ItemData(3) = 3

.Addltem "Connectors - WWrap"

.ItemData(4) = 4

.Addltem "Connectors - WWrapID"

.ItemData(5) = 5

.Addltem "Connectors - IC Socket"

.ItemData(6) = 6

.Addltem "Connectors - IDC Socket"

.ItemData(7) = 7

.Addltem "Connectors - D Connector"

.ItemData(8) = 8

.Addltem "Connectors - PCB Mounting"

.ItemData(9) = 9

.Addltem "Connectors - Terminals"

.ItemData(lO) = 10

lv

.Addltem "FYP Devices"

.ItemData(ll) = 11

.Addltem "IC Analog - Linear"

.ItemData(12) - 12

.Addltem "IC Analog - Voltage Regulator"

.ItemData(13) = 13

.Addltem "IC Logic - 74 Series"

.ItemData(14) = 14

.Addltem "IC Logic - 40 Series"

.ItemData(15) = 15

.Addltem "Misc - PCB Prototyping Board"
-ItemData{16) = 16

.Addltem "Misc - 7 Segment/LED"

.ItemData(17) = 17

.Addltem "Resistors - Standard"

.ItemData(18) = 18

-Addltem "Resistors - Variable"

.ItemData(19) = 19

.Addltem "Semiconductors - Diodes"

.ItemData(20) = 20

.Addltem "Semiconductors - Transistors"

.ItemData(21) = 21

.Addltem "Semiconductors - Zener Diodes"

.ItemData(22) = 22

.Addltem "Semiconductors - MOSFET and IGBT"

.ItemData(23) = 23

.Addltem "Semiconductors - UJT, JFET £ TRIAC"

.ItemData(24) = 24

.Listlndex = 18

End With

'display the components

Dim dataFileName As String

Dim strFileLine As String
dataFileName = CStr(cboFamily.ItemData(cboFamily.Listlndex))

dataFileName = "data\components\" & dataFileName S ".dat"

If fileExists(dataFileName) Then

Open dataFileName For Input As #5
'load component list

Do Until EOF(5)

Line Input #5, strFileLine
listCom.Addltem strFileLine

Loop

Close #5

End If

End Sub

Private Function fileExists(ByVal filename As String)

lvi

'Checks if file exists

Dim length As Long

On Error GoTo FileDoesntExist

length = FileLen(filename!

fileExists = True

Exit Function

FileDoesntExist:

fileExists = False

End Function

Private Function showErrorMsg(errorEvent As String)

'Shows an error message

Dim intResponse As Integer

intResponse = MsgBox(errorEvent, vbExclamation, "Error!"

End Function

Private Sub listCom_Click()

componentPicked = True

End Sub

lvii

n
o

d
e
ta

il
s

SE
M

ES
TE

R
O

N
E

(F
YP

1)
.--

'

1
P

ro
je

ct
T

op
ic

S
el

ec
ti

on
an

d
E

nd
or

se
m

en
t

2
In

it
ia

l
L

it
e
ra

tu
re

R
e
v

ie
w

3
S

ub
m

is
si

on
of

P
re

li
m

in
ar

y
R

ep
o

rt
4

In
iti

al
P

ro
je

ct
D

es
ig

n
an

d
P

la
nn

in
g

5
Su

bm
is

si
on

of
P

ro
gr

es
s

R
ep

or
t

6
B

eg
in

P
ro

je
ct

W
or

k
(H

ar
dw

ar
e

Se
tu

p)
7

S
of

tw
ar

e
D

ev
el

op
m

en
t

P
la

nn
in

g
Su

bm
is

si
on

of
In

te
ri

m
R

ep
or

t
D

ra
ft

9
O

ra
l

P
re

se
n

ta
ti

o
n

10
Su

bm
is

si
on

of
In

te
ri

m
R

ep
or

t

SE
M

ES
TE

R
T

W
O

(F
Y

P
2)

1
C

on
tin

ue
P

ro
je

ct
W

or
k

(H
ar

dw
ar

e/
S

of
tw

ar
e)

2
Su

bm
is

si
on

of
Pr

og
re

ss
R

ep
or

t
1

3
C

on
ti

nu
e

P
ro

je
ct

W
or

k
{H

ar
dw

ar
e/

S
of

tw
ar

e)
4

S
ub

m
is

si
on

of
P

ro
gr

es
s

R
ep

o
rt

2
5

C
om

pl
et

io
n

an
d

Fi
na

l
T

o
u

ch
u

p
o

f
S

y
st

em
6

S
ys

te
m

T
es

ti
ng

an
d

V
al

id
at

io
n

7
Fi

na
l

R
ep

or
t/

D
is

se
rt

at
io

n
F

in
al

O
ra

l
P

re
se

n
ta

ti
o

n

le
ge

nd

p
ro

c
e
s
s

m
il

e
s
to

n
e

1
0

w
e
e
k

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

_
> O n _
•

a
s

Appendix E: Software Training Tool Screenshots

j£Zt_*An_**Krt

jtres."*._*»t!'s>

M_#P

___»_^«V3_V«__r%ia_S«ir Fv,>^K_*^3S_r_,4t?

lix

Lr__\-

^4*^_raE_^_«_w_

--Ml l-HW

fir^^KT,^&S_W»»
!*•« »J» » #

J
foui

.*W_fa

7f*W

lx

"5***."

lxi

*ww_.n ,-p- i

''ee^irfiessvh^t-;;

[ElBMIIIlSllUiflB . ^j
TlhlHe

•ee* wireless.net;

E?-^j^^r3^__^5^?i^^

lxii

k_wti

lxiii

Mllwafe. UouMBeiicKoti trie

file "eeFVPClient.eJie".

three

g&j£??z:&i*a4!ti&L

_j

:drii»'j vrflredjori

seven

%ewwir#less;;riet:i; «*&WS
hi*** * #^_H!

lxiv

_f^X___^____«_f:
___________•

_ft

orrow/rBtLrm components

6 Rtfjrad 1Cf gnu
b Relumed PICBT7
6 Rdumsd IFihhh
6 Rrtjimd IGVisita

E FdujiEd IDOnfmreiitfci
IS R«umnl HCI6F877

lxv

eleven

lxvi

client guide

Xrpcl-ad^;«i vrifllcrriirn; r"i_rfld ^o t^linn Hitbi!

ftreimsa»ctwitm I B-wrmMdiii M

lxvii

i^ounl 'If,verified,

am to return tnen

? "Ret-urn Selixi«l

step

sixteen

(on to save all changes ar
um lo the main menu.

sten

seventeen

A
p

p
en

d
ix

F
:

S
ys

te
m

O
p

er
at

io
n

/U
se

r
M

an
u

al

P
R

O
C

E
S

S
T

E
C

H
N

IC
IA

N
C

L
I
E

N
T

P
C

W
I
R

E
L

E
S

S

C
O

N
N

E
C

T
IO

N

S
E

R
V

E
R

P
C

S
o

ft
w

a
re

In
st

a
ll

a
ti

o
n

1.
C

op
y

th
e

co
m

pi
le

d
V

B
fi

le
e
e
F

Y
P

C
li

e
n

t.
e
x

e
to

a

fo
ld

e
r

o
n

th
e

P
C

.

2.
C

op
y

th
e

fi
le

de
fa

ul
ts

,s
nt

to
th

e
sa

m
e

fo
ld

er
.

3.
C

op
y

th
e

fo
ld

er
da

ta
\c

om
po

ne
nt

s
to

th
e

sa
m

e
fo

ld
e
r.

4
.

T
o

ru
n

th
e

c
li

e
n

t

so
ft

w
ar

e,
do

ub
le

cl
ic

k
o

n
th

e
e
e
F

Y
P

C
li

e
n

te
x

e

ic
o

n
.

1.
C

op
y

th
e

co
m

pi
le

d
V

B
fi

le
e
e
F

Y
P

S
e
rv

e
r.

e
x

e
to

a

fo
ld

e
r

o
n

th
e

P
C

.

2.
If

th
ey

ar
e

av
ai

la
bl

e,
co

py
A

c
c
o

u
n

tR
e
c
o

rd
.d

b
a
n

d

S
tu

d
e
n

tR
e
c
o

rd
.d

b
to

th
e

P
C

.
If

th
e
se

fi
le

s
d

o
n

o
t

ex
is

t,
th

en
th

ey
w

il
lb

e
au

to
m

at
ic

al
ly

cr
ea

te
d

by
th

e
pr

og
ra

m
.

3
.

T
o

ru
n

th
e

se
rv

e
r

so
ft

w
ar

e,
d

o
u

b
le

cl
ic

k
o

n
th

e
e
e
F

Y
P

S
e
rv

e
r.

e
x

e

ic
o

n
.

H
a
rd

w
a
re

In
st

a
ll

a
ti

o
n

(A
cc

es
s

P
o

in
t)

1.
C

o
n

n
ec

t
th

e
ac

ce
ss

p
o

in
t

to
th

e
p

o
w

er
ad

ap
te

r.

2.
C

on
ne

ct
th

e
ac

ce
ss

p
o

in
t

to
a

PC
us

in
g

a
st

an
da

rd
R

J-
4

5
E

th
e
rn

e
t

n
e
tw

o
rk

c
a
b

le
.

3
.

E
n

te
r

th
e

a
d

d
re

ss

ht
tp

:/
/1

92
.1

68
.0

.5
0

in
to

a
n

in
te

rn
e
t
b

ro
w

se
r

o
n

th
e

H
a
rd

w
a
re

In
st

a
ll

a
ti

o
n

(U
S

B
A

da
pt

er
)

1.
In

se
rt

th
e

W
iF

i
ad

ap
te

r'
s

d
ri

v
e
r

C
D

in
to

th
e

c
li

e
n

t

P
C

.

2.
O

nc
e

th
e

co
nf

ig
ur

at
io

n
w

iz
ar

d
st

ar
ts

,
be

gi
n

th
e

d
ri

v
e
r

in
st

al
la

ti
o

n
.

3.
C

on
ti

nu
e

cl
ic

ki
ng

"N
ex

t"
u

n
ti

l
th

e
d

ri
v

e
rs

a
re

in
st

a
ll

e
d

.

4
.

R
e
st

a
rt

th
e

c
li

e
n

t
P

C
.

5.
In

se
rt

th
e

W
ir

e
le

ss
G

U
S

B
A

d
ap

te
ri

nt
o

th
e

U
S

B
p

o
rt

o
ft

h
e

PC
.

4
.

P
C

.

T
he

co
nf

ig
ur

at
io

n
w

iz
ar

d
w

il
l

st
ar

tu
p.

5
.

S
e
t

th
e

d
e
si

re
d

co
nf

ig
ur

at
io

n
se

tti
ng

s,
as

d
e
ta

il
e
d

in
se

c
ti

o
n

3
.5

o
f

th
e

re
po

rt
.

6
.

D
is

c
o

n
n

e
c
t

th
e

E
th

e
rn

e
t

c
a
b

le
.

7
.

W
it

h
th

e
a
n

te
n

n
a

at
ta

ch
ed

,
tu

rn
th

e
ac

ce
ss

po
in

to
n

to
st

ar
tt

he
w

ir
e
le

ss
n

e
tw

o
rk

c
o

v
e
ra

g
e
.

1.
In

se
rt

th
e

W
iF

i
ad

ap
te

r'
s

d
ri

v
e
r

C
D

in
to

th
e

se
rv

e
r

P
C

.

2.
O

nc
e

th
e

co
nf

ig
ur

at
io

n
w

iz
ar

d
st

ar
ts

,b
eg

in
th

e
d

ri
v

e
r

in
st

a
ll

a
ti

o
n

.

3.
C

on
ti

nu
e

cl
ic

ki
ng

"N
ex

t"
u

n
ti

l
th

e
d

ri
v

e
rs

a
re

in
st

a
ll

e
d

.

4
.

R
e
st

a
rt

th
e

se
rv

e
r

P
C

.

5
.

In
se

rt
th

e
W

ir
e
le

ss
G

U
SB

A
da

pt
er

in
to

th
e

U
S

B
p

o
rt

o
ft

h
e

PC
.

6.
C

on
fi

gu
re

th
e

IP
ad

dr
es

s
a
s

d
e
ta

il
e
d

in
se

c
ti

o
n

3
.5

o
ft

h
e

re
po

rt
.

6.
C

on
fi

gu
re

th
e

IP
ad

dr
es

s
a
s

d
e
ta

il
e
d

in
se

c
ti

o
n

3
.5

o
f

th
e

re
po

rt
.

S
e
rv

e
r

In
it

ia
h

z
a
ti

o
n

1.
S

ta
rt

th
e

se
rv

e
r

so
ft

w
a
re

.

2.
T

he
m

es
sa

ge
"W

in
so

ck
A

P
I

E
n

a
b

le
d

"
sh

o
u

ld
b

e

di
sp

la
ye

d
in

th
e

co
ns

ol
e

w
in

d
o

w
.

3
.

C
li

c
k

o
n

"
st

a
rt

se
rv

e
r"

.

4.
T

h
e

so
ft

w
ar

e
w

il
ld

is
pl

ay
th

e
po

rt
s

th
at

ha
ve

b
ee

n
op

en
ed

o
n

th
e

se
rv

er
PC

.

5.
T

o
sw

it
ch

th
e

ac
ti

v
e

IP
,

c
li

c
k

o
n

th
e

"
sw

it
c
h

L
is

te
n

T
P

"
b

u
tt

o
n

.

6
.

T
h

e
a
c
ti

v
e

IP
is

m
a
rk

e
d

b
y

th
e

"(
li

st
en

)"
su

ff
ix

.

C
li

e
n

t
In

it
ia

li
z
a
ti

o
n

1.
O

pe
n

th
e

de
fa

ul
t,

sn
t

fi
le

w
it

h
no

te
pa

d,
or

an
y

o
th

e
r

te
x

t
e
d

it
o

r.

2.
E

d
it

th
e

[S
er

ve
rA

dd
re

ss
]

fi
e
ld

to
th

e
c
o

rr
e
c
t

se
rv

e
r

IP
a
d

d
re

ss
.

3
.

S
ta

rt
th

e
c
li

e
n

t
so

ft
w

a
re

.

A
c
c
o

u
n

t
C

re
a
ti

o
n

1.
S

ta
rt

th
e

c
li

e
n

t
so

ft
w

a
re

.

2
.

C
li

c
k

o
n

th
e

"
n

e
w

a
c
c
o

u
n

t"
b

u
tt

o
n

.

3.
F

il
li

n
al

l
th

e
ap

pr
op

ri
at

e
v

a
lu

e
s

in
to

th
e

fi
e
ld

s

pr
ov

id
ed

.

4
.

C
li

c
k

o
n

su
b

m
it

.

5
.

T
h

e
in

fo
rm

a
ti

o
n

w
il

l
b

e

as
se

m
bl

ed
in

to
a

si
ng

le
pa

ck
et

an
d

se
nt

ac
ro

ss
th

e
n

e
tw

o
rk

to
th

e
se

rv
e
r

IP
.

6.
T

h
e

pa
ck

et
re

ce
iv

ed
is

pr
oc

es
se

d
to

re
co

ve
r

th
e

or
ig

in
al

da
ta

.

7
.

A
c
c
o

u
n

tR
e
c
o

rd
.d

b
is

u
p

d
at

ed
w

it
h

a
n

ew
en

tr
y.

A
cc

ou
nt

L
o

g
in

1.
S

ta
rt

th
e

c
li

e
n

t
so

ft
w

a
re

.

2
.

C
li

c
k

o
n

th
e

"
st

u
d

e
n

t

lo
gi

n"
bu

tt
on

.

3
.

E
n

te
r

th
e

c
o

rr
e
c
t

st
u

d
e
n

t

ID
a
n

d
IC

n
u

m
b

e
r.

4
.

C
li

c
k

o
n

su
b

m
it

.

B
o

rr
o

w
co

m
p

o
n

en
ts

1
1

.
T

h
e

c
li

e
n

t
so

ft
w

a
re

ac
kn

ow
le

dg
es

th
e

lo
gi

n
as

au
th

en
ti

c
an

d
op

en
s

a
c
c
e
ss

to
o

th
e
r

fu
n

c
ti

o
n

s.

1.
S

ta
rt

th
e

c
li

e
n

t
so

ft
w

a
re

.

2.
L

og
in

as
a

us
er

.

5
.

T
h

e
in

fo
rm

a
ti

o
n

fr
o

m
th

e

lo
g

in
is

as
se

m
b

le
d

in
to

a
si

ng
le

pa
ck

et
.

10
.

A
pa

ck
et

is
se

nt
te

ll
in

g
th

e
cl

ie
nt

th
at

th
e

lo
gi

n
w

a
s

su
c
c
e
ss

fi
il

.

6.
T

h
e

pa
ck

et
is

re
ce

iv
ed

an
d

p
ro

ce
ss

ed
to

ex
tr

ac
t

th
e

or
ig

in
al

in
fo

rm
at

io
n.

7.
T

h
e

so
ft

w
a
re

re
tr

ie
v

e
s

th
e

c
o

rr
e
c
t

u
se

r
d

a
ta

.

8
.

T
h

e
IC

n
u

m
b

e
r

o
f

th
e

re
tr

ie
v

e
d

a
c
c
o

u
n

t
is

co
m

pa
re

d
to

th
e

u
se

r
su

pp
li

ed
nu

m
be

r.

9
.

If
th

e
n

u
m

b
e
rs

a
re

id
en

ti
ca

l,
th

e
se

rv
er

se
n

d
s

a
lo

g
in

su
cc

es
sf

ul
m

e
ss

a
g

e
.

3
.

C
li

c
k

o
n

th
e

"
b

o
rr

o
w

/

re
tu

rn
co

m
po

ne
nt

s"
b

u
tt

o
n

.

4
.

5
. 9
.

T
h

e
in

ve
nt

or
y

p
ag

e
fo

r
th

e
c
u

rr
e
n

t
u

se
r

w
il

l
b

e

sh
o

w
n

.

A
re

qu
es

t
is

se
n

tf
o

r
th

e
cu

rr
en

tu
se

r'
s

ex
is

ti
ng

d
a
ta

.

T
h

e
c
li

e
n

t
so

ft
w

a
re

di
sp

la
ys

th
e

ex
is

ti
ng

in
ve

nt
or

y.

A
dd

it
io

na
l

co
m

po
ne

nt
s

ar
e

se
le

ct
ed

b
y

se
le

ct
in

g
th

em
fr

om
th

e
co

m
po

ne
nt

lis
t,

th
en

cl
ic

ki
ng

th
e

"a
d

d
to

m
y

ba
sk

et
"

b
u

tt
o

n
.

10
.

T
o

ch
an

ge
th

e
am

ou
nt

,
se

t
th

e
d

e
si

re
d

v
a
lu

e
in

th
e

Q
ua

nt
it

y
te

xt
fi

el
d.

1
1

.
O

n
c
e

th
e

se
le

c
ti

o
n

is

6
.

T
h

e
a
c
c
o

u
n

t
in

fo
rm

a
ti

o
n

fo
r

th
e

us
er

re
qu

es
ti

ng
th

e
d

a
ta

is
c
o

ll
e
c
te

d
a
n

d

as
se

m
bl

ed
in

to
a

pa
ck

et
.

7.
T

he
pa

ck
et

is
se

nt
ba

ck
to

th
e

c
li

e
n

t.

co
n

fi
rm

ed
,

cl
ic

k
o

n
th

e
"
C

o
n

fi
rm

It
e
m

s"
b

u
tt

o
n

.

1
2

.
T

o
re

tu
rn

to
th

e
m

a
in

m
en

u
,

cl
ic

k
o

n
th

e
"B

ac
k

to
m

a
in

m
e
n

u
"

b
u

tt
o

n
.

13
.

T
h

e
se

rv
er

up
da

te
s

th
e

u
s
e
r'

s
a
c
c
o

u
n

t
d

a
ta

to

re
fl

ec
ta

ll
ch

an
ge

s.

R
et

u
rn

co
m

po
ne

nt
s

1.
S

ta
rt

th
e

c
li

e
n

t
so

ft
w

a
re

.

2.
L

o
g

in
as

a
us

er
.

3.
C

li
c
k

o
n

th
e

"b
o

rr
o

w
/

re
tu

rn
co

m
po

ne
nt

s"
b

u
tt

o
n

.

4.
T

h
e

in
ve

nt
or

y
pa

ge
fo

r
th

e
c
u

rr
e
n

t
u

se
r

w
il

l
b

e

sh
o

w
n

.

5.
A

re
qu

es
ti

s
se

nt
fo

r
th

e
cu

rr
en

tu
se

r'
s

ex
is

ti
ng

d
a
ta

.

6
.

T
h

e
a
c
c
o

u
n

t
in

fo
rm

a
ti

o
n

fo
r

th
e

us
er

re
qu

es
ti

ng
th

e
d

a
ta

is
c
o

ll
e
c
te

d
a
n

d

as
se

m
bl

ed
in

to
a

pa
ck

et
.

7.
T

h
e

p
ac

k
et

is
se

n
tb

ac
k

to
th

e
cl

ie
n

t.

1
0

.
E

n
te

r
th

e
c
o

rr
e
c
t

v
e
ri

fi
c
a
ti

o
n

c
o

d
e

to

a
u

th
o

ri
z
e

th
e

tr
a
n

sa
c
ti

o
n

.

9
.

T
h

e
c
li

e
n

t
so

ft
w

a
re

di
sp

la
ys

th
e

ex
is

tin
g

in
ve

nt
or

y.

C
om

po
ne

nt
s

ar
e

re
tu

rn
ed

by
se

le
ct

in
g

th
em

an
d

cl
ic

ki
ng

on
th

e
"R

et
u

rn
se

le
c
te

d
it

e
m

s"
b

u
tt

o
n

.

1
1

.
T

o
re

tu
rn

to
th

e
m

a
in

m
en

u
,

cl
ic

k
o

n
th

e
"B

ac
k

to
m

a
in

m
e
n

u
"

b
u

tt
o

n
.

