
IMPLEMENTATION OF SIMPLESCALAR

PORTABLE INSTRUCTION SET

ARCHITECTURE (PISA) ON FPGA

By

ABDUL AZIM BIN ABDULLAH

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme

in Partial Fulfillment ofthe Requirements

for the Degree

Bachelor ofEngineering (Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi Petronas

Bandar Sen Iskandar

31750 Tronoh

Perak Darul Ridzuan

© Copyright 2006

by

Abdul Azim bin Abdullah, 2006

CERTIFICATION OF APPROVAL

Implementation of SimpleScalar

Portable Instruction Set Architecture (PISA) on FPGA

by

Abdul Azim bin Abdullah

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

fai Hiung
Lecturer

Electrical &Electronic Engineering
Universiti Teknologi PETRONAS
Bandar Seri Iskandar, 31750 Tronoh
Perak Darul Ridzuan, Malaysia

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

DECEMBER 2006

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

ABSTRACT

This report describes the current progress of final year project entitled Implementation of

SimpleScalar Portable Instruction Set Architecture (PISA) on FPGA. The objectives of

this study are to learn computer system architecture, to sharpen skill in programming and

debugging a program and to complete study in Universiti Teknologi PETRONAS.

Problem statements will explain the reasons behind of this study was conducted. Firstly,

there are few microprocessors in the market currently can be reconfigurable. Secondly,

there is a need to design a microprocessor which can be used freely for academic

purposes. Thus, in this study, we will focus on the designing of a microprocessor that is

reconfigurable, easily understood and freely available for academicals purposes.

Methodology will describe way on how this project will be carried out. There are three

main steps to be taken which are: 1) Studying the SimpleScalar instruction set

architecture; 2) Programming and simulating by using VHDL programming language 3)

Implementing the SimpleScalar architecture in VHDL and FPGA.

In the Discussion, a detail contents regarding the project will be explained. Contents

included are SimpleScalar's instruction format, register and operation cycle, software and

hardware used in the project, the SimpleScalar implementation in VHDL and VHDL

simulation. The further details will be discussed later.

Finally, this report is concluded in the Conclusion. Recommendations describe the

suggestions that can be done to the current project to improve them in the future.

-1 -

ACKNOWLEDGEMENT

AlhamduliUah, after 1 year, this project has reached its end. Lots of experience and

knowledge were gained throughout the period. There are several individuals, who should

be praised and mentioned here. Without them, this project will not able to be done.

I would like to express the greatest gratitude to Merciful God, Allah S.W.T for His

blessings and mercy, which have helped and guided me in during this project.

My almost gratitude goes to my supervisor, Mr. Lo Hai Hiung. He given me advices,

ideas, suggestions and ensured that this project will be beneficial to both parties. He

supervised me since the first appointment and always kept track of my progress. I really

appreciate all the hard work and the time spent, despite his bundle of workload.

I would also like to thank my Computer System Architecture lecturers, Mr. Patrick

Sebastianand Dr. Yap Vooi Voon. Theywere very helpful in givingtheoretical, guidance

and hands on experience regarding computer architecture. Aside from that, a special

thank you to all FYP series lecturers, who was giving me priceless advices on improving

my skills in the area of researching, writings and presenting. Not to forget, thanks also to

Ms. Siti Hawa who is always supportive.

Last but not least, million thanks to my parents and my fellow colleagues for the all

cooperation and support. The encouragement from the people above will always be

pleasant memory throughout my life.

-11-

TABLE OF CONTENTS

ABSTRACT i

ACKNOWLEDGEMENT ii

1. INTRODUCTION 1

1.1 Background Study 1

1.2 Problem Statements 2

1.3 Objectives 3

2. LITERATURE REVIEW 4

2.1 SimpleScalar Instruction Set Architecture 4

2.1.1 Instruction Set 4

2.1.2 Instruction Set Architecture 5

2.2 Implementation on VHDL and FPGA 6

2.2.1 VHDL 6

2.2.2 FPGA 7

3. METHODOLOGY 9

4. DISCUSSIONS 11

4.1 Instruction Format 11

4.2 Register 14

4.3 Operation Cycle 16

4.4 SimpleScalar's Operation Cycle 17

4.5 Software 19

4.5.1 Crimson Editor 19

4.5.2 C Compilers 20

4.5.3 GHDL 21

4.5.4 Altera Quartus II Web Edition 22

4.6 Hardware 25

4.6.1 DSP Development Kit Cyclone II 25

- in-

4.7 SimpleScalar in VHDL 26

4.7.1 Fetch 26

4.7.2 Decode 29

4.7.3 Control 31

4.7.4 Execute 33

4.7.5 Memory 35

4.8 VHDL Simulation 38

4.8.1 Unsigned Addition 38

4.8.2 OR Operation 39

4.8.3 Shift Right Logical 39

5. CONCLUSION 40

6. RECOMMENDATIONS 41

7. REFERENCES 42

- IV-

LIST OF ILLUSTRATIONS

LIST OF FIGURES

Figure 1: FPGA Workflow 8

Figure 2: Methodology Steps 9

Figure 3: Instruction Format 11

Figure 4: Instruction Set 13

Figure 5: Register 14

Figure 6: General Operation Cycle 16

Figure 7: SimpleScalar's Operation Cycle 17

Figure 8: SimpleScalar's Operation Cycle (C Language) 18

Figure 9: Crimson Editor 19

Figure 10: Borland C 20

Figure 11: GHDL 21

Figure 12: Altera Quartus II Web Edition 22

Figure 13: Basic Design Flow 23

Figure 14: Altera Cyclone II EP2C35 FPGA 25

Figure 15: SimpleScalar's Operation Cycle (VHDL Implementation) 26

Figure 16: SimpleScalar Instruction (Register & Immediate Format) 27

Figure 17: SimpleScalar Opcodes (Register & Immediate Format) 29

Figure 18: SimpleScalar Immediate Fields (Register Format) 30

Figure 19: SimpleScalar Immediate Fields (Immediate Format) 30

Figure 20: Register Selection 31

Figure 21: Register-Memory 32

Figure 22: 32-bitFull Adder 34

Figure 23: Read Cycle TimingWaveforms 36

Figure 24: Write Cycle Timing Waveforms 37

Figure 25: Unsigned AdditionOperation 38

Figure 26: OR Operation 39

Figure 27: Shift Right Logical 39

- V-

LIST OF TABLES

Table 1

Table 2

Table 3

Definitions of SimpleScalarArchitecture Registers

Quartus II Web Edition Device Support

Full Adder Truth Table

TABLE OF APPENDICES

- vi -

15

22

33

43

CHAPTER 1: INTRODUCTION

1.1. Background Study

Modern processors are incrediblely complex marvels of engineering that are becoming

increasing hard to evaluate. Simplescalar tool set performs fast, flexible and accurate

simulation for modernprocessors that implement the Simplescalar architecture.

According to D. Burger [1], Simplescalar simulators can emulate the Alpha, PISA, ARM,

and x86 instruction sets. The tool set includes a machine definition infrastructure that

permits most architectural details to beseparated from simulator implementations. All of

the simulators distributed with the current release of Simplescalar can run programs from

any of the above listed instruction sets. Complex instruction setemulation (e.g., x86) can

be implemented with or without microcode, making the Simplescalar tools particularly

useful for modeling CISC instruction sets.

The advantages ofthis tool are flexibility, portability, extensibility and performance. This

tool set is portable, requiring only that the GNU tools may be installed on the host

system. The tool set has been used on multiple platforms such as Linux/x86, Win NT,

SPARC and Solaris. The tool set is easily extensible. The instruction set is designed to

support easy annotation of instructions, without requiring a retargeted compiler for

incremental changes. The instruction definition method along withthe ported GNU tools

makes new simulators easy to write and the old ones even simpler to extend. Finally, the

simulators have been aggressively tuned for performance and can run codes approaching

"real" sizes in tractable amounts of time. [1]

-1-

In this project, I will design a Portable Instruction Set Architecture (PISA)

microprocessor in VHSIC Hardware Description Language (VHDL) and implement it on

FPGA.

The PISA instruction set is a simple MlPS-like instruction set maintained primarily for

instructional use. A GNU GCC-based cross-compiler and pre-built libraries are also

available for this target. The PISA target is particularly useful for computer engineering

instruction as the tools can be built on a wide range of host platforms, including

Linux/x86, Win2000, SPARC Solaris, and others. [1]

1.2. Problem Statements

In the current design of microprocessor, there are few microprocessors which can be

reconfigurable. "Reconfigurable" term means the memory addressing and registers of the

given microprocessor can be adjusted according to the author's preferences. Currently, all

microprocessor available in the market, the function units, memory addressing and

registers are fixed and cannot be reconfigured. Therefore, this project is attempting to

design a microprocessor which is reconfigurable.

Currently, there are a lot of microprocessors designs available today from Intel,

Motorola, SPARC and others. However, not all of them are easy to be understood by

students who justbegin their learning in computer system. In the learning curve, to know

and understand the concept of computer system is by learning from the simplest form of

digital system, logic circuits until the hardest part, which is the memory system.

SimpleScalar, which is based on MIPS, provides an easy and simple architecture for

study. In addition, it is free for academic purposes and open source for development. In

this project, the simplest microprocessors willbe design.

-2-

From studies made, it is found that Simplescalar PISA can be implemented as a

microprocessor. Besides it is free for non-commercial use, it is also reconfigurable and

flexible to all platforms. PISAwhich is like MlPS-like instruction is good architecture for

study, because it is easy to understand.

1.3. Objectives

To implement SimpleScalar PISA in FPGA.

SimpleScalar tool set is used to evaluate modern processors using the SimpleScalar

architecture. However, it is only available in software based. The source code must be

compiled first before it can be executed. Up to date, there is no hardware based

implemented for SimpleScalar PISA. Therefore, in this project, I will implement the

SimpleScalar PISA in hardware called FPGA.

To design and programcircuitsusingVHDL language.

My interest is programming and I have learnt a lot of languages such as C, C++, HTML,

Visual Basic, MATLAB and PHP. I also had experienced in microcontrollers

programming. However, VHDL is one of the programming languages I did not manage

to learn. Therefore, this projectis able to help me to gainnew knowledge and experience

in programming the digital circuit using VHDL language.

To apply and relate computersystemarchitecture.

In the computer system subject, I have learnt digital logic gates, full adder system, basic

computer architecture, register design and memory design. From this project, I hope I

will be able to apply and relate the conceptof computersystem subject learnt.

-3-

CHAPTER 2: LITERATURE REVIEW

This project can be divided into two major partitions which are SimpleScalar Instruction

Set Architecture and Implementation on the VHDL and FPGA.

2.1. SimpleScalar Instruction Set Architecture

2.1.1. Instruction Set

Instruction set is a collection of all operations possible in a machine's language. There

are many types of instructions in a computer system, such as arithmetic instructions, data

movement instructions, control or branch instructions and many more.

In arithmetic instructions, it will accept one or more operands and produce a result.

Besides, it may also set a flag to indicate that the result of the operation was a negative

number. In data movement instructions, it moves data within the machine and to or from

input/output devices. In control or branch instructions, it affects the order in which

instructions are performed, or control the flow of the executing program, much as goto,

for, and function calls do in C. [2]

Every instruction must contain encodings within it to specify the following 4 things,

either explicitly or implicitly:

1. Which operation to perform.

2. Where to find the operand or operands, if there are operands.

3. Where to put the results, if there is a result.

4. Where to find the next instructions.

Source: John L. Hennessy &David A. Patterson, "Computer Architecture: A Quantitative Approach" [2]

-4-

In SimpleScalar, the instruction set can be divided into 4 groups, which are:

1. Control Instruction

2. Load/Store Instruction

3. Integer Instruction

4. Floating point Instruction

Source: DougBurger, ToddM. Austin, "The SimpleScalar Tool Set, Version 2.0"[1]

(Refer to Appendix 1: List ofSimplescalar Instruction Set for more details)

2.1.2. Instruction Set Architecture

Instruction set architecture is the collection of instructions and resources. It includes the

instruction set, the machine's memory andall of the programmer-accessible registers in

the CPU and elsewhere in the machine. [3]

The SimpleScalar architecture canbe divided intoparts:

• Instruction set principles.

• Memory hierarchy and registerdesign.

• 5 stages of pipelining.

• Level 1 and level 2 cache.

Source: Doug Burger, ToddM, Austin, "The SimpleScalar Tool Set, Version 2.0" [1]

-5-

2.2. Implementation on VHDL and FPGA

2.2.1. VHDL

VHDL is an acronym of VHSIC Hardware Description Language. VHSIC is another

acronym which stands for Very High Speed Integrated Circuits.

In digital design, the VHDL language is used for documentation, verification and

synthesis of large digital system. It allows the system can be described in the same code

to achieve these goals at one time, thus saving a lot of effort. [6]

There are three different approaches are used to describe hardware in VHDL. They are

structural, data flow and behavioral methods of hardware description. In the beginning,

the design behaviour is described (modeled) and verified (simulated). By using the

synthesis tools, the design is able to be translated into real hardware (gates and wires). At

this point, they are mapped onto a programmable logic device sucha CPLD or FPGA. [6]

The VHDL standards are developed by IEEE (Institute of Electrical and Electronics

Engineers). Currently, there are two standards widely used, which are VHDL'87 (STD

1076-1987)version and VHDL'93 (adopted in 1994). [6]

-6-

2.2.2. FPGA

FPGA is an acronym which stands for Field Programmable Gate Array. The term of

"Field Programmable" refers to the ability to change the operation of the device, while

"Gate Array" refers to the matrix of logic cell surrounded by a peripheral of I/O cells.

Simply, FPGA are programmable digital logic chips which can be program to do digital

function. [7]

FPGAs come in a wide variety of sizes and many different combinations of internal and

external features from different manufacturers. Although they are different in many

things, they have a common, which is composedof programmable logic blocks. Each of

these blocks contains registers and logic elements, which are arranged in a grid and tied

together using programmable interconnections. [7]

In a typical FPGA, the logic blocks that make up the bulk of the device are based on

lookup tables (of perhaps four or five binary inputs) combinedwith one or two single-bit

registers and additional logic elements such as clock enables and multiplexers. These

basic structures may be replicated many thousands of times to create a large

programmable hardware fabric. [7]

In more complex FPGAs these general-purpose logic blocks are combined with higher-

level arithmetic and control structures, such as multipliers and counters, in support of

common types of applications such as signal processing. In addition, specialized logic

blocks are found at the periphery of the devices that provide programmable input and

output capabilities. [7]

-7-

Figure 1 shows the general workflow when working with FPGA.

1'

Compile design

1'

Download design onto FPGA

''

Run thp TJPriA

Figure 1: FPGA Workflow

First step is to describe the logic function that wants to be developed. Draw schematic or

write program to describe the particular function.

Then, compile the design. The logic function designed is compiledby using the software

provided from FPGA vendor (e.g.: Xilinix ISE, Altera Quartus, Active VHDL and etc).

This will create a binary file that can be downloaded into the FPGA.

The next step is to download the design onto FPGA. Connect cable from the computer to

the FPGA and download the binary file created to the FPGA.

Finally, run the FPGA. If successfully, the FPGA will behave according to the logic

function. If not, repeat the steps again to re-develop.

Source: fpga4fun.com, What are FPGAs? [20]

CHAPTER 3: METHODOLOGY

Studying the Simplescalar Learning VHDL programming
Instruction Set Architecture language

1'

Implementing the Simplescalar
microprocessor in VHDL

''

Implementing the Simplescalar
microprocessor in FPGA

Figure 2: Methodology Steps

Figure 2 above shows the steps I will be taking during implementation of this project.

The first part is to study the Simplescalar Instruction Set Architecture. This involves

understanding the source code given, what instruction sets are to be used, how to set the

memory addressing and registers and many more. Besides that, I also will have to

simulate the microprocessors by using the tools given in order to help me to understand

how it works.

Parallel with the Simplescalar architecture studies, I will have to learn the VHDL

programming language. This requires understanding of the digital system design

concepts, writing the source codes and doing some programming exercises given in the

books. The software I will be using in VHDL programming is Altera Quartus II software.

Then, I will have to implement the Simplescalar microprocessor in VHDL. This step

requires me to convert from the source code given and implement it by using VHDL

programming languages I have learnt. This step requires a lot of programming and

debugging the program.

Final step of this project is to implement the Simplescalar microprocessor which has been

designed by using VHDL on the FPGA. This step requires a lot of programming,

debugging the program and troubleshooting the hardware.

The schedule of this project during Final Year Project I and II can be referred to Planning

Schedule on Appendix 2: Planning Schedule.

-10-

CHAPTER 4: DISCUSSIONS

4.1. Instruction Format

The format of an instruction is usually depicted by a rectangular box symbolizing the bits

of the instruction, as they appear in memory words or in a control register. The bits are

divided into groups or parts called fields. Each field is assigned a specific item, such as

the operation code, a constant value, or a register file address. The various fields specify

different functions for the instruction and when shown together, constitute instruction

format. [9]

Register format

16-annote

63

Immediate format

16-annote

63

Jump format

16-annote

63

16-opcode 8-rs 8-rt 8-rd 8-ru/shamt

32 31

16-opcode 8-rs 8-rt 16-imm

32 31

16-opcode 6-unused 26-target

32 31

Figure 3: Instruction Format

Source: Doug Burger, ToddM. Austin, "The SimpleScalar Tool Set, Version 2.0" [1]

-11-

The three instruction formats for the SimpleScalar are illustrated in the Figure 3.

SimpleScalar architecture is derived from MIPS-IV instruction set architecture.

Therefore, it has same instruction set as MIPS-IV. All instructions are 64 bits in length.

The instructions can be divided into three formats: register, immediate andjump. [1]

The register format is used for computational instructions. The immediate format

supports the inclusion of a 16-bit constant. The jump format support specification of 24-

bit jump targets. The register fields are all 8 bits, to support extension of the architectured

registers to 256 integers and floating point register. Each instruction format has a fixed-

location, 16-bit opcode field that facilitates fast instruction encodings. [1]

8 bits, 2A8 = 256 integers from 00000000 to 11111111

The bits are divided into groups or parts called fields. Each field is assigned a specific

item, such as operation code, a constant value or a register file address.

The operation code of an instruction, often shortened to "opcode", is a group of bits in the

instruction format. This determines which operations to be conducted by the processor.

The operation of instruction is differentiate by using opcode. For example, the opcode for

ADD instruction is 0x40 or 01000000 while the opcode for SUB instruction is 0x44 or

01000100. In SimpleScalar, the opcode is in hexadecimal. However, the opcodes of all

instructions are 8 bits. The instruction format for the opcode is 16 bits. Therefore, the

remaining 8 bits must be filled by using either zero fill or sign extension. In this

architecture, zero-fill is specified for the operand. [1]

Constant value is the immediate value available in the instruction. In SimpleScalar, the

value supported for the immediate value is from 0 to 65536. [1]

For full instructions, please refer to Appendix 3: SimpleScalar Instructions for.

-12-

File pisa.def defines all aspects of the Simplescalar instruction set architecture. Each

instruction set in the architecture has a DEFINST macro call. Here, shows example on

how the instructions are organized and defined in the source code;

idefine ADD_IMPL
(

if (OVER{GPR(RS), GPR(RT)})
DECLARE_FAULT(md_fault_overf1ow) ;

^— semantics
SET GPR(RD, GPR(RS) + GPR(RT));

}
DEFINST(ADD,

"add",
IntALU,
DGPR(RD), DNA,

^--- opcode
0x40,-*-
"d, s, t",^y instruction
F ICOMP,
DGPR(RS), DGPR{RT),

flags

DNA)

Figure 4: Instruction Set

Source: ToddM. Austin, "SimpleScalar Hacker's Guide" [8]

Figure 4 shows on how the instruction set is defined in the pisa.def. The instruction is

ADD arithmetic operation. The operationwill involve:

1. Reading values from general purpose register of RS and general purpose register of

RT.

2. Doing the operation, adding between general purpose register of RS and general

purpose register of RT.

3. Writing (Storing) the results in the general purpose register of RD.

The opcode of this instruction is 0x40 in hexadecimal or 01000000 in binary. Different

operation will use different opcode. Since the instruction is arithmetic operation between

integers, therefore the functional unit requirement is IntALU. This operation also has

helper function which is available to assist in the construction of instruction expression.

OVER(GPR(RS), GPR(RT)) function is an overflow checking. This will check whether

the results of the operation given have overflow or not. If overflow has occured, a

function DECLARE_FAULT(md_fault_overflow) will be called. [8]

-13

4.2. Register

This module implements the SimpleScalar architected register state, which includes

integer and floating point registers and miscellaneous registers. The architected register

state is as follows:

Integer Register File:

(aka general-purpose registers, GPR's]

+ +

| SrO Esrc/sink 0) |
+ +

I Sri |

+ +

I • I

I • I

I • I

+ +

1 Sr31 |
+ +

Miscellaneous Registers:

+

I PC

+

| HI

+

| LO

+

Floating point Register File:

single-precision: double-precision:
+ + + +

| SfO ! Sfl (for double) | | FCC
+ + + +

I Sfl I
+ +

I

I •

+

j Sf30
+

I $f31

+

.+ +

| $£31 (for double) |

-+ +

| Program Counter

-+

| Mult/Div HI val

•+

| Hult/Div LO val

-+

| FP codes

Figure 5: Register

Source: SimpleScalar SourceCode (regs.h) [10]

The floating point register file can be viewed as either 32 single-precision (32-bit IEEE

format) floating point values $ft) to $f31, or as 16 double-precision (64-bit IEEE format)

floating point values $f0 to $f31. [10]

-14-

Table below shows the definitions of SimpleScalar architecture register.

Hardware Name Software Name Description

$0 $zero zero-valued source/sink

$1 Sat reserved by assembler

$2-$3 $v0-$vl fn return result regs

$4-$7 Sa0-$a3 fn argument value regs

$8-$15 $t0-$t7 temp regs, caller saved

$16-$23 $s0-$s7 saved regs, callee saved

$24-$25 $t8-$t9 temp regs, caller saved

$26-$27 $k0-$kl reserved by OS

$28 $gP global pointer

$29 $sp stack pointer

$30 $s8 saved regs, caller saved

$31 $ra return address reg

Shi $hi high result register

$lo Sio low result register

$f0-$f31 $fD-$f31 floating point registers

$fcc $fcc floating point condition code

Table 1: Definitions of SimpleScalar architecture registers

Source: DougBurger, ToddM. Austin, "The SimpleScalar Tool Set, Version 2.0" [1]

These registers defined in SimpleScalar architecture with their hardware name, software

name and description. Take note, the registers used by the SimpleScalar is the same with

MIPS IV ISA. [1]

-15-

4.3. Operation Cycle

The basic operation cycle of a computer is controlled by a control unit that puts into the

following steps:

Step 1: Fetch the instruction from memory into a control register

Step 2: Decode the instruction

Step 3: Locate the operands used by the instruction

Step 4: Fetch operands from memory (if necessary)

Step 5: Execute the operation in processor register

Step 6: Store the results in the proper locations

Step 7: Repeat Step 1 with next instruction

Figure 6: General Operation Cycle

Source: M. Morris Mano, Charles R. Kime, "Logic and Computer Design Fundamentals "[9]

There is a register in the computer called the Program Counter (PC) that keeps track of

the instructions in the program stored in the memory. The PC holds the address of the

instruction to be executed next and is incremented by one each time a word is read from

the program in memory. The decoding done in the Step 2 determines the operation to be

performed and the addressing mode of the instruction. The operands in Step 3 are located

from the addressing mode and the address field of the instruction. The computer executes

the instruction, storing the results and returns to Step 1 to fetch the next instruction in

sequences. [9]

-16-

4.4. SimpleScalar's Operation Cycle

1 r

Fetch —• Dispatch —• Scheduler —• Execute —> Writeback

Memory
Scheduler

Memory
if

Commit
i ' 1 r

I-Cache D-Cache

Figure 7: SimpleScalar's Operation Cycle

Source: Doug Burger, ToddM. Austin, "The SimpleScalar Tool Set, Version 2.0" [1]

Figure 7 shows the operation cycle of SimpleScalar processors. The concept of

SimpleScalar's operation cycle has similar to the general operation cycle we have

discussed before. The only different is the term used in Dispatch process, Scheduler

process and Writeback process. However, their purpose is the same as the general

operation cycle. There are 6 cycles of SimpleScalar processors, which are Fetch,

Dispatch, Execute, Writeback and Commit. Each cycle will be discussed later.

-17-

ruu init ()

for (;;) {

ruu commit(); 'l
ruu writeback();

lsq refresh();

ruu issue{);

ruu dispatch() ;

ruu fetch();

}

Figure 8: SimpleScalar's Operation Cycle (C Language)

Source: SimpleScalarSource Code (sim-outorder.c) [10]

Figure 8 shows the C language implementation of the SimpleScalar's operation cycle. In

sim-outorder.c, this operation cycle is implemented as pipelining. It is implemented

reversely from Commit to Fetch. According to Doug Burger, this will eliminate this/next

state synchronization and relaxation problems. [1]

-ll

4.5. Software

For this project to be completed and successful, I have used software for development.

There are editors, compilers, synthesizers and simulators software. The development

platform of this project will be under Windows XP operating system.

4.5.1. Crimson Editor

;DE£-<6tf|Baia[&; ft fetaj^- n Mfttf ftinsflSPIrr ^3=1 • » •!? &\
« uffteck^vM [<J Bbtanwyhi[6 i^ratWhvhi | A EvvvJwHxACh.riii1 \ 0 ***wcK*-r*™y<rfrf] * iBnQMukvhd] * MLcorf |

package aElttliKtie Is —

prrteduee iTnpl add lln&I, ici2 r m ki.it_vm;tar; mtr : nut bic_7*:[iicrj;

end flrit&oecter

preceding inrl_adi (inci, ir.W ; J-Xi !:1;_«cct;?c; intr j oat bi.i_vectm'i Is

variable epl
variable opJ

vaiiablfl opi

variable Cir.

fai^_vcctor(; =0 tn«'ic:.'j_i;i j
-

far IndM In spr'-i'v"-v^ rn~~'' leap

cln :~ cot;

•p=(tndeKj :* opl[lBflsiri tit oplfindcx) «: cici;

cor :- Uocl(ind=t] «« cp: (index}! o- [cin ia3 j=pl(l=flc.! no: so: (index) J) 1;

inrr i- cor:

nna lapl add;

•a5*OB= beds' mtttmetic 111

»« Sr,r..,,!.;<„;-,,.'•,,..11;

sittity alrvlejcalar 13
End al3BFl-SClli£;

HEsBitttLtiire b*

1

avicur of sinpiejcaLbi is

jj
133 i tswJMis"-'''H^pEcicci|BvB

Figure 9: Crimson Editor

Crimson Editor is a professional source code editor for Windows platform. It can be

downloaded free from the Internet at http://www.crimsoneditor.com/.

This software supports many programming languages such as HTML, C/C++, Perl, Java

and even VHDL. One features of this editor is it enables syntax highlighting of all

programming languages and can be extend for other programming languages. [11]

-19-

4.5.2. C Compilers

dC.- •IC'IbUCUMLNrSANDJLIIIHbSUlDMIKMYDuaMINlliWtUJlClltCMJlI.CII't

Pfto Edt Swch TO* ftWtt Mpt TDd Mug OnBoa WITdM H#

dlSTjCHBl.
^include ;cuniu.h>

typndrrf aigw.il 1*1 ayord_
typ«dof float ofloatt;

typed** daihle dfJost_t?
typedel feBdtqKed lit Hard t;

typadef word t md sddr t;

ty&edcf lut *1wrt~hal.,50;

typedeE sword t udjjpE^t(32J „-

//typvdat d*]o*t_t *d_fpr_e|l«f,<

typcdcf anion f

ailoalt *(35^;
dflo*t_c draaj;

i »d_£pc~t*

typedel •tiuet I

suocd t hi,Id;
lit ice;

1 nd ctrlj;

•tract cs0s_e |
md ijpr c. cpq A;

ind fpr t reg F;

mTctcT_t teg_C;
jnd_Addr t reg PC;
md__e[ldc_t tegJJPCr

I SlXtMJ&l » I

// ?2 Jjita, 4 byte

Figure 10: Borland C

I have used two C compilers, which are Borland C and Microsoft Visual Studio. Both

programs can be usedto edit, view and compile a C source codes. However, I will not be

using this program to compile the SimpleScalar source codes. Rather than, these

programs are used to check and test the SimpleScalar source codes. These involving

checks the size of an arrays, the syntax used and variables used in the SimpleScalar

source code.

-20-

4.5.3. GHDL

Figure 11: GHDL

GHDL is one of software I had used in this final year project. GHDL is a VHDL

simulator, using the GCC technology and implementing the VHDL language according to

the VHDL 1987 (IEEE 1076-1987) and VHDL 1993 (IEEE 1076-1993) standards. With

GHDL, the program and designed written in VHDL can be compiled into executable

files. With the binary files created from compilation, the design can be simulated. [12]

GHDL is an open source project and is free under GNU General Public License. Under

the GNU license, this software can be redistributed and modified. It is free from

restriction and license issues that arise with commercial simulators. Currently, there are

two processors which are successfully compiled andrun by using GHDL. There are DLX

processors and LEON1 SPARC processors. [12]

However, it has disadvantage over the commercial simulator software. The design

created does not be able to synthesis. It cannot translate the design into netlist and not be

able to transfer onto FPGA. [12]

-21-

4.5.4. Altera Quartus II Web Edition

gFfc Edt *» MlKt AUgnwti rracESHg Tool) Wtnlw H*

1V? ifsSTps 1I|&f'«*»t«[»,"V'»[fclfl>[»l*
jjg^ iMamortiiFfrTI

"foHiwady[IS Ffegjtf&ajgiUHtt I

E SIMPS vhd Ig fflltfi^M | g *co**^ Ifi MoJavbJ |̂ C«¥i*«Hap- Ugl SIMPS wJ |jfrSMLbhwHiaoM | B riwg<*d
libcifY inee;

uac ieee.3td_legic_ilM.aH;
use ieecatd logic nflClt.all;

(clock, Ee

PCJjua s
inoc out

end aiHPSi

X i in srd logic;

l bit vector [7 dovnCO D|;|
(31 dounto 0)i;

at 3IBP3

eompenflnc. fetch
poctliiVBta s cue bit vector (31 dawned Of j

inscb : cue bit~vector (31 do-trca 0|?
PCin : In biejnsMoe (7 dovnta OJ;
cluck, cesec : in 9td_loglc):

end component

component decode

potMiMCa s 4.M bit_yeetoE(31 cSonntQ Q|;
iMfli : in hit vector 131 daanca 0) j
opcode : ouu blt_vectcir [IS doimto Q);
radatn bus ; out blc vector[31 doanto 0);

.S^im/l!?!*™™^ EtfiaMo A.lnto^Wa^A_Q!^y*i,g j^jiroi ASi4»«**wlJ

Figure 12: Altera Quartus II Web Edition

Themain software for VHDL development will be Quartus II Web Edition. This software

can be obtained free from Alterasite, http://www.altera.com/. A license is required and it

can be enquired freely at the particular website. This software supports Cyclone II of

device family, which is the hardware thatI will be using for FPGA. [13]

Device Family
MAX II

MAX 3000A

MAX 7000AE

MAX 7000B

MAX 7000S

Cyclone II
Cyclone

FLEX 10K®
FLEX® 10KA

ACEX®
FLEX 6000

Device Supported

All devices

Table 2: Quartus II Web Edition Device Support

Source: Altera, Quartus II Web Edition Software [13]

-22-

Create New

•Project •Assignment.

Modify Settings
to Improve

Results

Assign Pins

Figure 13: Basic Design Flow

Source: Altera, Quartus IISoftware BasicDesignFlow[13]

Figure 13 shows the basic design flow for the Quartus II software. The users can set up

project and compile the design by using these steps. Altera defines 6 stages of developing

the VHDL. [13]

The first stage is creating new project. At this stage involves declaration of entity or

component, design files and libraries used in the project, and the device family and

package used by the project. Next is making assignments. This stage requires specifying

global maximum operating frequency requirements (fMAX), paths should notbereported

in timing analysis reports and others. [13]

The next step will be compile design and analyzed the results. Before the project can be

simulated andimplemented, the project must be verified first. Here, each syntax of entity,

component and architecture developed are checked. After compiling the design, a report

summary of compiled results will be shown automatically. This report shows all the

place-and-route results details andit is linked to many other software features. [13]

-23-

At the same time, if the results are not satisfied and we want to improve the current

results, it can be changed by using assignment settings assignment editors) or by

changing timing requirements in the Timing Wizard. Then, the design is compiled again

and the results are analyzed. By default, the software will automatically assign pins to the

top-level I/O signals. It also can be done by manual using the Assignment Editor. [13]

-24-

4.6. Hardware

4.6.1. DSP Development Kit Cyclone II

Figure 14: Altera Cyclone IIEP2C35 FPGA

Figure 14 shows the hardware that I will be using to implement the SimpleScalar

processor on it. The hardware is Cyclone IIEP2C35 FPGA. An overviewis summarized:

• Logic Elements: 33,216

• M4K RAM Blocks (4 kbits + 512 Parity Bits): 105

• Total RAM Bits: 483,840

• Embedded 18x18 Multipliers: 35

• PLLs: 4

• Maximum User I/O Pins: 475

• Differential Channels: 205

Source: Cyclone IIFPGA Family Overview [13]

-25-

4.7. SimpleScalar in VHDL

In this section, I will describe the VHDL implementation of SimpleScalar processors. In

the implementation, the processors are divided into five cycles, which are Fetch, Decode,

Execute and Memory.

Fetch —• Decode —• Control —• Execute —> Memory

Figure 15: SimpleScalar's Operation Cycle (VHDL Implementation)

4.7.1. Fetch

In the Fetch cycle, the stored instructions are bring out from the memory and send to the

bus line. Then, these instructions will be decoded in the Decode cycle.

constant memO : bit_vector(31 downto 0) := B"00000000000000000000000000000000"; ~ no operation
constant meml : bit^vector(31 downto 0) :=B"00000000000000000000000000000000";
constant mem2 : bit_vector(31 downto 0) :=B"00000000000000000000000001010000"; - load opcodes
constant mem3 : bit_vector(31 downto 0) := B"00000001000000010000000000000111";

constant mem20: bit_vector(31 downto 0) :=B"00000000000000000000000001010101"; - shift left
constant mem21: bit_vector(31 downto 0) :=B"00000001000000100000101000000001";
constant mem22: bit_vector(31 downto 0) :=B"000000000000000000000000010101ir'; ~ shift right
constantmem23: bit_vector(31 downto 0) := B"00000001000000100000101000000001";

Source:fete h.vhd[AppendixIV]

From the source code above, memO to mem23 represents the stored instructions. Each

instruction is 32 bit width. For ease of simplification, all the instructions are stored at the

specific memory location. Instruction 00000000000000000000000000000000 is stored at

memO, another instruction 00000001000000010000000000000111 is stored at mem3 and

consequently.

-26-

The SimpleScalar instructions can be divided into two sections as defined in the C

languages, which are SimpleScalar opcodes and SimpleScalar unsigned immediate fields.

Each section is an unsigned word data type and has 32 bit width.

typedef struct {
word_ta; /* simplescalar opcode (must be unsigned) */
word_t b; /* simplescalar unsigned immediate fields */

} md_inst_t;

Source: SimpleScalar SourceCode (pisa.h) [10]

Register & Immediate format

63 32 31

SimpleScalar opcodes SimpleScalar unsigned
immediate fields

Figure 16: SimpleScalar Instruction (Register & Immediate Format)

Source: SimpleScalar Tools Set [1]

SimpleScalar unsigned immediate fields are 32-bit from bit 0 till bit 31 of SimpleScalar

instructions and SimpleScalar opcodes are also 32-bit from bit 32 till bit 63. The

instructions are fetched from the memory accordingly to the program counter by using

function MD_FETCH_INST. (See the source code below)

^define MD_FETCH_INST(INST, MEM, PC) \
{ inst.a = MEM„READ_WORD(mem, (PC)); \

inst.b = MEM_READ_WORD(mem, (PC) + sizeof(word_t)); }

MD_FETCH_INST(inst, mem, regs.regs_NPC);

Source: SimpleScalar Source Code (pisa.h, sim-fast.c) [10]

-27-

process(PC)
begin
case PC is

when X"00" =>

insta <= memO;
instb <= meml;

when X"2C" =>

insta <= mem22;
instb <= mem23;

when others =>

insta <= null;
instb <=null;

end case;
end process;

Source: fetch,vhd[Appendix IV]

Source code above shows on how the instructions are fetched using VHDL language.

When the PC is X"00", the instruction at memO will be sent to insta (as SimpleScalar

opcode) and another instruction at meml willbe sentto instb(as SimpleScalar immediate

fields).

entity fetch is
port(insta : out bit_vector(31 downto 0); ~ insta

instb : out bit_vector(31 downto0); - inst.b
PCin : in bit_vector(7 downto 0); -- PC
clock, reset: in std_logic);

end fetch;

Source: fetch,vhd[Appendix IV]

Infetch.vhd, there are three inputs, which are the PC (program counter), clock and reset

and two outputs, which are insta and instb. insta is the SimpleScalar opcodes and instb is

the SimpleScalar immediate fields. These outputs will be the inputs duringDecodecycle.

(Refer to Appendix IV: fetch.vhdfor the source code)

-28-

4.7.2. Decode

In Decode cycle, the fetched instructions will be translated into specific fields, which are

OP (opcode), RS (register source #1), RT (register source #2), RD (register destination)

and IMM (immediate value). The implementation of Decode cycle in C language can be

seen as follows:

/* returns the opcode field value of SimpleScalar instruction INST*/
#define MDJ)PFIELD(INST) (INST.a & Oxff)
#define MD^SET_OPCODE(OP, INST) ((OP) = ((INST).a & Oxff))

/* integer register specifiers */
#undef RS /* defined in /usr/include/sys/syscall.h on HPUX boxes */
#define RS (inst.b » 24) /* reg source #1 */
#define RT ((inst.b» 16) & Oxft) /* reg source#2 */
#defme RD ((inst.b » 8) & Oxff) /* reg dest */

Source: SimpleScalar Source Code (pisa.h) [10]

Register & Immediate format

63

v

V

16-annote

>v
•y

16-opcode

3231

SimpleScalar immediate fields

SimpleScalar opcodes

Figure 17: SimpleScalarOpcodes (Register & Immediate Format)

Source: SimpleScalar Tools Set[1]

Figure 17 shows the SimpleScalar opcodes for Register and Immediate format. In the

SimpleScalar opcodes, there will be two fields, which are annote and opcode. In the

annote field, the SimpleScalar allows new instructions to be added or implemented into

the current instruction set. The length of this field is 16 bit. In the opcode field, the

SimpleScalar operation codes are defined. In other words, any operations of the

instructions to be executing will be depending to this field. For example, in SimpleScalar,

-29-

the addition between two registers will happen when the opcode is 0x40. If the

instruction fetched having the opcode of 0x40 in this field, the addition will be executed.

Otherwise, another operation will be executed depending on the opcodes.

Register format

63

>^

3231

AAA;

0

V

16-annote

V

16-opcode

Y

8-rs 8-rt 8-rd 8-ru/shamt

SimpleScalar immediate fields

Figure 18: SimpleScalar Immediate Fields (Register Format)

Immediate format

SimpleScalar immediate fields

Figure 19: SimpleScalar Immediate Fields (Immediate Format)

Figure 18 and 19 shows the SimpleScalar Immediate Fields. For Register format, there

are 4 fields and for Immediate format, there are only 3 fields. In Register format, there

are 8 bit register source #1 (RS), 8 bit register source #2 (RT), 8 bit register destination

(RD) and 8 bit register shift arithmetic (RU/SHAMT). In Immediate format, there are 8

bit register source (RS), 16 bit immediate value (IMM) and 8 bit register destination

(RT).

(Refer to Appendix IV: decode.vhd for the sourcecode)

-30-

4.7.3. Control

The purpose of Control cycle is to control the movement of data between the register and

the memory.

ra_bus : out bit_vector(31 downto 0);
wa_bus: out bit_vector(31 downto 0);
reg_wrt: out stdlogic;
reg_dst: out std_logic;

Source: control.vhd[AppendixIV]

For register design, there are two outputs, which are reg_wrt and reg_dst. reg_wrt is

required to control the writing process onto the register while reg_dst is required to select

which destination the register will be writing onto during the writeback.

rd

wra bus

rt

reg_dst

Figure 20: Register Selection

wra_bus <- rt when reg_dst-1' else rs;

Source: decode.vhd[Appendix IV]

Figure 20 shows the register selection. The purpose is to select which registers, either RS

register or RT register during writeback.

-31-

rpWnl k^bV11/ *

i !

regwwr

muxreg(n)

Figure 21: Register-Memory

regOwr <=T when ((wra_bus = "00000000") and(reg_jvrt=T)) else '0';
reglwr <=T when ((wra_bus = "00000001") and(reg_wrt=T)) else '0';
reg2wr <= 'V when ((wra_bus = "00000010") and (reg_wrt=T)) else '0';

muxreg(O) <= reg(O) when regOwr='0' elsewrd_bus;
muxreg(l) <= reg(l) when reglwr-0' elsewrdjros;
muxreg(2) <=reg(2) when reg2wr-0' elsewrd_bus;

Source: decode.vhd[Appendix IV]

This design will select the register output between the intermediate register and the

memory. Immediate register is the current register during operation and labeled as reg(n),

where n is between 0 to 31.

(Refer toAppendix IV: control.vhd for the source code)

-32-

4.7.4. Execute

In Execute cycle, the operation of an instruction will be carry out. The selection of which

operations will be executing is done by opcode field. In this section, only integer

instructions are implemented. Integer instruction

In arithmetic, the operation involves unsigned addition without overflow checking,

unsigned subtraction without overflow checking and unsigned multiplication without

overflow checking. In logical, the operation involves AND-operation, OR-operation,

XOR-operation and NOR-operation. Other operations are shift arithmetic left and shift

arithmetic right. Here, an unsigned addition will be explained.

Full adder is a combinational circuit that performs the arithmetic addition of three inputs

and produces two outputs. Two of the inputs are two bits to be added while another input

is the carry bit from previous adder (if any). Three inputs are denoted by A, B and Cjn.

Two outputs are needed and denoted by S and Cout. [9]

The truth table for full adder:

Inputs Outputs
A B '-'in *-"Ollt s

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Table 3: Full Adder Truth Table

Source: M. MorrisMano, CharlesR. Kime, "Logicand Computer Design Fundamentals"[9]

-33-

The simplified sum-of-product functions of two outputs are:

S = ABCin + ABCin +ABCin +ABC

C = AB + BC + AC

Source: M. Morris Mano, Charles R. Kime, "Logic andComputer Design Fundamentals" [9]

This implementation requires seven AND gates and 2 OR gates. However, the operation

can be simplified intothe simplest form which is can be expressed as:

S = (AeB)0Cin

C = AB + Cin(A0B)

Source: M. Morris Mano, Charles R. Kime, "Logic andComputer DesignFundamentals "[9]

B 31 A31 B30 A30

1 r ' ' 1 ' ' r

FA
C30

« FA
C29

<

' ' ' 1 '

c out S31 >30

B! Ai B0 A0

' ' ' r 1 ' "

Ci
FA

Co
FA

' ' ' r

So

Figure 22: 32 bit Full Adder

Figure 22shows the visual aid of 32-bit full adder implemented.

result(index) := opl(index) xor op2(index) xor carry;
carry := (opl(index) and op2(index)) or(carry and (opl(index) xor op2(index)));

Source: execute.vhd[Appendix IV]

(Refer toAppendix IV: execute.vhd for the source code)

-34-

4.7.5. Memory

In Memory cycle, the operations which memory always performs are writing andreading.

Writing is when the data is transfer into the memory to be stored. Reading is when the

data stored is retrieved out from the memory.

rd_bus stands for read data from the memory, ra_bus is the read address from bus line,

wd_bus write data to the memory and wa__bus is the write address to the bus line. rd_bus

acts as output while ra_bus. wd_bus and wa_bus acts as inputs to the memory.vhd.

mem_wrt, mem_red, mem_reg are the inputs from the Control cycle.

rd_bus : outbit_vector(31 downto 0);
ra_bus : in bit_vector(31 downto 0);
wd_bus : in bit_vector(31 downto 0);
wa_bus : in bit_vector(31 downto 0);
mem_wrt: in stdlogic;
mem_red : in stdlogic;
mem_reg : in std_logic;
clock, reset: in std logic;

Source: memory.vhd[Appendix IV]

In this project, the implementation of SimpleScalar memory is not successfully. By part,

the data is managed to be read from the memory and store into the given memory

location. However, during the Execute cycle, the data is unable to retrieve back.

Given example, a data of 32 bit of X"00001010" is stored at memory location addressing

X"00000010". During execution, the data X"00001010" is unable to be retrieve. A

further work can be done to investigate this error.

In this section, the information provided the general how the instructions are read from

and store into the memory.

-35-

Read

Clock Tl T2 T3 T4 Tl

Address Address Input

Memory Enable

Read/Write

Data Input Data Input

Figure 23: Read Cycle Timing Waveforms

Source: M. Morris Mano, Charles R. Kime, "Logic and Computer Design Fundamentals "[9]

Figure 23 shows the readcycle timing waveforms of general memory design. Steps taken

for read operation:

1. Apply the binary address of the desired word intoaddress lines.

2. Active the Read input.

Source: M. Morris Mano, Charles R. Kime, "Logic andComputer DesignFundamentals "[9]

-36-

Write

Clock / Tl \ / T2 \ / T3 \ / T4 \ / Tl

Address V Address Input

Memory Enable

Read/Write

Data Input V Data Input

Figure 24: Write Cycle Timing Waveform

Source: M. Morris Mano, Charles R. Kime, "Logic andComputer Design Fundamentals "[9]

Figure 24 shows the write cycle timing waveforms of general memory design. The steps

that must be taken for a write operation:

1. Apply the binary address of the desired word into address lines.

2. Apply the data bits that must be storedin memory to the data input lines.

3. Active the Write input.

Source: M. Morris Mano, Charles R. Kime, "Logic andComputer Design Fundamentals "[9]

(Refer to Appendix IV: memory.vhd for the source code)

-37-

4.8. VHDL Simulation

From the implementation in VHDL, only integer instructions were implemented. They

are unsigned addition, unsigned subtraction, unsigned multiplication, AND-operation,

OR-operation, XOR-operation, NOR-operation, shift left logical andshift right logical. In

the VHDL simulation, assumptions have been made:

1. Only functional are tested.

2. The RS register stored value of 0x00001010 and RT register stored value of

0x00001OOF.

4.8.1. Unsigned Addition

IX 1F J
Figure 25: Unsigned Addition Operation

Figure 25 show the result of an addition operation. The operation does not require

overflow checking. The additionoperationin hexadecimal and binary form:

Hexadecimal Binary

0x00001010

+0x00001OOF

00000000000000000001000000010000

+ 00000000000000000001000000001111

Ox0000201F 00000000000000000010000000011111

The result of Ox0000201F will be stored at register RD.

-38-

4.8.2. OR Operation

* 11F X
Figure 26: OR Operation

Figure 26 show the result of an OR operation. The OR operation:

Hexadecimal Binary

0x00001010

OxOOOOlOOF

00000000000000000001000000010000

00000000000000000001000000001111

OxOOOOlOlF 00000000000000000001000000011111

The result of OxOOOOlOlF will be stored at register RD.

4.8.3. Shift Right Logical

Figure 27: Shift Right Logical

Figure 27 show the shift right logical operation. The operation:

OxOOOOlOOF » 1 00000000000000000001000000001111 » 1

0x00000807 00000000000000000000100000000111

The result of 0x00000807 will be stored at register RD.

-39-

CHAPTER 5: CONCLUSION

From the project that will be done, I hope I will be able to fulfill objectives as described

above. This project is well-done and is only able to be functional in VHDL simulation.

However, this project is not yet completed within timeframe given. There were several

reasons contributing to this cause. They were development progress and synthesizable

problem.

Most of the development in this project spent on studying the C source code of

SimpleScalar and the VHDL programming. A lot of exercises and examples done in C

and VHDL programming before startedthe project. The lack of source codes available in

the Internet makes the project has to be started from scratch. Thus, it takes longer than

expected.

Another reason contributes to the project is the VHDL implemented are not

synthesizable. During the project, I found a DLX source code, which is similar to MIPS

architecture. I had developed the SimpleScalar architecture on it. However, when I tried

to compile the source code, it was not synthesizable. Before downloading onto FPGA, it

requires the source code to be synthesized first. When it comes to this, the project

schedule is delayed.

Only integer instructions were implemented. They are unsigned addition, unsigned

subtraction, unsigned multiplication, AND-operation, OR-operation, XOR-operation,

NOR-operation, shift left logical and shift right logical.

In this project, the implementation on FPGA was unsuccessful. The code developed is

able to be downloaded on the FPGA. However, when I tried to run the FPGA, the board

does not working as expected.

-40-

CHAPTER 6: RECOMMENDATIONS

Redesign the Control Module

In this project, I have implemented the Control module which is between the Decode and

Execute modules. The purpose of this module is to control the data movement between

register and memory. However, in this project, this module is not working perfectly.

Therefore, for future works, I recommend to redesign the Control module.

Implement Other Instructions

In this project, only integer instructions were implemented. Others instructions such as

control instructions, load and store instructions, and floating point instructions are not

implemented yet. In the future, I recommend implementing other types of instructions.

Program on FPGA

In this project, the program on FPGA was unsuccessful. The current source code is

divided into 5 architectures for ease of use. Each module has own purposes as described

earlier. In the future, to program on the FPGA, I recommend to test and program each

module separately. This might be able to help them to troubleshoot the source code and

solve the problem.

-41-

CHAPTER 7: REFERENCES

[I] DougBurger,Todd M. Austin, "The SimpleScalar Tool Set, Version2.0"

[2] John L. Hennessy & David A. Patterson, "ComputerArchitecture: A Quantitative

Approach", 2003, ThirdEdition, MorganKaufmannPublishers.

[3] VincentP. Heuring& HarryF. Jordan, "Computer Systems Design and Architecture",

2004, Second Edition, Pearson Prentice Hall.

[4] SimpleScalar LLC, http://www.simplescalar.com/

[5] SimpleScalar Tools Home Page, http://www.cs.wisc.edu/~mscalar/simt)lescalar.html

[6] VHDLTutorial, http://www.gmvhdl.com/introduc.h1m/

[7] FPGA as Computing Platform,

http://www.informit.com/articles/article.asp?p=382614&rl=l

[8] Todd M. Austin, "SimpleScalar Hacker's Guide"

[9] M. Morris Mano, Charles R. Kime, "Logic and Computer Design Fundamentals",

2004, Third Edition, Pearson Prentice Hall.

[10] SimpeScalar Source Code

[II] Homepage of Crimson Editor, http://www.crimsoneditor.com/

[12] GHDL home page, http://ghdl.free.fr/

[13] Altera, http://www.altera.com/

[14] Cyclone II FPGA Overview,

http://www.altera.com/products/devices/cvclone2/overview/cy2-overview.html

[15] Charles Price, "MIPS Instruction Set", Revision3.2, September 2005

[16] Todd Austin, Eric Larson, Dan Ernst, "SimpleScalar: An Infrastructure for

ComputerSystem Modeling", February 2002, IEEE Journal

[17] Douglas L. Perry, "VHDL Programming by Example", 2002, Fourth Edition,

McGraw Hill

[18] H.M. Deitel, P.J. Deitel, "C HowTo Program", 2001, ThirdEdition, Prentice Hall

[19] TheHamburg VHDL Archive, http://tams-www.informatik.uni-hamburg.de/vhdl/

[20] fpga4fun.com, What are FPGAs?, http://www.fpga4fun.com

-42-

TABLE OF APPENDICIES

-43-

Appendix 1

List of Simplescalar Instruction Set

-44-

Control j -jump blez - branch <= 0

jal-jump and link bgtz - branch > 0
jr -jump register bltz - branch < 0

jalr -jump and link register bgez - branch >= 0
beq - branch == 0 bet-branch FCC TRUE

bne - branch != 0 bef- branch FCC FALSE

Load/Store lb - load byte l.d - load double-precision FP
Ibu ~ load byte unsigned sb - store byte
Ih-load half (short) sbu - store byte unsigned
lhu- load half unsigned sw - store word

lw - load word dsw - store double word

dlw - load double word s.s - store single-precision FP
l.s - load single-precision FP s.d - store double-precision FP

Integer add - integer add or - logical OR

Arithmetic addu - integer add unsigned xor - logical XOR
sub - integer subtract nor - logical NOR
subu - integer subtract unsigned sll - shift left logical
mult - integer multiply srl - shift right logical
multu - integer multiply unsigned sra - shift right arithmetic
div - integer divide sit - shift less than

divu - integer divide unsigned situ - shift less than unsigned
and - logical AND

Floating add.s - single-precision (SP) add abs.d - DP absolute value

Point add.d - double-precision (DP) add neg.s - SP negation

Arithmetic
sub.s - SP subtract neg.d - DP negation
sub.d - DP subtract sqrt.s - SP square root
mult.s - SP multiply sqrt.d - DP square root
multd - DP multiply cvt- int, single, double conversion
div.s - SP divide c.s - SP compare
div.d - DP divide c.d- DP compare
abs.s - SP absolute value

-45-

Appendix 2

Planning Schedule

-46-

Final Year Project I

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 FYP Titles

FYP Briefing fail
Selection of FYP Titles

2 FYP Submissions

Log Book
Preliminary Report
Progress Report
Interim Report First Draft
Interim Report Final Draft
Oral Presentation

Interim Report Final

3 Meetings

4 Project Development
Installing the Programs Required
Learning the Programs Required
Learning the VHDL
Programming the VHDL
Understanding the Source Code
Source Code-> VHDL

I L_

-47-

Final Year Project II

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 FYP Submissions

Log Book
Progress Report
Interim Report First Draft
Interim Report Final Draft
Oral Presentation

Interim Report Final

2 Meetings
Supervisor

3 Project Development
Understanding the Source Code
Programming the VHDL

Appendix 3

SimpleScalar Instructions

-49-

C
o

n
tr

o
l

In
s
tr

u
c
ti

o
n In

s
tr

u
c
ti

o
n

s
O

p
c
o

d
e

M
n

e
m

o
n

ic
F

o
r
m

a
t

Ju
m

p
to

ab
so

lu
te

ad
d

re
ss

0
x

0
1

J
J

ta
rg

et
Ju

m
p

to
ab

so
lu

te
ad

dr
es

s
an

d
li

nk
0

x
0

2
J
A

L
JA

L
ta

rg
et

Ju
m

p
to

re
g

is
te

r
ad

dr
es

s
0

x
0

3
J
R

J
R

r
s

Ju
m

p
to

re
gi

st
er

ad
dr

es
s

an
d

li
nk

0
x

0
4

J
A

L
R

J
A

L
R

r
s

B
ra

n
ch

if
eq

u
al

0
x

0
5

B
E

Q
B

E
Q

rs
,

rt
,

o
ff

se
t

B
ra

n
ch

if
n

o
t

eq
u

al
0

x
0

6
B

N
E

B
E

Q
rs

,
rt

,
of

fs
et

B
ra

nc
h

if
le

ss
th

an
or

eq
ua

lt
o

ze
ro

0
x

0
7

B
L

E
Z

B
L

E
Z

rs
,

o
ff

se
t

B
ra

n
ch

if
g

re
at

er
th

an
ze

ro
0

x
0

8
B

G
T

Z
B

G
T

Z
rs

,
o

ff
se

t
B

ra
n

c
h

if
le

ss
th

a
n

z
e
ro

0
x

0
9

B
L

T
Z

B
L

T
Z

rs
,

o
ff

se
t

B
ra

n
ch

if
g

re
at

er
th

an
or

eq
u

al
to

ze
ro

0
x

0
a

B
G

E
Z

B
G

E
Z

rs
,

o
ff

se
t

B
ra

nc
h

on
fl

oa
ti

ng
po

in
t

co
m

pa
re

fa
ls

e
0

x
0

b
B

C
1

F
B

C
1

F
o

ff
s
e
t

B
ra

n
ch

o
n

fl
oa

ti
ng

p
o

in
t

co
m

p
ar

e
tr

ue
0

x
0

c
B

C
1

T
B

C
1

T
o

ff
se

t

L
o

a
d

/
S

to
r
e

In
s
tr

u
c
ti

o
n

In
s
tr

u
c
ti

o
n

s
O

p
c
o

d
e

M
n

e
m

o
n

ic
F

o
r
m

a
t

L
o

ad
by

te
si

gn
ed

,
di

sp
la

ce
d

ad
dr

es
si

ng
0

x
2

0
L

B
L

B
rt

,
of

fs
et

(r
s)

in
c

d
ec

L
o

ad
b

y
te

si
gn

ed
,

in
d

ex
ed

ad
dr

es
si

ng
O

x
cO

L
B

L
B

rt
,

(r
s+

rd
)

in
c

de
c

L
o

ad
by

te
un

si
gn

ed
,

di
sp

la
ce

d
ad

dr
es

si
ng

0
x

2
2

L
B

U
L

B
U

rt
,

of
fs

et
(r

s)
in

c
d

ec
L

o
ad

b
y

te
un

si
gn

ed
,

in
d

ex
ed

ad
dr

es
si

ng
O

x
c
l

L
B

U
L

B
U

rt
,

(r
s+

rd
)

in
c

d
ec

L
o

ad
h

al
fs

ig
ne

d,
di

sp
la

ce
d

ad
dr

es
si

ng
0

x
2

4
L

H
L

H
rt

,
of

fs
et

(r
s)

in
c

d
ec

L
o

ad
h

al
fs

ig
ne

d,
in

de
xe

d
ad

dr
es

si
ng

0
x

c
2

L
H

L
H

rt
,

(r
s+

rd
)

in
c

de
c

L
o

ad
h

a
lf

un
si

gn
ed

,
d

is
p

la
ce

d
ad

d
re

ss
in

g
0

x
2

6
L

H
U

L
H

U
rt

,
of

fs
et

(r
s)

in
c

d
ec

L
o

ad
h

al
fu

ns
ig

ne
d,

in
de

xe
d

ad
dr

es
si

ng
0

x
c
3

L
H

U
L

H
U

rt
,

(r
s+

rd
)

in
c

d
ec

L
o

ad
w

o
rd

,
d

is
p

la
ce

d
ad

dr
es

si
ng

0
x

2
8

L
W

L
W

rt
,

of
fs

et
(r

s)
in

c
d

ec
L

o
ad

w
or

d,
in

de
xe

d
ad

dr
es

si
ng

0
x

c
4

L
W

L
W

rt
,

(r
s+

rd
)

in
c

d
ec

D
ou

bl
e

lo
ad

w
or

d,
di

sp
la

ce
d

ad
dr

es
si

ng
0

x
2

9
D

L
W

D
L

W
rt

,
of

fs
et

(r
s)

in
c

d
ec

D
ou

bl
e

lo
ad

w
or

d,
in

de
xe

d
ad

dr
es

si
ng

O
x

c
e

D
L

W
D

L
W

rt
,

(r
s+

rd
)

in
c

d
ec

L
o

ad
w

o
rd

in
to

fl
oa

ti
ng

po
in

tr
eg

is
te

r
fi

le
,

di
sp

la
ce

d
ad

d
re

ss
in

g
0

x
2

a
L

.S
L

.S
ft

,
of

fs
et

(r
s)

in
c_

de
c

L
o

ad
w

o
rd

in
to

fl
oa

ti
ng

po
in

tr
eg

is
te

r
fi

le
,

in
de

xe
d

ad
d

re
ss

in
g

0
x

c
5

L
.S

L
.S

ft
,

(r
s+

rd
)

in
c_

de
c

-
5

0
-

L
oa

d
do

ub
le

w
or

d
in

to
fl

oa
tin

g
po

in
t

re
gi

st
er

fi
le

,
di

sp
la

ce
d

ad
dr

es
si

ng
0

x
2

b
L

.D
L

.D
ft

,
of

fs
et

(r
s)

in
c_

de
c

L
o

ad
do

ub
le

w
o

rd
in

to
fl

oa
ti

ng
po

in
tr

eg
is

te
r

fi
le

,
in

d
ex

ed
ad

d
re

ss
in

g
O

x
c
f

L
.D

L
.D

ft
,

(r
s+

rd
)

in
c_

de
c

L
o

ad
w

o
rd

le
ft

,
di

sp
la

ce
d

ad
dr

es
si

ng
0

x
2

c
L

W
L

L
W

L
of

fs
et

(r
s)

L
oa

d
w

or
d

ri
gh

t,
di

sp
la

ce
d

ad
dr

es
si

ng
0

x
2

d
L

W
R

L
W

R
o

ff
se

t(
rs

)

S
to

re
by

te
,

di
sp

la
ce

d
ad

dr
es

si
ng

0
x

3
0

S
B

SB
rt

,
of

fs
et

(r
s)

in
c

d
ec

S
to

re
by

te
,

in
de

xe
d

ad
dr

es
si

ng
0

x
c
6

S
B

S
B

rt
,

(r
s+

rd
)

in
c

d
ec

S
to

re
ha

lf
,

di
sp

la
ce

d
ad

dr
es

si
ng

0
x

3
2

S
H

S
H

it,
of

fs
et

(r
s)

in
c

d
ec

S
to

re
ha

lf
,

h
id

ex
ed

ad
d

re
ss

in
g

0
x

c
7

S
H

S
H

rt
,

(r
s+

rd
)

in
c

d
ec

S
to

re
w

or
d,

di
sp

la
ce

d
ad

dr
es

si
ng

0
x

3
4

S
W

S
W

rt
,

of
fs

et
(r

s)
in

c
d

ec
S

to
re

w
o

rd
,

in
d

ex
ed

ad
dr

es
si

ng
0

x
c
8

S
W

S
W

rt
,

(r
s+

rd
)

in
c

d
ec

D
o

u
b

le
st

or
e

w
o

rd
,

d
is

p
la

ce
d

ad
d

re
ss

in
g

0
x

3
5

D
S

W
D

S
W

rt
,

of
fs

et
(r

s)
in

c
de

c
D

o
u

b
le

st
or

e
w

or
d,

in
de

xe
d

ad
dr

es
si

ng
O

x
d

O
D

S
W

D
S

W
rt

,
(r

s+
rd

)
in

c
d

ec
D

o
u

b
le

st
o

re
ze

ro
,

d
is

p
la

ce
d

ad
dr

es
si

ng
0

x
3

8
D

S
Z

D
S

W
rt

,
of

fs
et

(r
s)

in
c

de
c

D
o

u
b

le
st

or
e

ze
ro

,
in

de
xe

d
ad

dr
es

si
ng

O
x

d
l

D
S

Z
D

S
W

rt
,

(r
s+

rd
)

in
c

d
ec

S
to

re
w

o
rd

fr
om

fl
oa

ti
ng

po
in

t
re

gi
st

er
fi

le
,

d
is

p
la

ce
d

ad
d

re
ss

in
g

0
x

3
6

S
.S

S.
S

ft
,

of
fs

et
(r

s)
in

c_
de

c

S
to

re
w

or
d

fr
om

fl
oa

ti
ng

po
in

tr
eg

is
te

r
fi

le
,

in
de

xe
d

ad
dr

es
si

ng
0

x
c
9

S
.S

S.
S

ft
,

(r
s+

rd
)

in
c_

de
c

S
to

re
do

ub
le

w
o

rd
fr

om
fl

oa
ti

ng
po

in
tr

eg
is

te
r

fi
le

,
di

sp
la

ce
d

ad
dr

es
si

ng
0

x
3

7
S

.D
S

.D
ft

,
of

fs
et

(r
s)

in
c_

de
c

S
to

re
do

ub
le

w
or

d
fr

om
fl

oa
tin

g
po

in
tr

eg
is

te
r

fi
le

,
in

d
ex

ed
ad

d
re

ss
in

g
0

x
d

2
S

.D
S

.D
ft

,
(r

s+
rd

)
in

c_
de

c

S
to

re
w

o
rd

le
ft

,
di

sp
la

ce
d

ad
dr

es
si

ng
0

x
3

9
S

W
L

S
W

L
rt

,
of

fs
et

(r
s)

S
to

re
w

o
rd

ri
gh

t,
di

sp
la

ce
d

ad
dr

es
si

ng
0

x
3

a
S

W
R

S
W

R
rt

,o
ff

se
t(

rs
)

D
is

pl
ac

ed
ad

dr
es

si
ng

-
<

m
ne

m
on

ic
>

rt
,

of
fs

et
(r

s)
in

c_
de

c
In

de
xe

d
ad

dr
es

si
ng

-
<

m
ne

m
on

ic
>

rt
,

(r
s+

rd
)

in
c_

de
c

-
5

1
-

In
te

g
er

In
st

ru
ct

io
n

s In
s
tr

u
c
ti

o
n

s
O

p
c
o

d
e

M
n

e
m

o
n

ic
F

o
r
m

a
t

A
dd

si
gn

ed
(w

ith
ov

er
fl

ow
ch

ec
k)

0
x

4
0

A
D

D
A

D
D

rd
,

rs
,

rt
A

dd
im

m
ed

ia
te

si
gn

ed
(w

ith
ov

er
fl

ow
ch

ec
k)

0
x

4
1

A
D

D
I

A
D

D
I

rd
,

rs
,

rt

A
d

d
un

si
gn

ed
(n

o
ov

er
fl

ow
ch

ec
k)

0
x

4
2

A
D

D
U

A
D

D
U

rd
,

rs
,

rt
A

d
d

im
m

ed
ia

te
un

si
gn

ed
(n

o
ov

er
fl

ow
ch

ec
k)

0
x

4
3

A
D

D
IU

A
D

D
IU

rd
,

rs
,

rt

S
ub

tr
ac

ts
ig

ne
d

(w
it

h
un

de
rf

lo
w

ch
ec

k)
0

x
4

4
S

U
B

S
U

B
rd

,
rs

,
rt

S
u

b
tr

ac
tu

n
si

g
n

ed
(n

o
u

n
d

er
fl

o
w

ch
ec

k)
0

x
4

5
S

U
B

U
S

U
B

U
rd

,
rs

,
rt

M
u

lt
ip

ly
si

g
n

ed
0

x
4

6
M

U
L

T
M

U
L

T
rs

,
rt

M
ul

tip
ly

un
si

gn
ed

0
x

4
7

M
U

L
T

U
M

U
L

T
U

rs
,

rt

D
iv

id
e

si
gn

ed
0

x
4

8
D

IV
D

IV
rs

,
rt

D
iv

id
e

u
n

si
g

n
ed

0
x

4
9

D
IV

U
D

T
V

U
rs

,
rt

M
o

v
e

fr
om

H
I

re
gi

st
er

0
x

4
a

M
F

H
I

M
F

H
Ir

d

M
o

v
e

to
H

I
re

g
is

te
r

0
x

4
b

M
T

H
I

M
T

H
I

rs

M
o

v
e

fr
o

m
L

O
re

g
is

te
r

0
x

4
c

M
F

L
O

M
F

L
O

rd

M
o

v
e

to
L

O
re

g
is

te
r

0
x

4
d

M
T

L
O

M
T

L
O

rs

L
og

ic
al

A
N

D
0

x
4

e
A

N
D

A
N

D
rd

,
rs

,
rt

L
og

ic
al

A
N

D
im

m
ed

ia
te

0
x

4
f

A
N

D
I

A
N

D
I

rd
,

rt
,

im
m

L
og

ic
al

O
R

0
x

5
0

O
R

O
R

rd
,

rs
,

rt

L
og

ic
al

O
R

im
m

ed
ia

te
0

x
5

1
O

R
I

O
R

I
rd

,
rt

,
im

m
L

o
g

ic
al

X
O

R
0

x
5

2
X

O
R

X
O

R
rd

,
rs

,
rt

L
og

ic
al

X
O

R
I

0
x

5
3

X
O

R
I

O
R

I
rd

,
rt

,
u

im
m

L
o

g
ic

al
N

O
R

0
x

5
4

N
O

R
N

O
R

rd
,

rs
,r

t

S
h

if
t

le
ft

lo
gi

ca
l

0
x

5
5

S
L

L
S

L
L

rd
,

rt
,

sh
am

t

S
h

if
t

le
ft

lo
gi

ca
l

va
ri

ab
le

0
x

5
6

S
L

L
V

S
L

L
V

rd
,

rt
,

rs

S
hi

ft
ri

gh
t

lo
gi

ca
l

0
x

5
7

S
R

L
S

R
L

rd
,

rt
,

sh
am

t

S
h

if
tr

ig
h

t
lo

gi
ca

l
va

ri
ab

le
0

x
5

8
S

R
L

V
S

R
L

V
rd

,
rt

,
rs

S
hi

ft
ri

gh
t

ar
it

hm
et

ic
0

x
5

9
S

R
A

S
R

A
rd

,
rt

,
sh

am
t

S
hi

ft
ri

gh
t

ar
it

hm
et

ic
va

ri
ab

le
0

x
5

9
S

R
A

V
S

R
A

V
rd

,
rt

,
rs

Se
t

re
gi

st
er

if
le

ss
th

an
0

x
5

b
S

L
T

S
L

T
rd

,
rs

,
rt

Se
t

re
gi

st
er

if
le

ss
th

an
im

m
ed

ia
te

0
x

5
c

S
L

T
I

S
L

T
I

rd
,

rs
,

im
m

Se
t

re
gi

st
er

if
le

ss
th

an
un

si
gn

ed
0

x
5

d
S

L
T

U
S

L
T

U
rd

,
rs

,
rt

Se
t

re
gi

st
er

if
le

ss
th

an
un

si
gn

ed
im

m
ed

ia
te

0
x

5
d

S
L

T
IU

S
L

T
IU

rd
,

rs
,

im
m

-
5

2
-

F
lo

a
ti

n
g

P
o

in
t

In
st

ru
ct

io
n

In
s
tr

u
c
ti

o
n

s
O

p
c
o

d
e

M
n

e
m

o
n

ic
F

o
r
m

a
t

A
d

d
fl

oa
ti

ng
po

in
t,

si
ng

le
pr

ec
is

io
n

0
x

7
0

A
D

D
.S

A
D

D
.S

fd
,

fs
,

ft

A
d

d
fl

oa
tin

g
po

in
t,

do
ub

le
pr

ec
is

io
n

0
x

7
1

A
D

D
.D

A
D

D
.D

fd
,

fs
,

ft

S
ub

tr
ac

tf
lo

at
in

g
po

in
t,

si
ng

le
pr

ec
is

io
n

0
x

7
2

S
U

B
.S

S
U

B
.S

fd
,

fs
,

ft

S
ub

tr
ac

tf
lo

at
in

g
po

in
t,

do
ub

le
pr

ec
is

io
n

0
x

7
3

S
U

B
.D

S
U

B
.D

fd
,

fs
,

ft

M
ul

ti
pl

y
fl

oa
ti

ng
po

in
t,

si
ng

le
pr

ec
is

io
n

0
x

7
4

M
U

L
.S

M
U

L
.S

fd
,

fs
,

ft

M
ul

ti
pl

y
fl

oa
ti

ng
po

in
t,

do
ub

le
pr

ec
is

io
n

0
x

7
5

M
U

L
.D

M
U

L
.D

fd
,

fs
,

ft

D
iv

id
e

fl
oa

ti
ng

po
in

t,
si

ng
le

pr
ec

is
io

n
0

x
7

6
D

IV
.S

D
IV

.S
fd

,
fs

,
ft

D
iv

id
e

fl
oa

ti
ng

po
in

t,
do

ub
le

pr
ec

is
io

n
0

x
7

7
D

T
V

.D
D

IV
.D

fd
,

fs
,

ft

A
b

so
lu

te
v

al
u

e,
si

ng
le

p
re

ci
si

o
n

0
x

7
8

A
B

S
.S

A
B

S
.S

fd
,

fs

A
bs

ol
ut

e
va

lu
e,

do
ub

le
pr

ec
is

io
n

0
x

7
9

A
B

S
.D

A
B

S
.D

fd
,

fs

M
o

v
e

fl
oa

ti
ng

p
o

in
tv

al
ue

,
si

ng
le

p
re

ci
si

o
n

0
x

7
a

M
O

V
.S

M
O

V
.S

fd
,

fs

M
ov

e
fl

oa
ti

ng
po

in
t

va
lu

e,
do

ub
le

pr
ec

is
io

n
0

x
7

b
M

O
V

.D
M

O
V

.D
fd

,
fs

N
eg

at
e

fl
oa

ti
ng

po
in

t
va

lu
e,

si
ng

le
pr

ec
is

io
n

0
x

7
c

N
E

G
.S

N
E

G
.S

fd
,

fs

N
eg

at
e

fl
oa

ti
ng

po
in

tv
al

ue
,

do
ub

le
pr

ec
is

io
n

0
x

7
d

N
E

G
.D

N
E

G
.D

fd
,

fs

C
on

ve
rt

do
ub

le
pr

ec
is

io
n

to
si

ng
le

pr
ec

is
io

n
0

x
8

0
C

V
T

.S
.D

C
V

T
.S

.D
fd

,
fs

C
on

ve
rt

in
te

ge
r

to
si

ng
le

pr
ec

is
io

n
0

x
8

1
C

V
T

.S
.W

C
V

T
.S

.W
fd

,
fs

C
on

ve
rt

si
ng

le
pr

ec
is

io
n

to
do

ub
le

pr
ec

is
io

n
0

x
8

2
C

V
T

.D
.S

C
V

T
.D

.S
fd

,
fs

C
o

n
v

er
t

in
te

g
er

to
d

o
u

b
le

p
re

ci
si

o
n

0
x

8
3

C
V

T
.D

.W
C

V
T

.D
.W

fd
,

fs
C

on
ve

rt
si

ng
le

pr
ec

is
io

n
to

in
te

ge
r

0
x

8
4

C
V

T
.W

.S
C

V
T

.W
.S

fd
,

fs

C
o

n
v

er
t

d
o

u
b

le
p

re
ci

si
o

n
to

in
te

ge
r

0
x

8
5

C
V

T
.W

.D
C

V
T

.W
.D

fd
,

fs

T
es

t
if

eq
ua

l,
si

ng
le

pr
ec

is
io

n
0

x
9

0
C

.E
Q

.S
C

.E
Q

.S
fs

,
ft

T
es

t
if

eq
ua

l,
d

o
u

b
le

p
re

ci
si

o
n

0
x

9
1

C
.E

Q
.D

C
.E

Q
.D

fs
,

ft

T
es

t
if

le
ss

th
an

,
si

ng
le

pr
ec

is
io

n
0

x
9

2
C

.L
T

.S
C

.L
T

.S
fs

,
ft

T
es

t
if

le
ss

th
an

,
do

ub
le

p
re

ci
si

o
n

0
x

9
3

C
.L

T
.D

C
.L

T
.D

fs
,

ft

T
es

t
if

le
ss

th
an

or
eq

ua
l,

si
ng

le
pr

ec
is

io
n

0
x

9
4

C
.L

E
.S

C
.L

E
.S

fs
,

ft

T
es

t
if

le
ss

th
an

or
eq

ua
l,

do
ub

le
p

re
ci

si
o

n
0

x
9

5
C

.L
E

.D
C

.L
E

.D
fs

,
ft

S
qu

ar
e

ro
ot

,
si

ng
le

pr
ec

is
io

n
0

x
9

6
S

Q
R

T
.S

S
Q

R
T

.S
fd

,
fs

S
qu

ar
e

ro
ot

,
do

ub
le

pr
ec

is
io

n
0

x
9

7
S

Q
R

T
.D

S
Q

R
T

.D
fd

,
fs

-
5

3
-

Appendix 4

VHDL Source Code

-54-

(SIMPS.vhd)

iate: December 09, 2006 SIMPS.vhd

— Abdul Azim bin Abdullah

— Universiti Teknologi PETRONAS
— SIMPS.vhd

library ieee;

use ieee.std_logic_1164.all;
use ieee.std logic arith.all;

— SIMPS entity

entity SIMPS is
port(clock, reset : in std_logic;

PC_bus : in bit_vector(7 downto 0);
inst_out : out bit_vector(31 downto 0));

end SIMPS;

— SIMPS architecture

architecture structure of SIMPS is

component fetch

port(insta : out bit_vector(31 downto 0);
instb : out bit_vector(31 downto 0);
PCin : in bit_vector(7 downto 0);
clock, reset : in std_logic);

end component;

component decode

port(insta : in bit_vector(31 downto 0};
instb : in bit_vector(31 downto 0);
opcode : out bit_vector{15 downto 0);
rsdata_bus : out bit_vector(31 downto 0;
rtdata_bus : out bit_vector(31 downto 0;
rddata_bus : out bit_vector(31 downto 0;
extend : out bit_vector(31 downto 0);
wrd_bus : in bit_vector(31 downto 0);
reg_wrt : in std_logic;
reg_dst : in std_logic;
clock, reset : in std_logic);

end component;

component control

port(PCin : in bit_vector(7 downto 0);
ra_bus : out bit_vector(31 downto 0};

out bit_vector(31 downto 0);
out std_logic;
out std_logic;
out std_logic;
out std_logic;
out std logic);

wa_bus :
reg_wrt :
reg_dst :
mem_wrt :
mem_red :
mem_reg :

end component;

component execute

port(opcode : in bit_vector(15 downto 0);
extend : in bit vector(31 downto 0);

Page 1 of 3

Project: SIMPS

Revision: SIMPS

late: December 09,2006 SIMPS.vhd

rsdata_bus : in bit_vector(31 downto 0}
rtdata__bus : in bit_vector(31 downto 0}
rddata_bus : in bit_vector(31 downto 0)
data_bus : out bit_vector(31 downto 0};
clock : in std_logic);

end component;

component memory
port (rd__bus

wd_bus
ra_bus
wa__bus
mem_wrt
mem_red
mem_reg

clock, reset
end component;

out bit_vector(31 downto
in bit_vector(31 downto
in bit_vector(31 downto
in bitjvector(31 downto
in std_logic;
in std_logic;
in std_logic;

in std logic);

signal pc_in : bitjvector(7 downto 0);

signal insta_bus : bit_vector(31 downto 0);
signal instb bus : bit vector(31 downto 0) ;

signal opcode
signal rsd_bus
signal rtd__bus
signal rdd bus

bit_vector(15 downto 0);
: bitjvector(31 downto 0)
: bit_vector(31 downto 0)
• bit vector(31 downto 0)

signal wrd bus : bit vector(31 downto 0);

signal reg_wrt
signal regjdst

signal mem_wrt
signal mem_red
signal mem_reg

signal ra_bus ;
signal wa_bus :

signal dat_bus

signal extend :

begin

: std_logic;
: std_logic;

: std__logic;
: std_logic;
; std_logic;

bit_vector(31 downto 0);
bit_vector(31 downto 0);

: bit_vector(31 downto 0);

bit vector(31 downto 0};

pc__in <= PC_bus;
inst_out <= dat_bus;

FE : fetch

port map(insta => insta_bus,
instb => instb_bus,
PCin => pc_in,
clock => clock,

reset => reset);

Page 2 of 3

Project: SIMPS

Revision: SIMPS

late: December 09,2006 SIMPS.vhd Project: SIMPS

'.:';!, DE : decode

port map(insta => insta__bus,
instb => instb_bus,
opcode => opcode,
rsdata__bus => rsd_bus,
rtdata_bus => rtd_bus,
rddata_bus => rdd_bus,
extend => extend,
wrd_bus => wrd_bus,
reg_wrt => reg_wrt,
reg_dst => reg_dst,
clock => clock,
reset => reset);

CT : control

port map (PCin => pc_in,
ra__bus => ra_bus,
wa__bus => wa_bus,
reg_wrt => reg_wrt,
reg_dst => reg_dst,
merrjwrt => meirjwrt,
mem_red => mem_red,
mem__reg => mem_reg) ;

EX : execute

port map (opcode => opcode,
extend => extend,
rsdata_bus => rsd_bus,
rtdata_bus «> rtd_bus,
rddata_bus => rdd_bus,
data_bus => dat_bus,
clock => clock);

ME : memory

port map(rd_bus => wrd__bus,
wd_bus => dat_bus,
ra_bus => ra_bus,
wa_bus => wa_bus,
mem_wrt => mem_wrt,
mem_red => mem_red,
mem_reg => mem_reg,
clock ~> clock,

reset —> reset);

end structure;

Page 3 of 3 Revision: SIMPS

(fetch.vhd)

ate: December 09,2006 fetch.vhd

;. — Abdul Azim bin Abdullah

.: — Universiti Teknologi PETRONAS
A -- fetch.vhd

: library ieee;

{• use ieee.std_logic_1164-all;
use ieee.std logic arith.all;

— fetch entity

entity fetch is
port(insta : out bit_vector{31 downto 0);

instb : out bit_vector(31 downto 0);
PCin : in bit_vector(7 downto 0);
clock, reset : in std_logic);

end fetch;

-- fetch architecture

architecture behaviour of fetch is

signal PC : bitjvector(7 downto 0);

constant memO : bitjvector(31 downto 0)
00000000"; -- no operation

constant meml : bit_vector(31 downto 0)
00000000";

constant mem2 : bit_vector(31 downto 0)
01010000"; — load opcodes (load $30,7
constant mem3 : bitjvector(31 downto 0)

00000111";

constant mem4 : bitjvector{31 downto 0)
01010000"; -- load opcodes (load $20,8

constant mem5 : bit_vector(31 downto 0)
00001000";

constant mem6 : bit_vector(31 downto 0)
01000010"; -- add unsigned
constant mem7 : bitjvector(31 downto 0)

00000000";

constant mem8 : bit_vector(31 downto 0)
01000101"; — subtract unsigned
constant mem.9 : bitjvector(31 downto 0)

00000000";

constant memlO: bit_vector(31 downto 0)
01001110"; — and

constant memll: bitjvector(31 downto 0)
00000000";

constant meml2: bit__vector (31 downto 0)
01010000"; — or

constant meml3: bit_vector(31 downto 0)
00000000";

constant meml4: bitjvector(31 downto 0)
01010010"; ~ xor

Page 1 of 3

•- inst.a

•- inst.b
._ pc

Project: SIMPS

B"000000000000000000000000

B"000000000000000000000000

B"000000000000000000000000

B"000000010000000100000000

B"000000000000000000000000

B"000000010000001000000000

B"000000000000000000000000

B"000000010000001000001010

B"000000000000000000000000

B"000000010000001000001010

B"000000000000000000000000

B"000000010000001000001010

B"000000000000000000000000

B"000000010000001000001010

B"000000000000000000000000

Revision: SIMPS

ate: December 09,2006 fetch.vhd Project: SIMPS

:"•..; constant meml5: bit_vector (31 downto 0) := B"000000010000001000001010
00000000";

'i-1 constant mem!6: bit_vector {31 downto 0) := B"000000000000000000000000
01010100"; — nor

constant meml7: bit_vector(31 downto 0) := B"000000010000001000001010
00000000";

constant meml8: bit_vector{31 downto 0) := B"000000000000000000000000
01000111"; — multiply unsigned

--. constant meml9: bit_vector (31 downto 0) :* B"000000010000001000001010
00000000";

constant mem20: bit_vector{31 downto 0\
01010101"; — shift left logical

constant mem21: bit_vector(31 downto 0'
00000001";

constant mem22: bit__vector (31 downto 0'
01010111"; — shift right logical

constant mem23: bit_vector(31 downto 0'
00000001";

begin

process

begin
wait until (clock'event) and (clock='l');
if reset='1' then

PC <= X"00";

else PC <= PCin;

end if;

end process;

process(PC)
begin

case PC is

when X"00" =>

insta <= memO;

instb <= meml;
when X"04" =>

insta <= mem2;

instb <= mem3;

when X"08" =>

insta <= mem4;

instb <= mem5;

when X"0C" =>

insta <= mem6;

instb <= mem7;

when X"10" =>

insta <= mem8;

instb <= mem9;

when X"14" =>

insta <= memlO;

instb <= memll;

when X"18" =>

insta <= meml2;

instb <= meml3;

when X"1C" =>

= B"000000000000000000000000

= B"000000010000001000001010

= B"000000000000000000000000

= B"000000010000001000001010

Page 2 of 3 Revision: SIMPS

ate: December 09, 2006

insta <= meml4;
'},: instb <= meml5;

';.":• when X"20" =>

-'•'• insta <= meml 6;

'•>vj instb <= meml7;

when X"24" =>

insta <= meml8;

instb <= meml9;

when X"28" =>

insta <= mem20,

instb <= mem21,

when X"2C" =>

insta <= mem22,

instb <= mem23,

when others =>

insta <= null;

instb <= null;

end case;

end process;

": end behaviour;

fetch.vhd

Page 3 of 3

Project: SIMPS

Revision: SIMPS

(decode,vhd)

ate: December 09,2006 decode.vhd

— Abdul Azim bin Abdullah

— Universiti Teknologi PETRONAS
~~ decode.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std logic arith.all;

— decode entity

entity decode is
port(insta : in bit_vector(31 downto 0);

instb : in bit_vector(31 downto 0);
opcode : out bit_vector(15 downto 0};
rsdata_bus : out bit_vector(31 downto 0)
rtdata_bus : out bit_vector(31 downto 0)
rddata_bus : out bit_vector(31 downto 0)
extend : out bitjvector(31 downto 0);
wrd_bus : in bit_vector(31 downto 0);
reg_wrt : in std_logic;
reg_dst : in std__logic;
clock, reset : in std_logic);

end decode;

Project: SIMPS

inst.a

inst.b

OP

— decode architecture

architecture behaviour of decode is

type reg_array is array (0 to 31) of bit_vector(31 downto 0);

signal annote : bit_yector(15 downto 0);

signal rs : bit_vector(7 downto 0}
signal rt : bit_vector(7 downto 0)
signal rd : bit_vector(7 downto 0)
signal ru : bit_vector(7 downto 0)
signal imm_v : bitjvector{15 downto 0);

signal reg : reg_array;
signal ireg : reg_array;
signal muxreg : reg_array;

signal regOwr, reglwr, reg2wr : std_logic;
signal wra_Jbus : bit_vector(7 downto 0) ;

begin

annote <= insta(31 downto 16};
opcode <= insta(15 downto 0);

rs <= instb(31 downto 24);

rt <= instb(23 downto 16);
rd <= instb(15 downto 8);
ru <= instb(7 downto 0);

Page 1 of 6 Revision: SIMPS

-
o

0
)

<
o W O —
ti

o
>

7
3

C
D

< to
"

o
"

C
O s "
0

C
O

ii
S

r
t

H
-

a
r
t

O
J

t
r

r
t

O
J

ti r
t

r
r

c
e
n

tt
>

fl
)

h-
1

A
(1

)

II
n r
t

H
i
-
i
H

h
H

i
-
i
H

i
i
^

H
i
-
l
i
-
i
H

M
H

t
l
t
i
t
-
j
f
-
i

C
D

C
D

C
D

fD
C

D
C

D
C

D
C

D
C

D
C

D
tD

C
ti

tD
C

D
C

D
C

D
C

D
fD

C
D

l
i
a
^

Q
^

t
Q

i
^

v
Q

i
Q

u
a
i
Q

i
Q

i
Q

i
Q

i
Q

i
Q

i
Q

i
r
j
'i

J
i
r
i
i
O

H
H

h
'P

H
H

H
P

H
I
i
J
O

D
-
J
C

n
U

I
't

i
U

W
H

O
M

)
0

0
-
J

<
7i

(j
i

id
W

M
O

-
—

•—
•—

-~
-

-
^

—
•

-»
-

^
—

^
•—

•

£
s

s
s:

£
£

s
s,

g
r
r
?

?
?

?
?

^
?

?
^

?
^

D
-
3

'?
'r

i
,
3

'|
3

J
p

'(
!
l

ff
l

(D
(D

CD
CD

(D
lU

d
)

CD
I
C

H
)
I
D

I
D

a
i
(
I
)
f
f
l
(
I
i
f
l
i
3

3
P

D
P

3
3

3
3

3

o
o

o
o

o
o

o
o

o
o

o
o

l_
l

,_
1

[_
1

l_
J

o
o

o
o

o
o

o
o

i-
1

h
-1

o
o

h
-1

O
h-

1
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

I-
1

H
-1

I-
*

h-
>

t_
J

}
_

J
l_

l
[_

>

t-
>

h
-1

o
o

Y
--

O
I-

1
O

3
0

0
0

o
o

o
o

o
o

o
o

o
o

o
o

O
M

h-
1

O

t-
1

O
O

!-
>

o
O

O
h-

^

h-
1

M
O

M
O

3
3

3

O
O

O
O

O
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

o
o

o
o

o
o

o

o
o

o
o

o
o

o
^

j
|_

i
|_

i
o

o
o

o

M
o

O
I-

1
l-

1
o

o
O

h
-i

O
h-

1
O

I-
1

o

0
)

(D

O
'-

'"
!'

•
'

o R C
D

H
%

H
-

3
w

h
-

3
H

a
r
t

§
fl

)
3

"
r
t

O
J

H
'«

o 5
°

M
A

M
o

*
II

O
C

w
o

M
C

D
H

-
O

)
H

3
A

C
D

cn

I!
n

r
t

r
t

c
r

>
<

K
H

i
-
i
H

h
H

h
H

N
i
^

f
i
H

i
-
i
h

N
t
s
i
-
j
^

t
i
^

^
t
-
j
l
-
i
N

t
-
S

H
H

h
h

H
i
i
H

=
C

D
C

D
<

D
0

C
D

f
D

C
D

tt
>

C
D

(
D

C
D

0
a
)
f
l)

(
D

O
<

D
r
D

(
D

(
D

<
D

{
5

(
D

<
D

C
D

(
I
>

C
5

a
ir

t>
C

I
)
C

D
(
D

h
l
]
„
„
,
~

.
„
,
^

,
_

,
,
-
,
,
_

^
^

-
.
,
_

^
,
_

.
.
_

^
m

^
-
.
„
.
~

.
,
-
*

^
.
.
~

.
.
~

.
.
~

.
.
~

.
.
~

.
.
~

.
-~

.
—

—
,

.—
.
.
~

,-
^

^
U

i
a
j
W

N
W

N
N

3
M

W
M

M
W

H
H

H
P

H
H

H
H

H
H

«
5

C
D

>
J
f
l
l
0

l
M

*
)
I
0

l
-
'O

it
]

H
O

I
D

M
-
J
(
T

:
U

l
*

-
W

r
O

H
O

l
£

C
O

-
J

C
T

lC
n

J
i.

(
jJ

N
)
t-

1
0

—
-
-
—

-
—

-
—

—
—

—
—

-
_»

-
—

-

^
s
s
s
s
s
:
s
;
£

s
:
s
s
s
s
:
s
s
5

:
s
;
s
:
s
;
s
:
5

:
s
s
:
3

-
3

-
3

j
3

'3
'3

-
3

'3
'3

-
3

-
^

1
3

'3
"
3

'3
J
3

'3
'3

J
3

J
3

'3
'3

'3
'3

'3
J
3

'3
'3

'3
'3

'3
'3

J
3

J
C

D
O

CD
CD

CD
(D

CD
CD

CD
CD

3
C

D
C

D
a
)
C

D
C

D
C

D
O

a
>

n
a
)
C

D
c
D

C
D

C
D

C
D

<
D

a
)
(
D

C
D

(
D

C
D

r
D

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

5
3

=
=

3
=

=
=

3
=

=
3
"

=
=

=
3

=
3

3
=

=
3

3
=

=
=

3
3

3
3

3
3
3
3
0
0
0
0
0
0
0
0
0
0

C
D
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

O
l—

'
h-

1
f—

'I—
'

h
-'

f—
'I

-'
>

-*
t—

•h
-i

f—
i

[_
•

I—
'I—

»
t
—

'I
—

'O
O

O
O

O
O

h
-
1

!
—

'O
O

O
O

O
O

O
O

^
^

i
^

M
^

^
(
_

1
|
_

J
[
_

j
O

0
o

0
0

0
0

0
l
_

i
(
_

i
1

_
J
[
j
|
_

i
1

_
1

0
0

h
-
J
h

-
'l

-
-
I
l
-
-
1

O
O

0
0

3
't

-
>

h
-
i
|-

>
t
-
1

0
0

0
0

!
-
J
l
-
'i

-
-
1

l
-
'O

O
O

O
h

J
S

-
1

l
—

'l
-
'O

O
O

O
h

-
'M

O
O

h
-
'l

-
'O

O
(
D

I
-
J
M

O
O

I
-
'l

-
'O

O
H

-
'l

-
'O

O
I
-
'h

-
'O

O
h

-
'l

-
'O

O
I
-
'l

-
'l

—
'O

h
-
'O

l
-
'O

I
-
'O

I
-
'O

t
-
^

h
-
'O

I
-
'O

h
-
'O

I
-
'O

I
-
'O

M
O

I
-
'O

I
-
'O

h
-
'O

I
—

'
O

h-
1

O
3

3
=

3
3

3
3

=
3

3
M

=
3

=
3

3
3

3
=

3
=

3
3

=
3

3
3

3
3

=
=

=
3

"
-
-
-
-
'
*

'
'
'
•
•
*

*
•

& o s: 3 r
t

o

"
0 8 C
O s C
O

ate: December 09,2006

reg(20)
reg(21)
reg(22)
reg(23)
reg(24)
reg(25)
reg(26)
reg(27)
reg(28)
reg(29)
reg (30)
reg(31)
X"FFFFFFFF" when

decode,vhd

when "000

when "000

10100",

10101",

10110",

10111",
11000",
11001",

11010",
11011",
11100",

11101",
11110",
mil",

others;

when "000

when "000

when "000

when "000

when "000

when "000

when "000

when "000

when "000

when "000

with rd select

rddata_bus <= reg{0) when "0000
reg(l) when "0000
reg{2) when "0000
reg(3) when "0000
rea{4) when "0000

0000",
0001",
0010",
0011",

0100",
0101",
0110",
0111",

1000",
1001",
01010"

01011"

01100"

01101"

OHIO"

01111"

10000"

10001"

10010"

10011"

10100"

10101"

10110"

10111"

11000"

11001"

11010"

11011"

11100"

11101"

11110"

11111"

others

reg{4) when "0000
reg(5) when "
reg(6) when "
reg(7) when "
reg (8) when "
reg(9) when "0000ley \3 j wnen u

reg(10) when "000
reg(ll) when "000
reg{12) when "000
reg(13) when "000
reg(14) when "000
reg(15) when "000
reg(16) when "000
reg(17) when "000
reg(18) when "000
reg(19) when "000
reg(20) when "000
reg{21) when "000
reg{22) when "000
reg{23) when "000
reg{24) when "000
reg{25) when "000
reg(26) when "000
reg(27) when "000
reg(28) when "000
reg(29) when "000
reg(30) when "000
reg (31) when "000
X"FFFFFFFF" when

-~ initial value

ireg(O) <= X"00000000"
ireg(l) <
ireg(2
ireg(3

X"00000000"

<= X"00000000"

<= X"00000000"

ireg(4) <= X"00000000"
ireg{5) <= X"00000000"

Page 3 of 6

Project: SIMPS

Revision: SIMPS

ate: December 09,2006

ireg(6) <=
ireg(7) <=
ireg(8) <=
ireg(9) <=
ireg(10) <=
ireg(H) <=
ireg(12) <=
ireg(13) <=
ireg(14) <=
ireg(15) <:
ireg(16) <=
ireg{17) <-
ireg(18) <=
ireg{19) <
ireg(20} <
ireg(21) <=
ireg(22) <
ireg{23) <
ireg(24) <
ireg(25) <
ireg(26) <
ireg{27) <
ireg(28) <
ireg(29) <
ireg(30) <
ireg{31) <

X"00000000";

X"00000000";

X"00000000";

X"00000000";

= X"00000000"

= X"00000000"

= X"00000000"

= X"00000000"

= X"00000000"

= X"00000000"

* X"00000000"

= X"00000000"

= X"00000000"

= X"00000000"

= X"00000000"

= X"00000000"

• X"00000000"

= X"00000000"

= X"00000000"

= X"00000000"

= X"00000000"

= X"00000000"

= X"00000000"

= X"00000000"

= X"00000000"

= X"00000000"

decode.vhd Project: SIMPS

wra bus <= rt when reg_dst='l' else rs;

regOwr <= *1' when ((wra_bus = "00000000") and (reg_wrt='lf)} else '0

reglwr o '1' when ((wra_bus = "00000001") and {reg_wrt='l1)) else '0

reg2wr <- '1' when ((wra_bus = "00000010") and (reg_wrt='1')) else *0

muxreg(O) <= X"00000000" when reg0wr='0' else wrd_bus;
muxreg(l) <= X"00001010" when reglwr='0' else wrd_bus;
muxreg(2) <= X"0000100F" when reg2wr='0' else wrd_bus;

extend(15 downto 0) <= imm_v;
extend(31 downto 16) <= X"FFFF" when imm v(15)='l' else X"0000";

process

begin
wait until {clock'event) and (clc

if reset='l' then

reg(0) <= ireg{0}
reg(l) <= ireg(l)
reg(2) <= ireg(2)
reg{3) <= ireg(3)
reg(4) <= ireg(4)
reg(5) <= ireg(5)
reg(6) <= ireg(6)
reg(7) <= ireg(7)
reg(8) <= ireg(8)
reg(9) <= ireg(9);

Page4 of 6 Revision: SIMPS

ate: December 09, 2006

reg(10) <=
reg {11) <=
reg{12) <=
reg{13) <=
reg(14) <=
reg(15) <=
reg (16) <=
reg (17) <=
reg(18) <»
reg(19) <=
reg(20) <
reg(21) <=
reg(22) <=
reg(23) <--
reg(24) <=
reg(25) <=
reg(26) <=
reg(27) <=
reg(28) <=
reg(29) <=
reg(30) <*
reg(31) <-

else

reg(0) <=
reg(l) <=
reg(2) <=
reg(3) <=
reg(4) <=
reg(5) <=
reg(6) <=
reg(7) <=
reg(8) <=
reg(9) <=
reg(10) <=
reg (11) <=
reg (12) <;
reg(13) <=
reg (14) <=
reg (15) <=
reg(16) <;
reg (17) <=
reg (18) <=
reg(19) <=
reg (20) <=
reg{21) <=
reg (22) <=
reg{23) <-
reg(24) <=
reg{25) <*
reg (26) <=
reg (27) <=
reg(28) <••
reg (29) <=
reg(30) <=
reg (31) <^

end if;

end process;

ireg

ireg
ireg
ireg
ireg
ireg
ireg
ireg
ireg
ireg
ireg
ireg
ireg
ireg
ireg
ireg
ireg
ireg
ireg
ireg
ireg
ireg

(10)

(11)

(12)

(13)
(14)

(15)
(16)

(17)

(18)

(19)
(20)
(21)
(22)

{23}
{24}

(25)
{26}
{27}

(28)

(29)
(30)
(31)

muxreg{0)
muxreg(1)
muxreg(2)
muxreg(3)
muxreg(4)
muxreg{5}
muxreg{6)
muxreg{7)
muxreg{8)
muxreg(9)
= muxreg(10)
= muxreg(11)
= muxreg(12)
= muxreg(13)
= muxreg(14)
= muxreg(15)
= muxreg{16}
= muxreg(17)
= muxreg(18)
= muxreg{19}
= muxreg{20}
= muxreg{21}
= muxreg{22)
= muxreg{23}
= muxreg{24}
= muxreg{25}
= muxreg(26)
= muxreg(27)
= muxreg(28)
= muxreg(29)
= muxreg(30)
= muxreg(31)

decode.vhd Project: SIMPS

Page5 of 6 Revision: SIMPS

ate: December 09,2006 decode.vhd Project: SIMPS

r- •'} '"j

--'S end behaviour;

Page 6 of 6 Revision: SIMPS

(control,vhd)

ate: December 09,2006 control.vhd Project: SIMPS

': — Abdul Azim bin Abdullah

.-. — Universiti Teknologi PETRONAS
':•• -- control.vhd

•; library ieee;
i. use ieee.std_logic_1164.all;
• use ieee.std_logic_arith.all;

"10 — control entity

: entity control is
U port{PCin : in bit_vector(7 downto 0);
14 ra_bus : out bit_vector(31 downto 0);

wa_bus ; out bit_vector(31 downto 0);
l^ reg_wrt : out std_logic;

reg_dst : out std_logic;
1::• mem_wrt : out std_logic;
.'; :) mem__red : out std_logic;
7Q mem_reg : out std_logic);
>."• end control;

7. i -- control architecture

?.'•: architecture behaviour of control is

2':i- begin

process (PCmj

begin
case PCin is

when X"04" =>

reg wrt <= *0';
reg^dst <= '0';
mem wrt <= '0';

mem red <= '1';
mem reg <= '0';
ra bus <= X"00000001";

when X"08" =>

reg wrt <= '0';
reg_dst <= '1';
mem wrt <= '0';

mem red <= '1';

mem reg <= '0';
ra bus <= X"00000010";

when X"0C" =>

reg wrt <= '0 *
reg_dst <= '1*
mem wrt <= '0'

mem red <— '0'

mem reg <= '0'
ra bus <= X"00)00010";

when X"10" =>

reg wrt <~ '0'
reg_dst <= '1'
mem wrt <= '0'

Page 1 of 3 Revision: SIMPS

ate: December 09,2006 control.vhd Project: SIMPS

mem_red <= '0';
mem_reg <= '0';
ra_bus <= X"00000010";

when X"14" =>

reg_wrt <= '0';
reg_dst <= '1';
mem_wrt <- '0';
mem_red <= '0';
mem_reg <= '0';
ra_bus <- X"00000010";

when X"18" =>

reg_wrt <= *0 *;
reg_dst <- '1 *;
mem_wrt <= '0';
mem_red <= '0';
mem__reg <= ' 0';
ra_bus <= X"00000010";

when X"1C" =>

reg_wrt <= *0';
reg_dst <= '1*;
mem_wrt <= *0' ;
mem_red <= *0';
mem_reg <= '0' ;
ra_bus <= X"00000010";

when X"20" =>

reg_wrt <= *0';
reg_dst <= '1' ;
mem_wrt <= '0';
mem_red <= '0';
mem_reg <= *0';
ra_bus <= X"00000010";

when X"24" =>

reg_wrt <= '0 *;
reg_dst <= ' 1';
mem_wrt <= '0 ';
mem_red <= ' 0' ;
mem_reg <= '0';
ra_bus <= X"00000010";

when X"28" =>

reg_wrt <= '0' ;
reg_dst <= '1' ;
mem_wrt <= '0';
mem_red <= '0' ;
mem__reg <= *0';
ra_bus <= X"00000010";

when X"2C" =>

reg__wrt <= ' 0 ';
reg_dst <= '1' ;
irtem_wrt <= ' 0 *;
mem_red <= ' 0';
mem_reg <= '0';
ra_bus <= X"00000010";

when others ~>

reg_wrt <= '1';
reg_dst <= *1';
mem wrt <= '0';

Page 2 of 3 Revision: SIMPS

ate: December 09,2006 control.vhd Project: SIMPS

mem_red <= '1';
mem_reg <= *0';
ra_bus <= X"00000000";

end case;

end process;

end behaviour;

Page 3 of 3 Revision: SIMPS

(execute,vhd)

ate: December 09,2006 execute.vhd Project: SIMPS

'. — Abdul Azim bin Abdullah

2 — Universiti Teknologi PETRONAS
,"; -- execute.vhd

>2 -- bv__arithmetic package

?. package bv_arithmetic is

function "+" (bvl, bv2 : in bit_vector) return bit_vector;

i;: function "-" (bvl, bv2 : in bitjvector) return bit_vector;

i function "-" (bv : in bit_vector) return bit_vector;

!(: function "*" (bvl, bv2 : in bit_vector) return bit_vector;

U; procedure bvjnultu (bvl, bv2 : in bit_vector;
"'. 2 bv__result : out bitjvector;
'•7 overflow : out boolean);

72 procedure bv_addu (bvl, bv2 : in bit_vector;
.-.> bv_result : out bitjvector;
•v' overflow : out boolean);

72 procedure bv_add (bvl, bv2 : in bit_vector;
bv_result : out bit_vector;

22 overflow : out boolean);

3 • procedure bv_addu (bvl, bv2 : in bit_vector;
bv_result : out bit_vector);

27 procedure bv_sub (bvl, bv2 : in bitjvector;
"7 2 bv_result : out bit_vector;
22., overflow : out boolean);

•'•'/' procedure bv_subu {bvl, bv2 : in bit_vector;
7:1 bv_result : out bit_vector) ;

id procedure bv_and {bvl, bv2 : in bit_vector;
2':. bv_result : out bit_vector) ;

H procedure bv_or {bvl, bv2 : in bit__vector;
bv_result : out bit_vector);

4: procedure bv__xor {bvl, bv2 : in bit_vector;
bv_result : out bit__vector) ;

1:; procedure bv_nor (bvl, bv2 : in bitjvector;
77 bv_result : out bit_vector);

5- function bv_sll {bv : in bit_vector;
•>••> shift__count : in natural) return bit_vector;

72 function bv_srl (bv : in bit_vector;
7b shift count : in natural) return bit vector;

Page 1 of 9 Revision: SIMPS

ate: December 09, 2006

:-. .; end bv arithmetic;

execute.vhd Project: SIMPS

-- bv_arithmetic package body

package body bv arithmetic is

function "+

variable opl
variable op2
variable result

variable carry__in
variable carry_out

begin
opl := bvl;
op2 := bv2;
for index in result'reverse range loop

bvl, bv2 : in bit_vector) return bitjvector is
bit_vector(l to bvl'length);
bit_vector{l to bv2'length);
bit_vector(l to bvl'length);
bit;

bit := '0';

carry_m

result(index)
carry_out

'opl(index) xor op2(index}));
end loop;
return result;

end "+";

= carry_out;
= opl(index) xor op2(index) xor carry_in;
= {opl(index) and op2(index)) or (carry in and

function "-" {bvl, bv2

variable opl :
variable op2 :
variable result :

variable carry_in :
variable carry_out :

begin
opl := bvl;
op2 := bv2;
for index in result'reverse range loop

: in bitjvector) return bit_vector is
bitjvector{l to bvl'length);
bitjvector{1 to bv2'length);
bit_vector{l to bvl'length);
bit;

bit := '!';

carry_m

result(index)
carry_out

n and {opl(index) xor {not op2(index
end loop;
return result;

end "~";

function "-" (bv :

constant zero

begin
return zero - bv;

end "-";

:= carry__out;
:= opl(index) xor (not op2(index}) xor carry__in;
:= {opl(index) and {not op2(index))) or (carry i

in bitjvector) return bitjvector is
: bit_yector(bv'range) := (others => T0

function "*"

variable

variable

variable

variable

begin
negative_result :
if {opl(opl'left)

(bvl, bv2 : in bit_vector} return bit_vector is
negative_result : boolean;

: bit_vector(bvl*range) := bvl;
: bit_vector(bv2*range) := bv2;
: bit_vector(bvl'range);

opl
op2
result

;opl(opl'left} = '1') xor (op2(op2'left'
'1M then

Page 2 of 9 Revision: SIMPS

ate: December 09,2006 execute.vhd Project: SIMPS

113 opl := - bvl;
i:; 4 end if;
-:":• if {op2{op2'left) = '1') then
;:*'. op2 := - bv2;
2 end if;

3": 7 bv_multu(opl, op2, result);
1.; j if (negative_result) then
V30 result := - result;

1 -;' j end if;

2 27 return result;

:/7 end "*";

J33 procedure bv_multu (bvl, bv2 : in bit_vector;
12 2 bv_result : out bit_vector;
• 72": overflow : out boolean} is

constant bv_length : natural := bvl'length;
133 constant accumJLength : natural := bv_length * 2;
j33 constant zero : bitjvector(accum_length-l downto bv_

length) := (others »> '0');
variable accum : bitjvector(accum_length-l downto 0);
variable addu_overflow : boolean;
variable carry : bit;

begin
accum(bv_length-l downto 0) := bvl;
accum(accum_length-l downto bv_length) := zero;
for count in 1 to bv_length loop

if (accum{0) = 'l') then
bv_addu{ accum(accum_length-l downto bv_length), bv2,

accum(accum_length-l downto bv_length), addu_overflow)
r

carry := bit'val(boolean'pos(addujDverflow));
else

carry := '0';
end if;

accum := carry & accum(accum__length-l downto 1);
end loop;
bv__result := accum(bv__length-l downto 0);
overflow := accum(accum_length-l downto bv_length) /= zero;

end bv_multu;

procedure bv_addu (bvl, bv2 : in bit_vector;
bv_result : out bit__vector;
overflow : out boolean) is

variable opl : bit_vector{l to bvl'length);
variable op2 : bit_vector{l to bv2'length);
variable result : bit_vector(l to bv_result'length);
variable carry : bit :~ '0';

begin
opl := bvl;
op2 := bv2;
for index in result'reverse__range loop

result(index) := opl(index) xor op2(index) xor carry;
carry := (opl(index) and op2(index)) or (carry and (opl(i

ndex) xor op2(index)));
end loop;
bv_result := result;
overflow := carry = '1';

Page3 of 9 Revision: SIMPS

ate: December 09,2006 execute.vhd Project: SIMPS

end bv_addu;

procedure bv_add (bvl, bv2 : in bit_vector;
bv_result : out bit_vector;
overflow : out boolean) is

variable opl : bit_vector{l to bvl'length);
variable op2 : bit_vector(l to bv2'length);
variable result : bit_vector(l to bv_result'length);
variable carry_in : bit;
variable carry_out : bit := '0';

begin
opl := bvl;
op2 := bv2;
for index in result'reverse_range loop
carry_m
result(index)

carry__out
1(index) xor op2(index)));

end loop;
bv_result :~ result;
overflow := carry_out /= carry_in;
—overflow := true;

end bv_add;

procedure bv_addu {bvl, bv2 : in bit_vector;
bv_result : out bit_vector) is

variable opl : bit__vector (1 to bvl'length);
variable op2 : bit_vector(l to bv2'length);
variable result : bit_vector(l to bv_result'length);
variable carry : bit := *0*;

begin
opl := bvl;
op2 := bv2;
for index in result'reverse_range loop

result(index) := opl(index) xor op2(index) xor carry;
carry :~ {opl(index) and op2(index)) or (carry and {opl(index) xo

r op2(index)});
end loop;
bv_result := result;

end bv__addu;

procedure bv_sub (bvl, bv2 : in bit_vector;
bv_result ; out bit_vector;
overflow : out boolean) is

variable opl : bit__vector(1 to bvl'length);
variable op2 : bit_vector(1 to bv2'length);
variable result : bit_vector{l to bv_result'length);
variable carry_in : bit;
variable carry_out : bit := '1';

begin
opl := bvl;
op2 := bv2;
for index in result'reverse_range loop

carry_in :- carry_out;
result(index) := opl(index) xor (not op2(index)) xor carry_in;
carry_out := (opl(index) and (not op2(index))) or (carry_in and (

opl(index) xor {not op2(index))));

Page 4 of 9 Revision: SIMPS

= carry_out;
= opl(index) xor op2{index} xor carry_in;
= (opl(index) and op2(index)) or (carry_in and (op

ate: December 09,2006 execute.vhd Project: SIMPS

end loop;
bv_result := result;
overflow := carry_out /= carry_in;

end bv_sub;

procedure bv_subu (bvl, bv2 : in bit_vector;
bvjresult : out bit_vector) is

variable opl : bit_vector(l to bvl'length);
variable op2 : bit_vector(l to bv2'length);
variable result : bit_vector{l to bv_result'length);
variable borrow : bit := '0';

begin
opl := bvl;
op2 := bv2;
for index in result'reverse_range loop

result(index) := opl(index) xor op2(index) xor borrow;
borrow := {not opl(index) and op2(index)) or {borrow and not (opl

(index) xor op2(index)});
end loop;
bv_result := result;

end bv_subu;

313 procedure bv_and (bvl, bv2 : in bit_vector;
bvjresult : out bit_vector) is

variable opl : bit_vector(l to bvl'length);
variable op2 : bit_vector(l to bv2'length);
variable result : bit_vector(l to bv_result'length);

begin
opl := bvl;
op2 := bv2;
for index in result'reverse_range loop

result{index) := opl(index) and op2(index);
end loop;
bv_result := result;

end bv_and;

procedure bvjor (bvl, bv2 : in bit_vector;
bv_result : out bit_vector) is

variable opl : bit_vector(l to bvl'length);
variable op2 : bit_vector(l to bv2'length);
variable result : bit_vector{l to bv_result'length);

begin
opl := bvl;
op2 := bv2;
for index in result'reverse_range loop

result(index) := opl(index) or op2(index);
end loop;
bvjresult := result;

end bv_or;

procedure bv_xor {bvl, bv2 : in bit_vector;
bv_result : out bit__vector) is

variable opl : bit_vector(l to bvl'length);
variable op2 : bit_vector{l to bv2'length};
variable result : bit__vector{1 to bv_result'length);

begin
opl := bvl;

Page 5 of 9 Revision: SIMPS

ate: December 09,2006 execute.vhd Project: SIMPS

op2 := bv2;
for index in result'reverse_range loop

result(index) := opl{index} xor op2(index);
end loop;
bv_result := result;

end bv_xor;

procedure bvjior {bvl, bv2 : in bitjvector;
bvjresult : out bit_vector) is

variable opl : bit_vector(l to bvl'length);
variable op2 : bit_vector(l to bv2'length);
variable result : bit_yector(1 to bv_result'length);

begin
opl := bvl;
op2 := bv2;
for index in result'reverse_range loop

result(index) := not (opl(index) or op2(index));
end loop;
bv_result := result;

end bv_nor;

function bv_sll (bv : in bitjvector;
shift_count : in natural) return bit_vector is

constant bv_length : natural := bv'length;
constant actual_shift__count : natural := shift__count mod bv_length;
variable bv_norm : bitjvector{1 to fov_length);
variable result : bit_vector(1 to bv_length) := (others => '0');

begin
bv_norm := bv;
result(1 to bv_length - actual_shift_count) :- bv_norm(actual_shift

_count + 1 to bv_length);
return result;

end bv_sll;

function bv_srl {bv : in bit_vector;
shift_count : in natural) return bitjvector is

constant bv_length : natural :~ bv'length;
constant actual_shift__count : natural := shift_count mod bv_length;
variable bv_norm : bit_vector(l to bv_length);
variable result : bitjvector(1 to bv_length) :== (others => '0');

begin
bvjiorm := bv;
result(actual_shift_count + 1 to bv_length) := bv_norm(l to bv_leng

th - actual_shift_count);
return result;

end bv_srl;
end bv_arithmetic;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use work.bv_arithmetic.all;

— execute entity

Page 6 of 9 Revision: SIMPS

ate: December 09, 2006 execute.vhd Project: SIMPS

entity execute is
port{opcode : in bitjvector(15 downto 0);

extend : in bit_vector(31 downto 0);
rsdata_bus : in bit_vector(31 downto 0)
rtdata_bus : in bit_vector(31 downto 0)
rddata_bus : in bit_vector(31 downto 0)
data_bus : out bit_vector(31 downto 0);
clock : in std_logic);

end execute;

OP

rs data bus

rt data bus

rd data bus

-- execute architecture

architecture behaviour of execute is

signal op_impl : bitjvector(15 downto 0);

constant op_nop : bit_vector (15 downto 0) := X"0000";

constant op_lw : bitjvector(15 downto 0) := X"0028";

-- NOP

— ADD r

-- artithmetic operations
constant op_add : bit_vector(15 downto 0)

d, rs, rt // add signed (with overflow check
constant op addu : bit vector(15 downto 0)

- X"0040";

// rs + rt ~> rd
= X"0042"; — ADDU

rd, rs, rt // add unsigned {without overflow check) // rs + rt -> rd
-- SUB rconstant op_sub : bit_vector(15 downto 0}

d, rs, rt // sub signed (with underflow check
constant op_subu : bitjvector(15 downto 0)

rd, rs, rt // sub unsigned (without underflow check) // rs - rt

constant op_multu: bitjvector(15 downto 0) := X"0047";
rd, rs, rt

— logical operations
constant op_and : bitjvector(15 downto 0)

d, rs, rt // rs & rt -> rd
constant op_or : bit_vector(15 downto 0)

, rs, rt // rs | rt -> rd
constant op_xor : bit_vector(15 downto 0)

d, rs, rt // rs A rt -> rd
constant op_nor : bit_vector(15 downto 0)

d, rs, rt // -(rs | rt) -> rd

= X"0044";

// rs - rt -> rd

= X"0045";

= X"004E";

= X"0050";

- X"0052";

= X"0054";

constant op_sll : bitjvector{15 downto 0) := X"0055";
d, rt, shamt // rt « shamt ~> rd

constant op_srl : bit_vector{15 downto 0) := X"0057";
d, rt, shamt // rt >> shamt -> rd

begin

op__impl <= opcode;

process

variable rsjdata : bit_vector{31 downto 0);
variable rt data : bit vector{31 downto 0);

- SUBU

-> rd

- MULTU

— AND r

— OR rd

— XOR r

— NOR r

— SLL r

— SRL r

Page7 of 9 Revision: SIMPS

ate: December 09,2006 execute.vhd

variable rd_data : bit_vector(31 downto 0};

begin
wait until (clock'event) and (clock='l'};

rsjdata := rsdata_bus;
rt_data := rtdata_bus;
rd data := rddata bus;

case op_impl is

when op_nop =>
data__bus <= X"00000000";

when op_lw =>
data_bus <= extend;

when op_add =>
bv_add(rsjdata,rt_data,rdjdata) ;
data_bus <= rd_data;

when op_addu =>
bv_addu(rs_data,rt_data,rd_data);
data_bus <= rd_data;

when op_sub =>
bv__sub (rs_data, rt_data,rd_data) ;
data_bus <= rdjdata;

when op_subu =>
bv_subu(rs_data, rtjdata, rdjdata);
data_bus <= rdjdata;

when op_multu =>
bv_multu(rs_data,rtjdata,rd_data)
data_bus <== rdjdata;

when op_and =>
bv_and(rsjdata,rt_data,rdjdata);
data_bus <= rd__data;

when op_or =>
bv_or(rs_data,rtjdata,rd_data);
data_bus <= rd_data;

when op__xor =>
bv_xor (rsjdata, rtjdata, rdjdata) ;
data_bus <- rd_data;

when op_nor =>
bv_nor(rs_data,rt_data,rd_data);
data_bus <= rd_data;

when op_sll =>
data_bus <= bv_sll(rt_data, 1);

when op srl =>

Page 8 of 9

Project: SIMPS

Revision: SIMPS

ate: December 09,2006 execute.vhd Project: SIMPS

data_bus <= bv_srl(rtjdata, 1);

when others =>

data_bus <= null;

end case;

end process;

end behaviour;

Page 9 of 9 Revision: SIMPS

(memory.vhd)

ite: December 09,2006 memory.vhd

-- Abdul Azim bin Abdullah

— Universiti Teknologi PETRONAS
-~- memory.vhd

library ieee;
use ieee.std_logic__1164.all;
use ieee,std_logic_arith.all;

entity memory is
port(rd__bus : out bit_vector(31 downto 0);

wd_bus : in bitjvector(31 downto 0)
ra_bus : in bit_vector(31 downto 0)
wa_bus : in bit_vector(31 downto 0)
meirjwrt : in std__logic;
mem_red : in std_logic;
mem_reg : in std_logic;
clock, reset : in std_logic);

end memory;

architecture behaviour of memory is

signal muxout : bitjvector(31 downto 0);
signal address : bit_vector(31 downto 0);

signal memO, meml, mem2 : bit_vector{31 downto 0);
signal imemO, imeml, imem2 : bitjvector(31 downto 0);
signal muxmemO, muxmeml, muxmem2 : bit_vector(31 downto 0);

signal memOwrt, memlwrt, mem2wrt : std_logic;

begin

imemO <= X"0000000A";

imeml <= X"0000000B";

imem2 <= X"0000000C";

address <= ra_bus;
muxout <= memO when address=X"00000000" else

meml when address=X"00000001" else

mem2 when address=X"00000010";

rd_bus <= muxout when mem_red='l' else
X"FFFFFFFF";

—memOwrt <= '1' when ((mem_wrt='1') and (wa_bus=X"00000000")) else *
0' ;

—memlwrt <= '1' when ((memlwrt-11') and (wa_bus=X"00000001")) else '
0';
—mem2wrt <= '1' when ((mem wrt='1'} and {wa bus=X"00000010")) else '

muxmemO <= wd_bus when mem_wrt='l' else memO;
muxmeml <= wd__bus when mem_wrt=*l' else X"00000000";
muxmem2 <= wd_bus when mem_wrt='l' else X"00000000";

process

begin

Pagel of 2

Project: SIMPS

Revision: SIMPS

ate: December 09,2006 memory.vhd Project: SIMPS

;3 wait until (clock'event) and {clock='l');
3.3 if (reset='l') then

memO <= imemO;

.v3 meml <= imeml;

•3 mem2 <= imem2;
33 else

(3: memO <= muxmemO;

•'72 meml <= muxmeml;

77;, mem2 <= muxmem2;

'-.-•\ end if;

i ''•-. end process;

27 end behaviour;

Page 2 of 2 Revision: SIMPS

