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ABSTRACT

This report describes the current progress of final year project entitled Implementation of
SimpleScalar Portable Instruction Set Architecture (PISA) on FPGA. The objectives of
this study are to learn computer system architecture, to sharpen skill in programming and

debugging a program and to complete study in Universiti Teknologi PETRONAS.

Problem statements will explain the reasons behind of this study was conducted. Firstly,
there are few microprocessors in the market currently can be reconfigurable. Secondly,
there i1s a need to design a microprocessor which can be used freely for academic
purposes. Thus, in this study, we will focus on the designing of a microprocessor that is

reconfigurable, easily understood and freely available for academicals purposes.

Methodology will describe way on how this project will be carried out. There are three
main steps to be taken which are: 1) Studying the SimpleScalar instruction set
architecture; 2) Programming and simulating by using VHDL programming language 3)
Implementing the SimpleScalar architecture in VHDL and FPGA.

In the Discussion, a detail contents regarding the project will be explained. Contents
included are SimpleScalar’s instruction format, register and operation cycle, software and
hardware used in the project, the SimpleScalar implementation in VHDIL and VHDL

simulation. The further details will be discussed later.

Finally, this report is concluded in the Conclusion. Recommendations describe the

suggestions that can be done to the current project to improve them in the future.
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CHAPTER 1: INTRODUCTION

1.1. Background Study

Modern processors are incrediblely complex marvels of engineering that are becoming
increasing hard to evaluate. Simplescalar tool set performs fast, flexible and accurate

simulation for modern processors that implement the Simplescalar architecture.

According to D. Burger [1], Simplescalar simulators can emulate the Alpha, PISA, ARM,
and x86 instruction sets. The tool set includes a machine definition infrastructure that
permits most architectural details to be separated from simulator implementations. All of
the simulators distributed with the current release of Simplescalar can run programs from
any of the above listed instruction sets. Complex instruction set emulation (e.g., x86) can
be implemented with or without microcode, making the Simplescalar tools particularly

useful for modeling CISC instruction sets.

The advantages of this tool are flexibility, portability, extensibility and performance. This
tool set is portable, requiring only that the GNU tools may be installed on the host
system. The tool set has been used on rhultiple platforms such as Linux/x86, Win NT,
SPARC and Solaris. The tool set is easily extensible. The instruction set is designed to
support easy annotation of instructions, without requiring a retargeted compiler for
incremental changes. The instruction definition method along with the ported GNU tools
makes new simulators easy to write and the old ones even simpler to extend. Finally, the
simulators have been aggressively tuned for performance and can run codes approaching

“real” sizes in tractable amounts of time. [1]



In this project, I will design a Portable Instruction Set Architecture (PISA)
microprocessor in VHSIC Hardware Description Language (VHDL) and implement it on
FPGA.

The PISA instruction set is a simple MIPS-like instruction set maintained primarily for
instructional use. A GNU GCC-based cross-compiler and pre-built libraries are also
available for this target. The PISA target is particularly useful for computer engineering
instruction as the tools can be built on a wide range of host platforms, including

Linux/x86, Win2000, SPARC Solaris, and others. [1]

1.2. Problem Statements

In the current design of microprocessor, there are few microprocessors which can be
reconfigurable. “Reconfigurable” term means the memory addressing and registers of the
given microprocessor can be adjusted according to the author’s preferences. Currently, all
microprocessor available in the market, the function units, memory addressing and
registers are fixed and cannot be reconfigured. Therefore, this project is attempting to

design a microprocessor which is reconfigurable.

Currently, there are a lot of microprocessors designs available today from Intel,
Motorola, SPARC and others. However, not all of them are easy to be understood by
students who just begin their learning in computer system. In the learning curve, to know
and understand the concept of computer system is by learning from the simplest form of
digital system, logic circuits until the bardest part, which is the memory system.
SimpleScalar, which is based on MIPS, provides an easy and simple architecture for
study. In addition, it is free for academic purposes and open source for development. In

this project, the simplest microprocessors will be design.



From studies made, it is found that Simplescalar PISA can be implemented as a
microprocessor. Besides it is free for non-commercial use, it is also reconfigurable and
flexible to all platforms. PISA which is like MIPS-like instruction is good architecture for

study, because it is easy to understand.

1.3. Objectives

To implement SimpleScalar PISA in FPGA.

SimpleScalar tool set is used to evaluate modern processors using the SimpleScalar
architecture. However, it is only available in software based. The source code must be
compiled first before it can be executed. Up to date, there is no hardware based
implemented for SimpleScalar PISA. Therefore, in this project, I will implement the
SimpleScalar PISA in hardware called FPGA.

To design and program circuits using VHDL language.

My interest is programming and I have learnt a lot of languages such as C, C++, HTML,
Visual Basic, MATLAB and PHP. I also had experienced in microcontrollers
programming, However, VHDL is one of the programming languages I did not manage
to learn. Therefore, this project is able to help me to gain new knowledge and experience

in programming the digital circuit using VHDL language.

To apply and relate computer system architecture.

In the computer system subject, I have learnt digital logic gates, full adder system, basic
computer architecture, register design and memory design. From this project, I hope I

will be able to apply and relate the concept of computer system subject learnt.



CHAPTER 2: LITERATURE REVIEW

This project can be divided into two major partitions which are SimpleScalar Instruction

Set Architecture and Implementation on the VHDL and FPGA.

2.1. SimpleScalar Instruction Set Architecture

2.1.1. Instruction Set

Instruction set is a collection of all operations possible in 2 machine’s language. There
are many types of instructions in a computer system, such as arithmetic instructions, data

movement instructions, control or branch instructions and many more.

In arithmetic instructions, it will accept one or more operands and produce a result.
Besides, it may also set a flag to indicate that the result of the operation was a negative
number. In data movement instructions, it moves data within the machine and to or from
input/output devices. In control or branch instructions, it affects the order in which
instructions are performed, or control the flow of the executing program, much as gofo,

for, and function calls do in C. [2]

Every instruction must contain encodings within it to specify the following 4 things,

either explicitly or implicitly:

1. Which operation to perform.

2. Where to find the operand or operands, if there are operands.
3. Where to put the results, if there is a result.

4. Where to find the next instructions.

Source: John L. Hennessy & David A. Patterson, “Computer Architecture: A Quantitative Approach” [2]

-4 -



In SimpleScalar, the instruction set can be divided into 4 groups, which are:

Control Instruction
Load/Store Instruction

Integer Instruction

il

Floating point Instruction

Source: Doug Burger, Todd M. Austin, “The SimpleScalar Tool Set, Version 2.0" {1]

(Refer to Appendix 1: List of Simplescalar Instruction Set for more details)

2.1.2. Instruction Set Architecture

Instruction set architecture is the collection of instructions and resources. It includes the
instruction set, the machine’s memory and all of the programmer-accessible registers in

the CPU and elsewhere in the machine. [3]

The SimpleScalar architecture can be divided into parts:

e Instruction set principles.
¢ Memory hierarchy and register design.
e 5 stages of pipelining.

o Level 1 and level 2 cache.

Source: Doug Burger, Todd M. Austin, “The SimpleScalar Tool Set, Version 2.0” {1]



2.2. Implementation on VHDL and FPGA
2.2.1. VHDL

VHDL is an acronym of VHSIC Hardware Description Language. VHSIC is another
acronym which stands for Very High Speed Integrated Circuits.

In digital design, the VHDL language is used for documentation, verification and
synthesis of large digital system. It allows the system can be described in the same code

to achieve these goals at one time, thus saving a lot of effort. [6]

There are three different approaches are used to describe hardware in VHDL. They are
structural, data flow and behavioral methods of hardware description. In the beginning,
the design behaviour is described (modeled) and verified (simulated). By using the
synthesis tools, the design is able to be translated into real hardware (gates and wires), At

this point, they are mapped onto a programmable logic device such a CPLD or FPGA. [6]

The VHDL standards are developed by IEEE (Institute of Electrical and Electronics
Engineers). Currently, there are two standards widely used, which are VHDL’87 (STD
1076-1987) version and VHDL’93 (adopted in 1994). [6]



2.2.2. FPGA

FPGA is an acronym which stands for Field Programmable Gate Array. The term of
“Field Programmable” refers to the ability to change the operation of the device, while
“Gate Array” refers to the matrix of logic cell surrounded by a peripheral of 1/O cells.
Simply, FPGA are programmable digital logic chips which can be program to do digital

function. [7]

FPGAs come in a wide variety of sizes and many different combinations of internal and
external features from different manufacturers. Although they are different in many
things, they have a common, which is composed of programmable logic blocks. Each of
these blocks contains registers and logic elements, which are arranged in a grid and tied

together using programmable interconnections. [7]

In a typical FPGA, the logic blocks that make up the bulk of the device are based on
lookup tables (of perhaps four or five binary inputs) combined with one or two single-bit
registers and additional logic elements such as clock enables and multiplexers. These
basic structures may be replicated many thousands of times to create a large

programmable hardware fabric. [7]

In more complex FPGAs these general-purpose logic blocks are combined with higher-
level arithmetic and control structures, such as multipliers and counters, in support of
common types of applications such as signal processing. In addition, specialized logic
blocks are found at the periphery of the devices that provide programmable input and

output capabilities. [7]



Figure 1 shows the general workflow when working with FPGA.

Describe logic function

F

A 4

Compile design

A

Download design onto FPGA

Run the FPGA

Figure 1: FPGA Workflow

First step is to describe the logic function that wants to be developed. Draw schematic or

write program to describe the particular function.

Then, compile the design. The logic function designed is compiled by using the software
provided from FPGA vendor (¢.g.: Xilinix ISE, Altera Quartus, Active VHDL and etc).
This will create a binary file that can be downloaded into the FPGA.

The next step is to download the design onto FPGA. Connect cable from the computer to
the FPGA and download the binary file created to the FPGA.

Finally, run the FPGA. If successfully, the FPGA will behave according to the logic

function. If not, repeat the steps again to re-develop.

Source: fpgadfun.com, What are FPGAs? [20]



CHAPTER 3: METHODOLOGY

Studying the Simplescalar Learning VHDL programming
Instruction Set Architecture X language

h 4

Implementing the Simplescalar
microprocessor in VHDL

k 4

Implementing the Simplescalar
microprocessor in FPGA

Figure 2: Methodology Steps

Figure 2 above shows the steps I will be taking during implementation of this project.
The first part is to study the Simplescalar Instruction Set Architecture. This involves
understanding the source code given, what instruction sets are to be used, how to set the
memory addressing and registers and many more. Besides that, I also will have to
simulate the microprocessors by using the tools given in order to help me to understand

how it works.

Parallel with the Simplescalar architecture studies, I will have to learn the VHDL
programming language. This requires understanding of the digital system design
concepts, writing the source codes and doing some programming exercises given in the

books. The software I will be using in VHDL programming is Altera Quartus II software.



Then, I will have to implement the Simplescalar microprocessor in VHDL. This step
requires me to convert from the source code given and implement it by using VHDL
programming languages I have learnt. This step requires a lot of programming and

debugging the program.
Final step of this project is to implement the Simplescalar microprocessor which has been
designed by using VHDL on the FPGA. This step requires a lot of programming,

debugging the program and troubleshooting the hardware.

The schedule of this project during Final Year Project I and II can be referred to Planning
Schedule on Appendix 2: Planning Schedule.
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CHAPTER 4: DISCUSSIONS

4.1. Instruction Format

The format of an instruction is usually depicted by a rectangular box symbolizing the bits
of the instruction, as they appear in memory words or in a control register. The bits are
divided into groups or parts called ficlds. Each field is assigned a specific item, such as
the operation code, a constant value, or a register file address. The various fields specify
different functions for the instruction and when shown together, constitute instruction

format. [9]

Register format

16-annote 16-opcode 8-1s 81t 3-rd B-ru/shamt

63 3231 0

Immediate format

16-annote 16-opcode 8-1s 8-rt 16-imm

63 3231 0

Jump format

1 6-annote 16-opcode 6-unused 26-target

63 3231 0

Figure 3: Instruction Format

Source: Doug Burger, Todd M. Austin, “The SimpleScalar Tool Set, Version 2.0” [1]

-11 -



The three instruction formats for the SimpleScalar are illusirated in the Figure 3.
SimpleScalar architecture is derived from MIPS-IV instruction set architecture.
Therefore, it has same instruction set as MIPS-IV, All instructions are 64 bits in length.

The instructions can be divided into three formats: register, immediate and jump. [1]

The register format is used for computational instructions. The immediate format
supports the inclusion of a 16-bit constant. The jump format support specification of 24-
bit jump targets. The register fields are all 8 bits, to support extension of the architectured
registers to 256 integers and floating point register. Each instruction format has a fixed-

location, 16-bit opcode field that facilitates fast instruction encodings. [1]

8 bits, 2”8 =256 integers from 00000000 to 11111111

The bits are divided into groups or parts called fields. Each field is assigned a specific

item, such as operation code, a constant value or a register file address.

The operation code of an instruction, often shortened to “opcode”, is a group of bits in the
instruction format. This determines which operations to be conducted by the processor.
The operation of instruction is differentiate by using opcode. For example, the opcode for
ADD instruction is 0x40 or 01000000 while the opcode for SUB instruction is 0x44 or
01000100. In SimpleScalar, the opcode is in hexadecimal. However, the opcodes of all
instructions are 8 bits. The instruction format for the opcode is 16 bits. Therefore, the
remaining 8 bits must be filled by using either zero fill or sign extension. In this

architecture, zero-fill is specified for the operand. [1]

Constant value is the immediate value available in the instruction. In SimpleScalar, the

value supported for the immediate value is from 0 to 65536. [1]

For full instructions, please refer to Appendix 3: SimpleScalar Instructions for.

-12-



File pisa.def defines all aspects of the Simplescalar instruction set architecture. Each
instruction set in the architecture has a DEFINST macro call. Here, shows example on

how the instructions are organized and defined in the source code:

#¥define ADD_IMPL
{
if (OVER{GPR(RS), GPR(RT)})
DECLARE_FAULT(md_fault_overflow);

/ semantics
SET GPR{RD, GPR(RS) + GPR(RT} ) ;
}
DEFINST (ADD, 0x40, 4= opcode
"add", "d, s, t", o instruction flags
IntALU, F ICOMP,
DGPR{RD}, DNA, DEPR(RS), DGPR{RT), DNA)

Figure 4: Instruction Set

Source: Todd M. Austin, “SimpleScalar Hacker’s Guide” [8]

Figure 4 shows on how the instruction set is defined in the pisa.def. The instruction is

ADD arithmetic operation. The operation will involve:

1. Reading values from general purpose register of RS and general purpose register of
RT.

2. Doing the operation, adding between general purpose register of RS and general
purpose register of RT.

3. Writing (Storing) the results in the general purpose register of RD.

The opcode of this instruction is 0x40 in hexadecimal or 01000000 in binary. Different
operation will use different opcode. Since the instruction is arithmetic operation between
integers, therefore the functional unit requirement is IntALU. This operation also has
helper function which is available to assist in the construction of instruction expression.
OVER(GPR(RS), GPR(RT)) function is an overflow checking. This will check whether
the results of the operation given have overflow or not. If overflow has occured, a

function DECLARE FAULT(md_fault overflow) will be called. [8]

213 -



4.2. Register

This module implements the SimpleScalar architected register state, which includes

integer and floating point registers and miscellaneous registers. The architected register

state is as follows:

Integer Register File: Hiscellaneous Registers:
(aka general-purpose registers, GPR's)

e + e +

| $rD {sre/sink 0O} | | PC { Program Counter
B T E L LR + e — +

| $ri | | HI | Mult/Div HI wal
o e + o e +

| . | | LO | Mult/Div LO wal
I | R e +

| I

e +

| §r3t |

e me e +

Floating point Register File:
gingle-precision: double-precision:

S e ———— e ————————— +
| $£0 | $£1 (for double) | | FCC | FP codes
e e F A +
| $f1 [

e e e +

} I

| [

| !

e S +

! $£30 | §£31 (for double)|

e e T e e e B +

| §£31 I

Frm e +

Figure 5: Register

Source: SimpleScalar Source Code (regs.h) [10]

The floating point register file can be viewed as either 32 single-precision (32-bit IEEE

format) floating point values $f0 to $f31, or as 16 double-precision (64-bit IEEE format)
floating point values $f0 to $£31. [10]

-14-



Table below shows the definitions of SimpleScalar architecture register.

Hardware Name | Software Name Description
$0 $zero zero-valued source/sink
$1 $at reserved by assembler
$2-83 $v0-$vi fn return result regs
$4-$7 $a0-$a3 fn argument value regs
$8-515 $t0-$t7 temp regs, caller saved
$16-323 $s0-$s7 saved regs, callee saved
$24-$25 $t8-$t9 temp regs, caller saved
$26-$27 $k0-$k1 reserved by OS
$28 $gp global pointer
$29 $sp stack pointer
$30 $s8 saved regs, caller saved

$31 $ra return address reg

$hi $hi high result register
$lo $lo low result register
$0-$£31 $0-$31 floating point registers

$fce $fec floating point condition code

Table 1: Definitions of SimpleScalar architecture registers

Source: Doug Burger, Todd M. Austin, “The SimpleScalar Tool Set, Version 2.0” {1]
These registers defined in SimpleScalar architecture with their hardware name, software

name and description. Take note, the registers used by the SimpleScalar is the same with
MIPS IV ISA. [1]

-15-




4.3, Operation Cycle

The basic operation cycle of a computer is controlled by a control unit that puts into the

following steps:

Step 1: Fetch the instruction from memory into a control register
Step 2: Decode the instruction

Step 3: Locate the operands used by the instruction

Step 4: Fetch operands from memory (if necessary)

Step 5: Execute the operation in processor register

Step 6: Store the results in the proper locations

Step 7: Repeat Step 1 with next instruction

Figure 6: General Operation Cycle

Source: M. Morris Mano, Charles R. Kime, “Logic and Computer Design Fundamentals” [9]

There is a register in the computer called the Program Counter (PC) that keeps track of
the instructions in the program stored in the memory. The PC holds the address of the
instruction to be executed next and is incremented by one each time a word is read from
the program in memory. The decoding done in the Step 2 determines the operation to be
performed and the addressing mode of the instruction. The operands in Step 3 are located
from the addressing mode and the address field of the instruction. The computer executes
the instruction, storing the results and returns to Step 1 to fetch the next instruction in

sequences. [9]

-16 -



4.4, SimpleScalar’s Operation Cycle

Y
Fetch »| Dispatch |—»| Scheduler Execute Writeback
Memory Memory
Scheduler A
Commit
h 4 h
I-Cache D-Cache
Virtual Memory

Figure 7: SimpleScalar’s Operation Cycle

Source: Doug Burger, Todd M. Austin, “The SimpleScalar Tool Set, Version 2.0” [1]

Figure 7 shows the operation cycle of SimpleScalar processors. The concept of
SimpleScalar’s operation cycle has similar to the general operation cycle we have
discussed before. The only different is the term used in Dispatch process, Scheduler
process and Writeback process. However, their purpose is the same as the gencral

operation cycle. There are 6 cycles of SimpleScalar processors, which are Feich,

Dispatch, Execute, Writeback and Commit. Each cycle will be discussed later.
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ruu_init ()

for (:;) |
ruu_commit () ;
ruu_writeback();
lsg refresh(};
ruu_issue();
ruu dispatch();
ruu_fetch(};

Figure 8: SimpleScalar’s Operation Cycle (C Language)

Source: SimpleScalar Source Code (sim-outorder.c) {10]

Figure 8 shows the C language implementation of the SimpleScalar’s operation cycle. In
sim-outorder.c, this operation cycle is implemented as pipelining. It is implemented
reversely from Commit to Fetch. According to Doug Burger, this will eliminate this/next

state synchronization and relaxation problems. [1]

-18-



4.5. Software

For this project to be completed and successful, I have used software for development.
There are editors, compilers, synthesizers and simulators software. The development

platform of this project will be under Windows XP operating system.

4.5.1. Crimson Editor

..4 Criinman Fita |l izuereints rdl Sl

“ pmcsdu:e ampl_add (BT, iTTZ r Ap kaT_THCTOT: IRt @ ous biz_senrer):
Hend arychmecie:
PNpzooedure frpl_add (iatl, IASZ ¢ An bit_weoser; Snor oodwn bBiv veocow) s

B varienle opl : =L
i veriable opd :
[l verienle opr : k:
i veriale oin

£ varinbleé C2T ¢ B

Rluecin
B cpro:e tnel:
2p2 1= latl:

M ror tadex in oprtveverie_ramze lop

F 4n m con:

opztindex) := opi(indexs kor opliindex) xor ain:

cot := {{opl(indexl aact cpE(indes}) o lokn asil {Cpl{18dew) xo¥ 2pZ (Endex})));i

Figure 9: Crimson Editor

Crimson Editor is a professional source code editor for Windows platform. It can be

downloaded free from the Internet at http://www.crimsoneditor.com/.
This software supports many programming languages such as HTML, C/C++, Perl, Java

and even VHDL, One features of this editor is it enables syntax highlighting of all

programming languages and can be extend for other programming languages. [11]
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4.5.2. C Compilers

HAinclude <eonie.h>
1mt wmain )

typedet sigmed iat sword_t:
typedot float afloat_ts
typodet dowble dflomt_t:
typodaf wadiguad 1t word_t:
typedat word t wd_sddc_t)
tywedet 1at shart hai, 50;

typedet sword t mc_gpr _t(12]7
sitypadat diloal_t xd_tpr_t]18]:

tyvedel walon [
sword_T 1[32):
atloat_t #(32];
dflome_t d{32]:
1 md_fpc s

typedes struct {
sword_t bi, 1o;
iat fco:

1 wd_corl ti

stpwst rags t |
wd_gpr_c crg R;
wd_fpr_t cag F;
wd_ctrl t ceg C:
wd_nddr_t ceg_PC:
wd_eddr_t ceg NPC:
b

féstenct wd_inst_t |
sword_t a;

£f 32 bits, % bytes

I have used two C compilers, which are Borland C and Microsoft Visual Studio. Both
programs can be used to edit, view and compile a C source codes. However, I will not be
using this program to compile the SimpleScalar source codes. Rather than, these
programs are used to check and test the SimpleScalar source codes. These involving

checks the size of an arrays, the syntax used and variables used in the SimpleScalar

source code.

Figure 10: Borland C
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4.5.3. GHDL

Figure 11: GHDL

GHDL is one of software 1 had used in this final year project. GHDL is a VHDL
simulator, using the GCC technology and implementing the VHDL language according to
the VHDL 1987 (IEEE 1076-1987) and VHDL 1993 (IEEE 1076-1993) standards. With
GHDL, the program and designed written in VHDL can be compiled into executable
files. With the binary files created from compilation, the design can be simulated. [12]

GHDL is an open source project and is free under GNU General Public License. Under
the GNU license, this software can be redistributed and modified. It is free from
restriction and license issues that arise with commercial simulators. Currently, there are
two processors which are successfully compiled and run by using GHDL. There are DL.X
processors and LEON1 SPARC processors. [12]

However, it has disadvantage over the commercial simulator software. The design
created does not be able to synthesis. It cannot translate the design into netlist and not be
able to transfer onto FPGA. [12]
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4.5.4. Altera Quartus I1 Web Edition

Fy | @ SimusionRopo.. | B menovid
w T Librmcy ieee:
une feee.std_logic_t16d.all:
W 5 use ieee.std_logic_mritk.all:
i < eatity SIEPS is
= % pore [clock, reest ¢ 1n sTd_logics
~ FC bua ¢ 1n bic_vactar 7 dovata 01:]
B4 indt_out ! out bit_vectos (3l dowata 0)3:
% i ena SINPS:
= 17 architecture structure of S3IAPE 1
[ ] 3
a componene fevch

port (innta ¢ out bir_vecter (31 dawnte 0))
innch : out bit_vertor (11 @ownte 0):
PCin 3 in bit_wector (7 downta 0);

. clogk, Teoet t in atd logic)s

3 end conponent:

cemponent decode

porclioota i i3 bit_vector (Il dewnto 0):
ipotd ! ik hir_vector (3! domnte O) 7
opeods : out bit_vector (15 downto 0);
radata bus : our bic_wector [3L dawnta 0):

Figure 12: Altera Quartus II Web Edition

The main software for VHDL development will be Quartus II Web Edition. This software

can be obtained free from Altera site, hitp://www.altera.com/ . A license is required and it

can be enquired freely at the particular website. This software supports Cyclone II of
device family, which is the hardware that I will be using for FPGA. [13]

Device Family Device Supported

MAX II
MAX 3000A
MAX 7000AE
MAX 7000B
MAX 70008 All devices
Cyclone II
Cyclone
FLEX 10K®
FLEX® 10KA
ACEX®
FLEX 6000

Table 2: Quartus IT Web Edition Device Support
Source: Altera, Quartus I Web Edition Software {13]
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Create Nev §i
B Project

fssign Pins

Figure 13: Basic Design Flow

Source: Altera, Quartus Il Software Basic Design Flow [13]

Figure 13 shows the basic design flow for the Quartus II software. The users can set up
project and compile the design by using these steps. Altera defines 6 stages of developing
the VHDL. [13]

The first stage is creating new project. At this stage involves declaration of entity or
component, design files and libraries used in the project, and the device family and
package used by the project. Next is making assignments. This stage requires specifying
global maximum operating frequency requirements (fMAX), paths should not be reported

in timing analysis reports and others. [13]

The next step will be compile design and analyzed the results. Before the project can be
simulated and implemented, the project must be verified first. Here, each syntax of entity,
component and architecture developed are checked. After compiling the design, a report
summary of compiled results will be shown automatically. This report shows all the

place-and-route results details and it is linked to many other software features. [13]
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At the same time, if the results are not satisfied and we want to improve the current
results, it can be changed by using assignment settings assignment editors) or by
changing timing requirements in the Timing Wizard, Then, the design is compiled again
and the results are analyzed. By default, the software will automatically assign pins to the

top-level I/0 signals. It also can be done by manual using the Assignment Editor. [13]
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4.6. Hardware
4.6.1. DSP Development Kit Cyclone 11

Figure 14: Altera Cyclone II EP2C35 FPGA

Figure 14 shows the hardware that I will be using to implement the SimpleScalar

processor on it. The hardware is Cyclone II EP2C35 FPGA. An overview is summarized:

¢ Logic Elements: 33,216

¢ M4K RAM Blocks (4 kbits + 512 Parity Bits): 105
e Total RAM Bits: 483,840

¢ Embedded 18x18 Multipliers: 35

o PLLs:4

¢ Maximum User I/O Pins: 475

¢ Differential Channels: 205

Source: Cyclone Il FPGA Family Overview {13]
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4.7. SimpleScalar in VHDL

In this section, 1 will describe the VHDL implementation of SimpleScalar processors. In
the implementation, the processors are divided into five cycles, which are Fetch, Decode,

Execute and Memory.

Y

Fetch

h 4

h 4

Decode Control Execute

Y

Memory

Figure 15: SimpleScalar’s Operation Cycle (VHDL Implementation)

4.7.1. Fetch

In the Fetch cycle, the stored instructions are bring out from the memory and send to the
bus line. Then, these instructions will be decoded in the Decode cycle.
constant mem0 : bit_vector(31 downto 0) := B"00000000000000000000000000000000"; -- no operation
constant mem1 : bit_vector(31 downto 0) := B"00000000000000000000000000000000";

constant mem?2 : bit_vector(31 downto 0) := B"00000000000000000000000001010000"; - load opcodes
constant mem3 : bit_vector(31 downto 0) := B"00000001000000010000000000000111";

constant mem20: bit_vector(31 downto 0) := B"00000000000000000000000001010101"; -- shift left
constant mem?21: bit_vector(31 downto 0) := B"00000001000000100000101000000001";

constant mem22: bit_vector(31 downto 0) := B"00000000000000000000000001010111"; -- shift right
constant merm23: bit_vector(31 downto 0) := B"00000001000000100000101000000001",

Source. fetch.vhd [Appendix IV]

From the source code above, mem0 to mem23 represents the stored instructions. Each
instruction is 32 bit width. For ease of simplification, all the instructions are stored at the
specific memory location. Instruction 00000000000000000000000000000000 is stored at
mem(, another instruction 000000010006000010000000000000111 is stored at mem3 and

consequently.
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The SimpleScalar instructions can be divided into two sections as defined in the C
languages, which are SimpleScalar opcodes and SimpleScalar unsigned immediate fields.

Each section is an unsigned word data type and has 32 bit width.

typedef struct {
word t a; /* simplescalar opcode {must be unsigned) */
word tb; * simplescalar unsigned immediate fields */
} md _inst t;

Source: SimpleScalar Source Code (pisa.h) [10]

Register & Immediate format

63 32 31 0

T~ "
SimpleScalar opcodes SimpleScalar unsigned
immediate fields

Figure 16: SimpleScalar Instruction (Register & Immediate Format)

Source: SimpleScalar Tools Set 1]

SimpleScalar unsigned immediate fields are 32-bit from bit 0 till bit 31 of SimpleScalar
instructions and SimpleScalar opcodes are also 32-bit from bit 32 till bit 63. The

instructions are fetched from the memory accordingly to the program counter by using

function MD_FETCH_INST. (See the source code below)

#define MD_FETCH_INST(INST, MEM, PC) \
{ insta=MEM_READ WORD(mem, (PC})); 5
inst.b = MEM_READ_ WORD(mem, (PC) + sizeof(word_t)); }

MD_FETCH_INST(inst, mem, regs.regs NPC);

Source: SimpleScalar Source Code (pisa.h, sim-fast.c) [10]
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process(PC)

begin

case PC s

when X"00" =>
insta <= mem9,
instb <= meml;

when X"2C" =>
insta <= mem22;
instb <= mem?23;

when others =>
insta <= null;
instb <= null;
end case;
end process;

Source: feich.vhd [Appendix IV]

Source code above shows on how the instructions are fetched using VHDL language.
When the PC is X”00”, the instruction at memQ will be sent to insta (as SimpleScalar

opcode) and another instruction at mem1 will be sent to instb (as SimpleScalar immediate
fields).

entity fetch is
port(insta : out bit_vector(31 downto 0); -- inst.a
instb : out bit_vector(31 downto 0); -- inst.b
PCin : in bit_vector(7 downto 0); -~ PC
clock, reset : in std_logic);
end feich;

Source. fetch.vhd {Appendix IV}

In fetch.vhd, there are three inputs, which are the PC (program counter), clock and reset
and two outputs, which are insta and instb. insta is the SimpleScalar opcodes and instb is

the SimpleScalar immediate fields. These outputs will be the inputs during Decode cycle.

(Refer to Appendix IV: fetch.vhd for the source code)
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4.7.2. Decode

In Decode cycle, the fetched instructions will be translated into specific fields, which are
OP (opcode), RS (register source #1), RT (register source #2), RD (register destination)
and IMM (immediate value). The implementation of Decode cycle in C language can be
seen as follows:

/* returns the opcode field value of SimpleScalar instruction INST */

#define MD_OPFIELD(INST) (INST.a & 0xff)
#define MD_SET_OPCODE(OP, INST)  ((OP) = ((INST).a & 0xff))

/* integer register specifiers */
#undef RS /* defined in /usr/include/sys/syscall.h on HPUX boxes */

ftdefine RS (inst.b >> 24) /* reg source #1 */
#define RT ((inst.b >> 16) & 0xff) /* reg source #2 */
#define RD ((inst.b >> 8) & 0xff) * reg dest */

Source: SimpleScalar Source Code (pisa.h) [1 of

Register & Immediate format

63 3231 0
. AL A _—
T ' "
16-annote 16-opcode SimpleScalar immediate fields
. —
—~

SimpleScalar opcodes

Figure 17: SimpleScalar Opcodes (Register & Immediate Format)

Source: SimpleScalar Tools Set [1]

Figure 17 shows the SimpleScalar opcodes for Register and Immediate format. In the
SimpleScalar opcodes, there will be two fields, which are annote and opcode. In the
annote field, the SimpleScalar allows new instructions to be added or implemented into
the current instruction set. The length of this field is 16 bit. In the opcode field, the
SimpleScalar operation codes are defined. In other words, any operations of the

instructions to be executing will be depending to this field. For example, in SimpleScalar,
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the addition between two registers will happen when the opcode is 0x40. If the
instruction fetched having the opcode of 0x40 in this field, the addition will be executed.

Otherwise, another operation will be executed depending on the opcodes.

Register format
63 3231 0
A A AL A AL A J
h'd 2 Y Y Y Y
16-annote 16-opcode 8-rs 8-rt 8-rd 8-ru/shamt
S i
—

SimpleScalar immediate fields

Figure 18: SimpleScalar Immediate Fields (Register Format)

Immediate format

63 3231 0
A __A A A
~~ ~ Y Y ~"
16-annote 16-opcode 8-1s 3-rt 16-imm
S —
—~

SimpleScalar immediate fields

Figure 19: SimpleScalar Inmediate Fields (Immediate Format)

Figure 18 and 19 shows the SimpleScalar Immediate Fields. For Register format, there
are 4 fields and for Immediate format, there are only 3 fields. In Register format, there
are 8 bit register source #1 (RS), 8 bit register source #2 (RT), 8 bit register destination
(RD) and 8 bit register shift arithmetic (RU/SHAMT). In Immediate format, there are 8
bit register source (RS), 16 bit immediate value (IMM) and 8 bit register destination
(RT).

(Refer to Appendix IV: decode.vhd for the source code)
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4.7.3. Control

The purpose of Control cycle is to control the movement of data between the register and
the memory.

ra_bus : out bit_vector(31 downto 0);

wa_bus : out bit_vector(31 downto 0);

reg_wrt : out std_logic;

reg_dst: out std_logic;

Source: control.vhd fAppendix IV]

For register design, there are two outputs, which are reg wrt and reg_dst. reg wrt is
required to control the writing process onto the register while reg_dst is required to select

which destination the register will be writing onto during the writeback.

d —)

L » wra bus

reg dst

Figure 20: Register Selection
wra_bus <= rt when reg_dst='1" else rs;

Source: decode.vhdfAppendix 1V]

Figure 20 shows the register selection. The purpose is to select which registers, either RS

register or RT register during writeback.
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reg(n) —»

L muxreg(n)

wrd_bus —»

A

regnwr — |
Figure 21: Register-Memory
regOwr <="1' when ((wra_bus = "00000000") and (reg_wrt="1") else '0";
reglwr <="1" when ((wra_bus = "00000001") and (reg_wrt="1) else '0’;
reg2wr <="1" when ((wra_bus = "00000010") and (reg_wrt='1")) else '0";
muxreg(0) <= reg(0) when reg0wr='0" else wrd_bus;
muxreg(1) <= reg(1) when reglwr="0" else wrd_bus;

muxreg(2) <= reg(2) when reg2wr="0" else wrd_bus;

Source: decode.vhd[Appendix IV]

This design will select the register output between the intermediate register and the
memory. Immediate register is the current register during operation and labeled as reg(n),

where n is between 0 to 31.

(Refer to Appendix IV: control.vhd for the source code)
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4.7.4. Execute

In Execute cycle, the operation of an instruction will be carry out. The selection of which
operations will be executing is done by opcode field. In this section, only integer

instructions are implemented. Integer instruction

In arithmetic, the operation involves unsigned addition without overflow checking,
unsigned subtraction without overflow checking and unsigned multiplication without
overflow checking. In logical, the operation involves AND-operation, OR-operation,
XOR-operation and NOR-operation. Other operations are shift arithmetic left and shift

arithmetic right. Here, an unsigned addition will be explained.

Full adder is a combinational circuit that performs the arithmetic addition of three inputs
and produces two outputs. Two of the inputs are two bits to be added while another input
is the carry bit from previous adder (if any). Three inputs are denoted by A, B and C;,.
Two outputs are needed and denoted by S and Cyy. [9]

The truth table for full adder:

Inputs Outputs
A B Ciu Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 | 0
1 0 0 0 1
1 {0 1 1 0
1 1 0 1 0
1 1 1 1 1

Table 3: Full Adder Truth Table

Source: M. Morris Mano, Charles R. Kime, “Logic and Computer Design Fundamentals” [9]
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The simplified sum-of-product functions of two outputs are:

S=ABCy+ABCsy +ABCi +ABC
C=AB+BC+AC

Source: M. Morris Mano, Charles R. Kime, “Logic and Computer Design Fundamentals” [9]

This implementation requires seven AND gates and 2 OR gates. However, the operation

can be simplified into the simplest form which is can be expressed as:

S=(A®B)®Cy
C=AB+Cj, (A®B)

Source: M. Morris Mano, Charles R. Kime, “Logic and Computer Design Fundamentals” [9]

By Ay Bi Ay By Ay By A
Cso Cao C Co
FA e FA | . _ | FA | FA
Cout S39 S30 St So Cin

Figure 22: 32 bit Full Adder

Figure 22 shows the visual aid of 32-bit full adder implemented.

result(index) := op1{index) xor op2(index) xor carry;
carry := (op1(index) and op2(index)) or (carry and (op1(index) xor op2(index})));
Source: execute.vhd [Appendix IV]

(Refer to Appendix IV: execute.vhd for the source code)
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4.7.5. Memory

In Memory cycle, the operations which memory always performs are writing and reading,
Writing is when the data is transfer into the memory to be stored. Reading is when the

data stored is retrieved out from the memory.

rd_bus stands for read data from the memory, ra_bus is the read address from bus line,
wd_bus write data to the memory and wa_bus is the write address to the bus line. rd_bus
acts as output while ra_bus. wd_bus and wa_bus acts as inputs to the memory.vhd.

mem_wrt, mem_red, mem_reg are the inputs from the Control cycle.

rd_bus : out bit_vector(31 downto 0);
ra_bus : in bit_vector(31 downto 0});
wd_bus : in bit_vector(31 downto 0);
wa_bus : in bit_vector(31 downto 0);
mem_wrt : in std_logic;

mem_red : in std_logic;

mem_reg : in std_logic;

clock, reset : in std_logic;

Source: memory vhdfAppendix IV]

In this project, the implementation of SimpleScalar memory is not successfully. By part,
the data is managed to be read from the memory and store into the given memory

location. However, during the Execute cycle, the data is unable to retrieve back.
Given example, a data of 32 bit of X”00001010” is stored at memory location addressing
X”00000010”. During execution, the data X”00001010” is unab1¢ to be retrieve. A

further work can be done to investigate this error.

In this section, the information provided the general how the instructions are read from

and store into the memory,
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Read

Clock T n\ [/ m T\ T
Address )( Address Input y
Memory Enable _—/ \———.
Read/Write

DPata Input X " Dat Irput X

Figure 23: Read Cycle Timing Waveforms

Source: M. Morris Mano, Charles R. Kime, “Logic and Computer Design Fundamentals” [9]

Figure 23 shows the read cycle timing waveforms of general memory design. Steps taken

for read operation:

1. Apply the binary address of the desired word into address lines.
2, Active the Read input.

Source: M. Morris Mano, Charles R. Kime, “Logic and Computer Design Fundamentals” [9]
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Write

Clock

Address : X X
Memory Enable { \
Read/Write \ ' e f

Bata Irput X Data Brput

Figure 24: Write Cycle Timing Waveform

Source: M. Morris Mano, Charles R. Kime, “Logic and Computer Design Fundamentals” [9]

Figure 24 shows the write cycle timing waveforms of general memory design. The steps

that must be taken for a write operation:

L. Apply the binary address of the desired word into address lines.
2, Apply the data bits that must be stored in memory to the data input lines.
3. Active the Write input.

Source: M. Morris Mano, Charles R. Kime, “Logic and Computer Design Fundamentals” [9]

(Refer to Appendix IV: memory.vhd for the source code)
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4.8. VHDL Simulation

From the implementation in VHDL, only integer instructions were implemented. They
are unsigned addition, unsigned subtraction, unsigned multiplication, AND-operation,
OR-operation, XOR-operation, NOR-operation, shift left logical and shift right logical. In

the VHDL simulation, assumptions have been made:
1. Only functional are tested.

2. The RS register stored value of 0x00001010 and RT register stored value of
0x0000G100F.

4.8.1. Unsigned Addition

i

f H i

& !

3 3

5 * ' 0000207F

H H i H L T

H L3 L

3 1 i

Figure 25: Unsigned Addition Operation
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Figure 25 show the result of an addition operation. The operation does not require

overflow checking. The addition operation in hexadecimal and binary form:

Hexadecimal Binary
0x00001010 00000000000000000001000000010000
+0x0000100F + 00000000000000000001000000001111
0x0000201F 00000000000000000010000000011111

The result of 0x0000201F will be stored at register RD.
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4.8.2. OR Operation

e v o ol e

Il

1
§
B
i
i
L]
]
1

Figure 26: OR Operation

Figure 26 show the result of an OR operation. The OR operation:

Hexadecimal Binary

0x00001010 00000000000060000001000000010000
0x0000100F 00000000000000000001000000001111
0x0000101F 00000000000000000001000000011111

The result of 0x0000101F will be stored at register RD.

4.8.3. Shift Right Logical

|
i
i
{

Figure 27: Shift Right Logical
Figure 27 show the shift right logical operation. The operation:

0x0000100F >> 1 00000000000000000001000000001111 >> 1
0x00000807 00000000000000000000100000000111

The result of 0x00000807 will be stored at register RD.
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CHAPTER 5: CONCLUSION

From the project that will be done, I hope I will be able to fulfill objectives as described
above. This project is well-done and is only able to be functional in VHDL simulation.
However, this project is not yet completed within timeframe given. There were several
reasons contributing to this cause. They were development progress and synthesizable

problem,

Most of the development in this project spent on studying the C source code of
SimpleScalar and the VHDL programming. A lot of exercises and examples done in C
and VHDL programming before started the project. The lack of source codes available in
the Internet makes the project has to be started from scratch. Thus, it takes longer than

expected.

Another reason contributes to the project is the VHDL implemented are not
synthesizable. During the project, I found a DLX source code, which is similar to MIPS
architecture. I had developed the SimpleScalar architecture on it. However, when I tried
to compile the source code, it was not synthesizable. Before downloading onto FPGA, it
requires the source code to be synthesized first. When it comes to this, the project
schedule is delayed.

Only integer instructions were implemented. They are unsigned addition, unsigned
subtraction, unsigned multiplication, AND-operation, OR-operation, XOR-operation,

NOR-operation, shift left logical and shift right logical.

In this project, the implementation on FPGA was unsuccessful. The code developed is
able to be downloaded on the FPGA. However, when I tried to run the FPGA, the board

does not working as expected.

<40 -



CHAPTER 6: RECOMMENDATIONS

Redesign the Control Module

In this project, I have implemented the Control module which is between the Decode and
Execute modules. The purpose of this module is to control the data movement between
register and memory. However, in this project, this module is not working perfectly.

Therefore, for future works, I recommend to redesign the Control module.

Implement Other Instructions

In this project, only integer instructions were implemented. Others instructions such as
control instructions, load and store instructions, and floating point instructions are not

implemented yet. In the future, I recommend implementing other types of instructions.

Program on FPGA

In this project, the program on FPGA was unsuccessful. The current source code is
divided into 5 architectures for ease of use. Each module has own purposes as described
earlier. In the future, to program on the FPGA, I recommend to test and program each
module separately. This might be able to help them to troubleshoot the source code and

solve the problem.
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Appendix 1

List of Simplescalar Instruction Set
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Control

J - jump

jal — jump and link

jr — jump register

jalr — jump and link register

blez — branch <=0
bgtz — branch > 0
bltz - branch <0
bgez -- branch >=0

beq - branch == bet — branch FCC TRUE
bne — branch != 0 bef - branch FCC FALSE
Load/Store | Ib—load byte l.d — load double-precision FP
ibu — load byte unsigned sb — store byte
Ih — load half (short) sbu - store byte unsigned
lhu - load half unsigned sw - store word
Iw — load word dsw — store double word
dlw — load double word 5.8 — store single-precision FP
1.5 — load single-precision FP s.d — store double-precision FP
Integer add — integer add or — logical OR
Arithmetic | @ddu— integer add unsigned xor — logical XOR
sub — integer subtract nor — logical NOR
subu — integer subtract unsigned sl - shift left logical
mult — integer multiply srl — shift right logical
multu — integer multiply unsigned sra — shift right arithmetic
div — integer divide st — shift less than
divu — integer divide unsigned sltu — shift less than unsigned
and — logical AND
Floating add.s — single-precision (SP} add abs.d — DP absolute value
Point add.d — double-precision (DP) add neg.s - SP negation
Arithmetic sub.s — SP subtract neg.d — DP negation

sub.d — DP subtract
mult.s — SP multiply
mult.d — DP multiply
div.s — SP divide

div.d — DP divide

abs.s — SP absolute value

sqrt.s — SP square root

sqrt.d -~ DP square root

cvt — int, single, double conversion
¢.5 — SP compare

c.d — DP compare
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Appendix 2
Planning Schedule
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Final Year Project I

1|FYP Titles
FYP Briefing
Selection of FYP Titles

2|FYP Submissions

Log Book

Preliminary Report
Progress Report

Interim Report First Draft
Interim Report Final Draft
Oral Presentation

Interim Report Final

3[Meetings
Supervisor

4(Project Development

Installing the Programs Required
Learning the Programs Required
Learning the VHDL
Programming the VHDL
Understanding the Source Code
Source Code -> VHDL
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Final Year Project II

—

FYP Submissions

Log Book

Progress Report

Interim Report First Draft
interim Report Final Draft
Qral Presentation

Interim Report Final

2|Meetings
Supervisor

3|Project Development
Understanding the Source Code
Programming the VHDL
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Appendix 3

SimpleScalar Instructions
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(SIMPS.vhd)



late: December 09, 2006 SIMPS.vhd Project: SIMPS

L -~ Abdul Azim bin Abdullah
2 —-= Universiti Teknologl PETRONAS
5 =— SIMPS.vhd

5 library ieee;
U use ieee.std logic_ll64.all;
! use ieee.std logic arith.all;

-- SIMPS entity

entity SIMPS is
port (clock, reset : in std _logic;
PC bus : in bit vector{7 downto 0};
inst out : out bit vector (31 downto 0));
16 end SIMPS;

i e— 8IMPS architecture
architecture structure of SIMPS is

component fetch

port{insta : out bit_vector(31 downto 0);
instb : ocut bit vector (31 downto 0);
PCin : in bit vector{7 downto 0);
clock, reset : in std logic);

end component;

compenent decode

port(insta : in bit_vector (31 downtoc 0);
instb : in bit vector (31 downtc 0);
opcode : out bit vector(l5 downto 0);
rsdata_bus ; out bit vector(3l downto 0};
rtdata_bus : cut bit vector(3l downto 0};
rddata_bus : out bit vector (31 downto 0):
extend : out bit vector (31 downto 0):
wrd bus : in bit vector (31 downto 0);
reg wrt : in std legic:
reg _dst : in std logic;
clock, reset : in std logic);

end component;

cemponent control
port (PCin : in bit_vector(7 downto 0);
ra_bus : cut bit vector(31 downte 0);
"wa_bus : out bit vector (3l downto 0);
reg wrt : out std legic;
reg_dst : out std logic;
mem_wrt : out std logic;
mem red : out std logic;
mem reg : out std logic):
end component;

component execute
port{opcode : in bit vector(l5 downteo 0};
extend : in bit vector (31l downto 0}:
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rsdata bus
rtdata_bus
rddata_bus
data_bus :

SIMPS.vhd

in bit vector (31 downto 0};
! in bit_vector (31 downto 0);
: in bit vector (31 downto 0);
out bit_ vector (31 downto 0};

clock : in std logic);
end component ;

component memory
port(rd bus : out bit vector (31 downto 0};

wd_bus in bit_vector (3l downto 0);
ra_bus in bit_vector (31 downto 0);
wa_bus in bit _vector (31 downto 0);
mem wrt : in std logic;
mem_red : in std logic;
mem reqg : in std logic;

clock, reset

in std logic);

end component;

signal

signal
signal

signal

signal
signal
signal

signal

signal
signal

signal
signal
signal

signal
signal

signal
signal

begin

pc_in : bit_wvector (7 dowato 0);

insta bus

- : bit_vector (31 downto 0);
instb_bus

: bit vector (31 downto 0);

opcode : bit vector(l5 downto 0);
rsd bus : bit _vector (31 downto 0);
rtd_bus : bit vector (31 downto 0);
rdd bus : bit_vector (31 downto 0);
wrd bus : bit vector (31 downto 0);
reg_wrt : std _logic;

reg_dst : std logic;

mem _wrt : std legicy
mem red : std _logic:
mem_reqg : std logic;

ra _bus : bit_vector (31 downto 0};
wa bus : bit vector (31 downto 0};

dat_bus : bit_vector (31l downto 0);

extend : bit_vector (3l downto 0};

pc_in <= PC bus;
inst out <= - dat _bus;

FE : fetch

port map (insta => insta bus,

instb => instb bus,
PCin => pc in,
cleck => clock,
reset => reset);
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DE : decode

SIMPS.vhd

port map (insta => insta bas,

instb => instb bus,
opcode => opcode,
rsdata_bus => rsd bus,
rtdata_bus => rtd bus,
rddata_bus => rdd bus,
extend => extend,

wrd bus => wrd bus,
reg wrt => reg wrt,
reqg dst => reg dst,
clock => clock,

reset => reset);

CT : control

req wrt =>
reg_dst =>
mem _wrt =>
mem red =>
mem reg =>

EX : execute

rsdata bus

rtdata bus
rddata bus

ME : memory

pert map (PCin => pc_in,
ra_bus => ra_ bus,
wa_bus => wa_bus,

reg wrt,
req_dst,
mem wrt,
mem red,
mem _reg);

port map (opcode => opcode,
extend => extend,

=> rsd bus,
=> rtd_bus,
=> rdd hus,

data bus => dat_bus,
clock => clock):;

port map(rd bus

=> wrd bus,

wd_bus => dat bus,
ra bus => ra bus,
wa_bus => wa_bus,
mem wrt => mem wrt,
mem red => mem red,
mem reg => mem_reg,
clock => clock,
reget => reset);

4 end structure;
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ate: December 08, 2006 fetch.vhd Project: SIMPS
1 == Abdul Azim bin Abdullah
# —— Universiti Teknologi PETRONAS
i -— fetch.vhd
% library leee;
¢ use leee.std logic 1164.all;
7 use ieee.std logic arith.all;

1 —— fetch entity

L+ entity fetch is

T3 portlinsta : out bit vector(31 dewnto 0); -- inst.a
L4 instb : out bit_vector (31l downto 0); -- inst.b
PCin : in bit_vector(7 downto 0); ~- PC

e clock, reset : in std logic);
.7 end fetch;

iﬂ -- fetch architecture

#2 architecture behaviour of fetch is

signal PC : bit vector(7 downto 0);

constant mem0 : bit vector {31 downto 0) := B"000000000000000000000000
00000000"; -—- no operation

2 constant meml : bit vector (31 downto 0) := B"000000000000000000000000

000Q0000";

S constant mem2 : bit vector (3l downto 0) := B®000000000000000000000000
01014000"; -— load opcodes { load 330,7 )
S constant mem3 : bit wvector({3l downto 0) := B"000000010000000100000000
00000111";
3 constant mem4 : bit vector{31 downto 0) := B"0000C00C00000000000000C0
01010000"; -~ lcad ocpceodes ( leoad $20,8 )
B constant mem5 : bit vector (31 downto 0) := B"000000010000001000000000
00C01000C™;
% constant memé : bit_vector (3l downto 0} := B"000000000C000000000C0000
pigo0010"; -- add unsigned
A4 constant mem7 : bit_wvector (3l downto 0) := B"000000010C00001000001010
00000000";
35 constant mem8 : bit vector (31 downte 0) := B"00000000000C000000000000
D100GLOL"; —-— subtract unsigned
:  constant mem9 : bit vector (31 downto 0) := B"000000010000001000001010

. 00000000";

S constant meml0: bit vector (31 downto 0)
01001110"; —-- and

.-
|

= B"000000000000000G00000000

R constant memll: bit vector (31 downto Q) := B"0Q00C0010000001000001010
Qoo00000";
: constant memlZ: bit wvector (31 downto 0) := B"000000000000000000000000
g1010000"; -— or
il constant meml3: bit vector (31 downto 0) := B"000000010000001000001010
00000000™;
g constant meml4: bit_vector {3l downto 0) := B"0C0OOC0000000000000000000
01010010"; -— XOr
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iate: December 09, 2006

censtant
0coQoooor;
constant
01010100";
i constant
00000000";

. constant
giogo11L1",;
5 constant
goo00000";

fetch.vhd

meml5: bit_vector (31 dewnto

meml6: bit vector (31 downto
—— nor
menl7; bit_wvector (31 downto

memlg: bit_ vector {31 downto
-—- multiply unsigned
meml9: bit vector (31 downto

i constant memZ0: bit vector (31 downto
01010101"; -- ghift left logical
B constant memZl: bit vector (31 downto
GoooocoL™;
B2 constant mem22: bit vector (3l downto
01010111";  -- shift right logical
: constant mem23: bit wvector (31 downto
Qo0C0001LY;
=% begin
process
begin
walt until (clock'event) and
if reset='1l' then

PC <= X"0Q";
else PC <= PCin;

end if;

end process:;

process (PC)

begin

case PC is

when X"00"
insta <=
insth <=

when X"04"
insta <=
insth <=

when X"08"
insta <=
instbh <=

when X"0C" =
insta <=
instb <=

when X"10"
insta <=
instb <=

when X"14"
insta <=
insth <=

when X"1g"
insta <=
instb <=

Xll lcl’r

when

=2
mem;
meml;

mema2 ;
mem3;

memd ;
memnb;
memo;
mem7 ;

mens;
mem9;

memlO;
memll;

meml2;
meml3;

Page 2 of 3
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{clock="1");

Project: SIMPS
B"300000010000001000001010

B"000C00000000000000000000

B"000000010000C01000001010

B"0000000000C0C00000000000

B"C00000010000001000001010

B"00000C000000000000000000
B"000000010000001000001010
B"00C000000000000000000000

B"000000010000001000001010
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ate: December 09, 2006 fetch.vhd Project: SIMPS

insta <= memld;
instb <= meml5;
when X"20" =>
insta <= memlé6;
instb <= meml7;
when X"24" =>
insta <= meml8;
instb <= meml9;
when X"28" =
insta <= mem20;
insth <= mem2l;
when X"2C" =>
insta <= mem22;
instb <= mem23;
when octhers =>
insta <= null;
instbh <= null;
end case:
end process;

end behaviour;
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ate: December 09, 2006

-— Apdul Azim bin Abdullah
-~ Universitl Teknologi PETRONAS
i ~~ decode.vhd

~i end decode;

. library ieee;
: use ieee.std leogic 1164.al11;

decode.vhd

use ieee.std logic_arith.all;

4 -— deco

2 entity

port{

de entity

decode is
insta
instb :
opcode : out
rsdata bus
rtdata bus :

rddata bus

extend : out
wrd bus : in
reg wrt : in

reg dst : in
clock, reset

in bit vector (31 downto 0);
in bit wvector(31 downto Q);

bit vector (15 downtc 0);
out bit_vector (31 downto
out bit_vector (31 downto
out bit_vector (31 downto
bit_vector (3l downtc 0);
bit_vector (31l downto 0);
std logic;
std _logic;
in std logic};

! -- decode architecture

architecture behaviour of decode is

type reg_array is array (G to 31} of

signa

signa
signa
signa
signa
signa

signal

signa
- signa

signa
signa

: begin

annot
opcod

rs <=
rt <=
rd <=
ru <=

1 annote

1l rs
1 rt
1 rd :

: bit vector (15 downto 0);

: bit_vector (7 downto 0);
: bit vector(7 downto 0):
bit vector (7 downto 0);

1 ra : bit vector({7 downto 9);:

1 imm v :

reqg
1 ireg :
1 muxreg :

1 regOwr,
1 wra_bus

g <
e <

i

reglwr, »
: bit vector (7 deownto 0);

bit vector{l5 downto 0);

reg_array;
reg
reg_array;

array;

regZ2wr : std logic;

insta (31 downto 16};
insta (1% downto 0});

instb (31 downto 24);
instb (23 downto 16);
instb (15 downto 8);
instb {7 downto 0);

Page 1 of 6
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o

with rs select
rsdata bus <= reg{0)
regi{l)
reg(2)
reg (3}
reg(4;}
reg (3}
reg (6}
reg (7}
reg(8}
reg(9)
reg{10)
reg(ll)
reg{l2)
reg(l3)
reg(l4)
reg(l5)
reg(l6)
reg{l7}
reg(18)
reg (19}
reg (20}
reg(21)
reg (22}
reg (23}
reg(24)
reg{25)
reg(26)
reg(27)
reg{28)
reg{29)
reg {30}
reg(31)

with rt select
rtdata bus <= reg{(0)
reg{l}
reg{2)
reg{3)
reg(4)
reg(5)
reg(6)
reg(7)
reg(8)
reg(9)
reg(10)
reg(l2)
reg(l3)
reg(l4)
reg(ls}
reg(l6)
reg{l7)
reg{l8)
reg(i9)

decode.vhd

imm v <= instb(15 downto 0}:

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

"0oo00000",
"ooooooaLT,
"ooooool10",
"ggooooll”,
m0oooci00n,
"Q0co0o0101",
Toooo0110",
"gogoolir",
"Qg0oLlocor,
Too001001",

"00001010",
"00001011",
"00001100",
"00001101",
"00001110",
"00001111",
"00010000™,
"00010001",
"O0010010",
"00010011",
"00010100",
*00010101",
"00010110",
"0010111",
"00011000",
"00011001",
"00011010",
"00011011",
"00011100",
"00011101",
"0O011110™,
"00011111",
X"FFFFFFFE" when others;

rooeoaooor,
"00500001",
"goooooiroT,
rogooaciytn,
"0o000L00",
"ooooo101",
"ooooo1ion,
"oogog11l",
"00001000",
Toooo100LY,

*googcio10",
"GoooLl100",
rooocitol.,
*goooitiom,
"00001111",
"G0010000",
"goolo001”,
"g00100186"T,
"oQo1001L",
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decode.vhd

reg(290) when "00010100",
reg(21l) when "00010101",
reg(22) when "00010110",
reg{23) when "00010111",
reg(24) when "00011000",
reg{25} when "00011001",
reg(26) when "006011010",

reg (27

y when "00011011",
)} when "00011100",
reg(29) when "00011101",
) when "00011110",

reg(31) when "00011111",
X"FFFFFFFEF"” when others:

with rd select

rddata bus

-~ dinitial

ireg(0) <=
ireg(l) <=
ireg(2) <=
ireg(3) <=
ireg(d) <=
ireg (5} <=

<= reg(0

) when
reg{l) when

} when
reg(3) when
4) when
5) when
6) when
Ty when
8) when
9) when

"50000000",
"00000001",
"00000010",
"50000011",
"00000100",
"00000101",
"00000110",
"00000111",
"00001000",
"0O001001",

reg(1lC) when "00001010",
reg{ll) when "Q0001011",
reg{l2) when "0Q0001100",
reg{1l3} when "00001101",
reg (14} when "00001110",
reg (15} when "0C001111",

y when "000100C0O",
} when "00010001",
y when "00010010",
reg(19) when "00010011",
) when "00010100",
) when "00010101%,
) when "00010110",

reg{23}) when "00010111",
reg{24) when "00011000",
reg{25) when "00011001™,
reg(26) when "00011010",
reg(27) when "000110117,
reg{28) when "00011100",
reg({29) when "00011101",
reg{30) when "00011110",
reg{31l) when "00011111",
X"FFEFEFFFFE" when others;

value

X"oooooQoeo™;

Xm"oooeoooor;
X"00000000";
X"0oo00000™;
X"300000600";
X"00000000";
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ireg(6)

ireg (7}

ireg(8)

ireg(9)

ireg (10}
ireg(ll)
ireg{l2)
ireg(13)
ireg(l4)
ireg(l5)
ireg{l6)
ireg{l7)
ireg(18)
ireg(19)
ireg(20)
ireg(zl)
ireg{22)
ireg{23)
ireg(24)
ireqg(25)
ireg(26)
ireg(27)
ireg(28)
ireg{29)
ireg(30)
ireg{31)

wra bus

regOwr <= '1' when ((wra bus

L
r

reglwr <= '1' when ((wra bus

L
r

<= X"0Q00000CO0";
<= X"0C000000";
<= X"Q0000000";
<= X"00000000";
<= X"00000000";
<= X"00000000™;
<= R"00C00000™;
<= X"00000000";
<= X"000000G0";
<= ¥"00000000™;
<= X"00000000";
<= X"00000000";
<= ¥"00000000";
<= X"0000C000";
<= X"000060000";
= X"00000000";
<= X"Q0000000";
<= X"000C0000";
= X"00000000";
= X"00000C00";
<= X"(C000000";
<= X")0000000";
<= X"0O0000000";
<= X"00000000™;
<= X"G0000000™;
<= X"Q00060000";

decode.vhd

<= rt when reg dst='1l" else rs;

reglwr <=

LIS
r

muxreg (0}
muxreqg (1)
nuxreg{2)

extend (15
extend (31

process
begin

'1' when ((wra bus

<= X"00000000" when reglwr=
<= X"00001010" when reglwr= ]
<= X"0000100F" when regZ2wr='0' else wrd bus;

downto 0)

<= imm v;

else wrd bus;
Q' else wrd bus;

Project: SIMPS

"Q0000000") and (reg wrt='1l"'}) else '0
"00000001™) and {reg_wri='l')) else '0

"00000010") and (reg wrt='1'})) else '0

downte 16) <= X"FFFF" when imm v(15)='1"' else X"00QO0";

wailt until {clock'event)
if reset='1' then

reg(0) <= ireg(0)};
reg(l) <= ireg{l):
reg(2) <= ireqg(2);
reg(3) <= ireqg(3);

reg(4) <= 1lreg(4d);
reg(3) <= ireg(5);
reg(8) <= ireg(6);
reg(?) <= ireg(7);
reg(B) <= ireg(8);
reg(9) <= ireg(9});
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reg{l0) <= ireg(10);
reg{ll) <= ireg(ll);
reg{l2) <= ireg(l2);
reg{l3) <= ireg(l3);
reg(ld} <= ireg(1l4);
reg(l5) <= ireg(i5);:

{

{

{

{

{

{
reg(le) <= ireg{ls),
reg (17} <= ireg{(l7);:
rag(l8) <= ireg(lB),
reg(l9) <= ireg(19);
reqg(20) <= ireg(20);
reg(2l) <= ireg(2l):
reg(22) <= ireq(22);
reg(23) <= ireg{23};
reg(24) <= ireg(24};
reg(25) <= ireg{25);
reg(26) <= 1reg(26},
reg(27) <= ireqg(27);
reg(28) <= ireg(28};
reg(29) <= ireg(29};
reg(30) <= ireg{30};
reg(3l) <= ireg{31l};

else

reg (0} <= muxreg(0);
reg(l) <= muxreg(l):
reg(2) <= muxreg(2);
reg(3) <= muxreg(3);

reg(4) <= muxreg{4};
reg(5) <= muxreg{5);
reg(6) <= muxreg(6};
reg(7) <= muxreg(7?);

reg(B) <= muxreg(8});
reg(9) <= muxreg(9};

reg(10) <= muxreg(10);
reg(ll) <= muxreg(ll);
reg(l2) <= muxreg{l2};
reg(l3) <= muxreg(l3);
reg(ld) <= muxreg(ld);

reg(ls) <= muxreg(lS),
reg(lé) <= muxreg{le6);

reg(l7) <= muxreg(l7);
reqg(l8) <= muxreg(lB),

{1

reg(l9) <= muxreg{l19};

reg(20) <= muxreg{20};
reg(2l) <= muxreg{2l);
reg{22}) <= muxreg{22);
reg(23) <= muxreg{23};
reg{24) <= muxreg{24};
reg{25) <= muxreg{25};
reg(26) <= muxreg(26);
reg(27) <= muxreg (27};
redg{28) <= muxreg(28};
reg(29) <= muxreg(29};
reg (30) <= muxreg{30);
reg({3l) <= muxreg({3l)};

end if;
end process;
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%4 end behavicur;
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t == BAhdul Azim bin Abdullah
£ —= Universiti Teknoclogl PETRONAS
i —-— control.vhd

5 library ieee;
& use leee.std logic_ll64.all;
use leee.std logic arith.all;

-~ control entity

12 entity control is
port (PCin : in bit vecter (7 downto 0);

ra bus : cut bit_vector (31 downte 0);
wa bus : out bit vector (31 downto 0);
reg wrt : out std | logic;
reg dst : out std logic;
mem wrt : out std logic;
mem red : out std logic;
mem_reg ; out std logic);

end control;

-- control architecture
architecture behaviour of control is
begin

process (PCin)
begin
case PCin is
when X"04" =>
reg wrt <= '0Q7;
reg_dst <= '07;
mem wrt <= 'Q';
mem red <= "1';
mem reg <= '0';
ra bus <= X"00000001";
when X"08" =>
reg wrt <= '0';
reg dst <= '1';
mem wrt <= '0';
mem_red <= '1"';
mem reg <= '0';
ra_bus <= X"00000C10";
when X"0C" =>
reg wrt <= '0';
reg dst <= '1";
mem _wrt <= '0';
mem_red <= '0';
mem reg <= '0';
ra_bus <= X"00000010";
when X"10" =>
reg wrt <= '0';
reg dst <= '1';
mem_wrt <= '0';

i
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mem red <=
mem reg <=

control.vhd

IOI’.
lGl;

ra bus <= X"00000010";
when X"14" =>

reg wrt <= '0';

reg_dst <= '1';

mem_wrt <= '0';

mem red <= '0';

mem reg <= '0';

ra_bus <= X"00000010";
when X"18" =>

reg wrt <= '0*;

reg dst <= '1';

mem_wrt <= '0';

mem _red <= '0';

mem_reg <= '0';

ra_bus <= X"0000001C";
when X"1C" =>

reg wrt <= '0';
reg dst <= '1';
mem _wrt <= '07;
men red <= '0';
mem reg <= '0';

ra_bus <= X"C0000010";
when X"20" =>

reg wrt <= '0';

reg_dst <= 'l7%;

mem wrt <= 'Q7;

mem red <= 'Q';

mem reg <= '0’';

ra_. bus <= X"00000010";
when X"24" =>

reg wrt <= '0';
reg dst <= '1";
mem wrt <= '0';
mem red <= '0';
mem reg <= '0°;

ra bus <= X"00000010";

when X"28" =>

reg wrt <= '0';
reg dst <= '1";
mem wrt <= '0';
mem red <= '0';
mem reg <= '0';

ra bus <= X"0Q0000010";

when X"2C" =>

reg wrt <= '0';
reg dst <= '17;
mem wrt <= '0°;
mem _red <= '0°';
mem_reqg <= '0";

ra_bus <= X"QG00C0L0";

when others =>
reg wrt <= "1i';
reg dst <= '1';
mem _wrt <= '0';
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mem red <= '1';
mem reg <= '0';
ra bus <= X"0000C000";
end case;
end processy

. end behaviour;
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i —— Abdul Azim bin Abdullah

-- Universiti Teknologi PETRONAS
-- execute.vhd

> —-- bv_arithmetic package

package bv_arithmetic is

function "+" (bvl, bvZ : in bit_vector) return bit vector;
function "-" (bvl, bvZ : in bit vector) return bit_vector;
function "-" (bv : in bit_vector) return bit_vector;

function "*" (bvl, bv2 : in kit vector) return bit vector;

procedure bv_multu (bvl, bv2 : in bit vector;

bv result : out bit vector;

overflow : out boolgan};

procedure bv _addu (bvl, bv2 : in bit_vector;
bv_result : cut bit vector;
overflow : out boolean);

procedure bv_add (bvl, bv2 : in bit vector;
bv_result : out bit_vector;
overflow : ocut boolean);

procedure bv_addu {bvl, bvZ : in bit vector;

bv_result : ocut bit_vector};

procedure bv_sub (bvl, bv2 : in bit vector;
bv_result : out bit vector;
overflow : out boolean};

procedure bv subu {bvli, bv2Z : in bit vector;

bv_result : out bit vector};:

procedure bv_and (bvl, bv2 : in bit vector;
bv_result : out kit vector):

procedure bv_or (bvl, bv2 : in bit vector;
bv_result : out bit vector);

procedure bv_xor (bvl, bvZ : in bit_vector;
bv_result : cut bit_ vector):

procedure bv_nor (bvl, bvZ : in bit_vector;
bv_result : cut bit_vector);

function bv_sll {bv : in bit_vector;

Project: SIMPS

shift_count : in natural) return bit vector;

function bv_srl (bv : in bit vector;

shift_count : in natural) return bit vector;
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i end bv_arithmetic;

L == bv arithmetic package body

package body bv_arithmetic is

function "+" (bvl, bv2 : in bit vector) return bit vector is

variable opl : bit _vector(l to bvl'length);
variable op2 : bit vector{l to bvZ'length);
variable result : bit vector(l to bvl'length):
variable carry in : bit;
variable carry out : bit := '0';
begin
opl := bhvl;
""" op2 1= bv2;
for index in result'reverse range locp
carry in 1= carry_out;
result (index) := opl (index) xzor op2Z{index) =xor carry in;
carry out := {opl(index) and opZ2(index)) or {carry in and
(opl (index) xor op2(indsx))):
end loop;
i return result;
= end rr_l_n;
it function "-" (bvl, bv2 : in bit_vector) return bit_wvector is
variable opl : bit_vector(l to bvl'length);
variable op2 : bit_vector(l to bvZ2'length):
variable result ¢ bit_vector(l to bvl'length);
variable carry in : bit;
H variable carry out : bit := '1';
begin
opl := bvl;
op2 := bvZ;
for index in result'reverse range loop
carry in := carry out;

result (index) opl (index) xor (not op2{index)) xor carry in;
carry_out : {opl(index) and {not op2(index))} or (carry 1
n and {opl{index) xor (not op2{index)}));
end loop;
return result;
end H_m"

function "-" (bv : in bit_vector) return bit vector is

constant zero : bit_vector{bv'range) := (others => '07);
begin

return zero - bv;
end n_mn

function "*" (bvl, bv2 : in bit_vector) return bit vector is

variable negative result : boolean;
variable opl : bit vector(bvl'range) := bvl;
variable op2 : bit vector(bv2'range) := bv2;
variable result : bit vector (bvl'range);

begin
negative result := (opl(opl'left) = '1') xor (opZ(opZ'left) = '1');
if (opl{copl'left) = '1'} then
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opl := - bvl;

end if;

if (op2{op2'left) = '1') then
op2 i= - bvd;

end if;

bv multu({opl, op2, result};
if (negative result) then
result 1= - result;
end if;
return result;
end u-,\-",.

procedure bv_multu (bvl, bv2 : in bit vector;
bv_result : out bit_vector;
overflow : out boolean} is

constant bv_length : natural := bvl'length;
constant accum_length : natural := bv_length * 2;
G constant Zero : bit vector(accum_ length-1 downto bv_
length) := (others => '0"};
33 variable accum : kit vector(accum length-1 downto 0);
variable addu_overflow : boolean;
variable carry : bit;
begin

accum(bv_length-1 downtc 0) := bvl;
accum(accum_length-1 downto bv_length) := zero;
for count in 1 to bv_length loop
if (accum(G)} = '1f Y then
bv_addu{ accum(accum_length-1 downtoc bv_length}, bvZ,
accum(accum length-1 downto bv ~length), addu overflow)

carry := bit'val (boolean'pos{addu overflow));
else
carry = '0';
end 1f;
accum := carry & accum{azccum_length-1 downto 1);
end loop;
bv result := accum(bv_length-l downto 0);
overflow := accum(accum length-1 downto bv_length) /= zero;

end bv_multu;

procedure bv_addu (bvl, bvZ : in bit_vector;
bv_result : out bit_vector;
overflow : out boolean) is

variable opl : bit vector{l to bvl’ length);

variable op2 ¢ bit_vector{l to bv2'length);

variable result : bit vector(l to bv_result'length);

variable carry : bit = '07;

begin

opl := bvl;

op2 := bvZ;

for index in result'reverse range loop

result (index) := opl{index) xor op2(index) xor carry;
1 carry i= (opl(index) and op2(index)) or (carry and (opli{i
ndex) xor opZ(index))); :

; end loop;

bv_result := result;

overflow := carry = '1l';
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end bv_addu;

procedure bv_add (bvl, bvZ : in bit_vector;
bv_result : out bit_ vector;
overflow : out boolean) is

variable opl : bit_vector{l to bvl'length);

variable op2 ¢ bit vector(l to bvZ'length);

variable result : bit vector(l to bv_result'length);

variable carry in : bit;

variable carry out : bit := '0';

begin

opl := bvl;

op2 = bv2;

for index in result'reverse_range loop

carry in 1= carry out;
; result (index} := opl(index) xor opZ{index} xcr carry in;
153 carry_out := (opl{index) and opZ{index)) or {carry in and (op
l{index) xor opZ(index)));

end loop:;

bv_result := result;

overflow := carry out /= carry in;

——overflow := trus;

end bv_add;

procedure bv_addu (bvl, bvZ : in bit_vector;
bv_result : out bit_wvector) is
variable opl : bit vector(l to bvl'length};
variable op2 : bit vector(l to bvZ'lengthj};
variable result : bit vector(l to bv_result'length);
variable carry : bit := '0';
begin
opl bvl;
op2 bv2;
for index in result'reverse_ range loop
result (index) := opliindex) xor opZ(index) xor carry;
carry := (opl(index) and op2(index)) or (carry and (opl{index} xo
r op2{index)}};
end loop:
bv_result := result;
end bv_addu;

i

procedure bv_sub (bvl, bvZ : in bit_vector;
bv_result : out bit_vector;
overflow : out boclean) is
variable opl : bit_vector({i to bvi'length):;
variable op2 : bit_vector(l to bv2'length):
variabie result : bit_vecter(l to bv_result'length):
variable carry in : bit;

variable carry out : bit := '1';
begin

opl := bvl;

op2 = bv2;

for index in result'reverse_range locp
carry_in := carry_out;
result (index) := opl{index) xor (not opZ(index)) xor carry in;
carry_out := {opl{index) and (nct op2{index)}) or (carry in and (

opl (index) xor {(not op2(index)))});
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2 end loop;
bv_result := result;
overfleow := carry out /= carry in;

end bv_sub;

procedure bv _subu (bvl, bv2 : in bit_vector;
bv_result : out bit_vector) is
variable opl : bit vector(l to bvi'length);:
variable op2 : bit_vector(l to bv2'length);
variable result : bit vector(l to bv_result'length):;
variable borrow : bit := '0';
begin
opl := bvl;
cp2 1= bv2;
for index in result'reverse_range loop
result (index) := opl(index) xor opZ(index) xor borrow;
borrow := {not opl(index} and op2(index)) or (borrow and not (opl
(index) xor opZ2iindex))):
end loop:
bv_result := result;
end bv_subu;

procedure bv_and (bvl, bv2 : in bit vector;
bv_result : out bit_vector) is
variable opl : bit vector{l fo bvl'length});
variakle op?2 : bit vector(l to bvZ'length);
variable result : kit vector(l to bv_result'length):

begin
opl := bvl;
op2 1= bvZ;
for index in result'reverse range 1oop
result (index) := opl(index} and opZ{index);
end loop;
bv result := result;

end bv_and;

procedure bv_or (bvl, bvZ : in bit_vector;
bv_result : cut bit vector)
variable opl : bit vector({l tc bvl'length);
variable op2 : bit_vector(l to bv2'length);
variable result : bit vector(l to bv_result'length);
begin
opl := bvl;
op2 1= bv2;
for index in result'reverse range loop
result (index) := opl(index) or op2(index};
end loop;
bv_result := result;
end bv_or;

is

procedure bv_xor (bvi, bvZ : in bit vector;
bv_result : out bit_vector) is
variable opl : bit_vector(l tc bvl'length):;
variable op2 : bit vector{l to bv2'length);
variable result : bit_vector{l to bv_result'length);
begin
opl = bvi;
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op2 1= bvZ;

for index in result'reverse range loop

" result{index) := opl{index) xor op2{index);
end loop;

bv_result := result;
end bv_xor;

procedure bv nor (bvl, bvZ : in bit vector;
bv_result : out bit_vector) is
variable opl : bit vector(l to bvi'length};
variable op2 : bit_vector{l to bv2'length);
variable result : bit vector(l to bv_result'length);
begin

opl = bvl;
op2 := bvZ;
for index in result'reverse range loop
result (index) := not (opl{index) or opZ(index));
end loop;

bv _result := result;
end bv_nor;

function bv_sll (bv : in bit wvector;
shift count : in naturazl) return bit vector is
constant bv _length : natural := bv'length;
constant actual shift count : natural := shift count mod bv_length;
variable bv_ norm : bit _vector (1l to bv_length):
variable result : blt_vector{l to bv_length) := (others => '0');

begin
bv norm := bv;
result (1l tc bv - length - actual shift count) := bv norm(actual shift

_count + 1 te bv_length);
return result;
end bv _sli;

function bv_srl {(bv : in bit_vector;
shift count : in natural) return bit vector is
constant bv_length : natural := bv'length;

constant actual shift_count : natural := shift count mod bv_length;

variable bv_ norm : bltwvector(l to bv_length);

varisble result : bit vector(l to bv_length) := (others => '0");
begin

bv_norm :i= bv;

result(actual shift count + 1 to bv _length) := bv norm{l to bv_leng

th - actual shift count)
return result;
end bv_srl;:
end bv_arithmetic;

library ieee;

use ieee.std logic 1lled.all;
use leee.std logic_arith.all;
use work.bv_ arithmetic.all; .

-~ execute entity
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entity execute is

port{opcode : in bit wvector(l> downtc 0); -- 0P
extend : in bit vector {31 downto 0);
rsdata bus : in bit_vector (31 downto 0); -- rs data bus
rtdata bus : in bit vector (31l downto 0); -- rt data bus
rddata bus : in bit vector (31l downto 0}); -~ rd data bus

datawbﬁs : out bit vector (31 downto 0);
clock : in std logic);
end execute;

-- gxecuts architecture

architecture behaviour of execute is

signal cp impl : bit_vector(1i5 downto 0);

constant op nop : bit_vector(lB downto 0) := X"0000"; -— NOP
constant op_lw : bit_vector(l5 downtc 0} := X"0028"; -
. -~ artithmetic operations
i constant op _add : bit_wvector(l5 downto 0} := X"G040"; -- ADD r
d, rs, rt // add signsd (with overflow check) // rsz + rt -> rd
B constant op addu : bit vector(l5 downto 0} := X"0042"; - ADDU
rd, rs, rt // add unsigned {without overflow check} // rs + rt -> rd
constant op_subk : bit vector(l5 downto 0} := X"0044"; -- SUB r
d, rs, rt // sub signed (with underflow check) // rs - rt -> rd
constant op_subu : bit_vector (15 downte 0) := X"0045%; -- SUBU

rd, rs, rt // sub unsigned (without underflow check) // rs - rt -> rd

constant op _multu: bit vector (15 downto 0) = X"0047"; ~— MULTU
rd, rs, rt
~~ logical cperations
constant op _and : bit vector(lb downto 0) := X"004E"; ~~ BAND r
rs, rt // rs & rt ->» rd
3 constant op_or : bit_vector(1l5 downto 0) := X"0050"; -~ OR rd
, rs, vt // rs | rt -> rd
A54 constant op_xor : bit vector(l5 downto CG) = X"(0052"; —— ¥OR r
d, rs, rt // rs ~ rt -> rd
e constant op nor : bit vector(1l5 downto 0) := X"C054"; -—— NOR r
d, rs, rt // ~{rs | rt} -> zd
constant op _sli : bit_vector(l5 downtc 0) := X"0055"; -~ SLL v
d, rt, shamt // rt << shamt -> rd
e constant op_srl : bit_vector{l5 downtec 0) := X"0057"; -— SRL r

d, rt, shamt // vt >> gshamt -> rd

begin

op_impl <= opcode;

process

variable rs_data : bit_vector(31 downto 0);
variable rt data : .bit_vector {31 downto 0):
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variable rd data : bit _vector (31 downto 0};

begin
walt until (clock'event} and (clock='l'};

rs_data := rsdata_bus;
rt_data := rtdata_bus;
rd_data := rddata_bus;

case op_impl is

when op nop =>
data bus <= X"00000000";

when op lw =>
data bus <= extend;

when op_add =>
bv add(rs data,rt data,rd data):
data _bus <= rd data,

when op_addu =>
bv_addu{rs_data,rt_data, rd data};
data bus <= rd_data;

when op sub =>
bv_sub(rs_data,rt_data,rd | data);
data _bus <= rg data,

when op subu =>
bv_subu(rs_data,rt*data,rd_data);
data bus <= rd_data;

when op _multu =>
bv_multu(rs_data,rt_data,rd_data);
data bus <= rd data;

when op_and =>
bv and(rs _data, rt_data,rd data);
data bus <= rd data;

when op_or =>
bv _or(rs data,rt_data,rd data);
data bus <= rd_data;

when op_xor =>
bv xor(rs data,rt data,rd data);
data bus <= rd data,

when op nor =>
bv _nor(rs data,rt_data,rd data);
data _bus <= rd data,

when op_slil =>
data_bus <= bv_slli(rt_data, 1}:

when op_srl =>
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data bus <= bv_srl{rt_data, 1);

when others =>
data_bus <= null;

end case;
end process;

1% end behaviour;
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-- Abdul Azim bin Abdullah
~- Universiti Teknologl PETRONAS

i oee menory.vhd

library ieee;
use ieee.std logic_1164.all;
use ieee,std logic_arith.ail;

port (rd_bus out bit_vector {31l downto 0};
wd bus in bit_vector (3l downto Q);
ra bus : in bit_vector (31 downto 0);
wa bus : in bit_vector (31 downto 0);
mem wrt : in std_logic;
mem red : in std logic;
nem req : in std_logicy
clock, reset : in std_logie);

end memory;

entity memory is

; architecture behaviour of memory is

signal muxout : bit vector (31 downto 0);
signal address : bit vector (31l downto 0);

signal mem0, meml, mem2 : bit vector {3l downto 0);
signal imem0, imeml, imem2 : bit vector(31l downto 0};
signal muxmem(, muxmeml, muxmemZ : bit_vector (31 downto 0);

signal memOwrt, memlwrt, memZwrt : std logic;
begin

imemC <= X"0CO00000A";
imeml <= X"0000000B";
imem2 <= X"0000000C";

address <= ra bus;

muxout <= mem when address=X"00000000" else
mem) when address=X"00000001" else
mem?2 when address=X"00000C10";

rd_bus <= muxout when mem red='l' else
X"FFFEFFPEE";

——memlwrt <= '1' when ({mem wrt='1'} and (wa_bus=x"00000000")} else '
~-memlwzt <= '1' when ((mem wrt='1") and (wa_bus=X"00000001")) else '

0% ;
-—mem2wrt <= 'l' when {(mem wrt='1l'} and (wa_bug=X"00000010"}) else '

0';
X
:

muxmem( <= wd bus when mem wrt='l' else meml;
muxmeml <= wd bus when mem wrt='1"' else X"00000000";
muxmem? <= wd_bus when mem wrt='1l"' else X"00000000";

process
begin
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R wait until (clock'event) and {clock='l');
e if (reset='1l"'") then

mem( <= imeml;

meml <= imeml;

memZ <= imemz;

else
mem( <= muxmem(;
meml <= muxmeml;
mem? <= muxmenZ;
end if;

end process;

47 end behaviour;
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