
IMPLEMENTATION OF SIMPLESCALAR

PORTABLE INSTRUCTION SET

ARCHITECTURE (PISA) ON FPGA

By

ABDUL AZIM BIN ABDULLAH

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme

in Partial Fulfillment ofthe Requirements

for the Degree

Bachelor ofEngineering (Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi Petronas

Bandar Sen Iskandar

31750 Tronoh

Perak Darul Ridzuan

© Copyright 2006

by

Abdul Azim bin Abdullah, 2006

CERTIFICATION OF APPROVAL

Implementation of SimpleScalar

Portable Instruction Set Architecture (PISA) on FPGA

by

Abdul Azim bin Abdullah

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

fai Hiung
Lecturer

Electrical &Electronic Engineering
Universiti Teknologi PETRONAS
Bandar Seri Iskandar, 31750 Tronoh
Perak Darul Ridzuan, Malaysia

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

DECEMBER 2006

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

ABSTRACT

This report describes the current progress of final year project entitled Implementation of

SimpleScalar Portable Instruction Set Architecture (PISA) on FPGA. The objectives of

this study are to learn computer system architecture, to sharpen skill in programming and

debugging a program and to complete study in Universiti Teknologi PETRONAS.

Problem statements will explain the reasons behind of this study was conducted. Firstly,

there are few microprocessors in the market currently can be reconfigurable. Secondly,

there is a need to design a microprocessor which can be used freely for academic

purposes. Thus, in this study, we will focus on the designing of a microprocessor that is

reconfigurable, easily understood and freely available for academicals purposes.

Methodology will describe way on how this project will be carried out. There are three

main steps to be taken which are: 1) Studying the SimpleScalar instruction set

architecture; 2) Programming and simulating by using VHDL programming language 3)

Implementing the SimpleScalar architecture in VHDL and FPGA.

In the Discussion, a detail contents regarding the project will be explained. Contents

included are SimpleScalar's instruction format, register and operation cycle, software and

hardware used in the project, the SimpleScalar implementation in VHDL and VHDL

simulation. The further details will be discussed later.

Finally, this report is concluded in the Conclusion. Recommendations describe the

suggestions that can be done to the current project to improve them in the future.

-1 -

ACKNOWLEDGEMENT

AlhamduliUah, after 1 year, this project has reached its end. Lots of experience and

knowledge were gained throughout the period. There are several individuals, who should

be praised and mentioned here. Without them, this project will not able to be done.

I would like to express the greatest gratitude to Merciful God, Allah S.W.T for His

blessings and mercy, which have helped and guided me in during this project.

My almost gratitude goes to my supervisor, Mr. Lo Hai Hiung. He given me advices,

ideas, suggestions and ensured that this project will be beneficial to both parties. He

supervised me since the first appointment and always kept track of my progress. I really

appreciate all the hard work and the time spent, despite his bundle of workload.

I would also like to thank my Computer System Architecture lecturers, Mr. Patrick

Sebastianand Dr. Yap Vooi Voon. Theywere very helpful in givingtheoretical, guidance

and hands on experience regarding computer architecture. Aside from that, a special

thank you to all FYP series lecturers, who was giving me priceless advices on improving

my skills in the area of researching, writings and presenting. Not to forget, thanks also to

Ms. Siti Hawa who is always supportive.

Last but not least, million thanks to my parents and my fellow colleagues for the all

cooperation and support. The encouragement from the people above will always be

pleasant memory throughout my life.

-11-

TABLE OF CONTENTS

ABSTRACT i

ACKNOWLEDGEMENT ii

1. INTRODUCTION 1

1.1 Background Study 1

1.2 Problem Statements 2

1.3 Objectives 3

2. LITERATURE REVIEW 4

2.1 SimpleScalar Instruction Set Architecture 4

2.1.1 Instruction Set 4

2.1.2 Instruction Set Architecture 5

2.2 Implementation on VHDL and FPGA 6

2.2.1 VHDL 6

2.2.2 FPGA 7

3. METHODOLOGY 9

4. DISCUSSIONS 11

4.1 Instruction Format 11

4.2 Register 14

4.3 Operation Cycle 16

4.4 SimpleScalar's Operation Cycle 17

4.5 Software 19

4.5.1 Crimson Editor 19

4.5.2 C Compilers 20

4.5.3 GHDL 21

4.5.4 Altera Quartus II Web Edition 22

4.6 Hardware 25

4.6.1 DSP Development Kit Cyclone II 25

- in-

4.7 SimpleScalar in VHDL 26

4.7.1 Fetch 26

4.7.2 Decode 29

4.7.3 Control 31

4.7.4 Execute 33

4.7.5 Memory 35

4.8 VHDL Simulation 38

4.8.1 Unsigned Addition 38

4.8.2 OR Operation 39

4.8.3 Shift Right Logical 39

5. CONCLUSION 40

6. RECOMMENDATIONS 41

7. REFERENCES 42

- IV-

LIST OF ILLUSTRATIONS

LIST OF FIGURES

Figure 1: FPGA Workflow 8

Figure 2: Methodology Steps 9

Figure 3: Instruction Format 11

Figure 4: Instruction Set 13

Figure 5: Register 14

Figure 6: General Operation Cycle 16

Figure 7: SimpleScalar's Operation Cycle 17

Figure 8: SimpleScalar's Operation Cycle (C Language) 18

Figure 9: Crimson Editor 19

Figure 10: Borland C 20

Figure 11: GHDL 21

Figure 12: Altera Quartus II Web Edition 22

Figure 13: Basic Design Flow 23

Figure 14: Altera Cyclone II EP2C35 FPGA 25

Figure 15: SimpleScalar's Operation Cycle (VHDL Implementation) 26

Figure 16: SimpleScalar Instruction (Register & Immediate Format) 27

Figure 17: SimpleScalar Opcodes (Register & Immediate Format) 29

Figure 18: SimpleScalar Immediate Fields (Register Format) 30

Figure 19: SimpleScalar Immediate Fields (Immediate Format) 30

Figure 20: Register Selection 31

Figure 21: Register-Memory 32

Figure 22: 32-bitFull Adder 34

Figure 23: Read Cycle TimingWaveforms 36

Figure 24: Write Cycle Timing Waveforms 37

Figure 25: Unsigned AdditionOperation 38

Figure 26: OR Operation 39

Figure 27: Shift Right Logical 39

- V-

LIST OF TABLES

Table 1

Table 2

Table 3

Definitions of SimpleScalarArchitecture Registers

Quartus II Web Edition Device Support

Full Adder Truth Table

TABLE OF APPENDICES

- vi -

15

22

33

43

CHAPTER 1: INTRODUCTION

1.1. Background Study

Modern processors are incrediblely complex marvels of engineering that are becoming

increasing hard to evaluate. Simplescalar tool set performs fast, flexible and accurate

simulation for modernprocessors that implement the Simplescalar architecture.

According to D. Burger [1], Simplescalar simulators can emulate the Alpha, PISA, ARM,

and x86 instruction sets. The tool set includes a machine definition infrastructure that

permits most architectural details to beseparated from simulator implementations. All of

the simulators distributed with the current release of Simplescalar can run programs from

any of the above listed instruction sets. Complex instruction setemulation (e.g., x86) can

be implemented with or without microcode, making the Simplescalar tools particularly

useful for modeling CISC instruction sets.

The advantages ofthis tool are flexibility, portability, extensibility and performance. This

tool set is portable, requiring only that the GNU tools may be installed on the host

system. The tool set has been used on multiple platforms such as Linux/x86, Win NT,

SPARC and Solaris. The tool set is easily extensible. The instruction set is designed to

support easy annotation of instructions, without requiring a retargeted compiler for

incremental changes. The instruction definition method along withthe ported GNU tools

makes new simulators easy to write and the old ones even simpler to extend. Finally, the

simulators have been aggressively tuned for performance and can run codes approaching

"real" sizes in tractable amounts of time. [1]

-1-

In this project, I will design a Portable Instruction Set Architecture (PISA)

microprocessor in VHSIC Hardware Description Language (VHDL) and implement it on

FPGA.

The PISA instruction set is a simple MlPS-like instruction set maintained primarily for

instructional use. A GNU GCC-based cross-compiler and pre-built libraries are also

available for this target. The PISA target is particularly useful for computer engineering

instruction as the tools can be built on a wide range of host platforms, including

Linux/x86, Win2000, SPARC Solaris, and others. [1]

1.2. Problem Statements

In the current design of microprocessor, there are few microprocessors which can be

reconfigurable. "Reconfigurable" term means the memory addressing and registers of the

given microprocessor can be adjusted according to the author's preferences. Currently, all

microprocessor available in the market, the function units, memory addressing and

registers are fixed and cannot be reconfigured. Therefore, this project is attempting to

design a microprocessor which is reconfigurable.

Currently, there are a lot of microprocessors designs available today from Intel,

Motorola, SPARC and others. However, not all of them are easy to be understood by

students who justbegin their learning in computer system. In the learning curve, to know

and understand the concept of computer system is by learning from the simplest form of

digital system, logic circuits until the hardest part, which is the memory system.

SimpleScalar, which is based on MIPS, provides an easy and simple architecture for

study. In addition, it is free for academic purposes and open source for development. In

this project, the simplest microprocessors willbe design.

-2-

From studies made, it is found that Simplescalar PISA can be implemented as a

microprocessor. Besides it is free for non-commercial use, it is also reconfigurable and

flexible to all platforms. PISAwhich is like MlPS-like instruction is good architecture for

study, because it is easy to understand.

1.3. Objectives

To implement SimpleScalar PISA in FPGA.

SimpleScalar tool set is used to evaluate modern processors using the SimpleScalar

architecture. However, it is only available in software based. The source code must be

compiled first before it can be executed. Up to date, there is no hardware based

implemented for SimpleScalar PISA. Therefore, in this project, I will implement the

SimpleScalar PISA in hardware called FPGA.

To design and programcircuitsusingVHDL language.

My interest is programming and I have learnt a lot of languages such as C, C++, HTML,

Visual Basic, MATLAB and PHP. I also had experienced in microcontrollers

programming. However, VHDL is one of the programming languages I did not manage

to learn. Therefore, this projectis able to help me to gainnew knowledge and experience

in programming the digital circuit using VHDL language.

To apply and relate computersystemarchitecture.

In the computer system subject, I have learnt digital logic gates, full adder system, basic

computer architecture, register design and memory design. From this project, I hope I

will be able to apply and relate the conceptof computersystem subject learnt.

-3-

CHAPTER 2: LITERATURE REVIEW

This project can be divided into two major partitions which are SimpleScalar Instruction

Set Architecture and Implementation on the VHDL and FPGA.

2.1. SimpleScalar Instruction Set Architecture

2.1.1. Instruction Set

Instruction set is a collection of all operations possible in a machine's language. There

are many types of instructions in a computer system, such as arithmetic instructions, data

movement instructions, control or branch instructions and many more.

In arithmetic instructions, it will accept one or more operands and produce a result.

Besides, it may also set a flag to indicate that the result of the operation was a negative

number. In data movement instructions, it moves data within the machine and to or from

input/output devices. In control or branch instructions, it affects the order in which

instructions are performed, or control the flow of the executing program, much as goto,

for, and function calls do in C. [2]

Every instruction must contain encodings within it to specify the following 4 things,

either explicitly or implicitly:

1. Which operation to perform.

2. Where to find the operand or operands, if there are operands.

3. Where to put the results, if there is a result.

4. Where to find the next instructions.

Source: John L. Hennessy &David A. Patterson, "Computer Architecture: A Quantitative Approach" [2]

-4-

In SimpleScalar, the instruction set can be divided into 4 groups, which are:

1. Control Instruction

2. Load/Store Instruction

3. Integer Instruction

4. Floating point Instruction

Source: DougBurger, ToddM. Austin, "The SimpleScalar Tool Set, Version 2.0"[1]

(Refer to Appendix 1: List ofSimplescalar Instruction Set for more details)

2.1.2. Instruction Set Architecture

Instruction set architecture is the collection of instructions and resources. It includes the

instruction set, the machine's memory andall of the programmer-accessible registers in

the CPU and elsewhere in the machine. [3]

The SimpleScalar architecture canbe divided intoparts:

• Instruction set principles.

• Memory hierarchy and registerdesign.

• 5 stages of pipelining.

• Level 1 and level 2 cache.

Source: Doug Burger, ToddM, Austin, "The SimpleScalar Tool Set, Version 2.0" [1]

-5-

2.2. Implementation on VHDL and FPGA

2.2.1. VHDL

VHDL is an acronym of VHSIC Hardware Description Language. VHSIC is another

acronym which stands for Very High Speed Integrated Circuits.

In digital design, the VHDL language is used for documentation, verification and

synthesis of large digital system. It allows the system can be described in the same code

to achieve these goals at one time, thus saving a lot of effort. [6]

There are three different approaches are used to describe hardware in VHDL. They are

structural, data flow and behavioral methods of hardware description. In the beginning,

the design behaviour is described (modeled) and verified (simulated). By using the

synthesis tools, the design is able to be translated into real hardware (gates and wires). At

this point, they are mapped onto a programmable logic device sucha CPLD or FPGA. [6]

The VHDL standards are developed by IEEE (Institute of Electrical and Electronics

Engineers). Currently, there are two standards widely used, which are VHDL'87 (STD

1076-1987)version and VHDL'93 (adopted in 1994). [6]

-6-

2.2.2. FPGA

FPGA is an acronym which stands for Field Programmable Gate Array. The term of

"Field Programmable" refers to the ability to change the operation of the device, while

"Gate Array" refers to the matrix of logic cell surrounded by a peripheral of I/O cells.

Simply, FPGA are programmable digital logic chips which can be program to do digital

function. [7]

FPGAs come in a wide variety of sizes and many different combinations of internal and

external features from different manufacturers. Although they are different in many

things, they have a common, which is composedof programmable logic blocks. Each of

these blocks contains registers and logic elements, which are arranged in a grid and tied

together using programmable interconnections. [7]

In a typical FPGA, the logic blocks that make up the bulk of the device are based on

lookup tables (of perhaps four or five binary inputs) combinedwith one or two single-bit

registers and additional logic elements such as clock enables and multiplexers. These

basic structures may be replicated many thousands of times to create a large

programmable hardware fabric. [7]

In more complex FPGAs these general-purpose logic blocks are combined with higher-

level arithmetic and control structures, such as multipliers and counters, in support of

common types of applications such as signal processing. In addition, specialized logic

blocks are found at the periphery of the devices that provide programmable input and

output capabilities. [7]

-7-

Figure 1 shows the general workflow when working with FPGA.

1'

Compile design

1'

Download design onto FPGA

''

Run thp TJPriA

Figure 1: FPGA Workflow

First step is to describe the logic function that wants to be developed. Draw schematic or

write program to describe the particular function.

Then, compile the design. The logic function designed is compiledby using the software

provided from FPGA vendor (e.g.: Xilinix ISE, Altera Quartus, Active VHDL and etc).

This will create a binary file that can be downloaded into the FPGA.

The next step is to download the design onto FPGA. Connect cable from the computer to

the FPGA and download the binary file created to the FPGA.

Finally, run the FPGA. If successfully, the FPGA will behave according to the logic

function. If not, repeat the steps again to re-develop.

Source: fpga4fun.com, What are FPGAs? [20]

CHAPTER 3: METHODOLOGY

Studying the Simplescalar Learning VHDL programming
Instruction Set Architecture language

1'

Implementing the Simplescalar
microprocessor in VHDL

''

Implementing the Simplescalar
microprocessor in FPGA

Figure 2: Methodology Steps

Figure 2 above shows the steps I will be taking during implementation of this project.

The first part is to study the Simplescalar Instruction Set Architecture. This involves

understanding the source code given, what instruction sets are to be used, how to set the

memory addressing and registers and many more. Besides that, I also will have to

simulate the microprocessors by using the tools given in order to help me to understand

how it works.

Parallel with the Simplescalar architecture studies, I will have to learn the VHDL

programming language. This requires understanding of the digital system design

concepts, writing the source codes and doing some programming exercises given in the

books. The software I will be using in VHDL programming is Altera Quartus II software.

Then, I will have to implement the Simplescalar microprocessor in VHDL. This step

requires me to convert from the source code given and implement it by using VHDL

programming languages I have learnt. This step requires a lot of programming and

debugging the program.

Final step of this project is to implement the Simplescalar microprocessor which has been

designed by using VHDL on the FPGA. This step requires a lot of programming,

debugging the program and troubleshooting the hardware.

The schedule of this project during Final Year Project I and II can be referred to Planning

Schedule on Appendix 2: Planning Schedule.

-10-

CHAPTER 4: DISCUSSIONS

4.1. Instruction Format

The format of an instruction is usually depicted by a rectangular box symbolizing the bits

of the instruction, as they appear in memory words or in a control register. The bits are

divided into groups or parts called fields. Each field is assigned a specific item, such as

the operation code, a constant value, or a register file address. The various fields specify

different functions for the instruction and when shown together, constitute instruction

format. [9]

Register format

16-annote

63

Immediate format

16-annote

63

Jump format

16-annote

63

16-opcode 8-rs 8-rt 8-rd 8-ru/shamt

32 31

16-opcode 8-rs 8-rt 16-imm

32 31

16-opcode 6-unused 26-target

32 31

Figure 3: Instruction Format

Source: Doug Burger, ToddM. Austin, "The SimpleScalar Tool Set, Version 2.0" [1]

-11-

The three instruction formats for the SimpleScalar are illustrated in the Figure 3.

SimpleScalar architecture is derived from MIPS-IV instruction set architecture.

Therefore, it has same instruction set as MIPS-IV. All instructions are 64 bits in length.

The instructions can be divided into three formats: register, immediate andjump. [1]

The register format is used for computational instructions. The immediate format

supports the inclusion of a 16-bit constant. The jump format support specification of 24-

bit jump targets. The register fields are all 8 bits, to support extension of the architectured

registers to 256 integers and floating point register. Each instruction format has a fixed-

location, 16-bit opcode field that facilitates fast instruction encodings. [1]

8 bits, 2A8 = 256 integers from 00000000 to 11111111

The bits are divided into groups or parts called fields. Each field is assigned a specific

item, such as operation code, a constant value or a register file address.

The operation code of an instruction, often shortened to "opcode", is a group of bits in the

instruction format. This determines which operations to be conducted by the processor.

The operation of instruction is differentiate by using opcode. For example, the opcode for

ADD instruction is 0x40 or 01000000 while the opcode for SUB instruction is 0x44 or

01000100. In SimpleScalar, the opcode is in hexadecimal. However, the opcodes of all

instructions are 8 bits. The instruction format for the opcode is 16 bits. Therefore, the

remaining 8 bits must be filled by using either zero fill or sign extension. In this

architecture, zero-fill is specified for the operand. [1]

Constant value is the immediate value available in the instruction. In SimpleScalar, the

value supported for the immediate value is from 0 to 65536. [1]

For full instructions, please refer to Appendix 3: SimpleScalar Instructions for.

-12-

File pisa.def defines all aspects of the Simplescalar instruction set architecture. Each

instruction set in the architecture has a DEFINST macro call. Here, shows example on

how the instructions are organized and defined in the source code;

idefine ADD_IMPL
(

if (OVER{GPR(RS), GPR(RT)})
DECLARE_FAULT(md_fault_overf1ow) ;

^— semantics
SET GPR(RD, GPR(RS) + GPR(RT));

}
DEFINST(ADD,

"add",
IntALU,
DGPR(RD), DNA,

^--- opcode
0x40,-*-
"d, s, t",^y instruction
F ICOMP,
DGPR(RS), DGPR{RT),

flags

DNA)

Figure 4: Instruction Set

Source: ToddM. Austin, "SimpleScalar Hacker's Guide" [8]

Figure 4 shows on how the instruction set is defined in the pisa.def. The instruction is

ADD arithmetic operation. The operationwill involve:

1. Reading values from general purpose register of RS and general purpose register of

RT.

2. Doing the operation, adding between general purpose register of RS and general

purpose register of RT.

3. Writing (Storing) the results in the general purpose register of RD.

The opcode of this instruction is 0x40 in hexadecimal or 01000000 in binary. Different

operation will use different opcode. Since the instruction is arithmetic operation between

integers, therefore the functional unit requirement is IntALU. This operation also has

helper function which is available to assist in the construction of instruction expression.

OVER(GPR(RS), GPR(RT)) function is an overflow checking. This will check whether

the results of the operation given have overflow or not. If overflow has occured, a

function DECLARE_FAULT(md_fault_overflow) will be called. [8]

-13

4.2. Register

This module implements the SimpleScalar architected register state, which includes

integer and floating point registers and miscellaneous registers. The architected register

state is as follows:

Integer Register File:

(aka general-purpose registers, GPR's]

+ +

| SrO Esrc/sink 0) |
+ +

I Sri |

+ +

I • I

I • I

I • I

+ +

1 Sr31 |
+ +

Miscellaneous Registers:

+

I PC

+

| HI

+

| LO

+

Floating point Register File:

single-precision: double-precision:
+ + + +

| SfO ! Sfl (for double) | | FCC
+ + + +

I Sfl I
+ +

I

I •

+

j Sf30
+

I $f31

+

.+ +

| $£31 (for double) |

-+ +

| Program Counter

-+

| Mult/Div HI val

•+

| Hult/Div LO val

-+

| FP codes

Figure 5: Register

Source: SimpleScalar SourceCode (regs.h) [10]

The floating point register file can be viewed as either 32 single-precision (32-bit IEEE

format) floating point values $ft) to $f31, or as 16 double-precision (64-bit IEEE format)

floating point values $f0 to $f31. [10]

-14-

Table below shows the definitions of SimpleScalar architecture register.

Hardware Name Software Name Description

$0 $zero zero-valued source/sink

$1 Sat reserved by assembler

$2-$3 $v0-$vl fn return result regs

$4-$7 Sa0-$a3 fn argument value regs

$8-$15 $t0-$t7 temp regs, caller saved

$16-$23 $s0-$s7 saved regs, callee saved

$24-$25 $t8-$t9 temp regs, caller saved

$26-$27 $k0-$kl reserved by OS

$28 $gP global pointer

$29 $sp stack pointer

$30 $s8 saved regs, caller saved

$31 $ra return address reg

Shi $hi high result register

$lo Sio low result register

$f0-$f31 $fD-$f31 floating point registers

$fcc $fcc floating point condition code

Table 1: Definitions of SimpleScalar architecture registers

Source: DougBurger, ToddM. Austin, "The SimpleScalar Tool Set, Version 2.0" [1]

These registers defined in SimpleScalar architecture with their hardware name, software

name and description. Take note, the registers used by the SimpleScalar is the same with

MIPS IV ISA. [1]

-15-

4.3. Operation Cycle

The basic operation cycle of a computer is controlled by a control unit that puts into the

following steps:

Step 1: Fetch the instruction from memory into a control register

Step 2: Decode the instruction

Step 3: Locate the operands used by the instruction

Step 4: Fetch operands from memory (if necessary)

Step 5: Execute the operation in processor register

Step 6: Store the results in the proper locations

Step 7: Repeat Step 1 with next instruction

Figure 6: General Operation Cycle

Source: M. Morris Mano, Charles R. Kime, "Logic and Computer Design Fundamentals "[9]

There is a register in the computer called the Program Counter (PC) that keeps track of

the instructions in the program stored in the memory. The PC holds the address of the

instruction to be executed next and is incremented by one each time a word is read from

the program in memory. The decoding done in the Step 2 determines the operation to be

performed and the addressing mode of the instruction. The operands in Step 3 are located

from the addressing mode and the address field of the instruction. The computer executes

the instruction, storing the results and returns to Step 1 to fetch the next instruction in

sequences. [9]

-16-

4.4. SimpleScalar's Operation Cycle

1 r

Fetch —• Dispatch —• Scheduler —• Execute —> Writeback

Memory
Scheduler

Memory
if

Commit
i ' 1 r

I-Cache D-Cache

Figure 7: SimpleScalar's Operation Cycle

Source: Doug Burger, ToddM. Austin, "The SimpleScalar Tool Set, Version 2.0" [1]

Figure 7 shows the operation cycle of SimpleScalar processors. The concept of

SimpleScalar's operation cycle has similar to the general operation cycle we have

discussed before. The only different is the term used in Dispatch process, Scheduler

process and Writeback process. However, their purpose is the same as the general

operation cycle. There are 6 cycles of SimpleScalar processors, which are Fetch,

Dispatch, Execute, Writeback and Commit. Each cycle will be discussed later.

-17-

