
JAVA-BASED MICROPROCESSOR

by

Mohammad Faiz bin Md. Khuzaimah

2836

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

JUNE 2006

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

JAVA-BASED MICROPROCESSOR

! by

Mohammad Faiz bin Md. Khuzaimah

A project dissertation submitted to the

Electrical& ElectronicsEngineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

(PATRICK SEBASTIAN)

UNIVERSITI TEKNOLOGI PETRONAS

TR6NOH, PERAK
i

June 2006

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this

project, that the original work is my own except as specified in the references

and acknowledgments, and that the original work contained herein have not

been undertaken or done by unspecified sources or persons.

(MOHAMMAD FAIZ BIN MD. KHUZAIMAH)
Student ID: 2836

ABSTRACT

Java-based Microprocessor is a project aimed to develop a processor that

implements Java virtual machine (JVM) instruction set into the hardware. The objective

of the project is enabling a Java application to be executed without the need of JVM, but

in a more specific term, it is aimed to be an alternative non commercial processor as a

supporting base for educational research and development of embedded systems. With

the current application of Java, the Java Runtime Edition (JRE), an inter medium Java

OS, must be installed in every machine that is intended to execute Java bytecode. This

proved to be inefficient, especially in embedded system where the resources are limited

and upgrading is highly expensive.

The project was developed to be an easily comprehensible HDL, allowing others

to pursue with advancement without complications. Thus, the HDL design were coded

with behavioural style. In order to be more transparent for others to view the project

development, the entire design is being developed by bottom-up approach. Four

modules comprises the entire design - ALU, stacks, program counter and datapath.

These modules were designed individually, allowing a separate test bench and test

parameters, which alsoprovided a betterperspective of the microprocessor design.

The project has already progressed from an 8-bit processor in mind towards a 32-

bit computer. The JVM has strict rules, allowing only certain instructions to execute

with proper operands with the right data type. The project was not planned to allow

operations of floating point number and doubles.

In conclusion, as for the use for supportingeducational research and development,

Java-based Microprocessor shall provide a solid foundation to embedded systems,

where more enhancements would be needed before it can be utilized reliably.

in

ACKNOWLEDGMENT

First and foremost, all praises to Allah The Almighty that by His blessings I have been

able to complete my final year project, the Java-Based Microprocessor. I would like to

thank the following people who helped me in my final project.

Mr. Patrick Sebastian, my supervisor and Computer System Architecture

lecturer, who came with the idea of this project and helped me with references

projects and moral support all the way.

Mr. Lo Hai Hiung, a lecturer, who had gave me a good insight of HDL and

Altera Quartus II.

My Parents, Mr. Md. Khuzaimah and Mrs. Hasnah, who has been very

supporting, caring for my well-being and prayed for my success.

Mr. Faizan, a tutor, who had, taught me a good deal of HDL coding technique

and introduction to Altera Quartus II

Dr. Yap Vooi Voon, a lecturer, for his critique of my project development.

I would also like to thank Nadirah Khairul Anuar, for her loving support every

hard moments I endeavor while finishing my project.

IV

TABLE OF CONTENTS

1.Introduction 1

1.1 Background 1

1.2 Problem Statement 1

1.3 Objectives & Scope of Study 2

2.Literature Review 3

2.1 Previous Work on Java Processor 3

2.1.1 Sun Microsystems'picoJava 3

2.1.2 Java Optimized Processor 4

2.1.3 Bernd Paysan's bl6 Forth 5

2.2 Java Virtual Machine 6

2.2.1 Fundamentals of Bytecode 7

2.3 Stack Machine 8

2.3.1 JVM as Stack-based Machine 8

3.Project Work 10

3.1 Research and Design Approach 10

3.2 Development and Simulation 12

3.2.1 Using Behavioural Verilog 12

3.2.2 Using Extensive Test bench 12

3.3 Hardware Verification 13

4.Results & Discussion 14

4.1 Arithmetic& Logic Unit 14

4.2 Operands and Return Stacks 16

4.3 Program Counter 19

4.4 Datapath and Modules Integration 20

5.Conclusion & Recommendation 25

6.References 26

7.Appendices 27

Appendix Al: MJava ALU Verilog Code 28

Appendix A2: MJava Stacks Verilog Code 30

Appendix A3: MJava Program counter Verilog Code 33

Appendix A4: MJava Datapath Verilog Code 36

Appendix B: MJava Simulation results 43

Appendix C: MJava Stacks Synthesized Circuit 47

Appendix Dl: JVM Instructions Hexadecimal Values 50

Appendix D2: JVM Instructions and Operands Description 55

LIST OF ILLUSTRATION & TABLES

Table 2.1: JVM primitive data types 6

Table 4.1: Ports in MJava ALU module 17

Table 4.2: Instructions executed within ALU module 18

Table 4.3: Ports in MJava stack module 20

Table 4.4: Ports in MJava program counter module 21

Table 4.5: Ports in MJava Datapath module 23

Table 4.6: Instructions implemented in MJava processor 25

Figure 2.1: Block diagram of the picoJava cores[Pl] 3

Figure 2.2: The picoJava core employ the circularregister file to support stack-based
processing[P2] 4

Figure 2.3: Block diagram ofJOP cores 5

Figure 2.4: Block diagram of bl6 cores 6

Figure 4.1: Status flag defined in ALU module 17

Figure 4.2: MJava stack module declaration, reg type stackmem[7:0] is the actual stack
memory array 20

Figure 4.3: MJava datapath module declaration. Many type of regs and wires were declared
and used 24

Figure 4.4: Lines of code fetched for testing datapath functionality 24

Figure 4.5: Sequential flow ofMJava data path 26

NOMENCLATURE

ALU Arithmetic and Logic Unit

ASM Algorithmic State Machine

CAD Computer-aided Design

HDL Hardware Description Language

JRE Java Runtime Environment

JVM Java Virtual Machine

LIFO Last in First out

OS Operating System

VHSIC Very High Speed Integrated Circuit

MJava Java-based Microprocessor (project title)

vi

Java-Based Microprocessor 1.Introduction

i. INTRODUCTION

1.1 BACKGROUND

Java applications have stormed the mobile industry lately, with current

smart phones and mobile phones equipped with Java-enabled games and such.

While the embedded systems industry is moving towards Java, there are

several technical issues that prevent Java from being widely implemented in

embedded devices such as set-top boxes, automotive systems and smart

controllers.

The issues that prevent Java from being widely implemented are its

performance and runtime execution efficiency. In order to execute a Java

bytecode, the JRE must be running on top of a machine original operating

system (OS) and this concept uses high resource. This has led to several

developments of Java-based processor that is capable to execute the bytecodes

without the need of JRE. These developments had been around since 1997 and

one of the most Java processorwaspicoJava, designed by Sun Microsystems .

Java processor had been widely, and at the same time narrowly,

developed to support embedded systems industry. Even in term education and

research, there are many projects running that requires non commercial

processor to support their development.

1.2 PROBLEM STATEMENT

The current concept of executing Java bytecode requires JRE to run on

top of a machine OS. While using high resources, this also results in slow

program load and unpredictable time-cycle execution. This drawback is

considered trivial on personal computer, but in embedded systems and small

devices such as handheld, the effect can be unacceptable.

Many Java processors being developed and many of them differ in

Java-Based Microprocessor 1.Introduction

features and targeted media. Most of them were developed to suit medium-end

to high-end small devices. In this project, the development focuses on the very

basic of bytecode implementation and targeting only for embedded system with

very limited resources.

Although the processor being developed in this project is a basic 32-bit

signed integer, it is important to note that, in embedded systems application,

building a complex and powerful processor is very costly. As a result, the

processor in this project is devised to support fundamental features, dropping

out the complex features that were entailed for higher performance systems and

ensure that it will cater to embedded systems expeditiously.

1.3 OBJECTIVES & SCOPE OF STUDY

In general, Java-based Microprocessor (MJava) is aimed to implement

JVM instruction set into a hardware stand-alone processor. In more specific

term, it is aimed to be an alternative non commercial processor as a supporting

base for the educationalresearch and developmentof embeddedsystems.

In order to achieve the objective, some parameters had been refined and

redefined, in which two of them are; to implement the JVM instruction with

minimal use of external memory space; and keeping the final outcome as

simple as possible with only the most basic requirement to execute Java class

file properly and correctly.

Java-Based Microprocessor 2. Literature Review

2. LITERATURE REVIEW

2.1 PREVIOUS WORK ON JAVA PROCESSOR

Work on Java processor is not a new concept. It has been around since

picoJava was initiated in 1998, but it is increasing in popularity. Several

previous work had been used as references to the project. Each provided a

different perspective on how to approach the solution.

2.1.1 Sun Microsystems' picoJava

picoJava is the first attempt on Java processor, developed under Sun

Microsystems as the next step to popularize Java. Its advancement ideally

suited the consumer electronic manufacturers need of small size processor core

and high performance. It has been licenced to at least four (4) major

companies m

Its success in commercial values lies mostly on its high performance

design computer architecture. The variable-sized cache, choice of with or

without floating-point unit and the "stack register file" significantly improved

performance. Its ability to execute legacy C/C++ as efficient as comparable

RIS CPU is also a big advantage. Figure 2.1 shows the architecture of

picoJava cores, while the stack register file operation, treating file as a circular

buffer is shown in Figure 2.2.

\!Q Bu« and Memarv interface Unit

Configurable :
--fnetructlan.Cache

Inatructlan Buffer

Inetruction Decade

Trap Control

-Ca'nflg,u'rHble
' Data-Cache:.

DC Cantral

Execution Control Logic

Figure 2.1: Block diagram ofthepicoJava

[i]
cores

Java-Based Microprocessor 2. Literature Review

Figure 2.2: The picoJava core employ the circular register

file to support stack-basedprocessing^11

2.1.2 Java Optimized Processor

Java Optimized Processor (JOP) was developed as part of a thesis

project, focused on designing a processor for time-predictable execution of

real-time tasks. Its primary implementation is in a field programmable gate

array and the research demonstrates hardware implementation of the Java

virtual machine results in a small design for resource-constrained devices. It

had been designed to implement only the most frequently used instructions in

the hardware level, while leaving the remaining to be executed on the software

level.

In all measurements, JOP stated that the load of local variables and

constants onto the stack accounts for more than 40% of instructions executed.

This shows that an efficient realization of the local variable memory area, the

stack and the transfer between these memory areas is mandatory. On the other

hand, the implementation of these three subjects, especially the stack, is

critical to the project and thus, required.'21

Java-Based Microprocessor 2.Literature Review

JOP's own Java bytecode is named microcode. It is the native language

for JOP. The microcode is translated from Java native language, bytecodes

during execution, and both instruction sets are designed for an extended stack

machine. In addition, JOP is fully pipelined architecture but with single cycle

execution of microcode. It, however, used a fresh approach to mapping the

Java bytecode to these instructions. Figure 2.3 shows the data path of JOP,

where it can be observed that the stack architecture allows for a short pipeline.

This resulted in short branch delays.

bylaeode branch conattert

i r
Bytecode

teh, transiat
and branch

Microcode

Fetch and
branch

decode txwcti

. i V

metocoae branch condHkm

Microcode

branch

,Tp]*\

:>

Figure 2.3: Block diagram ofJOPcoresm

Microcode

RAM

2.1.3 Bernd Paysan's bl6 Forth

The bl6 processor is being developed as a Forth processor in an FPGA

by Bernd Paysan. In this most brief summary, it has shown most promise as a

better base to the project title Java-Based Microprocessor (MJava) that the

JOP. Not only it is basically a stack-based processor, its minimalist design fits

into small FPGA is most suitable for embedded systems application.

This processor is inspired by cl8 from Chuck Moore, a popular forth

processor, and is design entirely using Verilog HDL - a most convincing

advantage for MJava side. Its basic processor architecture proved to be very

Java-Based Microprocessor 2.Literature Review

simplistic and practical for small application. Its stack machine was a radical

approach but still has rooms for improvement.

RAWROM

Instruction Word Address Utch *

TOS A
,

r 1
MOS P

J
|

5tawsfc

R

R«torfv-$l3Bk

' A JJ

[3]Figure 2.4: Blockdiagram ofbl6 cores

2.2 JAVA VIRTUAL MACHINE

Java Virtual Machine (JVM) is an abstract computing machine, acting

like a real computing machine, but executing Java bytecode instead of an

assembler. It has an instruction set and capable of manipulating various

memory areas at run time. JVM is also a stack-based machine in general,

consisting several stacks for operands and return addresses. The stack-based

JVM is further explained in subsection 2.3.1 JVM as Stack-based Machine.

Java class file is translated into Java bytecode, which is used by JVM to

be translated again into the specific native machine language. In short, JVM is

a second layer operating system (OS) to the work station native OS, used in

order to execute Java bytecode. The operation of bytecode basics is further

explained in subsection 2.2.1 Fundamentals of Bytecode.

Java-Based Microprocessor 2.Literature Review

JVM instructions consists of an opcode, which specify the operation to

be performed, and followed by zero or more operands. This allow us to assume

that implementing a complete JVM instruction set will result in exponentially

increasing complexity, depending on the extent of how many instructions are

being implemented. Certain JVM instructions can embody up to 14 operands

each.

The JVM supports seven (7) primitives data types, listed in Table 1.

Currently JVM consists of 202 instructions, although, many of the instructions

are for similar operationbut different data types involved. This was intendedto

make the bytecodes compact, by forcing opcodes to identify the data types

involved instead of leaving it to the operands itself like in many other machine

languages, (refer Appendix Dl for a list of JVM opcodes with their

corresponding hex values and Appendix D2 for JVM opcodes with their

relevant operand(s) type).I41[5]

Table 2.1: JVMprimitive data types

' Data Type IMiiiiiimi-' ,;^..^.

byte one-byte;signed two's complement integer

short two-byte; signed two's complement integer

int 4-byte signed two's complement integer

long 8-bytesigned two's complement integer

float 4-byte IEEE754 single-precision float

double 8-byte IEEE754 double-precision float

char 2-byte unsigned Unicode character

2.2.1 Fundamentals of Bytecode

Bytecode is the machine language of the JVM. Since it was

designed to be compact, bytcodes are fetched in streams. When an opcode

reached the JVM, it indicates whether to encode zero or more operands

Java-Based Microprocessor 2.Literature Review

from the streams that immediately follow. Opcodes and operands in the

bytecodes stream are aligned on byte boundaries, which means each

opcode or operand is one byte of size. Operands of datatype larger than a

byte are broken into several bytes, stored in big-endian order in the

bytecodes stream.

2.3 STACK MACHINE

Two major types of computer stack are Last-in First-out (LIFO) and

First-in First-out (FIFO). While the latter act like a buffer, the former is being

used vastly in main computing as a significant temporary storage, mainly to

improve performance and to favour in compact machine code. LIFO stack by

definition is conceptually the simplest way of storing information temporarily

for use in common computation such as mathematical expression evaluation

and recursive subroutine calling.

LIFO stacks can be constructed in software easily by allocating an array

in memory and a variable with the array index number to keep track of the

array position, known as stack pointer. The significant properties of LIFO

stacks is the push and pop operations. Apush will store information in the top

most location (as defined by the stackpointer), while apop extract information

from the top most location to central processing (which later is deleted from

the stack).

Stack-based machine or computer is increasingly becoming a favoured

choice. Mostly due to its excellent mechanism of handling operations within

procedures or recursive invocations. A nested branch and goto functions can be

implemented very well with the use of LIFO stack. This also eliminates the

needto specify location of return addresses, whichcouldbe space consuming.

2.3.1 JVM as Stack-based Machine

Computation in JVM centres on the stack to perform many

operations, especially in arithmetics and returning from subroutines. In

S

Java-Based Microprocessor 2.Literature Review

JVM there are two separate stacks - operands stack and return stack. The

latter was used strictly for return addresses, while the former is used for

other information or operands. As Java bytecode was designed to be

compact, many of the instructions are of zero operand. These instructions

take values from the stacks. The stackwill pop (read and delete) as many

operands from the stacks as indicated by the opcode. The resultants are

also usually pushed (stored) backonto the stacks.'41151

Assisting the stacks are the local variables, similar to working

registers in many register-based machine. However, local variables use

are limited to certain instructions and a programmer can barely

manipulate this temporary storage. A number of instructions are dedicated

for handling information between local variables and operands stack, but
i

the direct use of local variables in calculation is unclear.

Java-Based Microprocessor 3.Project Work

3. PROJECT WORK

A revised methodology presents several key changes in the project flow.

Due to unforeseen delay caused by new findings, which led to new obstacles,

and switch to Xilinx ISE, the hardware implementation on an FPGA kit has

been deemed optional. In all, this project may end up as simulation-only if any

of Xilinx FPGA is unavailable at the project disposal.

3.1 RESEARCH AND DESIGN APPROACH

Selecting and researching on Java ISA is not a direct precedence to

project design and development. Still, it may provide key points to the

direction of the development in term of the key elements that are necessary to

be implemented.

Java ISA consists of 230 instructions, with three (3) reserved opcodes

and 25 _quick opcodes. Nevertheless, current Sun JVM support only the 202

instructions (without the reserved and_quickopcodes) and manyJavaprogram

had been written with these assumption. Thus, it is irrelevant to pursue the

project development by includingthese unnecessaryopcodes.

There are two major concerns in implementing Java ISA - the instruction

set itself and the JVM stack machine (as explained in Chapter 2, Stack

Computers). Preliminarily, only the basic opcodes will be implemented,

including all stack related, arithmetic, logic and return/jump operations but

ruling out the remaining such as long, float, double, array and conversion

operations. The instructions being implemented in MJava project is show in

List 1 (next page).

10

Java-Based Microprocessor

Pushing Constants onto the Stack

bipush sipush

Loading Local Variables onto the Stack

iload iload_<n>

Storing Stack Values into Local Variables

iconst_<n> istore_<n>

istore iinc

Stack Instructions

nop dup

pop dup2

pop2 swap

Arithmetic Instructions

iadd ineg

isub

Logical Instructions

ishl ior

ishr ixor

iand

Control Transfer Instructions

ifjcmpeq ifjcmpge

ifjcmpne goto

if_icmplt jsr

ifjcmpgt ret

ifjcmple

List 1: JVMinstructions being implemented in MJava

11

3.Project Work

Java-Based Microprocessor 3.Project Work

3.2 DEVELOPMENT AND SIMULATION

Development of the project were approached by systematical individual

approach. The design was subjected to a work breakdown system (WBS) of a

full integrated processor system. Necessary modules are identified and

approach individually - ALU, stacks, program counter and data path. With the

individual approach, each module were able to be subjected to several test

simulations. These modules were then integrated using the data path design,

done in behavioural style and tested again as a whole unit. This can ensure that

the integrity in whole and reliabilityof each module is proven.

Simulation of the processor can be done in one of two ways or both

combined, of Verilog HDL model and/or block diagram schematics. While

Verilog HDL model is a text-based approach, block diagram schematics is a

graphical-based approach that seems appropriate and easier option for simple

and fundamental operations. However, when designing a far more complex

processor, it is best to choose to model in Verilog. Simulation and synthesis

will go through two procedures of functional simulation and timing simulation.

The former only concerns of its fundamental of functional operation, while the

latter takes into account additional parameter- processor clock.

3.2.1 Using Behavioural Verilog

It was decided that the design of the entire project would done in

behavioural Verilog. The behavioural programming is similar to

programming in C and C++, allowing designers to define their circuits

based on how it would behave or function. This is contrast to RTL coding

style that define components of circuits and their connections. With

behavioural style, the code is more transparent, portable and extensible

even to other people who decided to proceed the project works.

3.2.2 Using Extensive Test bench

In this project, some glitches resulted in possibility of no hardware

12

Java-Based Microprocessor 3.Project Work

implementation for verification. Thus, to verify that the design works, an

extensive testing fixture must apply. Simulations were to run with strict

rules, experimenting with every possible corner case - reaching the limit

ofwhat the modules can do and go beyond it.

3.3 HARDWARE VERIFICATION

When designing the microprocessor, the targeted device must be kept in

mind. Most times, a circuit design for a particular device are not synthesizable

on other device. Although the codes are written in portable behavioural style

and the simulations shows expected execution.

It is highly preferred to verify circuit design with hardware

implementation. But circuit synthesis can be an issue. Early in the project

progression, it has been decided the design will be implemented in Altera's

FPGA developmentkit, but halfwaythrough, it was switched to Xilinx's FPGA

due to limitation in Quartus II compiler.

13

Java-Based Microprocessor 4.Results ft Discussion

4. RESULTS & DISCUSSION

4.1 ARITHMETIC & LOGIC UNIT

The Arithmetic & Logic Unit (ALU) was design as a 32-bit signed two's

complementarithmeticand logic evaluator. The inputs into the module consists

of two input arguments, which are to be evaluated, and an instructions selector.

The output from the modules are the evaluation resultants, embodiedwith three

status flags - Z flag for indicatingzero value resultant, V flag for indicating an

overflow and N flag for indicating the sign of the resultant. Table 4.1 shows

the relevant ports declared inside the ALU module.

The status flags were designed from scratch, although the two Z and N

flags are very simple. Z flag indicate a zero value resultant, achieved by

ANDing the resultant bits. Z flag is set to one (1) if the resultant in zero in

value and reset to zero (0) if it is a non zero value. N flag indicate the sign of

the resultant, and thus only taking the most significant bit (MSB) of the

resultant into argument. N flag is set to one (1) if the resultant is a negative

number and reset to zero (0) if it is positive. V flag has more complex design,

where it has to indicate whether an overflow had occur while evaluating the

input arguments. This usually can occur with the following situations,

• Two positive values added.

• two negative values subtracted.

Two values (of any ;sigri) multiplied.

V flag was design by applying Karnaugh Map and supplying the above

situation. V flag is set to one (1) if an overflow occur and reset to zero (0) if

not. Figure 4.1 presents the Verilog equation used to define these flags.

14

Java-Based Microprocessor

assign^;fl'^f_h^I=; resul-fc=[lop-l];;; "'^
assigrif;,flag__y-'*=; -';;(~instr==2'b01) ? ••-•

-'•'('(ADlpp-l] rresult[lop-1])' '&
.(B[lop-H A result[lpp-l:])) :

[:: '((instrf^'Mu)"?"
"/ 'If .(A [iop~li -^r^sull^opSl -) ••*•&

Figure 4.1: Statusflag definedinALUmodule

Table 4.1: Ports in MJava ALU module

4.Results & Discussion

Ports ••:- •' -Type"''"

input

;\vi(ith

32

•"*.'. _ 7 •:-\">(^-,wHptjpn-i'-«^Jr^jr'jy,i
A First argument of the evaluation.

B input 32 Second argument of the evaluation.

instr input 8 Select operation to perform. Also act as a
trigger to invoke operation selection.

Cout output 1 The 33rd bit, reserved for future use.
result output 32 The resultant of the ALU evaluation.

flag_z output 1 Asserted when the resultant is zero

flag v output 1 Asserted when a an overflow occur

flag n output 1 Asserted when the resultant is a negative
number.

Input instr is fetched directly from the opcode itself. This should

behave like a switch, where the module will be asserted when the input instr is

assigned with a valid opcode from the bytecodes stream. Operationsare chosen

with a case statement, putting the input instr into the case argument. A total of

27 instructions available for execution, with highly extensible data path. The

instructions chosen are fundamentals and significant to ensure reliability of the

processor. Table 4.2 shows list of instructions available in the ALU module.

15

Java-Based Microprocessor 4. Results Et Discussion

Table 4.2: Instructions executed within ALU module

liMi-iii-limi Imp. DuMTipiiiiii

nop No operation.

iadd Add two int operands. Two values popped
from stack.

isub Subtract two int operands. Two values
popped from stack.

ineg Negatean int operand. One value popped.
ishl Arithmetic shift left. Twovalues popped.
ishr Arithmetic shift right. Twovalues popped.
iand Boolean AND two int.

ior Boolean OR two int.

ixor Boolean XOR two int.

• Note: Imp. = implementation.

At the moment the implementation status shows only limited instruction

had been implemented. The ALU module is designed to use take operations

selection arguments directly from the opcodes for high extensibility. Any

instruction that put two values into argument with one resultant can be easily

implemented inside the module. Full Verilog code and simulation result for the

ALU module can be referred in Appendix Bl.

4.2 OPERANDS AND RETURN STACKS

The operands and return stacks are instantiated from the same LIFO stack

module design. However, instead of having a single stack for operands and

return addresses, they are separated to increase integrity in performing nested

subroutines and prevent mismatch fetch of operands for operation. It would

give a great complexity if the operands and return addresses were to share

same stack, resulting in an inefficient and larger-size cores.

Stack operates in two modes; (i)push operand onto top most location and

(ii) pop operand(s) from the one or two top most location(s). Any data, pushed

16

Java-Based Microprocessor 4.Results & Discussion

and poppedfrom the stack is of 32-bit width. Prior to push operation, smaller

data types are signed extended, while larger data types are broken into several

32-bit width data. Pop operation will output a 32-bit wide data. It is up to the

central processing to combine or disjoint the necessary operands. For the pop

operation, a single pop will read the top of stackand write to the outputport 1.

A doublepop will read the top two of stack and write to the output port 1 and

port 2.

The module design utilise hardware memory array for the stack, declared

as type reg. It can occupy up to eight (8) data of 32-bit width, stored in

systematic bottom-top fills. Stack pointer indicates where data input will be

stored, starting at bottom most location and increase by a location after each

successful push and decrease by a location after each successful pop. The

memory array also behave like a circular buffer. It rotates to the top most

location whenever it reaches lower than the bottom most location and rotates to

the bottom most location whenever it reached upperthat the top most location.

As in the ALU module, input instr [1:0] act as a trigger to execute the

selected operation, where it must be reset if not in use. The instruction value is

fetched during the decode phase in the data path. An output ststore provides

indication whenever data has successfully beenpushed, assisting the data path

to determine the appropriate next operation Table 4.3 shows relevant ports

declared inside the stack module.

The design approach maintain the stacks safe from data corruption due to

manual overrides in input ports. The stacks remain inside the core without

direct connections and accessed only via double doors system, where

instructions instr are not direct association of any opcodes - unlike the ALU.

Figure 4.2 shows how the memory array was declared. Full Verilog code and

simulation results can be referred in Appendix B2.

17

Java-Based Microprocessor 4. Results & Discussion

Table 4.3: Ports in MJava stack module

elk

. \y.p--'
input

..Width-.

1

'" X.• '*•'. "^^csLTipljonr."^".^:-.-A.-••<.,

Clock.

reset n input 1 Reset port

data in input 32 Data input (for push) port.
read__n input 1 Enable read (pop) port.

write n input 1 Enable write (push) port.
pop_2 input 1 Double pop indicator.

data outl output 32 Output port 1.

data out2 output 32 Output port 2.

pushed output 1 Successful push indicator.

popped output 1 Successful pop indicator.

module MSt;ackf;clk, data,, instr> stStore; out),-
parameter dep=8, sp'dep-3, lop=32;\

input elk;;
input ii:0j instr;
input "vLop^data.; •*''
output stS.lore;* ' -v ''J," •• '•"
output 'L.op' out; •-'»•., •'•=••; - ' ' ''".: -' ''T:- -

. r^g,-•-Lt>p stackmem .[dep-l:Q>l-.; .'*..,
re:g T|^ep>l:.01 sptr; ^; •;/. ;. -
reg stStd£e-;;_; \ _ _J_ .. V:- ,;• - ••?.- "- !.\
reg 'Lop diit.; ;v - -'"*- "• '-":*v — ""••" .[. •'•?•• •-•

Figure 4.2: MJava stackmodule declaration, reg type stackmem[7:0] is

the actual stackmemory array.

18

Java-Based Microprocessor 4.Results & Discussion

4.3 PROGRAM COUNTER

Program Counter (PC) is also a stack-based module, but instead, utilises

a FIFO type stack. The purpose of PC is mainly to provide a storage to streams

of instruction like a long buffer. Thus it allows bytecodes stream to be kept in

closeto the processor cores. The implementation of FIFO-type PC also add the

extensibility to perform branch and jump instructions.

The design is fairly simple and common. It has five (5) input port and

four (4) output port. Table 4.4 shows the relevant ports declared inside the PC

module. The PC has a memory array pc_mem [] that stores all the instructions,

in bytes. The memory array has 16 locations of a byte wide. The small size is

chosen as experimental value. It is easily extensible with only a line of code

change. Since PC is FIFO stack, it has two pointers - read and write. These

pointers indicate the read and write location within the pc_mem[] array.

Whenever a buffer overflow or underflow occur, a flag is asserted at the output

port (see Table 4.4). An internal counter is used to determine whether or not

overflow or underflow occur.

This module start with writing instructions, whenever write port is

asserted, from external programmer, buffering them into the memory array.

During this period, no operation is allowed in the data path and read operation

remain de-asserted. As soon as the write port get de-asserted, it indicate to the

data path that it is ready for processor operations. Succeeding operation (read

from PC) is controlled; by the data path, until interrupted again whenever

write port is reasserted. The cycle continues.

Table 4.4: Ports in MJavaprogramcountermodule

Ports •M .,...-. Description-!-" - •V**/^Vr

elk input Clock.

reset n input Reset port

data in input 32 Data input (for push) port.

read n input Enable read (pop) port.

19

Java-Based Microprocessor 4. Results & Discussion

Pfl In

write_n

1} |lf '

input

W id III • iH-MTipiimr

1 Enable write (push) port.

data_out output 32 Output port.

full output 1 PC overflow indicator.

empty output 1 PC underflow indicator.

half output 1 Indicate pointer at midway.

4.4 DATAPATH AND MODULES INTEGRATION

Datapath module is a collections of wires and ports connecting the

necessary external modules to their respective operation. Datapath is

responsible for the integration between modules instantiated. It provides the

way for the ALU, operands and return stacks, and program counter to function

as a single unit. Design technique employed in the project is simple, but as

number of instructions increase, it also increase in complexity. As in other

modules, the datapathwasdeveloped using behavioural style Verilog.

Datapath module has three modules instantiation - the ALU and operand

stack and program counter. The data path utilises many always @block,

triggering action only whencertain inputchanges values. PC fetches bytecodes

stream by bytes to the data path, whenever pc_read is asserted. It then decode

the opcode fetched and translated it for proper parameters setting in the first

always block. Following through the sequence, the opcode parameters will

indicate which modules to assert first and whether to use the stacks, local

variables, etc. Operations in the data path are of sequential flow. The basic

operation sequence is presented in Figure 4.5.

Since microprocessor circuits are meant to execute concurrently, design

in sequential flow resulted in a mixed complexity. Nevertheless, the

performance were not taxed since the complexity only lies on the codes and not

the circuitry. The simulation runs several instructions and testing the

20

Java-Based Microprocessor 4. Results & Discussion

functionality of each modules. Instructions fetched are shown in Figure 4.4,

where immediate values were pushed several times onto the stack before

calling the addition, subtraction, negate and swap operations.

Datapath has four (4) input port and one (1) output port. Its significant

input argument is byte__in[], used to transfer instructions from external

programmer and buffer them inside the PC module. The byte_in[] is of a

byte wide, which correspond to the PC byte wide input, storage and output. A

master reset port, is used to reset and reinitialized all inputs and pointers.

Table 4.5 shows the relevant ports declared inside the MJava main data path

module.

Decoding instructions required several always @statements that get

asserted whenever the input arguments changes values. As a result, many regs

and wires are declared along with the inout ports to assist the decoding

operations. Figure 4.3 shows the MJava Datapath module declaration. Full

code of the MJava Datapath module can be referred in Appendix B4.

Table 4.5: Ports in MJavaDatapath module

elk input Clock.

- -"•*.•?•.*.:

reset input 32 Manual reset.

ctrlword input Fetch the bytecodes.

result output Output to external.

21

Java-Based Microprocessor 4.Results 8t Discussion

module•.MJ-a^a (cik, reset, write>>-;by%™e_in,. out_s>treamH*

input •• cik,- .';" ; -.
•"'*"•• 'input' -•' • .., . ^ • "** - . - re'Setr;*h!; "".. \

...;. rinpu*:' ••'"%'-\ '...*.... ,---'.-"> .write;.. •••:'%*••• "%-"

-.'.-;. ^np^f:'' ,..^: -,^BY^J^|)T^i:::0j,,byte_in7 ;::^: ,l^li.

output P INT_WIDTH-i: 0]^ qujz^stream; ';;

wire elk; 7
:... .^^; . -:• ' ,' .p: >) - ' ; reset;,-.• .•••%:••

.wire'-- ".'.write;
.wire'"'' '•'[*BYTE_WIDTH-i: 0-1- byte_in;

reg riNT_WID-TH-l':0] . out^stream;

Figure 4.3: MJava datapath module declaration. Many type ofregs and

wires were declared and used.

always @{posedge cik) begin
..-•<;•*••• ,;" ..;• write .= l;v.w. -.*-,-, ••• '<S ;

.. ."-x.i •**• •• :;^.byt|._in--- '8r';hlf; ./,/> push byte l.; .-v.-
f^PEpXbyte\in\> /8''.'hAA; •••-"

' St-'. •' -"•?<'•'

fr^PElCbyr^in;-' 8;,hl0; 7/ push -'byte • ::'£2;
#,PER- byte in = 8'hBB; .' .

. -;-,;• FPERvbyte^in = 8£M4& - 4J push shbrt^. s -.-.-
.';;: ~#^PER:;.byt:e.,.in;> aVhCO; - - -•. '.'" Z...

:' ' :#sPEfnbyte_irf'= FhDD; ,•••-',• • ' '".- •%.:•

" #'c'PER\;byte_in. = 8'h60; ti ''integer add
#SPER byte_.in = 8'h78; ll integer- sh;i

#-%.PER: byte_in = 8'.h,8:0s;,.. in integer ;pr- -, -
. fr'PER byte in = 8ih3e; 7f iS.tore- 1

„.. r.PER;.byte_in. = '8*?hib> B ildad 1 • *.

"#.*'-PER: byte^iri"'= 8^h04v •71 icffifhst 2 ' --^

t^PER.-byfce-jLn! = 8,'hOO;
sPER. byte_in •= 8'hOO;

write = Q; ;

#.500.$stop; " '". ;,
endF /Z.'.^ER.;'==^l,0f, .•'* ' [7 \%

Figure4.4: Linesofcodefetchedfor testing datapathfunctionality.

22

Java-Based Microprocessor 4. Results Et Discussion

Table 4.6: Instructions implemented in MJavaprocessor.

^^^^^^^B Imp.. * • rBe>^c>-iptiaiiJ..:ilJ..;..V^rJ.'' i"3
nop No operation.

iadd Add two int operands. Two values popped
from stack.

isub Subtract two int operands. Two values
popped from stack.

ineg Negate an int operand. One valuepopped.
ishl Arithmetic shift left.Twovalues popped.
ishr Arithmetic shift right. Two values popped.
iand Boolean AND two int.

ior Boolean OR two int.

ixor Boolean XOR two int.

bipush An immediate byte is pushed onto the
operand stack.

sipush An immediate short is pushed onto the
operand stack.

swap The top two value in operand stack are
swapped and pushed back onto the stack.

istore_<n> Store value from operand stack into local
variable of corresponding <n>

iload <n> Load value from local variable of

corresponding <n> and push onto top of
operand stack.

iconst <n> Pushing constants of corresponding <ri>
onto the operand stack.

if icmp<cond> Branch if int comparison succeeds. Two-
byte jump address is embodied in the
instruction stream. Two values popped from
the stack, where value1 is top of stack and
value2 is next top of stack.

if icmpeq succeeds if and only if value1 ~ value2

if icmpne succeeds if and only if value1 ¥=value2

if icmplt succeeds if and only if value1 < value2

if icmple succeeds if and only if value! < value2

if icmpgt succeeds if and only if value1 > value2

if icmpge succeeds if and only if value1 > value2

23

Java-Based Microprocessor

<_ ontrol Word

Instruction Decoder

J
Accfv>

operands

slack7

k
"* iijpiop'iaT**

I 1imeteis

Call for ALU

aad execute

t
Bid aiSUULUOll

Call foi Sack

and execute

Figure 4.5: Sequentialflow ofMJava datapath

24

4. Results & Discussion

Java-Based Microprocessor 5.Conclusion a Recommendation

5. CONCLUSION & RECOMMENDATION

Project title Java-based Microprocessor is a huge topic by itself.

However, with proper planning and specific target, it did not appear to be as

overwhelming as some people would assume. Throughout the project several

constraints and obstacles faced that in some ways change the direction.

Nevertheless, the project manage to achieve its basic objective of

implementing the core of JVM intoa hardware circuitry.

The ALU module was developed accordingly, achieving its target as

computation module for arithmetic and logical operations. All necessary ALU

instructions had been implemented but with the lack of more complex

synthesis.

The stacks module, the operand stack and program counter is most

convincing fully synthesizable modules. Their exceptions lies on properdesign

from highly reliable sources, proven and reused many times by others. Circuit

synthesisare presented in Appendix C.

The Datapath module achieve its purpose, but lack of understanding in

data path design led to lengthy HDL code. It meets the objectives of linking

other modules and allow them to work as unit and allow further extension of

additional instructions easily without tempering with original design. Decision

to develop the data path using comprehensible behavioural style codingproves

to be advantageous.

Performance may not be the strong side of this project, yet it is a pilot

project for other colleagues to pursue in the future. The implementation of

JVM instructions are limited to basic operations involving only integers, shorts

and bytes. Although the data path design was unique, there is room for

improvement especially in term ofpipelining.

25

Java-Based Microprocessor 6.References

PREFERENCES

[1] Harlan McGhan and Mike O'Connor, picoJava: A DirectExecution

Enginefor Java Bytecode, Sun Microsystems

[2] Dr. Andreas Steininger and Dr. Peter Puschner, Java Optimized

Processor, 2005

[3] Bernd Paysan, bl6 - a ForthProcessor in FPGA, 2003

[4] Tim Lindholm and Frank Yellin, The Java Virtual Machine

Specification, 2 Edition, Addison-Wesley

[5] The Java Virtual Machine Specification, Sun Microsystems, 1998

[6] Philip Koopman Jr.j Stack Computers: The New Wave, Mountain

View Press, 1989

[7] Carpinelli, Computer Systems Organization & Architecture

[8] Mark Gordon Arnold, Verilog Digital Computer Design: Algorithms

to Hardware, Prentice Hall PTR

[9] Weng Fook Lee, Verilog Coding for Logic Synthesis, Wiley-

Interscience

26

Java-Based Microprocessor 7.Appendices

7. APPENDICES

Appendix Al: MJava ALU Verilog Code

Appendix A2: MJava Stack Verilog Code

Appendix A3: MJava Program Counter Verilog Code

Appendix A4: MJava Datapath Verilog Code

Appendix Bl: MJava ALU Simulation Results

Appendix B2: MJava Stack Simulation Results

Appendix B3: MJava Program Counter Simulation Results

Appendix B4: MJava Datapath Simulation Results

Appendix C: Stacks Synthesized Circuits

Appendix Dl: JVM Instructions Hexadecimal Values

Appendix D2: JVM Instructions and Operands Description

27

Java-Based Microprocessor 7.Appendices

APPENDIX Al: MJAVA ALU VERILOG CODE

28

D:\Programs\Xilinx\ISEworkingdir\MJava\MALU.v

"define Lop [lop-1:0]
"define Loc [loc-l:0]
"timescale Ins / Ins

module MALU(A, B, instr, Cout, result, flag_z, flag_v, flag_n);
parameter lop=32, loc=8,-

input "Lop A, B;
input "Loc instr;
output "Lop result;
output Cout, flag_z, flag_v, flag_n;

(need touch up)

reg "Lop result;
reg Cout;

wire flag_z, flag_n, flag_v;

always @(A or B or instr)
begin

case{instr)
8'h84 Cout, result} = (A + B); // increment (
8'h60 Cout, result} = (A + B) ; // addition
8'h64 Cout, result} = (A - B); // subtraction
8'h74 Cout, result} = (-A + l'bl); // negation
8'h78 result = (A << B); // shift left
8'h7a result « (A » B) ; // shift right
8'h7e result = {A & B); // boolean AND
8'h80 result = (A | B); // boolean OR
8'h82 {result = (A A B}; // boolean XOR

endcase

end

assign flag_z = result? 0:1;
assign flag_n = result [lop-1] ,-
assign flag_v = (instr==2'bOl)?

endmodule // alu

?age: 1

((A[lop-l] A result[lop-1]) & (B[lop-l] A
({instr==2'bl0)?
t(A[lop-l] A result[lop-1]) & (B[lop-l]

1'bO) ,-

result [lop-1]}) :

~A result[lop-1]))

Java-Based Microprocessor 7.Appendices

APPENDIX A2: MJAVA STACKS VERILOG CODE

29

D:\Programs\Xi1inx\ISEworkingdir\MJava\MStack.v

""timescale Ins / Ins

// DEFINES
"define DEL 1

"define ST_DEPTH 8
"define ST_BITS 3

"define INT WIDTH 32

// Clock-to-output delay. Zero
// time delays can be confusing
// and sometimes cause problems.
// Depth of stack (number of bytes)
// Number of bits required to
// represent the FIFO size
// Width of stack data

module MStack(
clock,
reset n,
data_in.
read_n,
write n,
pop 2,
data_outl,
data_out2,
pushed,
popped);

// INPUTS
input clock;
input
input ["INT_WIDTH-1:0]

reset_n;
data_in;

input read n, write n;
input pop_2;

// OUTPUTS
DUtput ["INT_WIDTH-1::0] data_outl, data _out2
output
output

pushed ,-
popped;

// SIGNALS DECLARATIONS
tfire clock;
tfire reset n;

tfire riNT_WIDTH-l;:0] data_in;
tfire read__n, write n;
tfire

reg ["INT_WIDTH-1::0]

pop 2 ;
data_outl, data out2

reg

reg

pushed;
popped;

reg ["INT WIDTH-1:0]

reg ["ST BITS-1:0]

st_mem["ST_DEPTH-l:0];
// How many locations in the stack
// are occupied?
stjpointer;

'/ ASSIGN STATEMENTS

'/ MAIN CODE

'/ Look at the edges of reset_n
ilways @(reset_n) begin

if (reset_n == l'bl) begin
// Reset the stack pointer
#"DEL;
assign st_pointer = "ST_DEPTH - l'bl;
assign popped = 0;
assign pushed = 0;

end

else begin
#"DEL;

deassign st_pointer;
deassign popped;
deassign pushed;

end

md

'/ Look at the rising edge of the clock
ilways @(posedge clock) begin

// Popping data from stack
if (readjn == l'bl) begin

'age: 1

D:\Programs\Xilinx\ISEworkingdir\MJava\MStack.v

// Output the data
data_outl = #"DEL stjnem[st_pointer];
//st_mem[st__pointer] = 32 'hOOOOOOQO;
// Decrement the stack pointer
// If the pointer has gone beyond the bottom of stack,
// bring it to the top of stack.
if (st_pointer == 0)

stjpointer = #"DEL "ST_BITS'bill;
else

st_pointer = #"DEL st_pointer - 1;

if {pop_2 ass l'bl) begin
data_out2 = #"DEL st_mem[st_pointer];
//st_mem[st_pointer] = 32'hOOOOOOOO;
if (st_pointer == 0)

st_pointer = #"DEL "ST_BITS'blll;
else

stjointer = #"DEL st_pointer - 1;
end

popped = -popped,-
end

// Pushing data onto stack
if (write_n == l'bl) begin

// Increment the stack pointer
// If the pointer has gone beyond the top of stack,
// bring it to the bottom of stack.
if{st_pointer == "STJDEPTH-1)

st_pointer = #"DEL "ST_BITS'bO;
else

st_pointer =s #"DEL st_pointer + 1;
// Store the data
st_mem[st_pointer] = #"DEL data_in;
pushed = -pushed;

end

2nd

mdmodule

'age: 2

Java-Based Microprocessor 7.Appendices

APPENDIX A3: MJAVA PROGRAM COUNTER VERILOG CODE

30

3:\Programs\Xilinx\ISEworkingdir\MJava\MPC.v

"timescale Ins / Ins

'/ DEFINES
"define DEL 1

'define

'define

'define

'define

PC_DEPTH 16
PC_HALF 8

PC_BITS 4

BYTE WIDTH

// Clock-to-output delay. Zero
// time delays can be confusing
// and sometimes cause problems.

// Depth of PC (number of bytes)
// Half depth of PC

// (this avoids rounding errors)
// Number of bits required to

// represent the PC size
// Width of PC data

lodule MPC(
clock,

reset_n,
data_in,
read_n,
write_n,
data_out,
full,
empty,

half);

/ INPUTS
nput

nput

nput ["BYTE_WIDTH~1:0]
nput

nput

/ OUTPUTS
>Utput ["EYTE_WIDTH-1:0]
lutput
iutput

aitput

/ SIGNALS DECLARATIONS
dre

'ire

Ire

'ire

ire

eg

ire

ire

ire

["BYTE WIDTH-1:0]

["BYTE WIDTH-1:0]

clock;
reset_n;
data_in;
read_n;
write n;

data_out;
full ;
empty;
half;

clock;

reset_n;
data_in;
read_n;
write_n;
data__out j
full;
empty;
half;

eg ["BYTE WIDTH-1:0] pc_mem[0:"PC_DEPTH-l];
// How many locations in the PC
// are occupied?

eg ["PC BITS-1:0] counter;

eg ["PC_BITS-1:0] rd_pointer;

eg ["PC_BITS-1:0] wr_pointer;

/ ASSIGN STATEMENTS
ssign #"DEL full = (counter == "PC_DEPTH) ? l'bl :
ssign #"DEL empty = (counter == 0) ? l'bl ; 1'bO;
ssign #"DEL half = (counter >= "PC_HALF) ? l'bl : 1

/ Look at the edges of reset_n
lways @(reset_n) begin
if (reset_n — l'bl) begin

// Reset the PC pointer
#"DEL;

assign rdjpointer = "PC__BITS'bO;
assign wr_pointer = "PC_BITS'bO;
assign counter = "PC_BITS'bO;

end

else begin
#"DEL;

deassign rd_pointer;
deassign wr_pointer;

age: 1

1'bO,

'b0;

D:\Programs\Xilinx\ISEworkingdir\MJava\MPC.v

deassign counter;
end

snd

// Look at the rising edge of the clock
always @(posedge clock) begin

if (read_n == l'bl) begin
// Check for PC underflow
if (counter == 0) begin

$display("\nERROR at time %0t:", $time);
$display("PC Underflow\n"};
$stop; // Use $stop for debugging

end

// If we are doing a simultaneous read and write,
// there is no change to the counter
if (write_n == 1'bO) begin

// Decrement the PC counter
counter <= #"DEL counter - 1;

end

// Output the data
data_out <= #"DEL pc_mem[rd_pointer] ;

// Increment the read pointer
// Check if the read pointer has gone beyond the
// depth of the PC. If so, set it back to the
// beginning of the PC
if (rd_pointer == "PC_DEPTH-1)

rdjsointer <= #"DEL "PC_BITS'bO;
else

rd__pointer <= #"DEL rd_pointer + 1;
end

if (write_n == l'bl) begin
// Check for PC overflow
if (counter >= "PC_DEPTH) begin

$display("\nERROR at time %0t:", $time);
$display("PC Overflow\n");

// Use $stop for debugging
$stop;

end

// If we are doing a simultaneous read and write,
// there is no change to the counter
if (read_n == 1'bO) begin

// Increment the PC counter
counter <= #"DEL counter + 1;

end

// Store the data
pc_mem[wr_jpointer] <= #"DEL data_in,-

// Increment the write pointer
// Check if the write pointer has gone beyond the
// depth of the PC. If so, set it back to the
// beginning of the PC
if (wr_pointer == "PC_DEPTH-1)

wr_pointer <= #"DEL "PC_BITS'bO;
else

wr_pointer <= #"DEL wr__pointer + 1;
end

;nd

;ndmodule // PC

'age: 2

Java-Based Microprocessor 7.Appendices

APPENDIX A4: MJAVA DATAPATH VERILOG CODE

31

D:\Programs\Xilinx\ISEworkingdir\MJava\MJava.v

"timescale Ins / Ins

//DEFINES
"define BYTE__WIDTH 8
"define. INT_WIDTH 32
"define PER 10

"define DEL 1

module MJava(elk, reset, write, byte in, out stream)

// INPUTS
input Clk;
input reset;

input write;
input ["BYTE_WIDTH-1:0] byte in;

// OUTPUTS
output E"INT_WIDTH-1:0] out stream;

// SIGNALS DECLARATIONS

wire Clk;
wire reset;

wire write,-
wire ["BYTE_WIDTH-1:0] byte_in,-

reg ["INT_WIDTH-1:0] out stream;

wire ["BYTE_WIDTH-1:0] byte out;
wire full;
wire empty;
wire half;
wire ["INT WIDTH-1:0] st_outl;
wire ["INT WIDTH-1:0] St_OUt2;
wire ["INT_WIDTH-1:0] aluResult;
wire st_pushed;

reg pc read;
reg PINT_WIDTH-1:0] buffA;
reg ["INT WIDTH-1:0] buffE;
reg ["BYTE WIDTH-1:0] bytel ,-
reg ["BYTE WIDTH-1:0] byte2;
reg ["BYTE_WIDTH-1:0] opcode;
reg ["BYTE WIDTH-1:0] aluOper;
reg [1:0] counter_pc;
reg [1:0] counter op;
reg cbuhter_5f;
reg [1:0] op count;
reg [1:0] clk_count;
reg decode_n;
reg opcode n;
reg operand.n;
reg execute n;

reg execute elk;
reg st read;

reg st write;
reg pop 2;
reg ["INT_WIDTH-1:0] local_var [0:4];

'/ Instantiating the necessary modules for the hardware

'/ configuration and their ports designations.

MPC pcounter(
.clock(elk),
.reset_ji(reset) ,
,data_in(byte_in),
.read__n(pc_read),
.write_n(write),
.data_out(byte_out)
.full(full),
.empty(empty),
.half(half)

MStack opstacki

Jage: 1

D:\Programs\Xilinx\lSEworkingdir\MJava\MJava.v

.clock(clk),
,reset_n(reset),
.data_in(buffA),
.read_n(st_read},
.write_n(st_write),
.pop_2(pop_2),
.data_outl(st_outl),
.data_out2(st_out2),
.pushed(st_pushed),
•popped(st_popped)
) ;

MALU arithf
.A(buffA),
.B(buffB),
.instr(aluOper),
.Cout(Cout),
.result(aluResult),
.flag_z(flag_z),
.flag_v(flag_v),
.flag_n(flag_n)
);

11 MAIN CODE
always ©(reset) begin

pc_read <= 0;
counter_pc <= 0;
counter_op <= 0;
clk_count <= 2;
decode_n <= 0;
execute_n <= 0;
execute_clk <= 0;
st_read <= 0;
st_write <= 0;
pop_2 <= 0;

end

always @(posedge elk) begin
// Filling up PC or start decode instructions
if(write)

decode_n <= 0;
else begin

clk_count <= clk_count + 1;
if(clk_count == 0)

opcode <= 8'hOO;
if(clk_count == 3) begin

counter_pc <= 0;
counter_op <= 0;
op_count <= 0;
operand_n <= 0;
decode_n <= 1;
opcode_n <= 1;
pc_read <= ~pc_read; // enable read from pc

end

end

// Wussup
end // end of always®

always @(execute_n or execute_clk) begin
if(execute_n) begin

case(opcode)
8'hlO: begin

buffA <= bytel;
st_write <= ~st_write,- // enable write to stack

end

8'hll: begin
buffA <= {bytel, byte2};
st_write <= -st_write;

end

endcase

end

end

always ©(opcode) begin
// Decode the instructions

'age: 2

D:\Programs\Xilinx\ISEworkingdir\MJava\MJava.v

case(opcode)
8'hlO: begin // Case: bipush

op_count = I,-
counter_op = 0;
pc_read = ~pc_read; // enable read from pc

end

8'hll: begin
op_count = 2;
counter_op = 0;
pc_read = -pc_read; // enable read from pc

end

8'h60: begin // Case: iadd
pop_2 <= ~pop_2; // enable pop2
st_read <= ~st_read; // enable read from stack

end

8'h64: begin // Case: isub
pop_2 <= ~pop_2; // enable pop2
st_read <= ~st_read; // enable read from stack

end

8'h74: begin // Case: ineg
st_read <= ~st_read;

end

8'h78: begin // Case: ishl
pop_2 <= ~pop__2; // enable pop2
st_read <= ~st_read; // enable read from stack

end

8'h7a: begin // Case: ishr
pop_2 <= ~pop_2; // enable pop2
st_read <= ~st_read; // enable read from stack

end

8'h7e: begin // Case: iand
pop_2 <= ~pop_2; // enable pop2
st__read <= ~st_read; // enable read from stack

end

8'h80: begin // Case: ior
pop_2 <= ~pop_2; // enable pop2
st_read <= ~st_read; // enable read from stack

end

8'h82: begin // Case: ixor
pop_2 <= ~pop_2; // enable pop2
st_read <= ~st_read; // enable read from stack

end

8'h5f: begin // Case: swap
pop_2 <= ~pop_2; // enable pop2
st_read <= ~st_read; // enable read from stack

end

8'h3b: begin // Case: istore_0
st_read <= ~st_read; // enable read from stack

end

8'h3c: begin // Case: istore_l
st_read <= -st_read; // enable read from stack

end

8'h3d: begin // Case: istore_2
st_read <= ~st_read; // enable read from stack

end

8'h3e: begin // Case: istore__3
st_read <= ~st_read; // enable read from stack

end

8'h02: begin // Case: iconst_ml
buffA <= "INT_WIDTH'hFFFFFFFF;
st_write <= ~st_write,-

end

8'h03: begin // Case: iconst_0
buffA <= "INT_WIDTH'h0O000OOO;
st_write <= ~st_write;

end

8'h04: begin // Case: iconst_l
buffA <= "INT_WIDTH'h00000001;
st_write <= -st_write;

end

8'h05: begin // Case: iconst_2
buffA <= "INT_WIDTH'h00000002;
st^write <= ~st_write;

end

8'h06: begin // Case: iconst_3
buffA <= "INT WIDTH'h00000003;

'age: 3

D:\Programs\Xilinx\ISEworkingdir\MJava\MJava.v

st_write <= ~st__write;
end

8'h07: begin // Case: iconst_4
buffA <= "INT_WIDTH'h00000004;
st_write <= ~st_write;

end

8'h08: begin // Case: iconst_5
buffA <= vINT_WIDTH'h00000005;
st_write <= ~st_write,-

end

8'hla: begin // Case: iload_0
buffA <= local_var[0];
st_write <= ~st_write;

end

8'hlb: begin // Case: iload__l
buffA <= local_var[1];
st_write <= ~st_write;

end

8'hlc: begin // Case: iload_2
buffA <= local_yar[2];
st_write <= ~st_write;

end

8'hid: begin // Case: iload_3
buffA <= local_var[3];
st_write <= ~st_write,-

end

endcase

end

always @(byte_out) begin
counter_op = counter_op + 1;
if(opcode_n) begin

opcode = byte_out;
opcode_n = ~opcode_n,- // opcode is assigned
pc_read = ~pc_read; // disable read from pc

end

if(counter_op == 1)
bytel = byte_out;

if(counter_op == 2)
byte2 * byte_out;

if(counter_op == op_count) begin
pc_read = -pc_read; // disable read from pc

// for operands retrieval
execute_n = -execute_n; // enable for EX stage

end

end

always @{st_pushed) begin
if(decode_n) st_write = ~st_write,-
case(opcode)

8'hlO: begin
execute_clk <= ~execute_clk;
execute_n <= ~execute_n; // end of EX stage

end

8'hll: begin
execute_clk <= ~execute_clk;
execute_n <= -execute_n; // end of EX stage

end

8'h5f: begin
if(~counter_5f) begin

buffA <= st_out2;
st_write = ~st_write; // enable write to stack
counter_5f <= counter_5f + 1;

end

end

endcase

end

always @(st__popped) begin
case(opcode)

8'h60: begin // iadd
pop_2 <= ~pop_2; // disable pop2
st_read <= ~st_read; // disable read from stack
buffA <= st_outl;
buffB <= st_out2;
aluOper <= opcode;

'age: 4

D:\Programs\Xilinx\ISEworkingdir\MJava\MJava.v

'age: 5

end

8'h64: begin
pop_2 <= ~pop_2;
st_read <= ~st_read;
buffA <= st_outl;
buffB <= st_out2;
aluOper <= opcode,-

end

8'h74: begin
st_read <= ~st_read;
buffA <= st_outl;
aluOper <= opcode;

end

8'h78: begin
pop_2 <= ~pop_2;
st_read <= ~st_read;
buffA <= St_OUtl;
buffB <= { st_out2[4],

st_out2[3],
st_out2[2] ,
st_out2[1],
st_out2[0]}(

aluOper <= opcode;
end

8'h7a: begin
pop__2 <= ~pop_2;
st_read <= ~st_read;
buffA <= st_outl;
buffB <= { st_out2[4],

st_out2[3],
st_out2[2],
st_out2[1],
st_out2[0]};

aluOper <= opcode;
end

8'h7e: begin
pop_2 <= ~pop_2;
st_read <= ~st_read;
buffA <= st_outl;
buffB <= st_out2;
aluOper <= opcode;

end

8'h80: begin
pop_2 <= ~pop_2;
st_read <= ~st_read;
buffA <= st_outl;
buffB <= st_out2;
aluOper <= opcode;

end

8'h82: begin
pop_2 <= ~pop_2;
st_read <= ~st_read;
buffA <= st_outl;
buffB <= st_out2;
aluOper <= opcode;

end

8'h5f: begin
buffA <= st_outl;
st_read <= ~st_read;
st_write <= ~st__write;
counter_5f <= 0;

end

8'h3b: begin
st__read <= ~st_read;
local_var[0] <= st_outl;

end

8'h3c: begin
st_read <= ~st_read;
local_var[l] <= st_outl;

end

8'h3d: begin
st_read <= ~st_read;
local_var[2] <= st_outl;

end

8'h3e: begin
st read <= ~st read;

// isub
// disable pop2
// disable read from stack

// ineg
// disable read from stack

// ishl
// disable pop2
// disable read from stack

// select 5 LSB

// ishr
// disable pop2
// disable read from stack

// select 5 LSB

// iand
// disable pop2
// disable read from stack

// ior
// disable pop2
// disable read from stack

// ixor
// disable pop2
// disable read from stack

// swap

// disable read from stack
// enable write to stack
// reset swap counter

// istore_0
// disable read from stack

// istore_JL
// disable read from stack

// istore_2
// disable read from stack

// istore_3
// disable read from stack

D:\Programs\Xilinx\lSEworkingdir\MJava\MJava.v

local_var[3] <= st_outl;
end

endcase

end

always O(aluResult) begin
buffA <= aluResult;
aluOper <= 8'hOO;
st_write <= ~st_write; // enable write to stack

end

andmodule

age: 6

Java-Based Microprocessor 7.Appendices

APPENDIX B: MJAVA SIMULATION RESULTS

32

/M
Ja

v
a_

ts
t/

u
u

t/
p

c_
re

ad

/M
Ja

va
_t

st
/u

ut
/b

yt
e_

pu
t

-(
10

tfa
a

/M
Ja

va
_t

st
/u

ut
/o

pc
od

e
-Q

(T
o

/M
Ja

v
a_

ts
t/

u
u

t/
b

u
ff

A
—

-

/M
J
a
v

a
ts

t/
u

u
t/

b
u

ff
B

O
O

O
O

O
O

aa

/M
Ja

va
_t

st
/u

ut
/b

yt
e1

-{
10

ifa
a"

/M
Ja

v
a_

ts
t/

u
u

t/
b

y
te

2
—

/M
Ja

v
a_

ts
t/

u
u

t/
st

_
o

u
t1

—

/M
Ja

v
aJ

st
/u

u
t/

st
_

o
u

t2
—

/M
Ja

v
a_

ts
t/

u
u

t/
ar

it
h

/A
—

/M
Ja

v
a_

ts
t/

u
u

t/
ar

it
h

/B
—

/M
Ja

v
a_

ts
t/

u
u

tt
el

u
R

es
u

lt
-—

/M
Ja

v
a_

ts
t/

u
u

t/
o

p
st

ac
k

/s
t_

m
em

~~

[7
]
—

[6
]
—

[5
]
—

[4
]
—

[3
]
—

[2
]
—

H
l
-

IO
]
—

O
O

O
O

O
O

aa

{O
O

O
O

O
O

aa
X

1
0

b
b

1
0

m
o

o
o

o
o

b
b

m
z
m O

O
O

O
O

O
b

b

-{
O

O
O

O
O

O
bb

/M
Ja

v
aJ

st
/u

u
t/

lo
ca

l_
v

ar
{x

xx
xx

xx
x

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

}

I
I

I
I

I
I

I
I

i
i

l
I

l
l

l
I

I
l

l
l

l
I

i
i

i
i

l
l

[
i

2
0

0
n

s
2

5
0

n
s

3
0

0
n

s

m
r
^

r
n

td
d

1
1

1
1

1
1

O
O

O
O

cc
d

d

1
1

JC
C

1
1

id
d

1
OO

OO
cc

dd O
O

O
O

c
c
d

d

En
tit

y:
M

Ja
va

_t
st

A
rc

hi
te

ct
ur

e:
D

at
e:

W
ed

M
ay

10
11

:3
9:

03
M

al
ay

P
en

in
su

la
S

ta
nd

ar
d

T
im

e
20

06
R

ow
:1

P
ag

e:
1

e
e

6
0

7
8

8
0

I
K

7
8

]
&

O
O

O
O

e
e
ff

1
0

0
0

1
b

b
d

c
E

eO
O

O
O

O
O

O

.1
O

O
O

O
c
c
d

d
1

0
0

0
0

0
0

1
b

J
K

7
8

8
0

O
O

O
O

e
e
ff

X O
O

O
O

c
c
d

d

\0
00

1b
bd

c

lO
OO

OO
Ob

b

lO
O

O
O

ee
ff

0
0

0
1

b
b

d
c

leO
OO

OO
OO

O
O

O
O

c
c
d

d

I 0
0

0
1

b
b

d
c

0
0

0
0

0
0

1
b

X eO
O

O
O

O
O

O

O
O

O
O

ee
ff

K
00

00
00

00 0
0

0
1

b
b

d
c

0
0

0
0

0
0

0
0

(e
O

O
O

O
O

O
O

I
I

I
I

l
l

l
l

I
l

l
i

l
l

l
l

l
I

>
i

i
i

3
5

0
n

s
4

0
0

n
s

le
O

O
O

O
O

aa

O
O

O
O

O
O

aa

Je
O

O
O

O
O

O
O

|O
O

O
O

O
O

aa

eO
O

O
O

O
aa

X O
O

O
O

O
O

aa

X (e
O

O
O

O
O

aa

0
0

0
0

0
0

0
0

(e
O

O
O

O
O

aa

/M
Ja

v
a_

_
ts

t/
u

u
t/

o
p

e
ra

n
d

_
n

/M
Ja

va
_t

st
/u

ut
/p

c_
re

ad

/M
Ja

va
_t

st
/u

ut
/b

yt
e_

ou
t

{1
0

Xa
a

/M
Ja

v
a_

ts
t/

u
u

t/
o

p
co

d
e

X*
lO

/M
Ja

v
aJ

st
/u

u
t/

b
u

ff
A

/M
J
a
v

a
ts

t/
u

u
t/

b
u

ff
B

—

/M
Ja

va
Js

t/
uu

t/
by

te
1

{1
0

/M
Ja

v
a_

ts
t/

u
u

t/
b

y
te

2
—

~

/M
Ja

v
a_

ts
t/

u
u

t/
st

_
o

u
t1

/M
Ja

v
a_

ts
t/

u
u

t/
st

_
o

u
t2

/M
Ja

va
_t

st
/u

ut
/s

t_
w

ri
te

_
_

_

/M
Ja

v
a_

ts
t/

u
u

t/
o

p
st

ac
k

/s
t_

m
em

—

[7
]

[6
]

[5
]

[4
]

[3
]

[2
]

[1
]

—

[0
]

—

{O
O

O
O

O
O

aa -{
00

00
00

s

1
0

Ib
b

J
S

K
O

O
O

O
O

O
b

b

1
0

b
b

{O
O

O
O

O
O

bb

/M
Ja

va
_t

st
/u

ut
/l

oc
al

_v
ar

{x
xx

xx
xx

x
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
}

l
i

M
.

1
1

1
1

1
5

0
n

s
2

0
0

n
s

E
nt

it
y:

M
Ja

va
Js

t
A

rc
hi

te
ct

ur
e:

D
at

e:
W

ed
M

ay
10

11
:3

3:
46

M
al

ay
P

en
in

su
la

S
ta

nd
ar

d
T

im
e

20
06

R
ow

:1
P

ag
e:

1

c
c

d
d

w
.

5
f

(
O
O
O
O
c
c
d
d

5
f

d
d

o
o

o
o

o
o

b
b

o
o

o
o

o
o

as
)

1O
OO
OO
Ob
b

O
O
O
O
c
c
d
d

X O
O
O
O
O
O
b
b

u

_J
60
_

im
;

6
0

(
0
0
0
0
0
1
7
6

{O
OO
OO
Ob
b

IO
OO
OO
Ob
b

OO
OO

cc
dd

HO
OO

OO
OO

O
flO

OO
OO

Ob
b

^O
QQ

QO
OQ

Q
^0

00
00

17
6

i
I

oo
oo

oo
oo

JO
O

O
O

cc
dd

i
I

I
I

I
2

5
0

n
s

3
0

0
n

s

f
iv

io
a
v

c
a
_

ia
u

u
u

u
p

o
u

u
;
u

e
i

11
c
a
c
i
j

1
i

/M
Ja

va
Js

t/u
ut

/p
co

un
te

r/w
rit

e_
n

|_
f

/M
Ja

v
aJ

st
/u

u
t/

p
co

u
n

te
r/

d
at

a_
o

u
t

/M
Ja

v
aJ

st
/u

u
t/

p
co

u
n

te
r/

fu
ll

i

/M
Ja

va
Js

t/u
ut

/p
co

un
te

r/e
m

pt
y

•*"
[_

/M
Ja

v
aJ

st
/u

u
t/

p
co

u
n

te
r/

h
al

f
-|

/M
Ja

va
Js

t/u
ut

/p
co

un
ter

/p
c_

m
em

Z
D

C
jJ

T
D

Jl
T

X
T

T
n

T
T

T
U

lO
aa

10
bb

11
cc

dd
11

ee
ff

60
78

80
5f

00
xx

}
[0

]
H

1
0

[1
]

—
1

5
?-

[2
]

—

[3
]

(b
b

[4
]

—
1

[5
]

—

[6
]

[7
]

~

[8
]

[9
]

~
~

[1
0]

—

[1
1]

—

[1
2]

—
—

[1
3]

—
—

[1
4]

[1
5]

1
0

1
1

d
d

11

6
0

7
8

8
0

5
f

{
0

0

/M
Ja

va
Js

t/u
ut

/p
co

un
ter

/co
un

ter
{°

]I
]2

JH
H

5j
£l

jW
¥J

l^
^

K
eld

/M
Ja

va
Js

t/
uu

t/
pc

ou
nt

er
/r

d_
po

in
te

r
{0

_
1

2

/M
Ja

va
_ts

t/u
ut/

pc
ou

nte
r/w

r_
po

int
er

H
D

[2
jl

j5
j|

j^
jZ

H
^

^

c
b

a
9

8
7

6
5

4

3
4

w
s
r
u

m
j
^

z
E

j

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
l

I
I
II

I
I
I
I
I

II
!
I
M

I
!
I

I
I
I
I
I
t
I
I
I

I
I
I
!
I
I
|
|
|

I
I
I
I
I
I
!
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
|

0
10
0
n
s

2
0
0
n
s

3
0
0
n
s

4
0
0
n
s

5
0
0
n
s

En
tit

y:
M

Ja
va

Js
t

A
rc

hi
te

ct
ur

e:
D

at
e:

W
ed

M
ay

10
12

:4
3:

20
M

al
ay

Pe
ni

ns
ul

a
St

an
da

rd
T

im
e

20
06

R
ow

:
1

Pa
ge

:
1

l
l

l
i

i

/M
ja

v
a
js

t/
re

s
e
t

/M
J
a
v

a
ts

t/
u

u
t/

d
e
c
o

d
e

n

/M
Ja

va
Js

t/w
rit

e
J

/M
Ja

va
Js

t/b
yt

ej
n

IH
II

X
M

Ji
iL

©
^

^

/M
Ja

v
aJ

st
/u

u
t/

o
p

er
an

d
_

n
-

/M
Ja

v
aJ

st
/u

u
t/

p
c_

re
ad

|_

/M
Ja

v
aJ

st
/u

u
t/

b
y

te
_

o
u

t
-

-(
M

il
!

1
0

b
b

n

J_
L ^T

F
n

o
:

"
L

T
L

J
^

j^
J

^
B

^
J

K
J~

~L

J~
L

J~
L

M
m

H
o

"

J~
~L

r
i
.

J~
~L

7
8

8
0

w
0

0

r
r

7
8

w
5

f
0

0

/M
Ja

v
aJ

st
/u

u
t/

ex
ec

u
te

_
n

|_

/M
Ja

v
aJ

st
/u

u
t/

o
p

co
d

e_
n

-

/M
Ja

v
aJ

st
/u

u
t/

o
p

co
d

e
-

/M
Ja

v
aJ

st
/u

u
t/

b
u

ff
A

-

/M
Ja

v
aJ

st
/u

u
t/

b
u

ff
B

-

/M
Ja

v
aJ

st
/u

u
t/

b
y

te
1

-

/M
Ja

v
aJ

st
/u

u
t/

b
y

te
2

-

/M
Ja

v
aJ

st
/u

u
t/

st
_

o
u

t1
-

/M
Ja

v
a
Js

t/
u

u
t/

st
_

o
u

t2
-

/M
Ja

v
aJ

st
fu

u
t/

ar
it

h
/A

-

/M
Ja

v
aJ

st
/u

u
t/

ar
it

h
/B

-

/M
Ja

v
aJ

st
/u

u
t/

al
u

R
es

u
lt

-

/M
Ja

v
aJ

st
/u

u
t/

ex
ec

u
te

_
n

[_

/M
J
a
v

a
ts

t/
u

u
t/

s
t

w
ri

te
>

{O
O

O
O

O
O

aa
(O

O
O

O
O

O
bb

(O
O

O
O

cc
dd

lO
O

O
O

ee
ff

00
01

bb
dc

"^e
OO

OO
OO

O
"le

O
O

O
ob

aa

OO
OO

cc
dd

)0
00

00
01

b
j(0

00
00

0a
a"

{1
0

a
a

1
0

b
b

m
^

~
-~

w
&

6
0

7
8

8
0

5
f

0
0

{
d

d
IK

lO
OO

Oe
eff

lo
oo

ib
bd

c
leO

O
O

O
O

O
O

Xe
OO

OO
Oa

a

-(O
OO

Oc
cd

d
XO

od
oO

Ob
b

(O
OO

OO
Oa

a

-{O
OO

OO
Oa

a"
lO

OO
OO

Ob
o

jjO
OO

Oc
cdd

XO
OO

Oe
eff

^O
OO

Ibb
dc

Xe
OO

OO
OO

O
)[e

00
00

0a
a

/M
Ja

v
aJ

st
/U

U
t/

o
p

st
ac

k
/s

t_
m

em
{x

xx
xx

xx
x

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

}

[7
]

—

[6
]

—

[5
]

[4
]

[3
]

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I
I

I
I

I
I

0
1

0
0

n
s

2
0

0
n

s

En
tit

y:
M

Ja
v

aJ
st

A
rc

hi
te

ct
ur

e:
D

at
e:

W
ed

M
ay

10
12

:4
0:

59
M

al
ay

P
en

in
su

la
S

ta
nd

ar
d

T
im

e
20

06
R

ow
:1

Pa
ge

:
1

J~
L

I
I

I
I

I
I

I
I

I

OO
OO
cc
dd

XO
OO
OO
OI
b

^O
OO
OO
Oa
a

0
0
0
1
b
b
d
c

(
e
O
O
O
O
O
O
O

(
e
O
O
O
O
O
a
a

n
n n

n
j
i

{
e
O
O
O
O
O
a
a

O
O
O
O
e
e
f
f

I
I
I
i
i
i
I

I
I

l
l

l
l

l
l

l
l

l

3
0
0
n
s

I
I

I
!

I
I
I

I
I

l
l
l
l

f
l
l
l

l

4
0
0
n
s

l
l

l
l

l
l

l
l

l
i
i
i
i
i

i
i

i
i

5
0
0
n
s

i
i

i
i

i
i

[0
]

O
O

O
O

O
O

aa
le

O
O

O
O

O
aa

/M
Ja

v
aJ

st
/u

u
t/

!o
ca

l_
v

ar
{x

xx
xx

xx
x

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

l
i
l
t

M
i
l
l

I
I

I
!

I
I

I
I

!
I

I
I
!

I
|

|
|

|
|

|
|

[
i
n

|
|

I
I
I
I

I
I

I
I

I
II

I
I

I
I

[
II

I
I

I
I

I
I

I
I

0
10

0
ns

2
0

0
ns

3
0

0
ns

40
0

ns
5

0
0

ns

E
nt

ity
:M

Ja
v

aJ
st

A
rc

hi
te

ct
ur

e:
D

at
e:

W
ed

M
ay

10
12

:4
0:

59
M

al
ay

P
en

in
su

la
S

ta
nd

ar
d

T
im

e
20

06
R

ow
:1

P
ag

e:
2

Java-Based Microprocessor 7.Appendices

APPENDIX C: MJAVA STACKS SYNTHESIZED CIRCUIT

33

re
a
d

n
>

-

w
ri

te
r
iy

re
se

i
n

^
-

I
cl

oc
k^

-

d
at

a
in

{7
:0

)>
-

> > > >

> > > >

re
ad

_
n

_n
0O

O
8

w
ri

te
n

C
ik

C
lk

E
n

U
p

D
o

w
n

D
<

3
:0

>

A
c
lr

C
ik

C
lk

E
n

S
lo

a
d

D
<

3
:0

>

A
c
lr

C
ik

C
lk

E
n

S
lo

a
d

Q
<

3
:0

>

Q
<

3
:0

>

> > > t>

>
= u
n

si
g

n
ed

R
A

M

1
6

x
8

1
6

x
8

W
E

A

E
N

A

R
S

T
A

>C
LK

A

A
D

D
R

A
<

3
:0

?

D
1

A
<

7
:0

>

W
E

B

E
N

B

R
S

T
B

>C
LK

B

A
D

D
R

B
<

3
:0

>

D
IB

<
L

:R
>

c
a
u

n
te

r<
0

>
_

c
o

u
n

te
r<

1
>

c
o

u
n

le
r<

2
>

c
o

u
n

te
r<

3
>

D
O

A
<

L
:R

>

em
p

ty

-T
fu

ii>

d
at

a
ou

t(
7:

0)
>

em
pt

y>

Java-Based Microprocessor 7.Appendices

APPENDIX Dl: JVM INSTRUCTIONS HEXADECIMAL VALUES

34

CHAPTER 10
Opcode Mnemonics

by Opcode

0 (0x00) nop
1 (0x01) aconst_nuH
2 (0x02) iconst_ml
3 (0x03) iconstj)
4 (0x04) iconstj
5 (0x05) iconst_2
6 (0x06) iconstj
I (0x07) konst_4
8 (0x08) iconst_5
9 (0x09) konst_0
10 (0x0a) Iconstj
II (0x0b) fconst_0
12 (0x0c) fconstj
13 (OxOd) fconst_2
14 (OxOe) dconst_0
15 (OxOf) dconst_l
16(0x10) Wpusfi
17(Oxll) sipus/i
18(0x12) Idc
19(0x13) ldc_w
20 (0x14) Idc2_w
21(0x15) iload
22(0x16) Iload
23(0x17) fload
24 (0x18) dload
25(0x19) aload
26 (Oxla) iloadj)
27 (Oxlb) iloadj

28(0xlc) iloadj.
29(0xld) iloadj
30(0xle) Iloadj
31 (Oxlf) Iloadj
32 (0x20) Iloadj
33 (0x21) Iloadj
34 (0x22) floadj
35(0x23) floadj
36(0x24) floadj
37(0x25) floadj
38 (0x26) dloadj
39 (0x27) dloadj
40 (0x28) dloadj
41 (0x29) dloadj
42 (0x2a) aloadj
43(0x2b) aloadj
44(0x2c) aloadj
45(0x2d) aloadj
46 (0x2e) iaload
47(0x21) Iaload
48 (0x30) faload
49 (0x31) daload
50 (0x32) aaload
51 (0x33) baload
52(0x34) caload
53 (0x35) saload
54 (0x36) istore
55 (0x37) Istore

429

I16o

C
2

S
1
5

-
°

i
s
"
a

"
a

3

-S
<3

-§
-sq

-
Q

«
P
-
O

3
3

3

-3
<8

-8
.§

J
<§I

^
^

3>
^

.g
^

<§|
.g

J3
^

.§
*

-a
:§

3
1

1
1

J
•-:-:*

a
§

i
•":-

-;"i

X
X
x
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

r
^

h
-
o

o
o

o
o

o
c
o

o
o

o
o

o
o

o
o

o
o

o
o

x
x

x
x

x
x

x
x

x
x

x
x

o
o

o
o

o
o

o
o

o
o

o
o

O
'—

<
(
N

c
n

,
^

r
'i

n
i
o

r
-
-
o

o
c
N

O
^

H
c
s
i
m

,
^

r
r
-
o

o
o

v
o

o
o

o
o

o
o

o
o

o
O

'
—

*
-—

*
-.—

i
-.—

i
0

\
0

\
^
1

H
H

r
-
I
i—

I
i—

|
^-H

,_
(

_
|

,
|
^
_

|
^
H

i
—

I
i
—

I
^
H

t
—

I

i
n

^
o

r
^

o
o

^
o

-
^

c
^

r
n

,
^

-
v

^
,
o

t
-
-
-
o

o
O

N
O

"
-
H

C
S

r
n

^
t
"
>

n
*

o
r
-
-
-

Si
Si

p
0

^
c
s
]
C

^
o

^
p

«
j
(
^

o
-
-
,
c
\
|i

^
c
i
^

c
\
j
r
o

O
'-

<
c
\
i
^

a>
sl>

<u
p

=u
<u

a>
jd

c
l
^

Q
«»-.

c\]
cm

*-h
cm

p
.

1
3

S
S

R
i

I
I

I
i

i
i

i
i

i
i
b

b
b

b
b

S
t
t
^

5
,
C

T
-
:
?
,
^

.
^

(
^

i
»

.
^

;
s
r
-
r
;

p
P

p-B
£

P?
?*

£>
P1

su1
p1

p1
p1

p1
p1

p1
so1

su'
SU

Qi
fU1

aj'
ju'

JD'
a

a
a

ia
»

3
p

p
p

p
p

o
•*—

»
-
t
o

-
i^

j
-
k
j

P
P

O
P

P
P

P
u

-
u

-
k
j

-
u

s
>

j
-
k
j

-
u

j
U

]
V

]
V

]
O

V
]

V
)

V
]

S
^

S
^

X
X

^
X

X
E?

"o

3
3

c
i,

a
,

V
)

to
r
a

.c
a

r
a

to
.

f
a

c
o

c
a

•+
-1

-i^
J

-
f-

J

-1
—

.
—

I
-H

—
H

—
S

*
l
-
l
N

^
S

'
^
'
Q

'
Q

'
Q

'
Q

CQ
CQ

CQ
^

oo
o

\
cs

x>
0

*
0

a>
C

T
o

—
<

r-j
m

•^f

£
2$

2<
x

x
x

X
x

x
x

x
x

x
©

o
o

o
o

o
o

o
o

o
o

o
o

V
J

>
0

t;
OO

C
\

fl
^

o
*0---<D=

C
T

O
—

H
-ol-r^i

^J-
"n

A
O

t--
OO

On
"c?

X
)

•'o1
T3

'oj'
C

"
O

^
^

><
i<

.^
^

^
iS

i5
iS

^
^

^
i
S

i
S

i
5

^
i
<

^
*

x
x

x
x

x.
x

.
x

x
©
©
©
O
O
O
O
O
O
O
O
O
O
O
O

O
©
©
O
O
O
O
O
O
©
©
©
©

M
^

o
\
u

^
w

w
H

O
«

i
x

^
o

\
w

^
w

w
M

O
^

c
x

!
-
s
)
<

>
i
A

^
w

M
M

O
^

o
o

-
j
o

\
y

>
^

w
i
g

H
O

^
i
x

©
-
©

©
©

©
©

©
X

>
<

X
X

X
X

X
(3

-
C

T
'

O
"

PS
PS

P3
P

SJ
•—

©
^

>
CT

O
.

O

P
P

P
P

O
©

0
0

©
©

©
©

©
0

0
©

©
©

©
0

©
0

©
©

©
©

0
0

©
©

0
0

©
©

^
1^

.fcf
cF

h
.^

°3 C
D

p & 1
sr ICo

II
I

c 3
p 3

s
s &

t
o 1

W
t
O

t
O

I
O

t
O

W
t
O

W
c
O

(
O

c
O

t
O

|O
S

)
W

t
O

|
i—

•)
—

i^
—

^
—

i—
>

h
—

ii
—

>
i—

ii
—

>
©

o
©

©
©

©
©

h
p

©
O

O
O

O
O

O
©

©
©

©
©

©
©

"
©

©

&
&

a
f
t
(
i
o

.
a
&

D
.
f
i
a
.
o

o
o

o
o

o
•£

,
^

-P
^

jS
J3

}
J-*

!
^

..W
J°

,
-1

-;
.P

O
^

A
£

,
J3

^
T

3

3
" IcS

&

s
-g

.

P
P

3 I p

*
3

•J
P

*
P

P
P

"
^

er
a

__
,_

_
P

r5
^3

cr
o

^J
O

q
^

5?
£

£
a

a-
,

pj
p

D
&

£
n

a
i

r-
f

(-•
»•

n
P

.
£?

£*
C

b
C3

s
,1N

3
n

R
-

P
.

C
D

c
n

oT ST E
£

I
I
I

P
.

P
-

—
—

.
—

1
—

1

f»
f»

P-
1°

-
^

1*
1

h
P

k
p

h
p

h
p

h
p

«
p

h
Q

b
Q

h
p

h
p

>
P

c
p
p
p
p
p
p
c
p
p
p

8
-

P

£
.
£
.
£
.
£
.
£
.
£
£
.
£
£
.
£
£
£
£
.
£
.
£
.
£
.

*
r*

r*
I ^

5
I

f
t

I
t

t
l

,f
f

S
?

e&
*

p
Cr

q
£

.0
q

S
I

O
S

*-
*-

tr
-

Q
_

Q
.

Q
.

IT
**

fy
££

fco
^o

n>
^

rs
o

-
i-

5;
h

ii
k

j:
tx

p
.

O
O
*
O
^
'
C
^
l
^
'
O
^
l
>
O
\
0
^
0
0
C
i
0
0
0
0
0
0
0
0
0
I
M
!
X
1
0
0
0
0
-
J

h
-
o
^
o
o
o
-
j
O
i
L
A
^
w
t
g
i
-
'
O
^
o
o
o
s
j
i
^
y
i
^
w
t
o
-
'
O
'
O

O
©
©
©
0
0
0
©
©
©
0
0
0
©
©
©
0
0
©
©
©

'
o
'
o

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

^O
O

0
--

J
0

\
U

i
Ji

»
W

tO
m

O
^M

j
CD

&
.

O
,

a-
1

.P
i,

«
OO

v
j

Q
\

U
i

J
i

w

C
rq

r
p

§ 3 p
p^

s 3 ^

3 § 1
-4

.

3 § i
3-

I ICo C
o 1 4
^

432 THEJAVA™VIRTUAL MACHINE SPECIFICATION

219 (Oxdb). invokevirtualobject_quick
221 (Oxdd) new_quick
222 (Oxde) anewarray_quick
223 (Oxdf) multianewarray_quick
224(0xe0) checkcast_quick
225 (Oxel) instanceoLquick
226 (0xe2) lnvokevirtual_quick_w
227 (Oxe3) getMd_quick_w
228 (0xe4) putfield_quick_w

Reserved opcodes:
202 (Oxca) breakpoint
254 (Oxfe) impdepl
255 (Oxff) impdep2

Java-Based Microprocessor 7.Appendices

APPENDIX D2: JVM INSTRUCTIONS AND OPERANDS DESCRIPTION

35

JAVA VIRTUAL MACHINE INSTRUCTION SET

mnemonic mnemonic

Operation Short description of the instruction

Format mnemonic

operandi
operand2

...

Forms

Stack

Description

Linking
Exceptions

Runtime

Exceptions

Notes

Operation

mnemonic = opcode

..., value1, value2 =»

..., value3

A longer description detailing constraints on operand stack con
tents or constant pool entries, the operation performed, the type of
the results, etc.

[f any linking exceptions may be thrown by the execution of this
instruction they are set off one to a line, in the order in which they
must be thrown.

[f any runtime exceptions can be thrown by the execution of an
instruction they are set off one to a line, in the order in which they
must be thrown.

Other than the linking and runtime exceptions, if any, listed for an
instruction, that instruction must not throw any runtime exceptions
except for instances ofVi rtualMachineError or its subclasses.

Comments not strictly part of the specification of an instruction are
set aside as notes at the end of the description.

Figure 6.1 An example instruction page

Each cell in the instruction format diagram represents a single 8-bit byte. The

instruction's mnemonic is its name. Its opcode is its numeric representation and is

153

154 THEJAVA™ VIRTUAL MACHINE SPECIFICATION

given in both decimal and hexadecimal forms. Only the numeric representation is
actually present in the Java Virtual Machine code in a cl ass file.

Keep in mind that there are "operands" generated at compile time and embed
ded within JavaVirtual Machine instructions, as well as "operands" calculated at
run time and supplied on the operand stack. Although they are supplied from sev
eral different areas, all these operands represent the same thing: values to be oper
ated upon by the Java Virtual Machine instruction being executed. By implicitly
taking many of its operands from its operand stack, rather thanrepresenting them
explicitly in its compiled code as additional operand bytes, register numbers, etc.,
the JavaVirtual Machine's code stays compact.

Someinstructions are presented as members of a family of related instructions
sharing a single description, format, andoperand stack diagram. As such, a family
of instructions includes several opcodes arid opcode mnemonics; only the family
mnemonic appears in the instruction format diagram, and a separate forms line
lists all member mnemonics and opcodes. For example, the forms line for the
konst_<l> family of instructions, giving mnemonic andopcode information for the
two instructions in that family (Iconstj and Iconstj), is

Forms konstJ=9 (0x9),
Iconstj = 10 (Oxa)

In the description of the Java Virtual Machine instructions, the effect of an
instruction's execution on the operand stack(§3.6.2) of the current frame (§3.6) is
represented textually, with the stack growing from left to right and each word
(§3.4) represented separately. Thus,

Stack ..., valuel, value2=$
..., result

shows an operation that begins by having a one-word value2 on top of the operand
stack with a one-word valuel just beneath it. As a result of the execution of the
instruction, valuel and value2 are popped from the operand stackandreplaced by a
one-word result,which has been calculatedby the instruction. The remainder of the
operand stack, represented by an ellipsis (...), is unaffected by the instruction's exe
cution.

The types long and doubl e take two words on the operand stack. In the oper
and stack representation, each word is represented separately using a dot notation:

JAVA VIRTUAL MACHINE INSTRUCTION SET 155

Stack ..., valuel wordl, valuel word2, value2 wordl, value2 word2 =>
..., result wordl, result word2

The Java Virtual Machine specification does not mandate how the two words are
usedto represent the 64-bit 1ong or double value; it only requires that a particular
implementation be internallyconsistent.

JAVA VIRTUAL MACHINE INSTRUCTION SET

bipush bipush

Operation Push byte

Format bipush
byte

Forms bipush = 16 (0x10)

Stack

..., value

Description The immediate byte is sign-extended to an i nt, and the resulting
valueis pushed onto the operandstack.

171

198 THEJAVA™VIRTUAL MACHINE SPECIFICATION

dup dup

Operation Duplicate top operand stack word

Format dup

Forms dup = 89 (0x59)

Stack ..., word=$

..., word, word

Description The top word on the operand stack is duplicated and pushed onto
the operand stack.

The dup instruction must not be used unless word contains a 32-bit
data type.

Notes Except for restrictions preserving the integrity of 64-bit data types,
the dup instruction operates on an untyped word, ignoring thetype
of the datum it contains.

JAVA VIRTUAL MACHINE INSTRUCTION SET

dup2 dup2

Operation Duplicate top two operand stack words

Format dup2

Forms t/up2= 92 (0x5c)

Stack ..., word2, wordl =>

..., word2, wordl, word2, wordl

Description The top two words on the operand stack are duplicated and pushed
onto the operand stack, in the original order.

The dup2 instruction must not be used unless each of wordl and
wordlis a wordthat contains a 32-bitdata type or both together are
the two words of a single 64-bit datum.

Notes Except for restrictions preserving the integrity of 64-bitdata types,
the dup2 instruction operates on untyped words, ignoring the types
of the data they contain.

201

230 THE JAVA™ VIRTUAL MACHINE SPECIFICATION

goto goto

Operation Branch always

Format goto

branchbytel
branchbyte2

Forms goto = 167 (0xa7)

Stack No change

Description The unsigned bytes branchbytel and branchbyte2 are used to
construct a signed 16-bit branchoffset, where branchoffset is
(branchbytel « 8) | branchbyte2. Execution proceeds at thatoffset
from the address of the opcode of this goto instruction. The target
address must be that of an opcode of an instruction within the
method that contains this goto instruction.

238

iadd

Operation Add int

Format

Forms

Stack

iadd

iadd=96 (0x60)

..., valuel, value2

..., result

THEJAVA™VIRTUAL MACHINE SPECIFICATION

iadd

Description Both valuel and value2 must beoftype i nt. The values are popped
from the operand stack. The i nt result is valuel + value2. The
result is pushed onto the operand stack.

If an iadd overflows, then the result is the low-order bits of the true
mathematical result in a sufficiently wide two's-complement for
mat. If overflow occurs, then the sign of the result will not be the
same as the sign of the mathematical sum of the two values.

240

iand

Operation Boolean AND i nt

Format

Forms

Stack

iand

iand=\26 (0x1c)

..., valuel, value2

..., result

THEJAVA™ VIRTUAL MACHINE SPECIFICATION

iand

Description Bothvaluel and value2 must be of type i nt. They arepopped from
the operand stack.An i nt resultis calculatedby taking the bitwise
AND (conjunction) of valuel and value2. The resultis pushed onto
the operand stack.

242

iconst <i>

Operation Push int constant

Format

Forms

Stack

iconst <i>

iconstjnl = 2 (0x2)
iconstj = 3 (0x3)
iconstj = 4 (0x4)
iconstj =5 (0x5)
iconstj = 6 (0x6)
iconstj = 1 (0x7)
iconstj =8 (0x8)

...,<!>

THEJAVAm VIRTUAL MACHINE SPECIFICA TION

iconst <i>

Description Push the int constant <i> (-1, 0, 1, 2, 3, 4 or 5) onto the operand
stack.

Notes Each of this family of instructions is equivalent to bipush <i> for
the respective value of <i>, except that the operand <i> is implicit.

JAVA VIRTUAL MACHINE INSTRUCTION SET

if_icmp<cond>

Operation Branch if i nt comparison succeeds

Format

Forms

Stack

ifJcmp<cond>
branchbytel
branchbyte2

ifjcmpeq
ifjcmpne
ifjcmplt
ifjcmpge
ifjcmpgt
ifjcmple

159 (0x9f)

160(0xa0)

161 (Oxal)
162 (0xa2)

163 (0xa3)
164 (0xa4)

..., valuel, value2

if_icmp<cond>

Description Both valuel and value2 must be of type i nt. They are both popped
from the operand stack and compared. All comparisons are signed.
The results of the comparison are as follows:

• eq succeeds if and only if valuel = value2

• ne succeeds if and only if valuel •*• value2

• It succeeds if and only if valuel < value2

• le succeeds if and only if valuel < value2

• gt succeeds if and only if valuel > value2

• ge succeeds if and only if valuel > value2

245

246 THE JAVA™ VIRTUAL MACHINE SPECIFICATION

ifJcmp<cond> (cont) if_icmp<cond> (cont)

If the comparison succeeds, the unsigned branchbytel and
branchbyte2 are used to construct a signed 16-bit offset, where the
offset is calculated to be (branchbytel « 8) | branchbyte2. Execu
tion then proceeds at that offset from the address of the opcode of
this ifJcmp<cond> instruction. The target address must be that of
an opcode of an instruction within the method that contains this
ifJcmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction fol
lowingthis ifJcmp<cond> instruction.

JAVA VIRTUAL MACHINE INSTRUCTION SET

iinc

Operation Increment local variable by constant

Format unc

index

const

Forms iinc= 132 (0x84)

Stack No change

unc

Description The index is an unsigned byte that must be a valid index into the
local variables of the current frame (§3.6). The constis a immediate
signed byte. The local variable at index must contain an i nt. The
value const is first sign-extended to an i nt, then the local variable
at index is incremented by that amount.

Notes The iinc opcode can be used in conjunction with the wide instruc
tion to access a local variable using a two-byte unsigned index and
increment it by a two-byte immediate value.

251

252

iload

THE JAVA™ VIRTUAL MACHINE SPECIFICATION

iload

Operation Load i nt from local variable

Format iload

index

Forms iload= 21 (0x15)

Stack

..., value

Description The index is an unsigned byte that must be a valid index into the
local variables of the current frame (§3.6). The local variable at
index must contain an i nt. The value of the local variable at index

is pushed onto the operand stack.

Notes The iload opcode can be used in conjunction with the wide instruc
tion to access a local variable using a two-byteunsigned index.

JAVA VIRTUAL MACHINE INSTRUCTIONSET

iload <n> iload <n>

Operation Load i nt from local variable

Format

Forms

Stack

Description

iload <n>

iloadj = 26 (Ox la)
iloadj = 27 (Oxlb)
iloadj = 28 (Oxlc)
iloadj = 29 (Oxld)

..., value

The <n> must be a valid index into the local variables of the cur

rent frame (§3.6). The local variable at <n> must contain an i nt.
The vaiue of the local variable at <n> is pushed onto the operand
stack.

Notes Each of the iload_<n> instructions is the same as iload with an
indexof <n>, except that the operand <n> is implicit.

253

JAVA VIRTUAL MACHINE INSTRUCTION SET

meg

Operation Negate i nt

Format

Forms

Stack

meg

ineg= 116 (0x74)

..., value -

..., result

meg

Description The value mustbe of type i nt. It is popped from the operand stack.
The i nt result is the arithmetic negation of value, -value. The
resultis pushed onto the operandstack.

For int values, negation is the same as subtraction from zero.
Because the Java Virtual Machine uses two's-complement repre
sentation for integers and the range of two's-complement values is
not symmetric, the negation of the maximum negative int results
in that same maximum negative number. Despite the fact that over
flow has occurred, no exception is thrown.

For all int values x, -x equals (~x) + 1.

255

270

wr

Operation Boolean OR i nt

Format

Forms

Stack

wr

ior= 128 (0x80)

..., valuel, value2

..., result

THEJAVA™ VIRTUAL MACHINE SPECIFICATION

wr

Description Both valuel and value2 mustbothbe of type i nt. Theyare popped
from the operand stack. An i nt result is calculated by taking the
bitwise inclusive OR of valuel and value2. The result is pushed
onto the operand stack.

JAVA VIRTUAL MACHINE INSTRUCTIONSET

ishl

Operation Shift left i nt

Format

Forms

Stack

ishl

isnl= 120 (0x78)

..., valuel, value2

..., result

ishl

Description Both valuel and value2 must be of type i nt. The values are popped
from the operand stack. An i nt result is calculated by shifting
valuel left by s bit positions, where s is the value of the low five
bits of value2. The result is pushed onto the operand stack.

Notes This is equivalent (even if overflow occurs) to multiplication by 2
to the power s. The shift distance actually used is always in the
range 0 to 31, inclusive, as if value2 were subjected to a bitwise
logical AND with the mask value Ox If.

273

274

ishr

Operation Arithmetic shift right int

Format

Forms

Stack

ishr

ishr=\22(0xla)

..., valuel, value2

..., result

THE JAVA™ VIRTUAL MACHINE SPECIFICATION

ishr

Description Both valuel and value2 mustbe of type i nt. The values arepopped
from the operand stack. An i nt result is calculated by shifting
valuel right by s bit positions, with sign extension, where s is the
value of the low five bits of value2. The result is pushed onto the

operand stack.

Notes The resulting value is L(vaiuel)/2SJ, where s is value2 &Oxlf.
For nonnegative valuel, this is equivalent to truncating int divi
sion by 2 to the power s. The shift distance actually used is always
in the range 0 to 31, inclusive, as if valueZ were subjected to a bit
wise logical AND with the mask value Oxlf.

JAVA VIRTUAL MACHINE INSTRUCTION SET

istore

Operation Store int into local variable

Format istore

index

Forms istore= 54 (0x36)

Stack ..., value

istore

Description The index is an unsigned byte that must be a valid index into the
local variables of the current frame (§3.6). The valueon the top of
the operand stack must be of type int. It is popped from the oper
and stack, and the value of the local variable at index is set to value.

Notes The istoreopcode can be used in conjunction with the wide instruc
tion to access a local variable using a two-byte unsigned index.

275

276 THE JAVA™ VIRTUAL MACHINE SPECIFICATION

istore <n> istore <n>

Operation Store i nt into local variable

Format istore <n>

Forms istorej = 59 (0x3b)
istorej = 60 (0x3c)
istoreJ = 61 (0x3d)
istorej = 62 (0x3e)

Stack ..., valuer

Description The <n> must be a valid index into the local variables of the cur

rent frame (§3.6). The value on the top of the operand stack must
be of type i nt. It is popped from the operand stack, and the value
of the local variable at <n> is set to value.

Notes Each of the istore_<n> instructions is the same as istore with an

index of <n>, except that the operand <n> is implicit.

JAVA VIRTUAL MACHINE INSTRUCTION SET

isub

Operation Subtract i nt

Format

Forms

Stack

isub

isu6= 100 (0x64)

..., valuel, value2

..., result

isub

Description Both valuel and value2 mustbe of type i nt. The values arepopped
from the operand stack. The i nt result is valuel - value2. The
result is pushed onto the operand stack.

For int subtraction, a - b produces the same result as a + (™b).
For i nt values, subtraction from zero is the same as negation.

Despite the fact that overflow or underflow may occur, in which
case the resultmay have a different sign than the true mathematical
result, execution of an isub instruction never throws a runtime
exception.

277

JAVA VIRTUAL MACHINE INSTRUCTION SET

ixor

Operation Boolean XOR i nt

Format

Forms

Stack

ixor

ixor= 130 (0x82)

..., valuel, value2

..., result

ixor

Description Both valuel and value2 must both be of type i nt. They are popped
from the operand stack. An int result is calculated by taking the
bitwise exclusive OR of valuel and value2. The result is pushed
onto the operand stack.

279

280 THEJAVA™ VIRTUAL MACHINE SPECIFICATION

jsr jsr

Operation Jump subroutine

Format jsr

branchbytel
branchbyte2

Forms jsr = 168 (0xa8)

Stack

..., address

Description The address of the opcode of the instructionimmediatelyfollowing
this jsr instruction is pushed onto the operand stack as a value of
type returnAddress. The unsigned branchbytel and branchbyte2
are used to construct a signed 16-bit offset, where the offset is
(branchbytel « 8) | branchbyte2. Execution proceeds at that offset
from the address of this jsr instruction. The target address must be
that of an opcode of an instruction within the method that contains
this jsr instruction.

Notes Thejsr instruction is used with the retinstruction in the implemen
tation of the f i nal 1y clauses of the Java language (see Section
7.13, "Compiling finally"). Note thatjsrpushes the address onto
the stack and ret gets it out of a local variable. This asymmetry is
intentional.

322 THE JAVA™ VIRTUAL MACHINE SPECIFICATION

nop nop

Operation Do nothing

Format nop

Forms nop = 0 (0x0)

Stack No change

Description Do nothing.

JAVA VIRTUAL MACHINE INSTRUCTION SET 323

pop pop

Operation Pop top operand stack word

Format I ~pop

Forms pop = 87 (0x57)

Stack ...,word=>

Description The top word is popped from the operand stack.

The pop instruction must not be used unless word is a word that
contains a 32-bit data type.

Notes Except for restrictions preserving the integrity of 64-bit data types,
the pop instruction operates on an untyped word, ignoring the type
of the datum it contains.

324 THE JA VA™ VIRTUALMACHINE SPECIFICA TION

pop2 pop2

Operation Pop top two operand stack words

Format pop2

Forms pop2 = 88 (0x58)

Stack ..., wordl, wordl =>

Description The top two words are popped from the operand stack.

The pop2 instruction must not be used unless each of word wordl
and word2 is a word that contains a 32-bit data types or together are
the two words of a single 64-bit datum.

Notes Except for restrictions preserving the integrity of 64-bit data types,
the pop2 instruction operates on raw words, ignoring the types of
the data they contain.

JAVA VIRTUALMACHINE INSTRUCTION SET

ret ret

Operation Return from subroutine

Format ret

index

Forms ret = 169 (0xa9)

Stack No change

Description The index is an unsigned byte between 0 and 255, inclusive. The
local variable at index in the current frame (§3.6) must contain a
value of type returnAddress. The contents of the local variable
are written into the Java Virtual Machine's pc register, and execu
tion continues there.

Notes The ret instruction is used with jsr or jsr_w instructions in the
implementation of the finally keyword of the Java language (see
Section 7.13, "Compiling finally"). Note that jsr pushes the
address onto the stack and ret gets it out of a local variable. This
asymmetry is intentional.

The ret instruction should not be confused with the return instruc

tion. A return instruction returns control from a Java method to its

invoker, withoutpassing any value back to the invoker.

The retopcode canbe usedin conjunction with the wide instruction
to access a local variable using a two-byte unsigned index.

329

JAVA VIRTUAL MACHINE INSTRUCTION SET

sipush sipush

Operation Push short

Format sipush
bytel
byte2

Forms sipush =17(0x11)

Stack

..., value

Description The immediate unsigned bytel and byte2 values are assembled into
anintermediate short where the value ofthe short is (bytel « 8) |
byte2. The intermediate value is then sign-extended to an int, and
theresulting value is pushed onto the operand stack.

333

334 THEJAVA™ VIRTUAL MACHINE SPECIFICATION

swap swap

Operation Swap top two operand stack words

Format

Forms

Stack

swap

swap = 95 (0x5f)

..., word2, wordl

..., wordl, word2

Description The top two words on the operandstack are swapped.

The swap instruction must not be used unless each of word2 and
wordl is a wordthat contains a 32-bitdata type.

Notes Except for restrictions preserving the integrity of 64-bit data types,
the swap instructionoperates on untyped words, ignoring the types
of the data they contain.

