JAVA-BASED MICROPROCESSOR

Mohammad Faiz bin Md. Khuzaimah
2836

Dissertation submitted in partial fulfilment of
the requirements for the
Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

JUNE 2006

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

JAVA-BASED MICROPROCESSOR

by
Mohammad Faiz bin Md. Khuzaimah

A project dis%sertation submitted to the
Electrical & Electrzonics Engineering Programme
Universiti ’i‘eknologi PETRONAS
in partial fulﬁlmént of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

(PATRICK SEBASTIAN)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK
June 2006

CERTIFICATION OF ORIGINALITY

This is to certify that [am responsible for the work submitted in this
project, that the original work is my own except as specified in the references
and acknowledgments, and that the original work contained herein have not

been undertaken or done by unspecified sources or persons,

%’;/
rd ——

{(MOHAMMAD FAIZ BIN MD. KHUZAIMAH)
Student ID: 2836 '

i

ABSTRACT

Java-based Microprocessor is a project aimed to develop a processor that
implements Java virtual machine (JVM) instruction set into the hardware. The objective
of the project is enabling a Java application to be executed without the need of JTVM, but
in a more specific term, it is aimed to be an alternative non commercial processor as a
supporting base for educational research and development of embedded systems. With
the current application of Java, the Java Runtime Edition (JRE), an inter medium Java
OS, must be installed in every machine that is intended to execute Java bytecode. This
proved to be inefficient, especially in embedded system where the resources are limited

and upgrading is highly expensive.

The project was developed to be an easily comprehensible HDL, allowing others
to pursue with advancement without complications. Thus, the HDL design were coded
with behavioural style. In order to be more transparent for others to view the project
development, the entire design is being developed by bottom-up approach. Four
modules comprises the entire design — ALU, stacks, program counter and datapath.
These modules were designed individually, allowing a separate test bench and test

parameters, which also provided a better perspective of the microprocessor design.

The project has already progressed from an 8-bit processor in mind towards a 32- |
bit computer. The JVM has strict rules, allowing only certain instructions to execute
with proper operands with the right data type. The project was not planned to allow

operations of floating point numberfand doubles.

In conclusion, as for the use for supporting educational research and development,
Java-based Microprocessor shall provide a solid foundation to embedded systems,

where more enhancements would b¢ needed before it can be utilized reliably.

iii

ACKNOWLEDGMENT

First and foremost, all praises to Allah The Almighty that by His blessings 1 have been
able to complete my final year project, the Java-Based Microprocessor. I would like to

thank the following people who helped me in my final project.

Mr. Patrick Sebastian, my supervisor and Computer System Architecture
lecturer, who came with the idea of this project and helped me with references

projects and moral support all the way.

Mr. Lo Hai Hiung, a lecturer, who had gave me a good insight of HDL and
Altera Quartus II.

My Parents, Mr. Md. Khuzaimah and Mrs. Hasnah, who has been very

supporting, caring for my well-being and prayed for my success.

Mr. Faizan, a tutor, who had, taught me a good deal of HDL coding technique
and introduction to Altera Quartus IT

Dr. Yap Vooi Voon, a lecturer, for his critique of my project development.

I would also like to thank Nadirah Khairul Anuar, for her loving support every

hard moments I endeavor while finishing my project.

iv

TABLE OF CONTENTS

LIntroduction....ncccnnrneneenes OO 1

1.1 Background......ccovrenennn.. et R A bbb AR et ena AR AR s ere e e aa e ene 1
1.2 PrODISIM SEAIEMENL. ... veveeeeeeeoreeseeeeeeseseaseeseseeseeeenseseenreesmesessssmmmenessessssmmessssessmesessssanns 1
1.3 Objectives & Scope of Study.......ciiiiii e essseeesssssserss s 2
2.Liicrature RevieW. i 4 eeeeseeeeeeT eTeeeiaheeeeesesteetesanteetesaabhantea s banten s s rataaieiasres st arnteran 3
2.1 Previous Work on Java ProCESSOT.......ccveeeurireeurireesnsisscsecsrsnsisesesesssesesssnsesessesarassesessses 3
2.1.1 Sun MicroSystems' PICOJAVA........ccccvrreerrmrrcrasasrsenreresesssssreseesererererassssesseserassessans 3

2.1.2 Java Optimized ProCessor......uiccmerisiniiesmesennessesssssssssssssssesssssssssssssasesessrssassenons 4

2.1.3 Bernd Paysan's b16 Forth..........ccovvvrerccencseicnnnenns s e res et s sba e s e rraaannene 5

2.2 Java Virtual Machine............... ettt ee e e et b e b e b e e R et e Re e eenennes 6
2.2.1 Fundamentals of BYteCode...........ccuvrereeerenrierrereieisnssrnrescsseserssnssessossesssessssssssns 7

2.3 Stack Machine.......ooverniiiiiiiniccceneenennnnnr e sereseseses s essnsnssssoses sssessonsees 8
2.3.1 JVM as Stack-based Machine........ccccoucmmrreererrienenincnnnnsesssnnnnnresesssssssessnesseone 8
FPROJEC WOTK...ovrc ittt b et et bbb bbb e en e 10
3.1 Research and Design ApProach........oceeeceeeeeveeennneieree e eresensnseessseseessseeses 10
3.2 Development and SImulation.........ccceeeuseersererrsriririsnnrcsssrnrniss s sscssessssssseessees 12
3.2.1 Using Behavioural VErIlog.........ceveueurieencnerininerinresnsnissssssssssssssnss s sssssssss 12

3.2.2 Using EXtensive Test DENC.............uuuunvvveeseeseeeeseseseesssesssesssssssesssesmssesessens .

3.3 Hardware Verification........ococeercceeeceneneecrcreninireeneenesssessssssssssesssssassssssssssrerssssssensnes 13

4 Results & DiSCUSSION...crvvvverrrerrr cevsreerenrsisrenas ettt et a et s et bR R re s e b bns 14
4.1 Arithmetic & Logic Unit.......coeciiineiencnenccenccrcriesssesonssssssssssnieresssessssssessssssessone 14
4.2 Operands and Return STACKS.........cccccoeriernnnncrcncrrireinesssssssnssseccessesnianssessessserssesees 16
4.3 PrOZIAM COUNIET....vvvrveressresrssereeraenssinsesrsrssarssrssssassassasessssessasssssssasssssassssssesssssssessesssss 19
4.4 Datapath and Modules Integration...........ccoourvevrrnmniniiensenn. et snseseenn 20
5.Conclusion & Recommendation............ccceiiriinieieieiinisirnesninsnneersnersresssssserassssssssressesesns 25
0. REIEIEICES. ...ttt e st eran s ea e n e nenaene 26
T APPENAICES. .. cviiriirrisrernessiissiissisresests st tet st stenrentssessessensssssseresstsnesenteneasssnssessassessessessans 27
Appendix Al: MJava ALU Verilog Code.........cccoerncnnnimmmincnscccsnnssnsiisssssssesnns 28
Appendix A2: MJava Stacks Verilog Code......cnicninonrrccrenresenrneesessesrennns 30
Appendix A3: MJava Program counter Verilog Code.........cooeevcmenriicmnnnncncnnniincses e 33
Appendix A4: MJava Datapath Verilog Code........coovvermrmnneirieisienreceeeine et 36
Appendix B: MJava Simulation reSults..........oecevereeesccsnecccnrericnnirserrmrernnesenens e 43
Appendix C: MlJava Stacks Synthesized CirCuit..........ccccvviriivinnniinniriinsneo 47
Appendix D1: JVM Instructions Hexadecimal Values.......coocvoveeeicecinnncienennenneees 50

Appendix D2: JVM Instructions and Operands Description......cmmmiiimien. 55
LIST OF ILLUSTRATION & TABLES

Table 2.1: JVM primitive data types.......cocvveverreecceennrerrinnes e b 6
Table 4.1: Ports in MJava ALU module...........ccccovnnnnvinianionmenernnssnen. Dreerrsearean 17
Table 4.2: Instructions executed within ALU module........couvvvveeeverirerernnnroreneerennenseseeen. 18
Table 4.3: Ports in MJava stack module.........ccoovrvvrnrrrennnnne. reetterersnre et esaerasrsssessabtsestbassrraees 20
Table 4.4: Ports in MJava program counter MOUIE.........c.corrrvreremeerresisseesssssessessessesssessnas 21
Table 4.5: Ports in MJava Datapath module.........occovreernnrernnncricennnierecnesesse s e seesesaens 23
Table 4.6: Instructions implemented in MJava ProCessor.......uvvrererererereresrerseseesesseerseseenes 25
Figure 2 1: Block diagram of the picoJava COres[P1].......occviivmininneimnnimimmmss 3
Figure 2.2: The picoJava core employ the 01rcu1ar register file to support stack-based
processmg[PZ] ... 4
Figure 2.3: Block diagram 0f JOP COTES......cocccimmnninnnncnesesrmmmnrireseeseesssssssssesensssssssasesens 5
Figure 2.4: Block diagram of b16 cores......ccovrecrrmnnnne, ettt s 6
Figure 4.1: Status flag defined in ALU module .. 17
Flgure 4.2: MJava stack module declaration. reg type stackmem|7:0] is the actual stack
memory DITAY s uorsstsnssnssiosansssonsstassssiastassssiast et ssa st asar L Ee A s AR 0SE LA A0S Se s R e m s s arasE s e RO 000035 20

Figure 4.3: MJava datapath module declaration. Many type of regs and wires were declared
AN USE....iviniii sttt aes 24

Figdre 4.4: Lines of code fetched for testing datapath functionality:.......ccweceernsessnn. 24

Figtﬁre 4.5: Sequential flow of MJava data Path......c...c.eeerueeeseeessesseessessssssssssssssssessesnsssensens 26
NOMENCLATURE
ALU Arithmetic and Logic Unit
ASM Algorithmic Statfé: Machine
CAD Computer-aided .I'i)esign
HDL Hardware Description Language
JRE Java Runtime Eméironment |
JVM J ava Virtual Machine
LIFO Last in First out |
0s Operating System

VHSIC Very High Speedglntegrated Circuit

MJava Java-based Micrdjarocessor (project title)

vi

Java-Based Microprocessor 1.Introduction

1. INTRODUCTION

1.1 BACKGROUND

Java applications have stormed the mobile industry lately, with current
smart phones and. mobile phones equipﬁed with Java-enabled games and such.
While the embedded systems industry is moving towards Java, there are
several technical issues that prevent Java from being widely implemented in
cmbedded devices such as set-top boxes, automotive systems and smart

controllers.

The issues that prevent Java from being widely implemented are its
performance and runtime execution efficiency. In order to execute a Java
bytecode, the JRE must be running on top of a machine original operating
system (OS) and this concept uses high resource. This has led to several
developments of Java-based processor that is capable to execute the bytecodes
without the need of JRE. These developments had been around since 1997 and

one of the most Java processor was picoJava, designed by Sun Microsystems .

Java processor had been widely, and at the same time narrowly,
developed to support embedded systems industry. Even in term education and
research, there are many projects running that requires non commercial

processor to support their development.

1.2 PROBLEM STATEMENT

The current concept of executing Java bytecode requires JRE to run on
top of a machine OS. While using high resources, this also results in slow
program load and unpredictable time-cycle execution. This drawback is
considered trivial on personal computer, but in embedded systems and small

devices such as handheld, the effect can be unacceptable.

Many Java processors being developed and many of them differ in

Java-Based Microprocessor _ 1.Introduction

features and targeted media. Most of them were developed to suit medium-end
to high-end small devices. In this project, the development focuses on the very
basic of bytecode implementation and targeting only for embedded system with

very limited resources.

Although the processor being developed in this project is a basic 32-bit
signed integer, it is important to note that, in embedded systems application,
building a complex and powerful processor is very costly. As a resuit, the
processor in this project is devised to support fundamental features, dropping
out the complex features that were entailed for higher performance systems and

ensure that it will cater to embedded systems expeditiously.

1.3 OBJECTIVES & SCOPE OF STUDY

In general, Java-based Microprocessor (MJava) is aimed to implement
JVM instruction set into a hardware stand-alone processor. In more specific
term, it is aimed to be an alternative non commercial processor as a supporting

base for the educational research and development of embedded systems.

In order to achieve the objective, some parameters had been refined and
redefined, in which two of them are; to implement the JVM instruction with
minimal use of extern@l memory space; and keeping the final outcome as
simple as possible with only the most basic requirement to execute Java class

file properly and conectiy.

Java-Based Microprocessor 2. Literature Review

2. LITERATURE REVIEW

2.1 PREVIOUS WORK ON JAVA PROCESSOR

Work on Java processor is not a new concept. It has been around since
picoJava was initiated in 1998, but it is increasing in popularity. Several
previous work had been used as references to the project. Each provided a

different perspeétive on how to approach the solution.

2.1.1 Sun Microsystems' picoJava

picoJava is the first attempt on Java processor, developed under Sun
Microsystems as the next step to popularize Java. Its advancement ideally
suited the consumer electronic manufacturers need of small size processor core
and high performance. It has been licenced to at least four (4) major

companies.'”

Its success in commercial values lies mostly on its high performance
design computer architecture. The variable-sized cache, choice of with or
without floating-point unit and the “stack register file” significantly improved
performance. Its ability to execute legacy C/C++ as efficient as comparable
RIS CPU is also a big advantage. Figure 2.1 shows the architecture of
picoJava cores, while the stack register file operation, treating file as a circular

buffer is shown in Figure 2.2.

fie] Eua and Mamnury intarface Linlt

PG - ot
Instruction Buffar Trmp Cantro

Instrucilon Dacode Exacutian Santral Logle

Optiara]
Floating Palnt Urly
integer

Mansge mant
Puwer and Clock

Figure 2.1: Block diagram of the picoJava

corest)

Java-Based Microprocessor 2 Literature Review

Shrinking -

Low-water
mark |
—f-

~——_
High-water

Execufion unit -
&
Data cache -

Figure 2.2: The picoJava core employ the circular register

file to support stack-based processing'")

2.1.2 Java Optimized Processor

Java Optimized Processor (JOP) was developed as part of a thesis
project, focused on designing a processor for time-predictable execution of
- real-time tasks. Its primary implementation is in a field programmable gate
array and the research demonstrates hardware implementation of the Java
virtual machine results in a small design for resource-constrained devices. It
had been designed to implement only the most frequently used instructions in
the hardware level, while leaving the remaining to be executed on the software

level.

In all measurements, JOP stated that the load of local variables and.
constants onto the stack accounts for more than 40% of instructions executed.
This shows that an efficient realization of the local variable memory area, the
stack and the transfer between these memory areas is mandatory. On the other
hand, the implementation of these three subjects, especially the stack, is

critical to the projeci: and thus, required.”

4

Java-Based Microprocessor _ 2,Literature Review

JOP’s own Java bytecode is named microcode. It is the native language
for JOP. The microcode is translated from Java native language, bytecodes
durihg execution, and both instruction sets are designed for an extended stack
machine. In addition, JOP is fully pipelined architecture but with single cycle
execution of microcode. It, 'however, used a fresh approach to mapping the
Java bytecode to these instructions. Figure 2.3 shows the data path of JOP,
where it can be observed that the stack architecture allows for a short pipeline.

This resulted in short branch delays.

B branoh condtion
08¢t bylacods ' ‘ rvcracnda branch condition
h 1 | £
Bytecode Microcode ' Microcode Microcode

Fatch, transiate | Falch and Dacode Exacute
and branch branch i
Byincogs beanch e
Stack
Address RAM
ge p

Figure 2.3: Block diagram of JOP cores™

2.1.3 Bernd Paysan's b16 Forth

The bl6 processor is being developed as a Forth processor in an FPGA
by Bernd Paysan. In this most brief summary, it has shown most promise as a
better base to the project title Java-Based Microprocessor (MJava) that the
JOP. Not only it is basfcal]y'a stack-based processor, its minimalist design fits

into small FPGA is most suitable for embedded systems application.

This processor is inspired by cl18 from Chuck Moore, a popular forth
processor, and is design entirely using Verilog HDL — a most convincing

advantage for MJava side. Its basic processor architecture proved to be very

5

Java-Based Microprocessor 2.Literature Review

simplistic and practical for small application, Its stack machine was a radical

approach but still has rooms for improvement,

instraction Word Addrass Latch

— TQs l

[NOS

LA

Stack Return-5iaok

Figure 2.4: Block diagram of b16 cores™

2.2 JAVA VIRTUAL MACHINE

Java Virtual Machine '(JVM) is an abstract computing machine, acting
like a real computing machine, but executing Java bytecode instead of an
assembler. It has an instruction set and capable of manipulating various
memory areas at run time. JVM ié also a sta.ck-.bas;ed machine in general,
consisting several stacks for operands and return -addresses. The stack-based

JVM is further explained in subsection 2.3.1 JVM as Stack-based Machine.

Java class file is translated into Java bytecode, which is used by JVM to
be translated again into the specific native machine language. In short, JVM is
a second layer operating system (OS) to the work station native OS, used in
order to execute Java byfecode. The operation of bytecode basics is further

explained in subsection 2.2.1 Fundamentals of Bytecode.

6

Java-Based Microprocessor : 2.Literature Review

JVM instructions consists of an opcode, which spé_cify the operation to
be performed, and followed by zero or more operands. This allow us to assume
that implementing a complete JVM instruction set will result in exponentially
increasing complexity, depending on the extent of how many instructions are
being implemented. Certain JVM instructions can embody up to 14 operands

each.

The JVM supports‘ seven (7) primitives data types, listed in Table 1.
Currently JVM consists of 202 instructions, although, many of the instructions
are for similar operation but different data types involved. This was intended to
make the bytecodes coiﬁpact, by forcing opcodes to identify the data types
involved instead of leaving it to the operands itself like in many other machine
languages. (refer Appéildix D1 for a list of JVM opcodes with their
corresponding hex valufejs and Appendix D2 for JVM opcodes with their

relevant operand(s) type)_;l‘*l[ﬂ

Table 2.1: JVM primitive data types

byte one-bytéisigned two's complement integer
short tw'o-byt'a signed two's complement integer
int 4-byte signed two’s complement integer
long 8-byte ségned two’s complement integer
float 4-Byte IEEE 754 single-precision float
double 8-byte IEEE 754 double-pfecision float
char 2-byte uéﬁsigned Unicode character

2.2.1 Fundamentals of Bytecode

Bytecode is the machine language of the JVM. Since it was
designed to be compact, bytcodes are fetched in streams. When an opcode

reached the JVM, it indicates whether to encode zero or more operands

Java-Based Microprocessor : 2,Literature Review

from the streams that immediately follow. Opcodes and operands in the
bytecodes stream are aligned on byte boundaries, which means each
opcode or operand is one byte of size. Operands of data type larger than a
byte are broken into several bytes, stored in big-endian order in the

bytecodes stream,

2.3 STACK MACHINE

Two major types of computer stack are Last-in First-out (LIFQ) and
First-in First-out (FIFO). While the latter act like a buffer, the former is being
used vastly in main computing as a significant temporary storage, mainly to
improve performance and to favour in compact machine code. LIFO stack by
definition is concéptually the simplest way of storing information temporarily
for use in common computation such as mathematical expression evaluation

and recursive subroutine calling,

LIFO stacks can be constructed in software easily by allocating an array
in memory and a variable with the array index number to keep track of the
array position, known as stack pointer. The significant properties of LIFO
stacks is the push and pop operations. A push will store information in the top
most location (as defined by the stack pointer), while a pop extract information
from the top mos‘é location to central processing (which later is deleted from

the stack).

Stack-based machine or computer is increasingly becoming a favoured
choice. Mostly due to its excellent mechanism of handling operations within
procedures or recursive invocations. A nested branch and goto functions can be
implemented very well with the use of LIFO stack. This also eliminates the

need to épecify location of return addresses, which could be space consuming.

2.3.1 JVM as Stack-based Machine

Computation in JVM centres on the stack to perform many

operations, especially in arithmetics and returning from subroutines. In

Java-Based Microprocessor ' ~ 2.Literature Review

JVM there are two separate stacks — operands stack and return stack. The
latter was used strictly for return addresses, while the former is used for
other information or operands. As Java byfecode was designed to be
'com'pact, many of the instructions are of zero operand. These instructions
take values from the stacks. The stack will pop (read and delete) as many
‘operands from the stacks as indicated by the opcode. The resultants are

also usually pushed (stored) back onto the stacks."IF)

Assisting the stacks are the local variables, similar to working
registers in many register-based machine. However, local variables use
are limited to certain instructions and a programmer can barely_
manipulate this temporary storage. A number of instructions are dedicated
for handling information between local vaﬁables and operands sfack, but

the direct use of local variables in calculation is unclear.

Java-Based Microprocessor 3.Project Work

3. PROJECT WORK

A revised methodology presents several key changes in the project flow.
Due to unforeseen delay caused by new findings, which led to new obstacles,
and switch to Xilinx ISE, the hardware implementation on an FPGA kit has
been deemed optional. In all, this project may end up as simulation-only if any

of Xilinx FPGA is unavailable at the project disposal.

3.1 RESEARCH AND DESIGN APPROACH

Selecting and researching on Java ISA is not a direct precedence to
project design and development. Still, it may provide key points to the
direction of the development in term of the key elements that are necessary to

be implemented.

Java ISA consists of 230 instructions, with three (3) reserved opcodes
and 25 _quick opcodes. Nevertheless, current Sun JVM support only the 202
instructions (without the reserved and _quick opcodes) and many Java program
had been written with these assumption, Thus, it is irrelevant to pursue the

project development by including these unnecessary opcodes.

There are two major concerns in implementing Java ISA - the instruction
set itself and the JVM stack:ma(':hine (as explained in Chapter 2, Stack
Computers). Preliminarily, oniy the basic opcodes will be implemented,
including all stack related, arithmetic, logic and return/jump operations but
ruling out the remaining suchﬁz as long, float, double, array and conversion
operations. The instructions bcing implemented in MJava project is show in

List 1 (next page).

10

Java-Based Microprocessor

Pushing Constants onto the Stack

bipush - sipush

Loading Local Variables onto the Stack

iload ‘ iload_<n>

Storing Stack Values into Local Variables

iconst_<n> istore_<n>
istore iinc
Stack Instructions

nop dup

pop dup2
pop2 swap
Arithmetic Instructions

iadd ineg
isub

Logical Instructions

ishl ior

ishr ‘ ixor

iand

Control Transfer Instructions

if iempeq if icmpge
if _icmpne goto

if icmplt Jsr

if icmpgt ret
z'f_icmpfe

List I: JVM instructions being implemented in MJava

3.Project Work

Java-Based Microprocessor ' 3.Project Work
3.2 DEVELOPMENT AND SIMULATION

Development of the project were approached by systematical individual
approach. The design was subjected to a work breakdown system (WBS) of a
full integrated processor system. Necessary modules are identified and
approach individually — ALU, stacks, program counter and data path. With the
individual approach, each module were able to be subjected to several test
simulations. These modules were then integrated using the data path design,
done in behavioural style and tested again as a whole unit. This can ensure that

the integrity in whole and reliability of each module is proven.

Simulation of the processor can be done in one of two ways or both
combined, of Verilog HDL model and/or block diagram schematics. While
Verilog HDL model is a text-based apf)roach, block diagram schematics is a
graphical-based approach that Seems-a}ﬁpropriate and easier option for simple
and fundamental operations. However,é when designing a far more complex
processor, it is best to choose to model in Verilog. Simulation and synthesis
will go through two procedures of fun’étional_ s.imulation and timing simulation.
The former only concerns of its fundafn_entai of functional operation, while the

latter takes into account additional parameter — processor clock.

3.2.1 Using Behavioural Verilog

It was decided that the defsign of the entire project would done in
bebavioural Verilog. The behavioural programming is similar to
programming in Céand C+t, all:c')wingi designers to define their circuits
based on how it would behave or function. This is contrast to RTL coding
style that define components of circuits and their connections. With
behavioural style, the code is more transparent, portable and extensible

even to other people who decided to proceed the project works.

3.2.2 Using Extensive Test bench

In this project, some glitches resulted in possibility of no hardware

12

Java-Based Microprocessor _ 3.Project Work

implementation for verification, Thus, to verify that the design works, an
‘extensive testing fixture must apply. Simulations were to run with strict
rules, experimenting with every possible corner case — reaching the limit

of what the modules can do and go beyond it.

3.3 HARDWARE VERIFICATION

When designing the microprocessor, the targeted device must be kept in
mind. Most times, a circuit design for a particular device are not synthesizable
on other device. Although the codes are written in portable behavioural style

and the simulations shows expected execution.

It is highly prefcrréd to verify circuit design with hardware
implementation. But circ_uitisynthesis can be an issue. Early in the project
progression, it has been decidedj the design will be implemented in Altera's
FPGA developmeilt kit, but halfway through, it was switched to Xilinx's FPGA

due to limitation in Quartus I] compiler.

13

Java-Based Microprocessor : | 4. Results & Discussion

4. RESULTS & DISCUSSION

4.1 ARITHMETIC & LOGIC UNIT

The Arithmetic & Logic Unit (ALU) was design as a 32-bit signed two's
complement arithmetic and logic ex:/aluator. The inputs into the module consists
of two input arguments, which are to be evaluated, and an instructions selector.
The output from the modules are the evéluation resultants, embodied with three
status flags — Z flag for indicating zero value resultant, V flag for indicating an
overflow and N flag for indicating the sign of the resultant. Table 4.1 shows
the relevant ports declared insidé the ALU module.

The status flags were designéd from scratch, although the two Z and N
flags are very simple. Z flag indicate a zero value resultant, achieved by
ANDing the resultant bits. Z ﬂég:is set to one (1) if the resultant in zero in
value and reset to zero (0) if it:i_s a non Zero value. N flag indicate the sign of
the resultant, and thus only faking the most significant bit (MSB) of the
resultant into argument. N ﬂagfis set to one (1) if the resultant is a negative
number and reset to zero (0) if it is positive. V flag has more complex design,
where it has to indicate whethei' an ovérﬂow had occur while evaluating the

input arguments. This usually can occur with the following situations,
+ Two positive values add:é'(ji. -
- two negative values subtfécted.
» Two values (of ahy ?sigﬂ)éimultiplied.
V flag was design by aippjéying Karnaugh Map and supplying the above
situation. V flag is set to one (l) if an overflow occur and reset to zero (0) if

not. Figure 4.1 presents the Vefiflog equation used to define these flags.

14

- Java-Based Microprocessor

4.Results & Discussion

)2

11

Figure 4.1: Status flag defined in ALU module

i

Table 4.1: Ports in MJava ALU module

A input | 32 First argument of the evaluation.

B input | 32 Second argument of the evaluation.

instr input 3 Select operation to perform. Also act as 2
trigger to invoke operation selection.

Cout outpi.lt 1 The 33" bit, reserved for future use. -

result | output | 32 The resultant of the ALU evaluation.

flag_z | output | 1 Asserted when the resultant is zero

flag v | output | 1 Asserted when a an overflow occur

flag n | output | 1 Asserted when the resultant is a negative
number.

Input instr is fetched directly from th;e opcode itself. This should

behave like a switch, where the module will be asserted when the input instr is

assigned with a valid opcode from the bytecodes stream. Operations are chosen

with a case statement, putting the input instr into the case argument. A total of

27 instructions available for execution, with highly extensible data path. The

instructions chosen are fundamentals and significant to ensure reliability of the

processor. Table 4.2 shows list of instructions available in the ALU module.

15

Java-Based Microprocessor ' 4,Results & Discussion

Table 4.2: Instructions executed within ALU module

] No operation.

nop

iadd . Add two int operands. Two values pdpped
from stack.

isub ° Subtract two int operands. Two values
popped from stack.

ineg . Negate an int operand. One value popped.

ishl) Arithmetic shift left. Two values popped.

ishr ® - | Arithmetic shift right. Two values popped.

iand ¢ . | Boolean AND two int.

ior e | Boolean OR two int.

ixor ° Boolean XOR two int.

« Note: Imp. = implementation.

At the moment the implementation status shows only limited instruction
had been implemented. The ALU module is designed to use take operations
selection arguments directly from the opcodes for high extensibility. Any
instruction that put two values into argument with one resultant can be easily
implemented inside the module. Full Vefilog code and simulation result for the

ALU module can be referréd in Appendix B1.

4.2 OPERANDS AND RETURN. STACKS

The operands and return stacks are instantiated from the same LIFO stack
module design. However, instéad of having a single stack for operands and
return addresses, they are separated to increase integrity in performing nested
subroutines and preveﬁt mismatch fetch of operands for operation, It would
give a great complexity if the operands and return addresses were to share

same stack, resulting in an inefficient and larger-size cores.

Stack operates in two modes; (i) push operand onto top most location and

(ii) pop operand(s) from the one or two top most location(s). Any data pﬁshed

16

Java-Based Microprocessor . 4.Results & Discussion

and popped from the stack is of 32-bit width. Prior to push operation, smaller
data types are signed extended, while larger data types are broken into several
32-bit width data. Pop operation will output a 32-bit wide data. It is up to the
central processing to combine or disjbint the necessary operands. For the pop
operation, a single pop will read the top of stack and write to the output port 1.
A double pop will read the top two of stack and write to the output port 1 and
port 2. |

The module design utilise hardware memory array for the stack, declared
as type reg. It can occupy up to eight (8) data of 32-bit width, stored in
systematic bottom-top fills. Stack pointer indicates where data input will be
stored, starting at bottom most location and increase by a location after each
successful push and decrease by a location after each successful pop. The
memory array also behave like a circular buffer. Tt rotates to the top most
location whenever it reaches lower than the bottom most location and rotates to

the bottom most location whenever it reached upper that the top most location.

As in the ALU module, input instr[1:0] act as a trigger to execute the
selected operation, where it must be reset if not in use. The instruction value is
fetched during the decode phase in the data path, An output stStore provides
indication whenever data has successfully been pushed, assisting the data path
to determine the appropriate next operation Table 4.3 shows relevant ports

declared inside the stack modhile,

The design approach maintain the stacks safe from data corruption due to
manual overrides in input pdrts. The stacks remain inside the core without
direct connections and accessed only via double doors system, where
instructions instr are not direct association of any opcodes — unlike the ALU.
Figure 4.2 shows how the memory array was declared. Full Verilog code and

simulation results can be referred in Appendix B2.

17

~ Java-Based Microprocessor : ~ 4.Results & Discussion

Table 4.3: Poris in MJava stack module

clk input | 1 Clock.

reset n input | Reset port

data_in input | 32 Data input (for push) port.
read_n input 1 | Enable read (pop) port.
write n input 1 Enable write (push) port.
pop_2 input | 1 Double pop indicator.
data_outl | output | 32 1 Qutput port 1.
data_out2 | output | 32 Output port 2.

pushed output | 1 Successful push indicator.
popped output | 1 | Successful pop indicator.

module’ MStack (clk; data;, instr, stStore; out);:
parameter ‘dep=8; spdep=3, lop=32; " - ‘

input clk;

HLop-datar
-output. stStore;
“output’ "Lop-out; ses

Figure 4.2: MJava stack module declaration. reg type stackmem[7:0] is

the actual stack memory array.

18

Java-Based Microprocessor 4.Results & Discussion

4.3 PROGRAM COUNTER

Program Counter (PC)} is also a stack-based module, but instead, utilises
a FIFO .type stack. The purpose of PC is mainly to provide a storage to streams
of instruction like a long buffer. Thus it allows bytecodes stream to be kept in
close to the processor cores. The implementation of FIFO-type PC also add the

extensibility to perform branch and jump instructions.

The design is fairly simple and common. It has five (5) input port and
four (4) output port. Table 4.4 shows the relevant ports declared inside the PC
module. The PC has a memory array pc_mem{] that stores all the instructions,
in bytes. The memory array has 16 locations of a byte wide. The small size is
chosen as experimental value. It is easily extensible with only a line of code
change. ‘Since PC is FIEO stack, it has two pbinters — read and write. These
pointers indicate the re},fad and write location within the pc mem[] array.
Whenever a buffer overflow or underflow occur, a flag is asserted at the output
port (seq Table 4.4). An internal counter is used to determine whether or not

overflow or underflow occur.

This module start with writing instructions, whenever write port is
asserted, from external programmer, buffering them into the memory array.
During this period, no oj)eration is allowed in the data path and read operation
remain de-asserted. As soon as the write port get de-asserted, it indicate to the
data path that it is ready; for processor bperations. Succeeding operation (read
from PC) is controlled by the data path, until interrupted again whenever

write port is reasserted. The cycle continues.

Table 4.4: Ports in MJava i)rogram counter module

clk : ock.

reset_n input | 1 Reset port

data_in input | 32 Data input (for push) port.
read_n input 11 Enable read (pop) port.

19

Java-Based Microprocessor 4,Results & Discussion

write n input | 1 Enable write (push) port.
data_out | output | 32 Output port. '
full output | 1 PC overflow indicator.
empty output | 1 PC underflow indicator.
half output | 1 Indicate pointer at midway.

4.4 DATAPATH AND MODULES INTEGRATION

Datapath module is a collections of wires and ports connecting the
necessary external modules to their respective operation. Datapath is
responsible for the integration between modules instantiated. It provides the
way for the ALU, operands and return stacks, and program counter to function
as a single unit. Design technique employed in the project is simple, but as
number of instructions increase, it also increase in complexity. As in other

modules, the data path was developed using behavioural style Verilog.

Datapath module has three modules instantiation - the ALU and operand
stack and program counter. The data path utilises many always@ block,
triggering action only when certain input changes values. PC fetches bytecodes
stream by bytes to the data path, whenever pc_read is asserted. It then decode
the opcode fetched and translated it for proper parameters setting in the first
always block. Following through the sequence, the opcode parameters will
indicate which modules to assert ﬁr.st and whether to use the stacks, local
variables, etc. Operations in the data path are of sequential flow. The basic

operation sequence is presented in Figure 4.5.

Since microprocessor circuits are meant to execute concurrently, design
in sequential flow resulted in a mixed complexity, Nevertheless, the
performance were not taxed since the complexity only lies on the codes and not

the circuitry. The simulation runs several instructions and testing the

20

Java-Based Microprocessér : 4. Results & Discussion

functionality of each modules. Instructions fetched are shown in Figure 4.4,
where immediate values were pushed several times onto the stack before

calling the addition, subtraction, negate and swap operations.

Datapath has four (4) input port and one (1) output port. Its significant
input argument is byte in[], used to transfer instructions from external
programmer and buffer them inside the PC module. The byte;in[] isof a
byte wide, which correspond to the PC byte wide input, storage and output. A
master reset port, is used to reset and reinitialized all inputs and pointers.
Table 4.5 shows the reIevant ports-declared inside the MJava main data path

module.

Decoding instructions required several always@ statements that get
asserted whenever the input arguments changes values. As a result, many regs
and wires are declared along with the inout ports to assist the decoding
operations. Figure 4.3 shows the MJava Datapath module declaration. Full

code of the MJava Datapﬁth module can be referred in Appendix B4,

Table 4.5: Ports in MJava Datapath module

clk | put 1 | Cloc.

reset input | 32 Manual reset.
ctrlword | input | 2 Fetch the bytecodes.
result output | 1 - Output to external.

21

Java-Based Microprocessor . 4.Results & Discussion

‘['BYTE_WIDTH-1:0] byte in;

. ['INT WIDTH-1:0] out_streams

i

Figure 4.3: MJava datapath module declaration. Many type of regs and

wires were declared and used.

_always @(posedge clk) begin -
8 % wr:. ‘-._='; e ‘

Figure 4.4: Lines of code fetched for testing datapath functionality.

22

Java-Based Microprocessor

4,Results & Discussion

Table 4.6: Instructions implemented in MJava processor.

nop No operation.

iadd Add two int operands. Two values popped
from stack.

isub Subtract two int operands. Two values
popped from stack.

ineg Negate an int operand. One value popped.

ishl Arithmetic shift left. Two values popped.

ishr Arithmetic shift right. Two values popped.

iand Boolean AND two int.

ior Boolean OR two int.

ixor Boolean XOR two int.

bipush An immediate byte is pushed onto the
operand stack,

sipush An ir_nmcdiafe short is pushed onto the
operand stack.

swap The top two value in operand stack are

swapped and pushed back onto the stack.

istore <n>

Store value from operand stack into local -
variable of corresponding <n>

iload <n>

Load value from local variable of
corresponding <n> and push onto top of
operand stack.

iconst_<n>

' onto the operand stack.

Pushingf constants of corresponding <un>

if icmp<cond>

Branch if int compatison succeeds. Two-
byte jul;np address is embodied in the
instruction stream. Two values popped from
the stack, where valuel is top of stack and
value2 is next top of stack.

if icmpeg

succeeds if and only if valuel = value2

if icmpne

succeeds if and only if valuel #value2

if_icmplt succeeds if and only if valuel < value2
if_icmple succeeds if and only if valuel < value2
if icmpgt succeeds if and only if valuel > value2

if icmpge

succeeds if and only if value! > value2

23

Java-Based Microprocessor 4.Results & Discussion

Figure 4.5: Sequential flow of MJava data path

24

Java-Based Microprocessor :) 5.Conclusion & Recommendation

5. CONCLUSION & RECOMMENDATION

Project title Java-based Microprocessor is a huge topic by itself.
However, with proper planning and specific target, it did not appear to be as
bverwhelming as some people would assume. Throughout the project several
constraints and obstacles faced that in some ways change the direction.
Nevertheless, the project manage to achieve its basic objective of

implementing the core of JVM into a hardware circuitry.

The ALU module was developed accordingly, achieving its target as
computation module for arithmetic and logical operations. All necessary ALU
instructions had been implemented but with the lack of more complex

synthesis.

The stacks module, the operand stack and program counter is most
convincing fully synthesizable modules. Their exceptions lies on proper' design
from highly reliable sources, proven and reused many times by others. Circuit

synthesis are presented in Appendix C.

The Datapéth module achie&e its purpose, but lack of understanding in
data path design led to lengthy HDL code. It meets the objectives of linking
other modules and allow them to'work as unit and allow further extension of
additional instructions easily-withé)ut tempering with original design. Decision
to develop the data path usiﬁg coﬁ%lprehénsible behavioural style coding proves

to be advantageous.

Performance may not be the strong side of this project, yet it is a pilot
project for other colleagues to pursue in the future. The implementation of
JVM instructions are limited to bdsic operations involving only integers, shorts
and bytes. Although the data path design was unique, there is room for

improvement especially in term of pipelining.

25

Java-Based Microprocessor ‘ 6.References

6. REFERENCES

f1] Harlan McGhan and Mike O’Connor, picoJava: A Direct Execution

Engine for Java Bytecode, Sun Microsystems

[2] Dr. Andreas Steininger and Dr. Peter Puschner, Java Optimized
Processor, 2005

{3] Bernd Paysan, b16 —a Forth Processor in FPGA, 2003

[4] Tim Lindholm and Frank Yellin,. The Java Virtual Machine
Specification, 2™ Edition, Addi?son-Wes!ey

[5] The Java Virtual Mafchine Specification, Sun Microsystems, 1998

[6] Philip Koopman Jr.; Stack Computers: The New Wave, Mountain
View Press, 1989 |

[7]1 Carpinelli, Computef Systems Organization & Architecture

[8] Mark Gordon Amold, Verilog Digital Computer Design. Algorithms
to Hardware, Prentice Hall PTR

'[9] Weng Fook Lee, ;Veri[og Coding fof Logic Synthesis, Wiley-

Interscience

26

Java-Based Microprocessor

Apbendix Al:
Appendix A2:
Appendix A3:
Appendix A4:
Appendix B1:
Appendix B2:
Appendix B3:

Appendix B4:

7. APPENDICES

MJa_va ALU Verilog Code

MlJava Stack Verilog Code

MJava Program Counter Verilog Code
MJava Datapath Verilog Code

MJava ALU Simulation Results

MJava Stack Simulation Results

MlJava Program Counter Si.mulation Results

MlJava Datla.path Simulation Results

Appendix C: Stacks Synthésized Circuits -

Appendix D1:

Appendix D2:

JVM Instructions Hexadecimal Values

JVM Instructions and Operands Description

27

7.Appendices

Java-Based Microprocessor ' 7.Appendices

APPENDIX Al: MJAVA ALU VERILOG CODE

28

D:\Programs\Xilinx\ ISEworkingdir\MJava\MALU.v

“define Lop [lop-1:0]
“define Loc [loe-1:0]
“timescale lnsg / 1lns

module MALU(A, B, instr, Cout, result, flag z, flag v, flag n);:
parameter lop=32, loc=8;

input “Lop A, B;

input “Loc¢ instr;

output “Lop result;

output Cout, flag_z, flag v, flag n;

reg “Lop result;
reg Cout;
wire flag_z, flag n, flag v;

always @(A or B or instr)
begin
case (instr}

8'h84: {cout, result} = (A + B); // increment (need touch up)
8'h60: {Cout, result} = (A + B}; // addition

8'he4: {Cout, result} = (A - B}; // subtraction

8'h74: {Cout, result} = (~A + 1'bl}; // negation

8'h78: {result} = (A << B); // shift left

8'h7a: {result} = (A »> B); // shift right

8'h7e: {result} = {A & B); // boolean AND

8 'h8o: {result} = {& | B); // bhoolean OR

8'h82: {result} = (A * B); // boolean XOR

endcase
end

assign flag =z
assign flag n
assign flag v

result? 0 : 1;
result[lop-1];
(ingtr==2'b01)?
((A[lop-1] * result[lop-1]1} & (Bflop-1]1 * result [lop-1}})
({instr==2'b1l0)?
{({A&[lop-11 * result[lop-1]} & (Bllop-1] ~" result[lop-1]))
1'b0);

nonou

sndmodule // alu

age: 1

Java-Based Microprocessor 7.Appendices

APPENDIX A2: MJAVA STACKS VERILOG CODE

29

D:\Programs\Xilinx\IgEworkingdir\MJava\MStack.v

“timescals 1ns / 1ns

// DEFINES
“define DEL 1 // Clock-to-output delay. Zerc

// time delays can be confusing

// and sometimes cause problems.
“defins ST_DEPTH 8 // Depth of stack (number of bytes)
“define ST _BITS 3 // Number of bits required to

// represent the FIFQ size
“define INT_WIDTH 32 /f width of stack data

module MStack(

clock,
reset_n,
data_in,
read_n,
write n,
pop_2,
data outl,
data_outz,
pushed,
popped) ;
// INPUTS
input clock;
input reset_n;
input I“INT WIDTHE-1:0} data_in;
input read n, write_n;
input pop_2;
/{ OUTPUTS
output [TINT _WIDTH-1:0] data_outl, data_out2;
Jutput pushed;
sutput popped;
// SIGNALS DECLARATIONS
vire clock;
wire reset n;
vire {"INT_WIDTH-1:0] data_in;
vire read n, write_n;
vire pop_2;
reg ["INT WIDTH-1:0] data_outl, data out2;
reg pushed;
reg popped;
reg [TINT WIDTH-1:0] st_mem["ST_DEPTH-1:0];

// How many locationg in the stack
// are occupied?
reg [*ST _BITS-1:0} st_pointer;

!/ BSSIGN STATEMENTS
// MAIN CODE

// Look at the edgea of reset n
1lways @({reset_n} begin
if {reset n == 1'bl) bhegin
// Reset the stack pointer
DEL;

assign st_pointer = 8T DEPTH - 1'bl;
assign popped = 0;
assign pushed = 0;
end
else begin
DEL;

deassign st_pointer;
deassign popped;
deassign pushed;
end
:nd

'/ Look at the rising edge of the clock
ilways @(posedge clock) begin

// Popping data from stack

if (read_n == 1'bl) begin

‘age: 1

D:\Programs\Xilinx\ISEworkingdir\MJava\MStack.v

// output the data

data_outl = # DEL st_wewm[st_ pointer];
//st_mem[st_pointer] = 32'h0000C000;

// Decrement the stack pointer

// If the pointer has gone beyond the bottom of stack,
// bring it to the top of stack.

if (st_pointer == 0)
st_pointer = #°DEL “ST BITS'blll;
else

st_pointer = #"DEL st_pointer - 1;

if {pop_2 == 1'bl) begin
data_out2 = # DEL st_mem[st_ peointer];
//st_mem[st_pointer] = 32'h00000000;
if (st_pointer == 0)
st_pointer = # DEL “ST BITS'bill;
else :
st_pointer = # DEL st_pointer - 1;

end

popped = ~popped;
end
// Pushing data ontoc stack
if (write_n == 1'bl) begin

// Increment the stack pointer
// 1f the pointer has gone beyond the top of stack,
// bring it te the bottom of stack.
if (st_pointer == “ST DEPTH-1}
st_pointer = #°DEL ST BITS'bo;
else
st_pointer = # DEL st_pointer + 1;
// Store the data
st_memist_pointer] = #°DEL data_in;
pushed = ~pushed;
end
znd
sndmodule

‘age: 2

Java-Based Microprocessor 7.Appendices

APPENDIX A3: MJAVA PROGRAM COUNTER VERILOG CODE

30

J:\Programs\Xilinx\ISEworkingdir\MJava\MPC.Vv

“timescale 1lns / 1lns

// DEFINES

"define DEL 1 // Clock-to-output delavy. Zero
// time delays can be confusing
// and sometimes cause problems.

‘define PC_DEPTH 16 // Depth of PC (number of bytes)

'define PC _HALF 8§ // Half depth of PC
// {this avoids rounding errors)
‘define PC_BITS 4 // Number of bits required to
// represent the PC size
‘define BYTE_WIDTH 8 // Width of PC data
wdule MPC{
clock,
reset_m,
data_in,
read n,
write n,
data_out,
Eull,
empty,
haif};
'/ INPUTS
nput clock;
nput reset_n;
nput ["BYTE WIDTH-1:G] data_in;
TIput read n;
nput write_n;
/ OUTPUTS
wutput ["BYTE WIDTH-1:0] data_out;
nueput full;
utput empty;
utput half;
/ SIGNALS DECLARATIONS
ire clock;
ire reset_n;
ire ["BYTE_WIDTH-1:0] data_in;
ire read _n;
ire write_n;
eg ["BYTE WIDTH-1:0] data_out;
ire full;
ire empty;
ire haif;
eg ["BYTE WIDTH-1:0] pc_mem[0: PC_DEPTH-1] ;

// How many locations in the PC
// are occupied?

eq [“PC_BITS-1:0} counter;
eg ["PC_BITS-1:0] rd_pointer;
eg [PC_BITS-1:0] wr_pointer;

/ ASSTGN STATEMENTS

ssign #°DEL full = (counter == "PC_DEPTH) ? 1'bl : 1'bo;
ssign # DEL empty = {(counter == 0} ? 1'bl : 1'bo;

ssign #°DEL half = (counter »= "PC_HALF} ? 1'bl : 1'bs;

/ Look at the edges of reset n
lways @{reset_n) begin

if (reset_n == 1'bl) begin
// Reset the PC pointer
#"DEL;

assign rd_peinter = “PC _BITS'bLO;
assign wr_pointer = “PC_BITS'b0;
assign counter = “PC_BITS'b0;
end
else begin
f# "DEL;
deassign rd_pointer;
deaseglign wr_peointer;

age: 1

D:\Programs\¥Xilinx\I$Eworkingdir\MJava\MPC.v

end

and

deassign counter;

// Look at the rising edge of the clock
always @{posedge clock) begin
if {read n == 1'bl) begin

// Check for PC underflow
if {counter == 0) begin
$display ("\nERROR at time %0t:", stime}:
$display ("PC Underflow\n"};
Sstop; // Use $stop for debuuging
end
// If we are doing z simultaneous read and write,
// there is no change to the counter
if (write n == 1'b0} begin
// Decrement the PC counter
counter <= # DEL counter - 1;
end
// output the data
data_out <= #°DEL pc_mew[rd_pointer];

// Inerement the read pointer
// Check if the read pointer has gone beyond the
// depth of the PC. If so, set it back to the
// beginning of the PBC i
if (rd pointer == “PC_DEPTH-1)
rd_pointer <= # DEL “PC_BITS'bO0;
elge
rd_pointer <= #°DEL rd pointer + 1;

end
if (write n == 1'bi) begin

mad

// Check for PC overflow

if {counter >= “PC_DEPTH) begin
Sdisplay ("\nERROR at time %0t:", Stime);
sdisplay ("pC Overflow\n®);

// Use $stop for debugging
$stop;
end

// If we are doing a simultaneous read and write,
// there is no change to the counter
if (read n == 1'b0) begin
// Increment the DC counter
counter <= # DEL counter + 1;
end

// Store the data
pc_mem[wr_pointerl <= #"DEL data_in;

// Increment the write pointer
// Check if the write pointer has gone beyond the
// depth of the P¢. If so, set it back to the
// beginning of the PBC
if (wr pointer == “PC_DEPTH-1}
wr_pointer <= # DEL “PC_BITS'bQ;
else
wr_pointer <= # DEL wr_pointer + 1;

end

ndmodule /! PC

‘age: 2

Java-Based Microprocessor 7.Appendices

APPENDIX A4: MJAVA DATAPATH VERILOG CODE

31

D:\Programs\Xilinx\ISEworkingdir\MJava\MJava.v

“timescale 1ns / 1ns

/ /DEFINES

"define BYTHE WIDTH 8
"dafine INT WIDTH 32
“define PER 10
“define DEL 1

module MJava(clk, reset, write, byte_in, out_stream);

// INPUTS
input alk;
input reset;
input write;
input ["BYTE_WIDTH-1:0} byte_in;
// OUTBUTS
output ["INT WIDTH-1:0] out_stream;
// BIGNALS DECLARATIONS
wire clk;
wire : reset;
wire write;
wire [“BYTE_WIDTH-1:0] byte in;
reg ["INT WIDTH-1:0] out_stream;
wire [TBYTE_WIDTH-1:0] byte out;
wire full;
wire empty;
wire ‘half;
wire [7INT WIDTH-1:0] at_outl;
wire [TINT WIDTH-1:0] 5t_out2;
wire ["INT WIDTH-1:0] aluResult;
wire st_pushed;
reg pc_read;
reg [TINT_WIDTH-1:0] buffa;
reg [TINT WIDTH~1:0] buffB;
reg [“BYTE_WIDTH-1:0] bytel;
reg ["BYTE_WIDTH-1:0] byte2;
reg ["BYTE_WIDTH-1:0] cbobde ;
reg ["BYTE_WIDTH-1:0] aluOper;
rey [1:0} counter_ pc;
reg 1:01 counter_op;
reg colriter 5f;
reg [1:0] op_count;
reg [1-0] clk_count;
regq decode_n;
req opcode_n;
reg operand_n;
reg execute n;
reg exacute clk;
reg st_read;
reg st_write;
reg pop_2;
reg [*INT WIDTH-1:0] local_vwvar [0:4];

'/ Instantiating the necessary modules for the hardware
'/ configuration and their ports designations.

.clock (clk),
.reset_n{reset),
.data_in(byte_ in),
.read n{pc_read),
.write_n{write),
.data_out (byte_out},
cfull (full),

.empty {empty) ,

~half thalf)

Vi

M3tack opstack(

age: 1

D:\Programs\Xilinx\ISEworkingdir\MJava\MJava.v

.clock (clk),
.reset_n{reset),
.data_in{buffa),
.xead n(st_read),
.write_n{st_write)},
-pop_2{pop_2),

.data outl(st_outl),
.data_outz(st_out2),
-pushed (st_pushed) ,
.popped (st_popped)
Vi

MALU arith/{
JA(buffay,
.B(buffB),
.instr{aluQper),
.Cout (Cout},
.result (aluResult),
flag z(flag =},
.flag v(flag v},
.flag n(flag_n)
b

// MAIN CODE

always @(reset) begin
pc_read <= G;
counter pc <= {;
counter op <= 0;
clk count <= 2;
decode_n <= 0;
execute_n <= 0;
execute clk <= 0;
gt_read <= 0;
st_write <= 0;
pop 2 <= 0;

end

always @{posedge clk) begin
// Filling up PC or gtart decode instructions
if (write)
decode_n <= 0;
else begin
clk_count <= clk_count + 1;

if (elk_count == 0)
opcode <= 8'h00;
if{elk count == 3) begin

counter_pc <= 0;

counter_op <= 0;

op_count <= 0;

operand n <= 0;

decode_n <= 1;

opcode_n <= 1;

pc_read <= ~pc_read; // enable read from pc

end
end

// Wussup
end // end of always@

always @(execute n cr execute_clk) begin
if {execute_n} begin
case (opcode)
8'h10: begin
buffad <= bytel;
st_write <= ~st_write; // enable write to stack
end
8'hll: begin
buffh <= {bytel, byte2};
st_write <= ~st_write;
end
endcase
end
end

always @{opcode) begin
// Decode the instructions

lage: 2

D:\Programs\Xilinx\ISBworkingdir\MJava\MJava.v

case {opcode)

8'hl10: begin
op_count = 1;
counter_op = 0;
pc_read = ~pc_read;

end

8§'hll: begin

op_count = 2;

counter_op = 0;

po_read = ~pc_read;
end

8'h60: begin
pop_2 <= ~pop_2;
st_read <= ~st_read;
end
8'h64: begin
pop_2 <= ~pop_2;
st_read <= ~st_read;
end
8'h74: begin
st_read <= ~st_read;
end
8'h78: begin
pPop_2 <= -~pop_2;

st_read <= ~5t_read;

end
8'h7a: begin
pop 2 <= ~pop_2;
st_read <= ~st_read;
end
8'h7e: begin
pop_2 <= ~pop_2;
gt_read «= ~st_read;
end
8'h80: begin
poOp_2 <= ~pop_2;
st_read <= ~st_read;
end
8'h82: begin
pop_2 <= ~pop_2;
st_read <= ~st_read;
end
8'h5f: begin
pop_ 2 <= ~pop_2;
st_read <= ~8t_read;
end

3'h3b: begin

st_read <= ~st_read;
end
8'h3c: begin

st_read <= ~st_read;
end
8'h3d: begin

st_read <= ~s5t_read;
end
8'h3e: begin

st_read <= ~gt_read;

end
8§'h02: begin

I

/]

1/

//
//
f/

’
i
1

/

i/
’/
/i

//
//
/i

l/
’/
/f

r
r
/

’/
1/
i

/
l/
//

//
1

i
l

/
//

/7
//

/7

Case: bipush

enable read from pc
enable read from pc
Case: iadd

enable pop2

enable read from stack
Case: isub

enable pop2

enable read from stack
Case: ineg

Case: ishl

enable pop2

enable read from stack
Case: ishr

enable pop2

enable read from stack
Case: iand

enable popZ

enable read from stack
Case: ior

enable pop2

enable read from stack
Case: ixor

enable pop2

enable read from stack
Case: swap

enable popz :
enable read from stack
Case: istore_0

enzble read from stack
Case: istore_1

enablie read from stack
Case: lstore 2

enable read from stack
Case: istore 3

enable read from stack

Case: iconst_ml

buffA <= “INT WIDTE'hFFFFFFFF;
st_write <= ~st_write;

end
8'h03: begin

i

Case: iconst_0

. buffA <= “INT WIDTH'h00000000;
st_write <= ~st_write;

end
8'h04: begin

/

Case: iconst 1

buffh <= “INT WIDTH'hC0000001;
st _write <= ~pt_write;

end
8'h05: begin

i

Case: iconst_2

buffa <= “INT_WIDTH'h000000062;
st_write <= ~st_write;

end
8'h06: begin

I/

Case: iconst_3

buffa <= “INT_ WIDTH'h00000003;

‘age: 3

D:\Programs\Xilinx\ISEworkingdir\MJava\MJava.v

st_write <= ~st_write;

end

8'h07: begin // Case: iconst_4
buffh <= “INT WIDTH'hOOOO0004;
st_write <= ~8t_write;

end

8'h08: begin // Case: iconst_5
buffA <= “INT WIDTHE'h0000C005;
st_write <= ~gt_write;

end

8'hia: begin // Case: iload_ 0
buffA <= local_var(0];
st_write <= -st_write;

end

8'hlb: begin // Case: iload 1
buffd <= local var[l]:
st_write <= ~gt_write;

end

8'hilc: begin // Case: iload_2
buffa <= local_variz];
st_write <= ~Bt_write;

end

8'hld: begin // Case: iload_3
buffa <= local_var[3];
st_write <= ~st_write;

end

endcase
end

always @(byte_out) begin
counter op = counter op + 1;
if (opcode n) begin
opcode = byte out;
opcode_n = ~opcode_n; // opcode is assigned

pc_read = ~pc_read; // disable read from pc
end
if (counter op == 1)
bytel = byte out;
if {counter op == 2}
byte2 = byte out;
if {counter op == op count) begin
pc_read = ~pc_read; // disable read from pc
// for operands retrieval
execute_n = ~execute_n; // enable for EX stage
end

end

always @{st_pushed} begin
if (decode_n) st_write = ~st_write;
case {opcode}
8*h10: begin
execute_clk <= ~execute clk;
execute_n <= -~execute_mn; // end of EX stage
end
8'hll: beagin
execute_clk <= ~execute cik;
execute n <= ~eXecute n; // end of EX stage
end
8§'h5f: begin
if (~counter 5f) begin
buffa <= st_out2;
st_write = ~st_write; // enable write to stack
counter 5f <= counter 5f + 1;
end
end
endcase
end

always @(st_popped) begin
case {opcode)

B8'h60: begin // iadd
pop_2 <= ~pop_2; // disable peop2
st_read <= ~st_read; // disable read from stack

buffA <= st_outi;
buffB <= st _out2;
aluQper <= opcode;

‘age: 4

D:\Programs\Xilinx\I$Eworkingdir\MJava\MJava.v

end
8'h64: begin // isub
pop 2 <= ~pap_2; // disable pop2
st_read <= ~st_read; // disable read from stack

buffA <= st_outl;
buffB <= st_out2;
aluCper <= opcode;
end
8'h74: begin // ineg
st_read <= ~st_read; // disable read from stack
buffA <= st_outl;
aluOper <= opcode;

end
B8'h78: begin // ishl
bop_2 <= ~pop_2; // disable pop2
st_read <= ~5L_read; // disable read from stack

buffa <= st_outl;
buffB <= { at_out2[4],

st_out2[3],

st_outz[2],

st_outz[1],

st_outz[0}}; // select 5 LSB
aluCper <= opcode;

end
8'h7a: begin // ishr
POp_2 <= ~pop_2; //{ disable pop2
st_read <= ~st_read; // disable read from stack

buffA <= st_outl;
buffBE <= { st out2][4},

st_out2[3},

st_out2{z},

st_out2f1],

st_out2[0] }; // select 5 L&B
aluOper <= cpcode;

end
8'h7e: begin // iand
bop_2 <= ~pop_2; // disable pop2
st_read <= ~st_read; // disable read from stack

buffa <= st_outl;
buffB <= st_out2;
alulper <= opcode;

end
8'h80: begin // ior
pop_2 <= ~pop_2; // disable popz
st_read <= ~st_read; // disable read from stack

buffa <= st_ocutl;
buffB <= st_out2;
aluOper <= opcode;

end
8'h82: begin /{ ixor
pop 2 <= ~pop_2; // disable pop2
st_read <= ~st_read; // disable read from stack

buffA <= st_outl;
buffB <= st_out2;
aluGper <= apcode;

end

8'h5f: begin // swap
buffa <= st_outil;
st_read <= -st_read; // disable read from stack
st_write <= ~st_write; // enable write to stack
counter 5f <= 0; // reset swap counter

end

8'h3b: begin // istore 0
st_read <= ~st_read; // disable read from stack
local var([0] <= st_outi;

end

8'h3c: begin // istore 1
st_read <= ~s5t_read; // disable read from stack
local_var([l] <= st_outl;

end

8'h3d: begin // istore_2
st_read <= ~st_read; // disakle read from stack
local_var{z] <= st_outl;

end

8'h3e: begin // istore_3
st_read <= ~st_read; // disable read from stack

age: 5

D:\Programs\Xilinx\ISEworkingdir\MJava\MJava.v

local_var[3] <= st_outl;

end
endcase
end

always @(aluResult) begin
buffA <= aluResult;
aluOper <= 8'h00;
st_write <= ~st_write;
end
andmodule

// enable write to

stack

age: 6

Java-Based Microprocessor ' 7.Appendices

APPENDIX B: MJAVA SIMULATION RESULTS

32

1 :eBed | 1MOY 900z SwWLL PJRpUBIS BINSUIS ABlel £0:6€1LL 0L ABIN Pa teleg eINjoenyRly 15T BABMIN:AIIUS

SU Q0¥ su 0GE su 0p¢ SU 05T su 00z
ﬁ______w___ﬁ___m__,______________________A,__ﬁ______
00000000 3000000 0OBOONN! S0OCRN0N

BEQQ0008] souesrof mmooooooTF

00000000 00000003) weoref ﬂoooooow.

00000000 2pAGLOOG] wewdb] PPI20000—
_ 8.808& 4290000}

e — X e — I e e ey s B

2000008 00000002 2pqq1.000)

i _1 i

EB000000) qL000000) PP220300)

mm.oooooo; 8880& ouaﬁco& 1%950000) PP320000] 99000000)

mmooooowx ﬂocooowx UEOS%Q

oooooowmx uEasoﬁ& tmooowg’

_ I [

| 08| 8.) 09) el 1) oo 1] aq]_ o] el o1

EE2000000) 91060000 PP220000)}—

mmooooohx 8808& %ESO& 4330000 PPo2G000) 99060000f
1 os}f gL o2} LL)Y LY oLl oLl
! o8] [09y MEED ppf 2af 11 aql oL ee| oL}
L Ll — 1 el e e e

000000} JBA |B20)/INN/IS] BABMNY/

o]
Ol
[zl
[£]
¥l
[s]
E)
FA

T wieul)spioesdonnasy AR Y

UnsodneAnn/\ST BARTN/

g/umenannasy eaeripy/

ee000000——— W/UINBANNST BABTIN/

N0 18NN AS) eARrW/

LINoTIsANNASY BARRI/

Zakgannpsy eAer/
Loykaanns) BARPN/
SUNYANNAS) BABLIS

BR000000}———— VHNGANNASY BABLW/

apoadoinnjsy eAsrW/
IN0TSIRQANNAST BABRTIY
peas adannjsy BABPNY

1 :ebed | 1Moy 900Z BuilL plepuRlS BINSUURG ARIRIN 9F:E€:11 01 AR PO [eleq :ainpajyaly 181 eABr:AINUT

lol

[11

[z]

[e]

¥

[s)

[al

1

wew Isppelsdognngsy BAer/
ﬂ_il_,m:%nﬂugmag
ZIN0G T 1SANNAS) BARTI/
LINCTISANNASY BARTIY
Zakaannasy eARPY
Lelfganngs) eaerpy/
AUngAnmASE BABMINY
VHNGANN/SY BTN/
apoadognnjsy eaeri/

N0 BIRGANNAST BABTI/

“ 1 i | s10oe I | | _ i | | s me | f | | ! | St 00z i | | I _ | | | 1 = _cmF i | i 1
00000000 OO XXXXO00 X000 00000} JeA™ |EDD|ANNAS] BABTIN/
)
PP290000)_ooooocto] 44000000}
9.1 00000) 00000000 99000000} oooocmo& PP220000}
{ X — { 1 X D00 o o oo et ot oned | x
R S I I O A | I B R [I
q9000000)
99000000 %o.oomos
PP}
I 09} 5] of) qqy oL} eej oL}
99000000}
wtooow& 99000000) PP2op000] 99000000 Be000000———
i og{ 51 L oY oLy
{ 09) 55 2 R ES Q@) o1 eel oL}
| | 1] 1 [| N S P N S B

peal odannjsy eaerpy

U~ pueladoAnnAasy BAErIN/

} :ebed | :MOY 9O0Z SWIL pJepuels Bnsulued AEjeW 0Z:E:g) 0L ABIN POM 1S1eq Binosiiuany 18y BAeri:Ainug

SuU 005 SU Q0% Su 00€ su 00T Su 0oL 0
L e N N NN AN

4 oY v%ﬂx@mm C6f el 2] of sf vl e 2f 1+ tewuod Impauncodannasy eaeriy

Wy 9] 31 3] qf" el6(g L) of gf viel T gl 0} sewiod papeunoodaNnaSt BB/
of LY z €] vl 59l 2 2] 6f e qf of pf o] I ugmghﬁlmk vY € 2l 1fe Jewncapsunoodanngs eaeriyy

[51]
00} : 1
15— len)
08} [z1]
87) _ Nl
09— foul
g fsl
_ L) 7l
[o]
[l
[l
[€]
[zl
w
[o]

wew adasunosdanngisy eaerp/

{xx 0045088200458 | L PP32 1] q9 0l BB 0L

T : O L jleyuayunoodannasy eaeriy/

§ . . | [fdwapeiuncodannasy eaerinyg

InaeIunosdanngs) BABLIAY

00) i) 0s) 8. ool #feeit{ pefeofii) gg¥oL] eejoL} NG BlepUSILNOadANNASY BABPIY

[uTampasunaadAnnAS) BARTINY

}
C
-
C
.
|

U TpESAeUNCOdANNAS) BAEL Y/

o0y 1s)oafszfos) wfee) i1 pr oo 1ifaajoreelol]- uiElRpLRIUNCOdANNAST RARTINS
1 1

] | I 1 Macarmutand annaay Bavatas

[I I

| :o0ed | :mox 900Z Wi prepUelS Binsuued AB[BIN 6S:0FZL 01 ABIN PO 12)BQ Binjoenyoly 181 BABPW:AIUT

___:_:w_m_cﬂ_um___________:iwr__oﬁ:_______ﬁ____m__._oﬁ_um________________mF_hon_vN________________m._._om_.__________“__:_._o
#220000) 53]
I¥]
[s1
[a}
€2000002) 74}
i 1 [! { x i Y 000000 0000000 100000, DN J0G0000 T00C0000K 10000000 0000000 WIS 1S /{oe1SdoANN ST BBy
L1 L] L L L L L L] | e IsAnnAST BABCI/
|] L] L] L] 1 W oINoaxXsANNAST BARIINY
EE000003) 00000002 2Pq91000, UnsaXNBANNAS] BARFNY
mmmoooooy_ Eooom_c& PP350000} anLEAnnAS enerI/
— m&ooo%x Sooowoax 9pqq1.000} 1850000} PPOS0000) 99000000) EE000000— VABNEANNASY BARTIY/
|A wmmooooox aaooowocx PP220000) ZINoTISANNAS) BARLIAY
ee00000°) oowoooowx uuannooox tmmooow“ LINO ISANNAST BARPIY/
_ # PP} Zeyannnas) eAepp/
00f 15] 08) 8.1 09 R0 E Y aqfor| ee)or}— Lelkaannas) BBy
e2000000) 4L000000] PP920000 AUngANNASs; TBABTINS
_ mmmoooomgoooowoaﬂ 9pad1L000) 1250000 _PPo20000)___ 99000000] 22000000} YUNAANNAST eART W/
00} I5f ogj | o09f L.ﬁ | oLl oL} spoodosnngsy eAer/
] P 1] | Ll L |] L |] L U spoadonnas) eaePiy/
LT 1 1 L L] | U ynoaxaAnnASY BABIIN/
o) 15} osf 84] 09y sfeafui{ ppYeafit] qqjoL) eE[0L) o ekgnngsy BARL I/
_ [L [L N o S 1 Y O I O | pees odANNAST eABT Iy

U puesadognngsy eaerpy/

0} joYos)ss{oa) #fes] i1 ppfoolL

1jagjorYeefo1]-

n

Ul alAqsi eAeriny/
SIMAST BB

:lmuoownb_._zbﬂlm_:mﬁE /

I 18581081 BARPINY

f

SU 00G
Prrrrrrnt

[

SU 00%

[A

i

Su 0o
I

z :ebed | :MOY OOZ BWIL pIEpUEIS BNSUIUS ABIRN 6SI0F/ZL 0L ABIN PO :91eq 1aInPalydly 15T BAsriN:ANus

trrirrrrryrrrrrrgnt

su 00z
PRI

Su 001
Pt

bl

rernd

[T O O Y

0

|’IA

EB000000}

mmooo,.oowv__

nnnnnnna¥

R

:

00000000 S00ROBMNK XXXOK KGO0 J00000CX} JBA [Ba0|INNAST BARTY/

iol

1

Java-Based Microprbcessor 7.Appendices

APPENDIX C: MJAVA STACKS SYNTHESIZED CIRCUIT

33

3004

sa00d
-
{ ko
w2
5 (| RO R B0
. o
a 3 L0 cterod
3504 —
oo <z s R
v <zl mRd W PR
P, . 90004 <tie) ~mRaOd T DR
"Lt e
anad
sy — <brtOON”
. | p——
= HOOU™ <o 1 AR <ETAYER
“TIEROa o —
<EIEvIa 2300
T ed 5 Tpm egagaogu”
- p————a
0004
visd f—
v — o
R vam |— e “ G|
e £
x e I
z I«M da3 |
_||m. <zipops”
Do giemnd
BRI [
. -
K] 000 cospo0eaT|
wey |
o
<oLeeq @M
)
—0<] - -
wiesng e ooy
_ w Ny <o "]
DTV L3000 < |a00004 B Ty
] . I I P S
vim | — o} { .
G [
il am —— P00
wry 0005~ -
B2 E] [
m ey I <SR TR0 L R T <0

<E>1ajUnod

<-IBjunos

Adws ~ <0>J3junoa

s |

—<]
<g=lajunoy ||.A
<]
—<

35015 |

U 1858l |

YANY
N pects \l
S (‘
PRV TN Iy [—
<(rE=-guaav A2
DI1¢] oy
g8y ——
<0:€>D <0:g=0
anNg
0. no ejep <0:2>800 gam FER
<0 L>¥ig Ty
<} E>gdady (
e
4.v_._0A PeOIS
Yisy —— u3Ho
YN3 [(———
A
— <100 Yam
8 X g1 1y
x5l
WYY ey <0ig=
anND
<Hng
umogdn
paufiisun 006l
— A L=t
E— —
o) i
CE e o <0:E>Y

u"peal

U UM

< peal

Java-Based Microprocessor ' 7.Appendi¢es

APPENDIX D1: JVM INSTRUCTIONS HEXADECIMAL VALUES

34

"CHAPTER 10

Opcode Mnemomcs

0 (0x00)....cccomnvimrrrcrmennerirererens nop
1 (0X01)..ccorirreerierineiienn, aconst_null
(0007 FOP O iconst_ml
3 (0X03) e iconst_0
4 (0x04).cnecrirecrrreieee e iconst 1
R (0): 115 PR iconst_2
6 (0X06)......cooerrerirniirerrnnn iconst_3
7 (0X07).cvvivveinnn reereenere e iconst_4
LR (00 T iconst_5
R (0001 R Iconst_0
10 (0X02) .o Iconst_1
11 (0X0b)....ccoveerrecreeens s . fconst_0
12 (0X0C) ccovcrnerrnrvnreerierinans feonst_1
13 (0X0d).vcireeieesinne, feonst_2
14 (0X0€) ... oeercvererrrererennne dconst_0
15 (0X0D) coveerevmrenrnecrinnns dconst_1
Y (1410) bipush
| (170 1§ T sipush
18 (0X12).uivecverecreennsesnsesiresasnnns Idc
L R(S) I Ide_w
20 (0X14) e IdeZ2_w
21 (0X15) e, ilpad
P2 (1.3 17 O Iload
PAR (1> 30 fload
24 (0x18).............. e dload
25 (0X19).cmiceeeeree e aload
26 (0X18).0ueereceeieeireeecreeien, iload 0
27 (0X1DB).cerreeer e iload_1

by Opcode

28 (0X1C) oot iload_2
29 (0x1d)......covveerevvvcrsvennnnnn.. iload_3
30 (0X1€) v lload_0
K (16 3 lload_1
32 (0%20)...cnreriernrerivrrrreeees Hoad_2
33 (0X21) i lload_3
34 (0X22) ccvvirrrrrreerrnnerrenes fload 0
35(0%23) v fload_1
36 (0X24) veoeeeeeeereer s, fload_2
37 (0X25) oo fload_3
38 (0X26) .. dload_0
39 (0X27) oo dload_1
40 (0X28)...eoeecinrireainnrneies dload_2
41 (0X29) oo dload_3
42 (0X22) cooverrerrereereeee e aload_(
43 (0X20) ..oviriiccsircine aload_1
N (D93 TR alpad_2
45 (0X2d) coeverceeece e aload_3
(.91 [iaload
47 (0X20) oo, laload
48 (0%30) e faload
LU R (1) € | P daload
S{UK(12' 7)) T aaload
S1 (12 €.X) T baload
52 (0X34) v caload
SEN (1) €) PR S saload
RT: X (1312 TO OO Uv istore
55 (0X37) ceerrrnrecnrirersnreresinsenens Istore

429

56 (0X38) vt fstore
R (0:12) VO dstore
58 (0x3a) e astore
RN (1)1 TR istore_(0
60 (0X3C) .vvvvrveereceeereeerrsrienins istore_1
61 (0x3d)...cccoveeirnrrirniivinene, istore 2
P (1) € 7-) IR istore_3
63 (0X3D).ciiiirireririeiereaen Istore 0
T (1)) Istore_1
65 (0X41) o Istore_2
66 (0X42)cviririreererineeieeans Istore_3
YA (T T fstore 0
68 (0x44)............ e fstore_1
69 (0X45).coevrerirreresrrerernennns fstore 2
70 (0X46) ..o.vevrrerrrrirerisirernnens fstore_3
E N (1) C) TR dstore_0
72 (0X48) e, dstore_1
FEX (1)) P dstore_2
74 (0X48) ccoveerivevererrsnssernnns dstore_3
ERE(031) T astore_0
76 (0X4€) ovveiiccirecnririnnenons astore_1
77 (0%4d) ..o astore 2
(LT (0T F astore_3
LA (D)5 3 R iastore
L UN (1) &1) lastore
81 (0X51)ureiicsimnccrrrmenecrnns fastore
82 (0X52).oovvrcrnriccrrccnnrninanns dastore
83 (0X33) v aastore
84 (0X54) cenerrrrerreereieesenen. bastore
AR (G5 RS castore
86 (0x56)......c..... reerrerererenesns sastore
87 (0X57) e e pop
88 (0x58) v e pop2
89 (0X59).ervervrnreeererreeesnresnnines dup
90 (0X58) ..eecerrreeenerrrresaerens dup_x1
3 (%)) TN dup_x2
92 (0X5C) cvvvverrreirrerreseereeseaennns .. dup2
93 (0X5d) ...ovvcrvecreenrererrnnes dup2_x1
94 (0X5€).evinirininiiirinnaens dup2_x2
LR R (157§ P swap

THE JAVA™ VIRTUAL MACHINE SPECIFICATION

97 (0X61) .o, ladd
98 (0X62) ...crreererireerererreieaenans fadd
(1)) SO dadd
100 (0%64) ..covnvrrerreererireerenee isub
101 (0X65) cvevvverererereeeeeeriesnnen Isub
102 (0X66) ...t errene fsub
103 (0X67) v, dsub
104 (0X68) ...cvereririrercrreccnenan, imul
105 (0X69) covevnvvvrerecerirrecesieene, Imul
106 (0X62) ...covevevrenireererereerrrenen, fmul
107 (0X6Db) ..o, dmul
108 (0X6C) .ovvvverreerrrrncrneeressnseenns idiv
109 (0X6d) ...c.oovvevireiverecrereeeeeneas Idiv
100 (0X6€) ..c.crvenrmrrrrervrnrrrrnss e fdiv
111 (0X6D) iveeicveeeeeeeeerreenee ddiv
112 (0X70) oo, irem
RN (1) TSR Irem
14 (0X72) oo, frem
115 (0X73) e, drem
116 (0X74) oo ineg
117 (0X75) oo Ineg
118 (0X76) vucvrveverrcercrecrreeirenine fneg
R ET(0 i) T dneg
120 (0X78) ceeirveirerereeeeerescanan ishl
121 (0X79) ovevevrreeeeerereeniseiseen Ishl
122 (0X72) veveverceeeeeees e ishr
123 (0X70) ieoeecerceerccereresnnenen, Ishr
D2 (1L S iushr
125 (0X7d) ivvvrererers v, lushr
126 (0X7€) ivvvnreeneerrencrensrssssnnaenn. iand
127 (0x7) i weveereasnaesenensaes land
128 (0XB0Y Lo eeesens ior
129 (OXB1) fuvveveirereetee s lor
130 (0%82) e ixor
JRII(17:%) TR Ixor
132 (0X84) .o iinc
IRER(U:5) D i2l
IRER (5.1 JT i2f
135 (0X87) v eerrnn e i2d
136 (0X88) v.vevvvrreeeernereeermeerreeereenen 12i
137 (0X89) .ot 2f

OPCODE MNEMONICS BY OPCODE

SR (1)) T 12d
TEL R C1) WY
140 (0X8C) .vovrreerrrircereeeirnrniennienins 121
ISR (1)13: 1) S f2d
|G (1)'3 1) T d2i
SERI(00 53 dzl
144 (0X90)....vvevvveen reeesseseseressnes dzf
T (1 T N i2b
146 (0X92)....oooee e i2c
147 (0X93)..vcoricririreecieneenrres s i2s
EL R (1 L) femp
J T (04 1) T, fempl
150 (0X96)...ccvccriecrcrrrerrneens fempg
151 (0X97) e dempl
YA (1) 1) I dempg
KR L) ifeq
154 (0X92)covvvrvinenriiisrennens ifne
IR (05) T ifit
156 (0X9€) ...oovrrvrreerrerrreinesisnseennen. ifge
157 (0X9d) e ifgt
158 (0X9€) rvvervrerrrereresessssesnsssssennnnns ifle
IRIR{1)) i I if_icmpeq
160 (0%20)..ovceceiiecrecisrinas if_icmpne
161 (0xal) oo if_fcmplt
162 (0xa2)......ccovverriricenen if_icmpge
TXR (. CX) P if_icmpgt
164 (0Xa4) oo if_icmple .
165 (0Xa5) ... vvvrreccreerenens if_acmpeq
166 (0Xa6)ccrveerereieerenne,s if acmpne
167 (0XAT) evrmrveeeereeeseeenscensreeeens goto
168 (0X28) .vvvernrvvrnrirrnsissscnsesnnenas Jjsr
169 (0X29) ...vueereeeeeeeeeererereseneaes ret
170 (0X28) ...ooceerreeercnne tableswitch
171 (Oxab)........... R lookupswitch
172 (0XAC) ..o ireturn
173 (0xad) ..o Ireturn
174 (0Xa€) ..cverreeeereerieera, freturn
175 (0xaf)....coccoveirieerresraenn, dreturn
176 (0XbO0)....ceerverrereerererne, areturn
177 (0XB 1), return

178 (0xb2) getstatic

179 (0xb3) ..o putstatic

180 (0xb4) e, getfield
T181 (0xXbS) i putfield
182 (0xb6)......ccocueueeee invokevirtual
183 (0xb7) e invokespecial
184 (0xb8)....coccorvrvrerenanns invokestatic
185 (0xb9)....ceveninnee. invokeinterface
186 (0xba)oeenunee. xxxunusedxxx
TR (1>.42] 1) DS new
188 (0XDBC) .oivevereieieeerens newarray
189 (0xbd) ... anewarray
190 (0xbe)covvecrreranenn arraylength
191 (0B, athrow
192 (0xc0) .ooverveerecrerreeeninne checkcast
193 (0xc1) i instanceof
194 (0xc2) ..oeeveerennee, monitorenter
195.(0%€3) .cvvvvirrenernennns monitorexit
196 (0XC4) vevveeerrrreereeere e wide
197 (0XC5) ovrenriranne. multianewarray
198 {0XCO) oo ifnull
199 (0XC7) oeeerirererirerenins ifnonnull
1200 (0XC8) vvvrvvierirmrecrerrneens goto_w
201 (0XC9) vevreeeceeeee e, jsr_w
_quick opcodes:
PLXN (1) {1) DU Idc_quick
204 (0XCC) vvovverrrrerrecrennas Ide_w_quick
1205 (0xed) ovrerivrennnee. Idc2_w_quick
206 (0XC&) vvuvrrrrnene getfield_quick
1207 (Oxcf).......oevveen... putfield_quick
208 (0Xd0) ... getfield2_ quick
1209 (0xd1) ..uveeeeee. putfield2_quick
210 (0xd2).....cccceounnne. getstatic_quick
211 (0%d3) .o putstatic_quick
212 (0xd4).....cooueeeee. getstatic2_quick
213 (0xd5).ccorerrennes putstatic2_quick
214 (0xd6).......... invokevirtual_quick
215 (0xd7).... invokenonvirtual_quick
216 (0xd8)............ invokesuper_quick
217 (0xd9)............ invokestatic_quick
218 (0xda)....... invokeinterface_guick

431

432

219 (0xdb). invokevirtualobject_quick

221 (0xdd).coooeverreeren. new_guick
222 (0xde) ...ccoenenen, anewarray._quick
223 (0xdf)....... multianewarray_quick
224 (0xe0)coveeneen, checkcast_quick
225 (0xel)..cerernnnees instanceof_quick
226 (0xe2)..... invokevirtual_quick_w
227 (0xe3) vovvrenee. getfield_quick_w
228 (0xe4) vevvvrrerinen, putfield_quick_w
Reserved opcodes:

UL (13T} breakpoint
254 (0xfe)..vovveeeeeecreeeeiean, impdepl

255 (0XED) oo impdep2

THE JAVA™ VIRTUAL MACHINE SPECIFICATION

Java-Based Microprocessor 7.Appendices

APPENDIX D2: JVM INSTRUCTIONS AND OPERANDS DESCRIPTION

35

JAVA VIRTUAL MACHINE INSTRUCTION SET

mnemonic | mnemonic
Operation Short description of the instruction
Format mnemonic
operandi
operand?
-Operation
Forms mnemonic = opcode
Stack ..., valuel, value2 =
..., Value3
Description A longer description detailing constraints on operand stack con-
tents or constant pool entries, the operation performed, the type of
the results, etc,
Linking If any linking exceptions may be thrown by the execution of this
Exceptions instruction they are set off one to a line, in the order in which they
must be thrown.
"Runtime If any runtime exceptions can be thrown by the execution of an
Exceptions instruction they are set off one to a line, in the order in which they
must be thrown. ‘
Other than the linking and runtime exceptions, if any, listed for an
instruction, that instruction must not throw any runtime exceptions
except for instances of VirtualMachineError or its subclasses.
Notes Comments not strictly part of the specification of an instruction are

set aside as notes at the end of the description.

Figure 6.1 An cxample instruction page

Each cell in the instruction format diagram represents a single 8-bit byte'. The
nstruction’s mnemonic is its name. Its opcode is its numeric representation and is

153

154

THE JAVA™ VIRTUAL MACHINE SPECIFICATION

. given in both decimal and hexadecimal forms. Only the numeric representation is

actually present in the Java Virtual Machine code in a class file.

Keep in mind that there are “operands” generated at compile time and embed-
ded within Java Virtual Machine instructions, as well as “operands” calculated at
run time and supplied on the operand stack. Although they are supplied from sev-
eral different areas, all these operands répreSent the same thing: values to be oper-
ated upon by the Java Virtual Machine instruction being executed. By implicitly
taking many of its operands from its operand stack, rather than representing them
explicitly in its compiled code as additional operand bytes, register numbers, etc.,
the Java Virtual Machine’s code stays compact.

Some instructions are presenited as members of a family of related instructions
sharing a single description, format, and operand stack diagram, As such, a family
of instructions includes several opcodes and opcode mnemonics; only the family
mnemonic appears in the instruction format diagram, and a separate forms line
lists. all member mnemonics and opcodes. For example, the forms line for the
Iconst_<I> family of instructions, giving mnemonic and opcode information for the
two instructions in that family (Iconst_0 and Iconst_1), is '

Forms Iconst_0=9 (0x9),
Iconst_1 =10 (Oxa)

In the description of the Java Virtual Machine instructions, the effect of an
instruction’s execution on the operand stack (§3.6.2) of the current frame (§3.6) is
represented textually, with the stack growing from left to right and each word
(§3.4) represented separately. Thus,

Stack ..., valuel, valueZ =
..., result

shows an operation that begins by having a one-word valueZ on top of the operand
stack with a one-word valuel just beneath it. As a result of the execution of the
instruction, valuel and valueZ are popped from the operand stack and replaced by a
one-word result, which has been calculated by the instruction, The remainder of the
operand stack, represented by an ellipsis (...), is unaffected by the instruction’s exe-
cution.

The types Tong and doub e take two words on the operand stack. In the oper-
and stack representation, each word is represented separately using a dot notation:

JAVA VIRTUAL MACHINE INSTRUCTION SET 155

Stack ..., valuel wordl, valuel word2, value2 wordl, value2 word2 =
..., result word1, result word?2

The Java Virtual Machine specification does not mandate how the two words are
used to represent the 64-bit Tong or double value; it only requires that a particular
implementation be internally consistent.

JAVA VIRTUAL MACHINE INSTRUCTION SET 171

bipush | bipush

Operation Push byte

Format bipush
byte
Forms bipush =16 (0x10)
Stack =
..., value

Description The immediate byte is sign-extended to an int, and the resulting
value is pushed onto the operand stack.

198

THE JAVA™ VIRTUAL MACHINE SPECIFICATION

dup | | dup

Operation Duplicate top operand stack word

Format | “dup I
Forms dup = 89 (0x59)
Stack .or, Word =

..., word, word

Description The top word on the operand stack is duplicated and pushed onto
the operand stack.

The dup instruction must not be used unless word contains a 32-bit
data type.

Notes Except for restrictions preserving the integrity of 64-bit data types,
the dup instruction operates on an untyped word, ignoring the type
of the datum it contains.

JAVA VIRTUAI MACHINE INSTRUCTION SET

dup2 | | dup?

Operation Duplicate top two operand stack words

Format | dup?2 |
Forms dup2 = 92 (0x5c)

Stack ..., word2, wordl =
' ..., wordZ, wordl, word2, word]

Description The top two words on the operand stack are duplicated and pushed
onto the operand stack, in the original order.

The dupZ instruction must not be used unless each of wordl and
word?Z is a word that contains a 32-bit data type or both together are
the two words of a single 64-bit datum.

Notes Except for restrictions preserving the integrity of 64-bit data types,
the dup? instruction operates on untyped words, ignoring the types
of the data they contain.

201

230 THE JAVA™ VIRTUAL MACHINE SPECIFICATION

goto | goto

~ Operation Branch always

Format goto
branchbytel
branchbyte2

Forms goto=167 (0xa7)

Stack No change

Description The unsigned bytes branchbytel and branchbyte? are used to
construct a signed 16-bit branchoffset, where branchoffset is
(branchbytel << 8) | branchbyte2. Execution proceeds at that offset
from the address of the opcode of this gotoe instruction. The target
address must be that of an opcode of an instruction within the
method that contains this goto instruction.

238 THE JAVA™ VIRTUAL MACHINE SPECIFICATION

iadd iadd

Operation Addint

Format | fadd |

Forms iadd = 96 (0x60)

Stack ..., valuel, value? =
..., result

Description - Both valuel and valueZ must be of type int. The values are popped
from the operand stack. The int result is valuel + value2. The
result is pushed onto the operand stack.

If an iadd overflows, then the result is the low-order bits of the true
mathematical result in a sufficiently wide two’s-complement for-
mat. If overflow occurs, then the sign of the result will not be the
same as the sign of the mathematical sum of the two values.

240

THE JAVA™ VIRTUAL MACHINE SPECIFICATION

iand | : iand

Operation Boolean AND int

Format | iand |
Forms iand = 126 (0x7¢)
Stack ..., valuel, value2 =

v.r, TESUIE

Description Both valuel and value2 must be of type int. They are popped from
the operand stack. An int result is calculated by taking the bitwise
AND (conjunction) of valuel and value2. The result is pushed onto
the operand stack.

242 THE JAVA™ VIRTUAL MACHINE SPECIFICATION

iconst_<i> iconst_<i>

Operation Push int constant

Format [iconst_<i> |

Forms iconst_ml =2 (0x2)
iconst_0=13 (0x3)
iconst_1=4 (0x4)
iconst_2 =5 (0x5)
iconst_3 = 6 (0x6)
iconst_4="17 (0x7)
iconst_5=8 (0x8)

Stack =

ey <i>

Description Push the int constant <i> (-1, 0, 1, 2, 3, 4 or 5) onto the operand
stack.

Notes Each of this family of instructions is equivalent to bipush <i> for
the respective value of <i>, except that the operand <i> is implicit,

JAVA VIRTUAL MACHINE INSTRUCTION SET _ 245

if_icmp<cond> if icmp<cond>

Operation Branch if int comparison succeeds

Format if_icmp<cond>
branchbytel
branchbyteZ

Forms if_icmpeq = 159 (0x9f)

if_icmpne = 160 (0xa0)
if_icmplt = 161 (0xal)
if_icmpge = 162 (0xa2)
if_icmpgt = 163 (0xa3)
if icmple = 164 (0xa4)

Stack ..., valuel, value2 =

Description Both valuel and valueZ must be of type int. They are both popped
from the operand stack and compared. All comparisons are signed.
The results of the comparison are as follows:

= eq succeeds if and only if valuel = value2
« ne succeeds if and only if valuel # value2
« It succeeds if and only if valuel < value?
» le succeedsif aﬁd'only if valuel < valueZ
» gt succeeds if and only if valuel > value2

+ ge succeeds if and only if valuel > valueZ

246 THE JAVAT™ VIRTUAL MACHINE SPECIFICATION

if_icmp_<cond> (cont.) if icmp<cond> (cont.)

If the comparison succeeds, the unsigned branchbytel and
branchbyteZ2 are used to construct a sighed 16-bit offset, where the
offset is calculated to be (branchbytel << 8) | branchbyte2. Execu-
tion then proceeds at that offset from the address of the opcode of
this if_icmp<cond> instruction, The target address must be that of

- an opcode of an instruction within the method that contains this
if_icmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction fol-
lowing this if_icmp<cond> instruction.

JAVA VIRTUAL MACHINE INSTRUCTION SET : 251

iinc iinc

Operation Increment local variable by constant

Format iinc
index
const

Forms finc = 132 (0x84)

Stack No change

Description The index is an unsigned byte that must be a valid index into the
' local variables of the current frame (§3.6). The const is a immediate
signed byte. The local variable at index must contain an int. The
value const is first sign-extended to an int, then the local variable

at index is incremented by that amount,

Notes The {inc opcode can be used in conjunction with the wide instruc-
tion to access a local variable using a two-byte unsigned index and
increment it by a two-byte immediate value.

252 THE JAVA™ VIRTUAL MACHINE SPECIFICATION

iload iload

Operation Load int from local variable

Format iload

index
Forms iload = 21 (0x15)
Stack =
..., value

Description The index is an unsigned byte that must be a valid index into the
local variables of the current frame (§3.6). The local variable at
index must contain an int, The value of the local variable at index
is pushed onto the operand stack.

Notes The iload opcode can be used in conjunction with the wide instruc-
tion to access a local variable using a two-byte unsigned index.

JAVA VIRTUAL MACHINE INSTRUCTION SET _ ' _ _ 253

iload <n> - iload_<n>

Operatidn Load int from local Variable

Format | iload_<n> |

Forms iload_0=26 (0x1a)
iload_1 =27 (0x1b)
iload_2 =28 (0x1c)
iload_3 = 29 (0x1d)

Stack =
..., value

Description The <n> must be a valid index into the local variables of the cur-
rent frame (§3.6). The local variable at <n> must contain an int.
The value of the local variable at <n> is pushed onto the operand
stack. ‘ '

Notes Each of the iload_<n> instructions is the same as iload with an
index of <n>, except that the operand <n> is implicit.

JAVA VIRTUAL MACHINE INSTRUCTION SET ' | 255

ineg | | ineg

Operation Negate int

Format | ineg |
Forms ineg =116 (0x74),
Stack ..., Value =

..., result

Description The value must be of type int. It is popped from the operand stack.
The int result is the arithmetic negation of value, —value. The
result is pushed onto the operand stack.

For int values, negation is the same as subtraction from zero.
Because the Java Virtual Machine uses two’s-complement repre-
sentation for integers and the range of two’s-complement values is
not symmetric, the negation of the maximum negative int results
in that same maximum negative number. Despite the fact that over-
flow has occurred, no exception is thrown.

For all int values x, ~x equals (~x) + 1.

270

10or

Operation

Format

Forms

Stack

THE JAVA™ VIRTUAL MACHINE SPECIFICATION

10r

Boolean OR int

| ior |

for =128 (0x80)

..., valuel, valueZ =
..., Tesult

Description Both valuel and value2 must both be of type int. They are popped

from the operand stack. An int result is calculated by taking the
bitwise inclusive OR of valuel and valueZ. The result is pushed
onto the operand stack.,

JAVA VIRTUAL MACHINE INSTRUCTION SE.T 273

ishl ishl

Operation Shift left int

Format | ishi |

Forms ishl= 120 (0x78)
Stack ..., valuel, valueZ =
..., result

Description Both valuel and valueZ must be of type int. The values are popped
from the operand stack. An int result is calculated by shifting
valuel left by s bit positions, where s is the value of the low five
bits of valueZ. The result is pushed onto the operand stack.

Notes This is equivalent (even if overflow occurs) to multiplication by 2
to the power s. The shift distance actually used is always in the
range 0 to 31, inclusive, as if value2 were subjected to a bitwise
logical AND with the mask value 0x1f.

274

- ishr

Operation
Format
Forms

Stack

THE JAVA™ VIRTUAL MACHINE SPECIFICATION

ishr

Arithmetic shift right int

| ishr |

ishr = 122 (0x7a)

..., valuel, value2 =
..., result

Description Both valuel and value2 must be of type int. The values are popped

Notes

from the operand stack. An int result is calculated by shifting
valuel right by s bit positions, with sign extension, where s is the

value of the lowfive bits of value2. The result is pushed onto the

operand stack.

The resulting value is L(Va'l uel)/ 2SJ , where s is valueZ & 0x1f.
For nonnegative valuel, this is equivalent to truncating int divi-
sion by 2 to the power s. The shift distance actually used is always
in the range 0 to 31, inclu_si_Ve, as if valueZ were subjected to a bit-
wise logical AND with the mask value 0x1f.

JAVA VIRTUAL MACHINE INSTRUCTION SET

istore | istore

Operation Store int into local variable

Format istore
index

Forms istore = 54 (0x36)

Stack ..., value =

Description The index is-an unsigned byte that must be a valid index into the
local variables of the current frame (§3.6). The value on the top of

. the operand stack must be of type int. It is popped from the oper-

and stack, and the value of the local variable at index is set to value.

Notes The istore opcode can be used in conjunction with the wide instruc-
tion to access a local variable using a two-byte unsigned index.

275

276 ' THE JAVA™ VIRTUAL MACHINE SPECIFICATION

istore_<n> | | - istore_<n>

Operation Store int into local variable

Format . | istore_<n> |

Forms istore_0= 59 (0x3b)
istore_1=60 (0x3c)
istore_2=61(0x3d)
istore_3= 62 (0x3e)

Stack ..., value =

Description The <n> must be a valid index into the local variables of the cur-
~ rent frame (§3.6). The value on the top of the operand stack must
be of type int. It is popped from the operand stack, and the value

of the local variable at <n> is set to value.

Notes Each of the istore <n> instructions is the same as istore with an
' index of <n>, except that the operand <n> is implicit.

JAVA VIRTUAL MACHINE INSTRUCTION SET ' _ o277

isub - isub

Operation Subtract int

Format | isub |
Forms isub =100 (0x64)
Stack ..., valuel, value2 =

..., result

~ Description Both valuel and valueZ must be of type int. The values are popped
from the operand stack. The int result is valuel — valueZ. The
result is pushed onto the operand stack.

For int subtraction, a — b produces the same result as a + (—b).
For int values, subtraction from zero is the same as negation.

Despite the fact that overflow or underflow may occut, in which
case the result may have a different sign than the true mathematical
result, execution of an isub instruction never throws a runtime
exception. '

JAVA VIRTUAL MACHINE INSTRUCTION SET 279

ixor ixor

Operation Boolean XOR int

Format | ixor |
Forms ixor =130 (0x32)
Stack ..., valuel, valueZz =

..., result

Description Both valuel and value2 must both be of type int. They are popped
from the operand stack. An int result is calculated by taking the
bitwise exclusive OR of valuel and valueZ. The result is pushed
onto the operand stack.

280

Jsr
Operation

Format

Forms

Stack

Description

Notes

THE JAVA™ VIR TUAL MACHINE SPECIFICA TION

jsf

Jump subroutine

Jsr
branchbytel
branchbyte?

jsr=168 (0xa8)

=
., address

The address of the opcode of the instruction immediately following
this jsr instruction is pushed onto the operand stack as a value of
type returnAddress. The unsigned branchbytel and branchbyte2
are used to construct a signed 16-bit offset, where the offset is
(branchbytel << 8) | branchbyteZ. Execution proceeds at that offset
from the address of this jsr instruction. The target address must be
that of an opcode of an mstructlon w1th1n the method that contains
this jsr 1nstruct10n

The jsr instruction is used with the ref instruction in the implemen-
tation of the finally clauses -of the Java language (see Section -
7.13, “Compﬂmg finally”). Note that jsr pushes the address onto
the stack and ret gets it out of a local variable. This asymmetry is
1ntent1onal ' :

322 THE JAVA™ VIRTUAL MACHINE SPECIFICATION

nop _ nop

Operation Do nothing

Format | nop
Forms nop =0 (0x0)
Stack No change

Description Do nothing,

JAVA VIRTUAL MACHINE INSTRUCTION SET

pop

Operation Pop top operand stack word

Format | pop |
Forms pop = 87 (0x57)
Stack ..., Word =

Description The top word is popped from the operand stack.

pop

The pop instruction must not be used unless word is a word that

contains a 32-bit data type.

Notes Except for restrictions preserving the integrity of 64-bit data types,
the pop instruction operates on an untyped word, ignoring the type

of the datum it contains.

323

324

THE JAVA™ VIRTUAL MACHINE SPECIFICATION

pop2 - pop2

Operation Pop top two operand stack words

Format l pop2 |
Forms popZ2 = 88 (0x58)
Stack ..., word2, wordl =

Description The top two words are popped from the operand stack.

The pop2 instruction must not be used unless each of word word1
and word? is a word that contains a 32-bit data types or together are
the two words of a single 64-bit datum.

Notes Except for restrictions preserving the integrity of 64-bit data types,
the pop2 instruction operates on raw words, ignoring the types of
- the data they contain.

- JAVA VIRTUAL MACHINE INSTRUCTION SET

ret
Operation

Format

Forms
Stack

Description

Notes

ret

‘Return from subroutine

ret
index

ret =169 (0xa9)
No change

The index is an unsigned byte between 0 and 255, inclusive. The
local variable at index in the current frame (§3.6) must contain a
value of type returnAddress. The contents of the local variable
are written into the Java Virtual Machine’s pc register, and execu-
tion continues there.

The ret instruction is used with jsr or jsr_w instructions in the
implementation of the finally keyword of the Java language (sce
Section 7.13, “Compiling finally”). Note that jsr pushes the
address onto the stack and ret gets it out of a local variable. This
asymmeiry is intentional.

The ret instruction should not be confused with the return instruc-

tion. A return instruction returns control from a Java method to its

- invoker, without passing any value back to the invoker.

The ret opcode can be used in conjunction with the wide instruction

to access a local variable using a two-byte unsigned index. -

329

JAVA VIRTUAL MACHINE INSTRUCTION SET

sipush
Operation
Format
Forms

Stack

Description

sipljsh

Push short _

‘sipush

bytel
byte2

sipush= 17 (0x11)

L
..., value

The immediate unsigned bytel and byte2 values are assembled into

~an intermediate short where the value of the short is (bytel << 8) |

byteZ. The intermediate value is then sign-extended to an int, and
the resulting value is pushed onto the operand stack.

333

334

THE JAVAT™ VIRTUAL MACHINE SPECIFICATION

swap | | -~ swap

Operation Swap top two operand stack words.

Format [swap |
Forms swap =95 (0x5f)
Stack ..., word2, wordl =

..., wordl, word2

Description The top two words on the operand stack are swapped.

The swap instruction must not be used unless each of word? and
word] is a word that contains a 32-bit data type,

Notes Except for restrictions preserving the integrity of 64-bit data types,
the swap instruction operates on untyped words, ignoring the types .
of the data they contain.

