
JTAGGER

By

NORHANA BT YAACOB

Dissertation Submitted in Partial Fulfillment of

the Requirements for the Degree

Bachelor of Technology (Hons)

(Business Information System)

JUNE 2006

Universiti Teknologi Petronas

Bandar Seri Iskandar

31750Tronoh

Perak Darul Ridzuan

•OT-w

N^^V -~<6V\SV>, '^SV-^-^

Approved by,

CERTIFICATION OF APPROVAL

JTagger

by

Norhana bt Yaacob

A project dissertation submitted to the

Business Information System Programme

Universiti Teknologi PETRONAS

In partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION SYSTEM)

(Ms. Norshuhani Binti Zamin)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

January 2006

11

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

NORHANA BT YAACOB

ABSTRACT

Part-of-speech tagging, also called grammatical tagging, is the process of assigning the

words in a text with their corresponding parts of speech like noun, verb, pronoun, or

other lexical class markers to each word in a sentence. Part-of-speech tagging is an

important step in natural language processing.

Part-of-speech tagging is an ambiguous process because a word can represent more than

one part of speech at different times. Most difficult task is because it deals with

ambiguities of the word. A word, phrase, or sentence is ambiguous if it has more than

one meaning. The word 'light', for example, can mean not very heavy or not very dark.

There are two types of ambiguity which are lexical and structural. When a word has

more than one meaning, it is said to be lexically ambiguous. When a phrase or sentence

can have more than one structure it is said to be structurally ambiguous.

The part-of-speech tagging algorithms fall into three classes which are rule-based

taggers, stochastic taggers, and transformation-based taggers. In this project, rule-based

tagging algorithm is used as the mechanism to develop the system which named

JTagger. The tagger initially tags by assigning each word its most likely tag, estimated

by examining a corpus that consists of Penn Treebank Tagsets.

JTagger is automatically performed the tagging process giving reasonable accuracy thus

eliminate the difficulties of hand tagging task for the reader to manually tag a sentence.

Part-of-speech tagging is important since it could help people to understand English

better.

The programming language used in this system is Java because it is an independent

source that can run in any platform including Microsoft or UNIX.

n

ACKNOWLEDGEMENT

My greatest praise to Allah the Almighty that has given me the strength and guide me to

finish my Final Year Project.

I would like to express thousands of appreciations, highest gratitude and sincere thanks

to my supervisor, Mrs Norshuhani bt Zamin for all the valuable guidance, positive and

constructive critics and advice that have been given to me upon completing this project.

I would also like to express my gratitude and thanks to all lecturers and tutors in

Information Communication Technology (ICT) and Business Information System (BIS)

department who eventually helped me during the project and also in sharing their

knowledge and information, which has made this project an unforgettable work. Not to

forget, special thanks to all my friends who helped and share their knowledge with me

during the development of this project.

Lastly, I acknowledge with greatest appreciation to other personnel not mentioned

above whom gave me such great support in completing this project successfully and to

UTP for giving me a chance to gain knowledge and experiences during the Final Year

Project development. A sincere apology from me for all the problems involuntarily

caused. All of your kindness and cooperation are highly appreciated and will be fondly

remembered.

in

TABLE OF CONTENTS

ABSTRACT ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF FIGURES vi

LIST OF TABLES vii

CHAPTER 1 1

1.1 PART OF SPEECH 1

1.2 WORD CLASSES 2

1.3 PART OF SPEECH TAGGING 7

1.4 TAGSET FOR ENGLISH 8

1.4 BACKGROUND OF STUDY 9

1.5 PROBLEM STATEMENT 11

1.6 OBJECTIVES ; 12

1.7 SCOPE OF STUDY 12

1.8 SIGNIFICANT OF PROJECT 13

CHAPTER 2 LITERATURE REVIEW 15

CHAPTER 3 METHODOLOGY 18

3.1 IMPLEMENTATION MODEL 18

3.2 TOOLS 20

3.3 DATA MODEL 23

CHAPTER 4 RESULTS AND DISCUSSION 24

4.1 SCREEN SHOT 24

4.2 TRANSFORMATION RULES 25

4.3 STEPS 26

4.4 ALGORITHM 27

4.4 TESTING 28

CHAPTER 5 CONCLUSION AND RECOMMENDATION 35

5.1 RELEVANCY TO THE OBJECTIVES 35

iv

5.2 SUGGESTION FOR FUTURE WORK EXPANSION AND

CONTINUATION 36

REFERENCES 38

APPENDICES 40

APPENDIX A CLAWS C5 TAGSETS 41

APPENDIX B CLAWS C7 TAGSETS 43

v

LIST OF FIGURES

Figure 1.1 Tagging Algorithm 10

Figure 3.1 Waterfall Model 18

Figure 3.2: JTaggerCorpus 21

Figure 3.3: PermTreebank Tagsets 22

Figure 3.2: Sequence Diagram of JTagger 23

Figure 4.1: JTagger Screen Shot 24

Figure 4.2: Process flow 27

Figure 4.3: Black-box Testing 28

Figure 4.4: JTagger Output 29

Figure 4.5: Monty Tagger Output for Sentence 1 31

Figure 4.6: JTagger Output for Sentence 1 31

Figure 4.7: Monty Tagger Output for Sentence 2 32

Figure 4.8: JTagger Output for Sentence 2 32

Figure 4.9: Performance Graph 34

VI

LIST OF TABLES

Table 1.1 Open Word Classes 3

Table 3.1 Closed Word Classes 3

Table 4.1 Transformation Rules 25

Table 4.3 Table Performance 33

vn

CHAPTER 1

INTRODUCTION

1.2 PART OF SPEECH

Linguists group the words of a language into classes (sets) which show similar syntactic

behavior, and often a typical semantic type. There word classes are otherwise called

syntactic or grammatical categories, but more commonly still by the traditional name

part of speech (POS). Three important parts of speech are noun, verb, and adjective.

Nouns typically refer to people, animals, concepts and things. The typical verb is used

to express the action in a sentence. Adjectives describe properties of nouns. The most

basic test for words belonging to the same class is the substitution test.

Example:

1. Children eat sweet candy.

The noun 'children' refer to a group of people (those of young age) and the noun

'candy' refers to particular type of food. The verb 'eat' describes what children do with

the candy.

Traditionally systems of parts of speech distinguish about 8 categories, but corpus

linguists normally want to use more fine-grained classification of word classes. There

are well-established sets of abbreviations for naming these classes, usually referred to as

POS tags.

1.2 WORD CLASSES

According to Jurafsky [5], part-of-speech for English is divided into two large

categories which are open class type and closed class type.

Word classes are normally divided into two. The open and lexical categories are ones

like nouns, verbs and adjectives which have a large number of members and to which

new words are commonly added. The closed or functional categories are categories

such as prepositions and determiners (containing words like of, on, the) which have

only a few members, and various parts of speech for a word are listed in an online

dictionary, otherwise known as lexicon.

An open word class in linguistics is a word class that accepts the addition of new items

through such processes as compounding, derivation, coining, or borrowing. Typical

open word classes are nouns verbs and adjectives.

Open-class words are not considered part of the core language and as such they can be

changed replaced or dropped from the common lexicon which can encompass many

thousands of them. In English, words that belong to the open class type include the

following parts of speech:

• Nouns

• Main verbs (not auxiliary verbs)

• Adjectives

• Adverbs

• Interjections

A closed word class in linguistics is a word class to which no new items can normally

be added and that usually contains a relatively small number of items. Closed word

class is always relatively few and resistant to change.Typical closed classes found in

many languages are:

• Prepositions

• Determiners

• Conjunctions

• Pronouns

These tables illustrate the two kinds of word more clearly.

Open Word Classes

Noun Verb Adjective Adverb

Abstract: fear, joy Transitive: bite, Descriptive: lazy, Manner:

steal tall reluctantly, keenly,
Concrete: chair, easily, softly

mud Intransitive: live, Comparative: lazier
cry Time: soon, often

Common: boy, Superlative: tallest
town Modal: can, will,

may

Place: here, there

Proper: Fred, Hull
Auxiliary: be, have,

do

Table 1.1 Open Word Classes

Closed Word Classes

Determiner Pronoun Preposition Conjunction

A, the, any, my,
those, which

She, them, who,
that, himself

In, across, at, by,
near, within

And, but, if, or,
while, unless

Table 1.2 Open Word Classes

1.2.1 Noun

Nouns are typically refers to entities in the world like people, animals and things. The

general spelling endings of the plural, the genitive and the combined plural and genitive

are the -s, -'s, and -s' endings or suffixes. A suffix is an affix that occurs at the end of

the word; a prefix is one that occurs at the beginning.).

Examples are:

Dog, tree, person, hat, speech, idea

Nouns are traditionally grouped into proper nouns and common nouns. Proper nouns,

like Regina, and IBM, are specific names or entities. In written English, proper nouns

are usually capitalized. The names of days of week, months, institutions, organizations

are proper nouns. A proper noun is the opposite of a common noun.

Examples of proper nouns:

1. UTP is located in Tronoh, Perak.

2. I have to go to the hospital on Monday.

A common noun is noun referring to a person, place, or thing in a general and usually in

a capital letter only when it begins a new sentence. A common noun is the opposite of a

proper noun.

Example of common nouns:

1. She told him that the train arrived at noon.

2. According to the sign, the nearest town is 60 miles away.

In many languages, including English, common nouns are divided into count nouns and

mass nouns. Count nouns are those that allow grammatical enumeration; that is, they

occur in both the singular and plural and they can be counted.

Example of count nouns:

1. Yesterday, Ali bought one cat.

2. The relationship between the classes is superclass and subclass.

Mass nouns are used when something is conceptualized as a homogeneous group. It

refers to the noun which does not have a plural form, and which refers to something that

we could or usually not counted. A non-countable noun always takes a singular verb in

4

a sentence. Non-countable nouns are familiar to collective nouns, and are the opposite

of countable nouns.

Example of mass nouns:

1. Joseph Priestly discovered oxygen.

2. The rain is falling so heavily.

1.2.2 Pronoun

Pronouns are separated small classes of words that act like variables in that they refer to

a person or entities. Pronouns like 'he', 'which' and 'you' can be used to make

sentences less cumbersome and less repetitive. There are several types of pronouns

which are personal pronoun, possessive pronoun and Wh-pronouns.

A personal pronoun refers to a specific person or thing and changes its form to indicate

person, number, gender, and case.

Example of personal pronoun:

1. She is the only daughter in the family.

2. / have my own reason for not telling the truth.

Possessive pronouns are forms of personal pronouns that indicate either actual

possession or more than often just an abstract relation between the person and some

object. Some of the examples of possessive pronouns are 'mine', 'his' and 'ours'.

Example of possessive pronoun:

1. The book is belongs to his father.

2. Our main purpose for the project is to eliminate the communication cost.

The interrogative pronouns or Wh-pronouns are the same as the relative pronouns. It is

used in certain question forms, or may also act as complement, 'whose', 'which' and

'what' may also be used as determiners.

5

Example of interrogative pronouns:

1. Who came in?

2. Whom do you want?

3. Whose pens are these?

1.2.3 Verb

Verbs are used to describe actions, activities and states of being. The verbs are perhaps

the most important part of a sentence.

Example of verb:

1. She threw the stone.

2. Mohammad walked along the river.

1.2.4 Adjective

Adjective is another inflected word class. An adjective modify a noun or a pronoun by

describing, identifying, or qualifying words. It also includes many terms that describe

properties or qualities. An adjective usually precedes the noun or the pronoun which it

modifies.

Example of adjectives:

1. He is more open about it than she is.

2. They were quite dead.

1.2.5 Adverb

A typical adverb may be recognized by the '-ly' suffix that has been attached to an

adjective, which most of them must be identified by untangling the grammatical

relationships within the sentence or clauses as a whole. Unlike adjective, and adverb

can be found in various places within a sentence.

Example of adverb:

1. She is afriendly person.

2. Hold it closely to you.

1.2.6 Preposition

Prepositions occur before noun phrases; semantically they are relational, often

indicating spatial or temporal relations. Examples of preposition are 'in', 'on', 'about'

and 'during'. Usually, preposition is followed by a noun.

Example of preposition:

1. The plane took offat 8am.

2. It is time to take more responsibilities.

1.2.7 Determiner

Nouns are often preceded by the words 'the', 'a', and 'an'. These words are called

determiners. They indicate the kind of reference which the noun has.

Example of determiner:

1. Those apples are from grandma.

2. A taxi will be here in 10 minutes.

1.3 PART OF SPEECH TAGGING

Part-of-speech tagging is the process of marking up the words in a text with their

corresponding parts of speech. People commonly learn a simplified form of this in their

early years of school, identifying nouns, verbs, and so on. Tags play an important role
*

in Natural Language applications like speech recognition, natural language parsing,

information retrieval and information extraction. This is usually taken to be the first step

in automaticallyprocessing language at the sentence level.

7

A common first step of analysis is to perform automatic grammatical tagging for

categories roughly to find its conventional part of speech. One of the most well-known

tag sets is the Penn Treebank are used in this project. Perm Treebank consists of 42

tagsets.

There are a few reasons why Penn Treebank has been chosen to be the tag set for the

system. Some of the reasons are:

• The Penn Treebank tag sets distinguishes 45 categories found in most

"traditional" grammars, such as adjectives, articles, adverbs, conjunctions,

determiners, nouns, verbs etc. Tags are also attached to major punctuation

marks, indicating their function.

• Since it have a small amount of tagsets, it is much more understandable

especially to new learners in English. Penn Treebank simplifies it tag sets

according to the grammar. For example, VB is actually verb.

• The Penn Treebank tag set distinguishes 9 punctuation tags, while C5 from BNC

Corpus only come out with only 4.

1.4 TAGSETS FOR ENGLISH

The previous section gave broad descriptions of the kinds of syntactic classes that

English words fall into. This section fleshes out that sketch by describing the actual

tagsets used in part-of-speech tagging, in preparation for the various tagging algorithms

to be described in the following sections.

There are a small number of popular tagsets for English, many of which evolved from

the 87-tag tagset used for the Brown corpus. The Brown corpus is a 1 million word

collection of samples from 500 written texts from different genres (newspaper, novels,

non-fiction, academic, etc.) which was assembled at Brown University This corpus was

tagged with parts-of-speech by first applying the TAGGIT program and then hand

correcting the tags.

The other most commercial corpus that have been using in linguist area is the BNC

corpus. The British National Corpus (BNC) is a 100 million word collection of samples

of written and spoken language from a wide range of sources, designed to represent a

wide cross-section of British English from the later part of the 20th century, both

spoken and written. But both of the Brown Corpus and BNC Corpus are not freely

available. It would cost about 500 pounds. Therefore, I have taken the alternative to

collect words in the JTagger by manually tag the sentence or the one reused the one that

is using in Brill Tagger and Monty Tagger.

The two of the most commonly used tagsets are the small 45-tag Penn Treebank tagset

and the medium sized consists of 61 tag C5 tagset used by the Lancaster UCREL

project's CLAWS (the Constituent Likelihood Automatic Word-tagging System) tagger

to tag the British National Corpus (BNC).

The Penn Treebank tagset, which is used in this project, has been applied to the Brown

corpus, the Wall Street Journal corpus, and perhaps partly because of its small size, it is

one of the most widely used tagsets. Here are some examples of tagged sentences from

the Penn Treebank version of the Brown corpus (I will represent a tagged word by

placing the tag after each word, delimited by a slash):

• The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN

other/JJ topics/NNS ./.

1.5 BACKGROUND OF STUDY

Word sense disambiguation is the problem of assigning a sense to an ambiguous word

by using its context. Word sense disambiguation means distinguishing words with the

same spelling or pronunciation. Ambiguity is a pervasive phenomenon in human

languages. It is very hard to find words that are not at least two ways ambiguous.

The two major approaches to this task are rule-based approaches and stochastic or

statistical approaches. There is the third tagging algorithm which is transformation-

based tagging. Rule-based tagging is a method which learns a set of rules automatically

based on a given corpus and then tags words following these rules [1]. The stochastic

approaches computes probabilities of co-occurrence of words based on a given tagged

corpus and then tags texts using these probabilities. Transformation-based tagging

approached to machine learning, and draws inspiration from both the rule-based and the

stochastic taggers.

POS Tagging

Unsupervised

Rule-based stochastic neural rule-based stochastic neural

Maximum likelihood n-grams Baum-Welch

Hidden Markov Yiterbi Algorithm

Figure 1.1: Tagging Algorithm

Part-of-speech tagging can be divided into two categories which are supervised and

unsupervised (Figure 1). Supervised taggers typically rely on pre-tagged corpora to

serve as the basis for creating any tools to be used throughout the tagging process.

Unsupervised models, on the other hand, are those which do not require a pre-tagged

corpus but instead use sophisticated computational methods to automatically induce

word groupings [3,4].

10

1.6 PROBLEM STATEMENT

1.6.1 Word Sense Disambiguation

Part-of-speech tagging is very difficult because it deals with the ambiguities. In this

case, one word could have different meaning. For example, "dogs" which is usually

thought of as a just a plural noun, can also be a verb.

Schools commonly teach that there are eight parts of speech in English: noun, verb,

adjective, preposition, pronoun, adverb, conjunction, and interjection. However, there

are clearly many more categories and sub-categories. For example, adjectives divide

into sub-classes for color, size, number, and other types of properties.

Examples of ambiguous word or sentence:

l.'Bank'

• One meaning refer to the bank where the money transaction happened, but another

one referred to the river bank.

2. 'Content'

• The word 'content' can be a noun or adjective. They are pronounced differently.

The noun is pronounced CONtent and the adjective is conTENT.

3. 'The three big red dogs' and 'The red three big dogs'

'The three big red dogs' is grammatical, but 'The red three big dogs' is not. For

nouns, plural, possessive, and singular forms can be distinguished. In many

languages words are also marked for their case, grammatical gender, and so on;

while verbs are marked for tense, aspect, and other things.

•

11

1.7 OBJECTIVES

The objectives of this project are as follows:

• To help users to understand English better (POS)

In the scope of part-of-speech (POS) tagging, one user can fully utilize the use of

JTagger so that they will understand Englishbetter. JTagger can help the user to know

which category the word belongs to depends on the structure of the sentence. More

over, by using JTagger it could help to distinguish the ambiguous words and the tag set

it belongs to.

• To demonstrate the tagging method computationally

The second objective is achieved at the end of the implementation of this system. In this

case, the implementation of JTagger will help the user to handle mostly on the problem

of disambiguation of words. The research focuses on the development of context-

dependent grammar based on the Penn Treebank tagset. In addition, the system will use

the rule-based approach since it is believed that the accuracy of the tagging method is

much higher than stochastic tagging.

1.8 SCOPE OF STUDY

Part-of-speech (POS) tagging is an important step in natural language processing

because identically written words may have different meanings. Part-of-speech tagging

is the procedure during which the correct tag for an ambiguous word is selected.

Computer programs able to do the process automatically are called part-of-speech

taggers.

In this project, JTagger is capable to tag a sentence by using rule-based tagging

algorithm based on Penn Treebank Tagsets. The project developed a medium sized

learning corpus for English only. For the time being, the corpus consists of

12

approximately about 200,000 words. Since the available corpus like BNC needed to be

paid, I have taken an initiative to manually tag the words and categories to its tag sets.

Other from that, I also took some already tagged sentence from existing program

available in the web such as from Brill Tagger and also Monty Tagger. Both of the

taggers are using Penn Treebank which is the same as the JTagger.

The first semester is more emphasized on the research of the Natural Language

Processing itself and the second semester is the development phase. I have managed to

finish the project within the time frame. Since the research and development in 2

semesters in other ways is in one year, it really given beneficial to me so that more

research and testing can be done. The time frame for the whole project is attached in the

appendices.

1.9 SIGNIFICANT OF PROJECT

• Help to Understand English better

By using JTagger, one could understand English better and used the system to tag a

sentence to know the meaning of the sentence and know which class of the word

belongs to. For nouns, plural, possessive, and singular forms can be distinguished by

using the tagger.

• Information about the word and its neighbors

Part-of-speech tagging in language processing gives a significant amountof information

about the word and its neighbors. These tagsets distinguished between possessive

pronounlike my, your, his, her and its and personal pronouns like I, you, he, and she [2

] . Possessive pronouns are likely to be followed by a noun, personal pronouns by a

verb. This can be useful in a language model for speech recognition or speech tagging.

13

• Reveal the word pronunciation

Another benefits from using part-of-speech tagging, it will reveal about how the word is

pronounced. Taking the word 'discount' into consideration, it could be noun or

pronoun. 'DIScount' is pronounced as noun and 'disCOUNT' is a verb. DIScount means

giving reduction but disCOUNT means miscalculation. Thus knowing the part-of-

speech can produce more natural pronunciations in a speech synthesis system and more

accurate in a speech tagging.

14

CHAPTER 2

LITERATURE REVIEW

According to Roberts [1], "machine learning is concerned with acquiring knowledge

from an environment in a computational manner, in order to improve the

performance ". By speech and language processing, those computational techniques that

are process of spoken and written in human language. The difference between these

language processing applications from other data processing is their use of knowledge.

The process that involves in the machine learning is speech recognition and speech

tagging.

Dolan [2] mentioned that, "the problem ofwordsense disambiguation is one which has

received increased attention in recent work on Natural Language Processing (NLP)

and Information Retrieval (IR) ".The problem in word sense ambiguation is that many

words have several meanings or sense. For such words, there is thus ambiguity about

how they are to be interpreted. The task of disambiguation is to determine which of the

sense of an ambiguous word is invoked in a particular use of the word. This is done by

looking at the context of the word use.

Guilder [3] in her article mentioned that there are two type of part of speech tagging.

She said that, "One ofthe first distinctions which can be made among the POS taggers

is in term of the degree of automation of the training and taggingprocess. The terms

commonly applied to this distinction are supervised vs. unsupervised." Basically,

supervised learning is when we know the actual status for each piece of data that we

15

train, whereas with the unsupervised learning, we do not know the classification of the

data in the training example.

Part-of-speech tagging plays an important role in many areas of natural language

processing. Brill [4] said that, the main purpose of using rule-based approach is

because it is believed that it could give better accuracy than stochastic rule. Rule-based

system learns a set of rules automatically based on a given corpus and then tags words

following these rules. According to Brill [4] "Stochastic tagger have obtained a high

degree of accuracy without performing any syntactic analysis on the input. The

stochasticpart ofspeech taggers make use ofa Markov model which captures lexical

and contextual information. Once the parameters ofthe model are estimated, a sentence

can then be automatically tagged by assigning it the tag sequence which is assigned the

highestprobability by the model. "

A stochastic model of the type described above may work well, as similar sequences of

text will be found easily, and these will have similar tags assigned to them. However, if

the similarity between dictionary entries is too great, this may lead to the common over

fitting problem or not enough variance in the data (particularly the training data) will

not allow the words to be tagged very efficiently. From this, it seems that a rule-based

approach may well work better than a probabilistic one.

Brill[4] also pointed out that the rule-based tagger "has many advantages over these

taggers, including: a vast reduction in stored information required, the perspicuity ofa

small set of meaningful rules, ease offinding and implementing improvements to the

tagger, and betterportability from one tag set, corpus genre or language to another. "

Overheads for programs tend to increase in relation to the size of the file being parsed.

The dictionary is a very large text file, so approaches that require large amounts of extra

memory or disk space would be harder to run, especially if it had to be run on a remote,

larger computer. This would make it extremely cumbersome to run tests and alter the

program if necessary. A small set of meaningful rules would also make it easier to alter

the tagger to improve its performance. The smaller the tag set, the higher the accuracy.

15

However, a very small tag set tends to make the tagging system less useful since it

provides less information. So, there is a drawback here. Another issue in tag-set design

is the consistency of the tagging system. Words of the same meaning and same

functions should be tagged with the same tags.

According to Lee. G, [10] "Both statistical and rule-based approaches to part-of-

speech (POS) disambiguation have their own advantages and limitations. Especiallyfor

Korean, the narrow windows provided by hidden markov model (HMM) cannot cover

the necessary lexical and long- distance dependencies for POS disambiguation. On the

other hand, the rule-based approaches are not accurate andflexible to new tag-sets and

languages." JTagger is using the rule-based method to eliminate the hand-tagging.

Although the rule-based also have its disadvantages and limitation, but it is easier to

develop and manage. Stochastic on the other hand, are developed using formula and

calculation. JTagger can also eliminate the storage used since it only used for storing

the rules and no calculation is needed.

16

CHAPTER 3

METHODOLOGY

The methodology that is used in the project is the Waterfall Model. The main reason

why I chose this model is because it adopted a formal step-by-step approach to the

System Development Life Cycle (SDLC) that moves logically from one phase to the

next. Phases of this methodology are as follow:-

REQUIREMENTS

ANALYSIS

DESIGN

CODING

TESTING

IMPLEMENTATION

MAINTENANCE

Figure 3.1: Waterfall Model

18

• Requirement Planning Phase

At this phase, identifying and analyzing the project requirements is done. The research

is focused on the Natural Language Processing application. The main area that

concerned is on the part-of-speech tagging for the rule-based algorithm. All the

important attributes and key words are identified and used for the whole development.

Finally it goes to the recognition of tools such as hardware and software which are also

being identified and have been list down later in this section.

• Analysis Phase

In the analysis phase, all the steps are identified and measured so that it met the scope of

the project. For example, all the rules that have been developed will be analyzed to

make sure it will give the most reasonable accuracy for the system.

• Design Phase

System Design helps in specifying hardware and system requirements and also helps in

defining overall system architecture. The system design specifications serve as input for

the next phase of the model. In the design phase, the interface of the system is designed

to meet the specific requirements.

• Coding Phase

This is the phase where design is translated into programming language. First, the

corpus which is used as a dictionary to tag the initial sentence is developed. The focus

of this phase is on how to develop the system that will tag a sentence and give a

reasonable accuracy to the user. The tool used is JAVA programming language.

• Testing

The testing phase came after all the phases above are completed. In this phase, the

system is tested by entering the sentence and check whether it is given the correct tag

set for each of the words. Later, the words will retag using the rules that have been

19

developed.

• Implementation

In the implementation phase, the system is presented and ready to be used.

• Maintenance

During the maintenance phase, all the errors are fixed and any problem is required to

solve.

3.1 TOOLS

In preceding this project, below listed the software and hardware that is used.

3.1.1 Software

• Programming tools (Java)

Advantages Using JAVA

The main reason why Java is chosen to be the programming tools in developing this

project is because JAVA is an independent platform. It can run in any operating system

including LINUX or Windows.

Java can do all the file manipulation and text searching while at the same time, it has all

the graphical capabilities of a language like C.

Moreover, it is free. There are free Java implementations fore very type of computer. In

addition, code written and compiled on one type of machine will run on any other type.

This also suggests that Java programs can continuously be use for many years, since the

language is widely used.

20

3.1.2 Corpus

In this project, I have manually tagged the sentence using the existing Monty Tagger to

get the final result. Apart from that, I also has taken some initiative of taking the initial

word with tag sets from the Monty Tagger itself. The total words in the corpus are

approximately 3000 words.

Below is the example how the corpus look like:

File Edit Format View Help

I PP

wanted VBD
to TO

win NN
satria nn
once RB

upon IN
a DT

time NN
there ex
was VBD

a dt

beautiful jj
girl nn
called VBN
Cinderella NNP
and CC
she PRP
had VBD
two CD

ugly 33
step NN
sisters nns

Figure 3.2: JTagger Corpus

Basically JTagger is a supervised learning tagger. It typically relies on pre-tagged

corpus/corpora to serve as the basis for creating any tools to be used throughout the

tagging process.

3.1.3 Tagsets

To take a sentence, the system required to use tagsets. The tagsets that I used is the

Penn Treebank Tagsets. It consists of 45 tags which included the verb, noun,

21

preposition and other word classes. Penn Treebank is considered as a small tagsets

compared to other Tagsets like C5 or C7 from BNC Corpus.

In the corpus, I have made a restriction in the tagset. One word should only belong to

one category. The changing of tagsets happened after the rule is applied.

Tag Description Example Tag Description Example

CC Coordin. Conjunction and, but, or SYM Sy mbol +,%, &

CD Cardinal number one, two, three TO "to" to

DT Determiner a. the UH Interjection ah, oops
HX Existential 'there' there VB Verb, base form eat

FW Foreign word mea culpa VBD Verb, past tense ate

IN Pre position/sub-conj of in, by VBG Verb, gerund eating
.1.1 Adjective yellow VBN Verb, past participle eaten

JJR Adj., comparative bigger VBP Verb. non-3sg pres eat

JJS Adj., superlative wildest VBZ Verb, 3sg pr-es eats

LS List item marker J, 2, One WDT Wh-determiner which-, that

MD Modal can, should WP Wh-pronoun what, who

NN Noun. sing, or mass llama WPS Possessive wh- whose

NNS Noun, plural llamas WRB Wh-adverb how, where

NNP Proper noun, singular IBM $ Dollar sign S

NNPS Proper noun, plural Carolituis # Pound sign #

PDT Predeterminer all, both " Left quote C or '*)
POS Possessive ending 's " Right quote C or ">
PP Persona] pronoun /, you, he (Left parenthesis (1. (, {, <)
PPS Possessive pronoun your,, one's) Righi parenthesis (]-),}•»
RB Adverb quickly, never , Comma ,

RBR Adverb, comparative faster Sentence-final punc (. ! ?)
BBS Adverb, superlative fastest Mid-sentence punc (: ;...--)

RP Particle t*P. off

Figure 3.3: Penn Treebank Tagsets

Many word tokens are unambiguous, and so will be assigned just one tag: e.g. various

AJO (adjective).

To find the list of potential tags associated with a word, JTagger first looks up the word

in a lexicon of 3,000 word entries in the corpus mentioned above. This lexicon look-up

accounts for a large proportion of the word tokens in a text file.

However, for any rarer words or names will not be found in the lexicon, they are

tagged by other test procedures. Some of the other procedures are:

• Look for the ending of a word: e.g. words in -ness will normally be nouns.

22

Look for an initial capital letter (especially when the word is not sentence-initial).

Rare names which are not in the lexicon and do not match other procedures will

normally be recognized as propernouns on the basis of the initial capital.

Look for a final -(e)s. This is stripped off, to see if the word otherwise matches a

noun or verb; if it does, the word in -s is tagged as a plural noun or a singular

present-tense verb.

If all else fails, a word is tagged ambiguously as a noun, an adjective or a lexical

verb.

3.2 DATA MODEL

The procedure of using JTagger is simple. Theusers onlyhave to enterthe sentence that

they wanted to tag. There are some limitation that required which is user is only allowed

to enter only one sentence. But, there's no limitation in the number of words in the

sentence. After the sentence is entered, the user will have to click on the "Tag Now"

button and the result will be displayed in the result box. All the backend procedure in

changing the tag sets according to their tag set will be not shown. The sequence diagram

belowwill explainhow JTaggerworksand the procedure that I used.

o

User

ENTER SENTENCE RESULT

User entered sentence

they wanted to tag

n this process, the initial tag is
done by referring to the corpus and

after that the rules will be applied

Figure 3.2: Sequence Diagram of JTagger

23

CHAPTER 4

RESULT AND DISCUSSION

4.1 SCREEN SHOT

The screen design for JTagger is as follow:

Enter a sentence to be tagged:

CLEAR TAG NOW

HELP , EXIT
Hill—••IWH—UllLJ»W—1111—

v

Figure 4.1: JTagger Screen Design

o Input field: User will enter the sentence that they want to tag.

o Button Tag Now: The function of the button is for the user to choose when they
wanted to tag the sentence.

o Button Help: The function of the help button is to guide the user on how to use
the system.

o Button Reset Form: The function of this button is to clear the input field and
the output field so that user can enter a new sentence that they wanted to tag.

o Exit: Button exit is used when the user wanted to exit from the system.

24

• Basic Idea of JTagger

JTagger tagged the most probable tag for each value inserted in the input field. The

name JTagger is applied since the system is basically using Java as its tools for

developing interface and source codes. JTagger is using a small, manually and

correctly annotated corpus - the training corpus - which serves as input to the tagger.

The system derived the information from the training corpus and then applies it to the

most likely part of speech tag for a word. Once the training is completed, the tagger can

be used based on the tagset of the training corpus.

The speed of the tagging depended on the capacity of the corpus. The lexicon file

contains the frequencies of each word found in the manually hand tagged corpus. It

changed tags according to rules of type "if word-1 is a determiner and word is a verb

then change the tag to noun" in a specific order.

Basically, JTagger labels each word with the most likely tagged.

For example:

- race has the following probabilities in the Brown corpus:

• P(NN\race) =.98

' P(VB\race)= .02

Transformation rules make changes to tags

- "Change NN to VB when previous tag is TO"

... is/VBZexpected/VBNto/TOrace/NN tomorrow/NN

becomes

... is/VBZexpected/VBNto/TOrace/VB tomorrow/NN

4.2 TRANSFORMATION RULES

Change Tag

No. From To Condition

1 NN VB Previous tag is TO

25

2 VBP VB One of the previous three tag is MD

3 NN VB One of the previous two tag is MD

4 VB NN One of the previous two tag is DT

5 VBD VBN One of the previous three tag is VBZ

6 VBN VBD Previous tag is PRP

7 VBN VBD Previous tag is NNP

8 VBD VBN Previous tag is VBD

9 VB? VB Previous tag is TO

10 POS VBZ Previous tag is PRP

11 VB VBP Previous tag is NNS

12 VBD VBN One of the previous three tag is VBP

13 IN WDT On e of the next two tags is VB

14 VBD VBN One of the previous two tag is VB

15 VB VBP Previous tag is PRP

16 IN WDT Next tag is VBZ

17 IN DT Next tag is NN

18 JJ NNP Next tag is NNP

19 IN WDT Next tag is VBD

20 JJR RBR Next tag is JJ

Table 4.1 Set of Tagging Rules

4.3 STEPS

Steps

Step 1: Initially map words with the most common tag stored in the database

Step 2: Apply transformation rules to the initially tagged words

Step 3: Retagged words by applying the rules

RESULT: The newly tagged sentence

26

4.4 ALGORITHM

Enter Sentence

t
Data

process

Initialize each

words to array
index

For index [i]

Index ++

Print sentence with

initialize tag set

Apply rules

Print new tagged
sentence

Figure 4.2: Process flow

27

Index > word.count

4.5 TESTING

Software testing is the process used to help identify the correctness, completeness,

security and quality of developed system.

In this project, I used the black box testing as a methodto determine the correctness and

completeness of the system. Basically, black box testing is an approach to testing where

the tests are derived from the program or component specification. JTagger will act as a

'black-box' whose behaviors can only be determined by studying its inputs and the

related outputs.

Below is the diagram that could help to understand more on the method.

Figure 4.3: Black-box Testing

The advantages of this type of testing include:

Input causing

anomalous

behavior

Outputs

which

reveal the

presence of

defects

The test is unbiased because the designer and the tester are independent of each

other.

The tester does not need knowledge of any specific programming languages.

The test is done from the point of view of the user, not the designer.

28

• Test cases can be designed as soon as the specifications are complete.

RESULT 1

For the JTagger, I have used the same techniques in testing the system. A list of

sentence that suitable for the testing are tried. For example:

Input:

He is expected to race tomorrow.

Output:

He/NN is/VBZ expected/VBN to/TO race/VB tomorrow/NN.

The word 'race' initial tag in the corpus is actually noun (NN). But after applying the

rules it became a verb since the rule is "Change NN to VB when previous tag is TO".

<§p JTagger

Enter a sentence to be tagged:

He is expected to race tomorrow.

CLEAR TAG NOW

He/NN is/VBZ expected/VBD to/TO race/VB tomorrow/WN ./.]a

HELP EXIT

Figure 4.4: JTagger Output

29

RESULT 2

To get a more accurate result on the output of JTagger, I have taken an initiative to

compare the output from JTagger with Monty Tagger. This is to know the accuracy

level of the result that produced by JTagger.

Basically, Monty Tagger and JTagger are using the same tag sets which are the Penn

Treebank tag sets. So in this case, it is much easier to compare both of them. Monty

Tagger is a rule-based part-of-speech tagger based on Eric Brill's 1994

transformational-based learning POS tagger, and uses Brill-compatible lexicon and rule

files. (The distribution includes Brill's original Penn Treebank trained lexicon and rule

files.) It also includes a tokenizer for English and tools for performance evaluation.

The Monty Tagger is implemented using Python and JTagger used JAVA. The

programming languages for both type of tagger are different but the approach is the

same.

To make it clearer, I have chosen a similar sentence for the testing. Below is some the

comparison that has been done.

Sentence:

1. He will race the car.

2. When will the race end?

30

Eg!.: W.'INDOWS\!.y,.ti;ni12\uiiil.cxc -ax

<—1.,2-jawa>Java -cp . 5into

Past Lexicon Found! Haw Lc
Lexicon OK?
LexicalHulePsryei" OK if
Contexts life le Parser- OK!

igoJ^media.iEisit .edit—

> lie will race the car

noBity took 0„3i seconds™ —-
sai^NN =./.

Figure 4.5: Monty Tagger Output for Sentence 1

Enter a sentence to be tagged:

He will race the car.

CLEAR TAG NOW

He/HH will/HD race/VB the/DT car/HH ./.

HELP EXIT

Figure 4.6: JTagger Output for Sentence 1

31

A

l*J.

CI l:WINDOW&\sysfHiirt?\i md.uxu

.2—jawaSnootytagger-1 „2--jaya>ja^a -t

Fast Lexic
Lexicon OK

>se? OK?

mo mt it took 0-3 s

idia.andt „edu—

Figure 4.7: Monty Tagger Output for Sentence 2

JTagger*
•"•f.*^W=.i -,•i*«^""W!w ™P"

Enter a sentence to be tagged:

When will the race end?

CLEAR TAG NCW

[Jhen/WRB will/HD the/DT race/HTT end/M ?/.

HELP EXIT

A,

_ • x

Figure 4.8: JTagger Output for Sentence 2

The results above show that the rule is successfully been implemented. The rule that

used is:

"Change NN to VB when previous tag is TO"

32

The description below showed how race will become noun (NN) or verb (VB)

according to the structure of the sentence. When the rule is applied, the word race will

become Verb when the previous word is TO which is the determiner. Compared both of

the results, the JTagger tagged the word "He" in the sentence of "He will race the car"

as a noun instead of Monty Tagger which tagged it differently. This is because the

initial tag sets applied to each of the tagger is different. This show that the result cannot

be 100% accurate because it highly depends on the tag sets and the rules that applied.

Since JTagger is depends solely on the rule based it cannot precisely determined the

accuracy of the result.

RESULT 3

To measure the accuracy of JTagger, I have prepared fifty sentences that have

ambiguous words. The results are then compared with Monty Tagger and from there I

know how many percentage of accuracy the JTagger gives. To make it more efficient, I

asked one user that expert in English to manually tag the sentence according to her

understanding and used the Penn Treebank as reference tag sets.

The table below shows the performance of both taggers and manual tagged.

Number of

Sentence

Number of

correct

sentence(s)

tagged

Number of

wrong

sentence(s)

tagged

% of accuracy

JTagger 50 36 14 72%

Monty

Tagger

50 43 7 86%

Manual

Tagging

50 45 5 90%

Table 4.2: Table Performance

33

Number of

Sentence

Number of

wrong

sentence(s)

tagged

• JTagger

B Monty Tagger

• Manual Tagging

Figure 4.9: Performance Graph

Actually it is difficult to compare results with other published results. For JTagger, it

can only produce 73% of accuracy from the test sentences. Monty tagger in the

meanwhile can produce more accurate result. But the highest percentage would be for

manually tagging. The manually tagging is simple but it depends on the ability of the

user and their knowledge in English. Furthermore, it takes times to finish the test.

JTagger and Monty Tagger are proven can fasten the manually tagging process.

Regardless of the precise rankings of both taggers, I have demonstrated that simple rule-

based tagger. JTagger is proven that it served 72% of accuracy. While Monty Tagger

produced more accurate results since it combines stochastic rules. It also has its own

training set than serves as the patches to the tagger. While JTagger is 100% depends on

the rules and also the corpus that serves as the input to initial tagging.

Incorporating a large corpus into the tagger would basically improve the performance as

it would increase the error resulting from the initial tagging. Second, the accuracy of the

results also depends on the tagging rules. The more rules are implemented, the better the

results.

34

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 RELEVANCY TO THE OBJECTIVES

The JTagger project which is how to determine the part of speech tagging in a sentence

is very important where it automatically tagged the sentence using the rule-based

method. The tagger works by automatically assigning each word to its most likely tag,

and then applies the rule that have been developed.

Objectives one for this project is to help users to understand English better in the part of

speech tagging context. The result proved that JTagger helped to understand English

better and the user would know which category of word it belongs to depending on the

structure of it. By applying the rule, one user can resolve the disambiguation of the

word itself.

For example, book is ambiguous. That is, it has more than one possible usage and part-

of-speech. It can be a verb (as in book thatflight or to bookthe suspect) or a noun (as in

hand me that book, or a bookofmatches).Similarly thatcan be a determiner (as in Does

that flight serve dinner), or a complementizer (as in / thought that your flight was

earlier). The problem of JTagger is to resolve these ambiguities, choosing the proper

tag for the context. Part-of-speech tagging is thus one of the many disambiguation tasks

as I have addressed earlier.

35

The second objective is to demonstrate the tagging method computationally. Before

this, all the tagging processes were done manually hand-tagged. By implemented such a

system likes JTagger, that could help eliminates the problems. The other matter

addressed in the objectives was how JTagger as a machine learning translation and most

importantly could help in word disambiguation. This is already achieved and is relevant

to the objectives of the JTagger implementation in early beginning.

Both of the objectives for JTagger are relevant to the final results. The expected results

is also achieved thus it would gives benefits to the users. Furthermore, JTagger have its

commercial value to the English learners and users that could benefit from it.

5.2 SUGGESTION FOR FUTURE WORK EXPANSION AND

CONTINUATION

Although JTagger is successfully implemented, but there's more things that can be done

to make it more useful. For future work expansion, here's some of the suggestion that

might be considered:

• Online Web

Now, JTagger is implemented as a stand-alone system. Future development for

enhancement can be done for the online web for JTagger. This objective is important

since it could help the user use the system online.

• Searching Method

JTagger is basically is using the sequential searching method which in this case, it will

search the word in the corpus one by one. Future enhancement can also consider on

changing the searching technique since more words in the corpus, the more time it will

take for the execution. The suggested method is the binary search which is faster.

36

• Use Commercial Corpus

To produce a more accurate result, it is better if the corpus is able to come out with the

initial tag. But, there the drawback of having a biggercorpus would result is slowing the

system and also it would cost more.

• Combine Rule-based with Stochastic (probability) Method

JTagger is solely based on the rule-based method. To make it more efficient, it is better

to combine both of the rule-based and stochastic method so that a more accurate result

can be achieved. This means the combination of rule-based and probability of words in

the sentence. Also future suggestion can also concentrate on developing a rule-s

learning system which can serves as the input to the JTagger.

• Variety of Language

JTagger is an English based machine learning system. But, future work can expand to

the other languages. There are now many of languages who adapt this kind of tagger for

better understanding on the language. Perhaps, Bahasa Malaysia could be used as one

the expansion of tagging system.

37

REFERENCES

[1] Roberts, A., 2003. Machine Learning in Natural Language Processing.

[2] Dolan, W. B. E. Word Sense Ambiguation : Clustering Related Sense. Microsoft

Research.

[3] Guilder, L. V, Automated Part of Speech Tagging : A Brief Overview.

Georgetown University.

[4] Brill, E. 1992. A Simple Rule-Based Part of Speech Tagger. Department of

Computer Science, University of Pennsylvania.

[5] Jurafsky, D. & Martin, J.H. 2000. Speech and Language Processing : An

Introduction to Natural Language Processing. Prentice Hall.

[6] Brill, E. 1995. Unsupervised Learning of Disambiguation Rules for Part of
Speech Tagging. Department of Computer Science, John Hopkins University.

[7] Manning, CD & Schutze, H 2001. Foundation of Statistical Natural Processing

Language. Massachusetts Institute of Technology.

[8] Wardhough, R. 2003. Understanding English Grammar: A Linguistic Approach.

Blackwell Publishing.

38

[9] Ambiguous words: http://en.wikipedia.org/wiki/ retrieved from the World Wide

Web on May 12, 2006.

[10] Lee, G & Lee, J.H & Shin, S. TAKTAG: Two-phase learning method for hybrid

statistical/rule-based part-of-speech disambiguation. Department of Computer

Science & Engineering and Postech Information Research Laboratory, Pohang

University of Science & Technology , Korea

[11] Yu, L, Ahmed, S.T., Gonzalez, G, Logsdon, B, Nakamura, M, Nikkila, S,

Shah, K, Tari, L, Wendt, R, Zeighler, A, & Baral, C 2005. Genomic Information

Retrieval through Selective Extraction and Tagging by the ASU-BioAI Group,

Department of Computer Science and Engineering, Arizona State University,

United States of America.

39

APPENDICES

40

APPENDIX A

UCREL CLAWS C5 Tagset

! PUN

PUQ

(PUL

) PUR

PUN

PUN

PUN

PUN

: PUN

; PUN

? PUN

AJO adjective (unmarked) (e.g. GOOD, OLD)

AJC comparative adjective (e.g. BETTER, OLDER)

AJS superlative adjective (e.g. BEST, OLDEST)

ATO article (e.g. THE, A, AN)

AVO adverb (unmarked) (e.g. OFTEN, WELL, LONGER, FURTHEST)

AVP adverb particle (e.g. UP, OFF, OUT)

AVQ wh-adverb (e.g. WHEN, HOW, WHY)

CJC coordinating conjunction (e.g. AND, OR)

CJS subordinating conjunction (e.g. ALTHOUGH, WHEN)
CJT the conjunction THAT

CRD cardinal numeral (e.g. 3, FIFTY-FIVE, 6609) (excl ONE)
DPS possessive determiner form (e.g. YOUR, THEIR)

DTO general determiner (e.g. THESE, SOME)

DTQ wh-determiner (e.g. WHOSE, WHICH)

EXO existential THERE

ITJ interjection or other isolate (e.g. OH, YES, MHM)

NNO noun (neutral for number) (e.g. AIRCRAFT, DATA)

NN1 singular noun (e.g. PENCIL, GOOSE)

NN2 plural noun (e.g. PENCILS, GEESE)

NPO proper noun (e.g. LONDON, MICHAEL, MARS)

NULL the null tag (for items not to be tagged)

ORD ordinal (e.g. SIXTH, 77TH, LAST)

PNI indefinite pronoun (e.g. NONE, EVERYTHING)

PNP personal pronoun (e.g. YOU, THEM, OURS)

41

PNQ wh-pronoun (e.g. WHO, WHOEVER)

PNX reflexive pronoun (e.g. ITSELF, OURSELVES)

POS the possessive (or genitive morpheme) 'S or '

PRF the preposition OF

PRP preposition (except for OF) (e.g. FOR, ABOVE, TO)

PUL punctuation - left bracket (i.e. (or [)

PUN punctuation - general mark (i.e..!,:;-?...)

PUQ punctuation - quotation mark (i.e. " '")

PUR punctuation - right bracket (i.e.) or])

TOO infinitive marker TO

UNC "unclassified" items which are not words of the English lexicon

VBB the "base forms" of the verb "BE" (except the infinitive), i.e. AM, ARE

VBD past form of the verb "BE", i.e. WAS, WERE

VBG -ing form of the verb "BE", i.e. BEING

VBI infinitive of the verb "BE"

VBN past participle of the verb "BE", i.e. BEEN

VBZ -s form of the verb "BE", i.e. IS, 'S

VDB base form of the verb "DO" (except the infinitive), i.e.

VDD past form of the verb "DO", i.e. DID

VDG -ing form of the verb "DO", i.e. DOING

VDI infinitive of the verb "DO"

VDN past participle of the verb "DO", i.e. DONE

VDZ -s form of the verb "DO", i.e. DOES

VHB base form of the verb "HAVE" (except the infinitive), i.e. HAVE
VHD past tense form of the verb "HAVE", i.e. HAD, 'D

VHG -ing form of the verb "HAVE", i.e. HAVING

VHI infinitive of the verb "HAVE"

VHN past participle of the verb "HAVE", i.e. HAD

VHZ -s form of the verb "HAVE", i.e. HAS, 'S

VMO modal auxiliary verb (e.g. CAN, COULD, WILL, *LL)
VVB base form of lexical verb (exceptthe infinitive)(e.g. TAKE, LIVE)
WD past tense form of lexical verb (e.g. TOOK, LIVED)

VVG -ing form of lexical verb (e.g. TAKING, LIVING)
VVI infinitive of lexical verb

VVN past participle form of lex. verb (e.g. TAKEN, LIVED)

VVZ -s form of lexical verb (e.g. TAKES, LIVES)

XXO the negative NOT or NT

ZZO alphabetical symbol (e.g. A, B, c, d)

42

APPENDIX A

UCREL CLAWS C7 Tagset

APPGE possessive pronoun, pre-nominal (e.g. my, your, our)

AT article (e.g. the, no)

ATI singular article (e.g. a, an, every)

BCL before-clause marker (e.g. in order (that),in order (to))

CC coordinating conjunction (e.g. and, or)

CCB adversative coordinating conjunction (but)

CS subordinating conjunction (e.g. if, because, unless, so, for)

CSA as (as conjunction)

CSN than (as conjunction)

CST that (as conjunction)

CSW whether (as conjunction)

nA after-determiner or post-determiner capable ofpronominal ftinction (e.g.
such, former, same)

DAI singular after-determiner (e.g. little, much)

DA2 plural after-determiner (e.g. few, several, many)

DAR comparative after-determiner (e.g. more, less, fewer)

DAT superlative after-determiner (e.g. most, least, fewest)
_.„ before determiner or pre-determiner capable of pronominal function (all,
DB half)
DB2 plural before-determiner (both)

DD determiner (capable of pronominal function) (e.g any, some)

DD1 singular determiner (e.g. this, that, another)

DD2 plural determiner (these,those)

DDQ wh-determiner (which, what)

DDQGE wh-determiner, genitive (whose)

DDQV wh-ever determiner, (whichever, whatever)

EX existential there

FO formula

FU unclassified word

FW foreign word

GE germanic genitive marker - (' or's)

IF for (as preposition)

II general preposition

43

10 of (as preposition)

IW with, without (as prepositions)

JJ general adjective

JJR general comparative adjective (e.g. older, better, stronger)

JJT general superlative adjective (e.g. oldest, best, strongest)

JK catenative adjective (able in be able to, willing in be willing to)

MC cardinal number,neutral for number (two, three..)

MCI singular cardinal number (one)

MC2 plural cardinal number (e.g. sixes, sevens)

MCGE genitive cardinal number, neutral for number (two's, 100's)

MCMC hyphenated number (40-50, 1770-1827)

MD ordinal number (e.g. first, second, next, last)

MF fraction,neutral for number (e.g. quarters, two-thirds)

ND1 singular noun of direction (e.g. north, southeast)

NN common noun, neutral for number (e.g. sheep, cod, headquarters)

NN1 singular common noun (e.g. book, girl)

NN2 plural common noun (e.g. books, girls)

NNA following noun of title (e.g. M.A.)

NNB preceding noun of title (e.g. Mr., Prof)

NNL1 singular locative noun (e.g. Island, Street)

NNL2 plural locative noun (e.g. Islands, Streets)

NNO numeral noun, neutral for number (e.g. dozen, hundred)

NN02 numeral noun, plural (e.g. hundreds, thousands)

NNT1 temporal noun, singular (e.g. day, week, year)

NNT2 temporal noun, plural (e.g. days, weeks, years)

NNU unit of measurement, neutral for number (e.g. in, cc)

NNU1 singular unit of measurement (e.g. inch, centimetre)

NNU2 plural unit of measurement (e.g. ins., feet)

NP proper noun, neutral for number (e.g. IBM, Andes)

NP1 singular proper noun (e.g. London, Jane, Frederick)

NP2 plural proper noun (e.g. Browns, Reagans, Koreas)

NPD1 singular weekday noun (e.g. Sunday)

NPD2 plural weekday noun (e.g. Sundays)

NPM1 singular month noun (e.g. October)

NPM2 plural month noun (e.g. Octobers)

PN indefinite pronoun, neutral for number (none)

PN1 indefinite pronoun, singular (e.g. anyone, everything, nobody, one)

PNQO objective wh-pronoun (whom)

44

PNQS subjective wh-pronoun (who)

PNQV wh-ever pronoun (whoever)

PNX1 reflexive indefinite pronoun (oneself)

PPGE nominal possessive personal pronoun (e.g. mine, yours)
PPH1 3rd person sing, neuter personal pronoun (it)
PPHOl 3rdperson sing, objective personal pronoun (him, her)
PPH02 3rdperson plural objective personal pronoun (them)
PPHS1 3rd person sing, subjective personal pronoun (he, she)
PPHS2 3rd person plural subjective personal pronoun (they)
PPIO1 1st person sing, objective personal pronoun (me)
PPI02 1st personplural objective personal pronoun(us)
PPIS1 1stpersonsing, subjective personal pronoun (I)
PPIS2 1stperson plural subjective personal pronoun (we)
PPXl singular reflexive personal pronoun(e.g. yourself, itself)
PPX2 plural reflexive personal pronoun (e.g. yourselves, themselves)
PPY 2nd person personal pronoun (you)

RA adverb, after nominal head (e.g. else, galore)

REX adverb introducing appositional constructions (namely, e.g.)
RG degree adverb (very, so, too)
RGQ wh- degree adverb (how)

RGQV wh-ever degree adverb (however)

RGR comparative degree adverb (more, less)
RGT superlative degree adverb (most, least)
RL locative adverb (e.g. alongside, forward)
RP prep, adverb, particle (e.g about, in)
RPK prep, adv., catenative (about in be about to)
RR general adverb

RRQ wh- general adverb (where, when, why, how)
RRQV wh-ever general adverb (wherever, whenever)
RRR comparative general adverb (e.g. better, longer)
RRT superlative general adverb (e.g. best, longest)
RT quasi-nominal adverb of time (e.g. now, tomorrow)
TO infinitive marker (to)

UH interjection (e.g. oh, yes, urn)

VBO be, base form (finite i.e. imperative, subjunctive)
VBDR were

VBDZ was

VBG being

45

VBI be, infinitive (To be or not... It will be ..)

VBM am

VBN been

VBR are

VBZ is

VDO do, base form (finite)

VDD did

VDG doing

VDI do, infinitive (I may do... To do...)

VDN done

VDZ does

VHO have, base form (finite)

VHD had (past tense)

VHG having

VHI have, infinitive

VHN had (past participle)

VHZ has

VM modal auxiliary (can, will, would, etc.)

VMK modal catenative (ought, used)

WO base form of lexical verb (e.g. give, work)

WD past tense of lexical verb (e.g. gave, worked)

VVG -ing participle of lexical verb (e.g. giving, working)

VVGK -ing participle catenative (going in be going to)

VVI infinitive (e.g. to give... It will work...)

VVN past participle of lexical verb (e.g. given, worked)

VVNK past participle catenative (e.g. bound in be bound to)

VVZ -s form of lexical verb (e.g. gives, works)

XX not, n't

ZZ1 singular letter of the alphabet (e.g. A,b)

ZZ2 plural letter of the alphabet (e.g. A's, b's)

46

